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Abstract: It is well known, by now, that the three-dimensional non-viscous planetary geostrophic model,
with vertical hydrostatic balance and horizontal Rayleigh friction/damping, coupled to the heat di�usion
and transport, is mathematically ill-posed. This is because the no-normal �ow physical boundary condition
implicitly produces an additional boundary condition for the temperature at the lateral boundary. This ad-
ditional boundary condition is di�erent, because of the Coriolis forcing term, than the no-heat-�ux physical
boundary condition. Consequently, the second order parabolic heat equation is over-determined with two
di�erent boundary conditions. In a previous work we proposed one remedy to this problem by introducing
a fourth-order arti�cial hyper-di�usion to the heat transport equation and proved global regularity for the
proposed model. A shortcoming of this higher-oder di�usion is the loss of the maximum/minimum princi-
ple for the heat equation. Another remedy for this problem was suggested by R. Salmon by introducing an
additional Rayleigh-like friction/damping term for the vertical component of the velocity in the hydrostatic
balance equation. In this paper we prove the global, for all time and all initial data, well-posedness of strong
solutions to the three-dimensional Salmon’s planetary geostrophic model of ocean dynamics. That is, we
show global existence, uniqueness and continuous dependence of the strong solutions on initial data for
this model. Unlike the 3D viscous PGmodel, we are still unable to show the uniqueness of the weak solution.
Notably, we also demonstrate in what sense the additional damping term, suggested by Salmon, annihilate
the ill-posedness in the original system; consequently, it can be viewed as “regularizing" term that can pos-
sibly be used to regularize other related systems.
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1 Introduction
The starting point in the derivation of the ocean circulation models is Boussinesq equations which are the
Navier–Stokes equations with rotation and a heat transport equation. The global existence of strong solution
to the Navier–Stokes equations, which are a particular case of the Boussinesq equations when the tempera-
ture is identically zero, is one of the most challenging problems in applied analysis. However, geophysicists
take advantage of the shallowness of the oceans and the atmosphere and introduce the hydrostatic balance
approximation in the vertical motion. This in turn simpli�es the Boussinesq model, and leads to the primi-
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tive equations of ocean and atmosphere dynamics (see, e.g., [14], [15], [16], [18], [20], [22], [34] and references
therein). Further, horizontally, approximations based on the fast rotation of the earth, and the shallowness
of the atmosphere and ocean imply the smallness of the Rossby number, which consequently lead to the
geostrophic balance between the Coriolis force and the horizontal pressure gradient (cf. e.g., [11], [18], [22],
[34] and references therein). By taking advantage of these assumptions and other geophysical considerations
several intermediatemodels have been developed and used in numerical studies of weather prediction, long-
time climate dynamics and large scale ocean circulation dynamics (see, e.g., [2], [3], [6], [7], [18], [20], [23],
[26], [27], [28], [29], [36] and references therein).

The planetary geostrophic (PG) model, the inviscid and adiabatic form of “thermocline” equations, of
large scale ocean circulation are derived by standard scaling analysis for gyre–scale oceanic motion (see [17],
[19] , [21], [22], [34] and [35]). They are given in their simplest dimensionless β−plane mid-latitude approxi-
mation by the system of equations:

px − fv = 0, py + fu = 0, pz − T = 0, (1)
ux + vy + wz = 0 (2)
∂tT + uTx + vTy + wTz = κvTzz , (3)

in the domain Ω = {(x, y, z) : (x, y) ∈ M ⊂ R2, and z ∈ (−h, 0)} and h > 0. For convenience, we assume that
h is a constant. Here (u, v, w) denotes the velocity �eld, p is the pressure, and T is the temperature, which are
the unknowns. f = f0 + βy is the β−planemid-latitude approximation of the Coriolis force. The �rst two equa-
tions in (1) represent the geostrophic balance and the third equation represents the hydrostatic balance. The
di�usive term, κvTzz is a leading order approximation to the e�ect of macro-scale turbulent mixing. Based on
physical ground Samelson and Vallis [26] have argued that in closed ocean basin, with the no-normal-�ow
boundary conditions, this model can be solved only in restricted domains which are bounded away from the
lateral boundary, ∂M × (−h, 0). Thus, it cannot be utilized in the study of the large-scale circulation. Further-
more, it has been pointed out numerically in [8] that arbitrarily small linear disturbances (disturbances that
are supported at small spatial scales) will grow arbitrarily fast when the �ow becomes baroclinically unsta-
ble. This nonphysical growth at small scales is a signature of mathematical ill-posedness of this model near
unstable baroclinic mode. Therefore, Samelson and Vallis proposed in [26] various dissipative schemes to
overcome these physical andnumerical di�culties. In particular, they propose to add either a linear Rayleigh-
like drag/friction/damping or a conventional eddy viscosity to the horizontal components of the momentum
equations, and a horizontal di�usion in the thermodynamic equation (subject to no-heat-�ux at the lateral
boundary.) The planetary geostrophic (PG) model with conventional eddy viscosity has been studied mathe-
matically in [4], [24], [25]. In [4] we show the global existence and uniqueness of weak and strong solutions
to this 3D viscous PG model. We also provide rigorous estimates, depending on the various physical param-
eters, for the dimension of its global attractor. In the case where the dissipative scheme for the horizontal
momentum is the linear drag Rayleigh friction it is observed that the no-normal-�ow at the lateral boundary
yields, due to the Coriolis force, an additional boundary condition to, and di�erent from, the no-heat-�ux.
Therefore, the second order parabolic PDE that governs the temperature (the thermodynamic equation) has,
toomany boundary conditions to be satis�ed, and hence it is over-determined and ill-posed (see, e.g., the de-
tailed discussion regarding this matter in section 2, below, in [5], [26] and the references therein). To remedy
this situation it is argued in [26] that one would have to add to the thermodynamic equation a higher order
(biharmonic) horizontal di�usion in order to be able to satisfy both physical boundary conditions, i.e., the
no-normal-�ow and no-heat-�ux boundary conditions at the lateral boundary (cf. e.g., [5], [26], [27]). In [5],
we introduce, instead, a new PGmodel with an appropriate arti�cial horizontal “hyperdi�usion" term, to the
heat equation, which involves the Coriolis parameters. Under the two natural physical boundary conditions
at the lateral boundarywe are able to prove in [5] the global existence and uniqueness of the strong solutions.
Moreover, we also show the existence of the �nite dimensional global attractor. It is worth mentioning, how-
ever, that the shortcoming of adding a higher-order di�usion operator in the temperature evolution equation,
which is compatible with the physical boundary conditions, is the loss of the maximum/minimum principle
for the temperature; which is a fundamental qualitative property of the temperature.
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To overcome the above mentioned non-physical baroclinical instabilities and numerical ill-posedness
Salmon introduced in [22] the following alternative planetary geostrophicmodel in the cylindrical domain Ω:

ϵ u − f v + px = 0, (4)
ϵ v + f u + py = 0, (5)
δ w + pz = T, (6)
ux + vy + wz = 0 (7)
∂tT − κh (Txx + Tyy) − κvTzz + uTx + vTy + wTz = Q , (8)

where ϵ and δ are positive constants representing the linear (Rayleigh friction/damping) damping coe�-
cients, and κh is positive constant which stand for the horizontal heat di�usivity, and Q is time independent
heat source. We partition the boundary of Ω into:

Γu = {(x, y, z) ∈ Ω : z = 0}, (9)
Γb = {(x, y, z) ∈ Ω : z = −h}, (10)
Γs = {(x, y, z) ∈ Ω : (x, y) ∈ ∂M, −h ≤ z ≤ 0}. (11)

System (4)–(8) is equipped with the following boundary conditions – with no-normal �ow and non-heat �ux
on the side walls and the bottom (see, e.g., [14], [15], [18], [22], [23], [26],[27], [28]):

on Γu : w = 0, ∂T∂z + αT = 0; (12)

on Γb : w = 0, ∂T∂z = 0; (13)

on Γs : (u, v) · ~n = 0, ∂T∂~n = 0, (14)

where ~n is the normal vector to the lateral boundary Γs. In addition, we supply the system with the initial
condition:

T(x, y, z, 0) = T0(x, y, z). (15)

Observe that when δ = 0 one obtains, formally, the original ill-posed PG model with Rayleigh fric-
tion/damping of the horizontal momentum (with coe�cient ϵ > 0). Therefore, one can view the additional
damping term, δw, in (6) as a “regularizing" term, as it will be argued in section 2.

In this paper we focus on the question of, and prove, the global regularity and well-posedness of the 3D
Salmon’s PGmodel (4)–(8) for all time and all initial data.We remark that a general discussion concerning the
nonlinear system (4)–(15) was presented in [31], but without providing any evidence of its global regularity,
a problem that we provide a positive answer for it in this contribution.

The paper is organized as follows. In section 2, we introduce our notations and recall some well-known
relevant inequalities. In section 3 we show the short-time existence of strong solutions of system (4)–(8) em-
ploying a Galerkin approximation procedure. Section 4 is themain section inwhichwe establish the required
estimates for proving the global existence and uniqueness of the strong solutions, and also show their con-
tinuous dependence on the initial data.

2 Preliminaries

Let us denote by Lr(Ω) andWm,r(Ω), Hr(Ω) the usual Lr−Lebesgue and Sobolev spaces, respectively (cf., [1]).
We denote by

‖ϕ‖r =

∫
Ω

|ϕ(x, y, z)|r dxdydz

 1
r

, for every ϕ ∈ Lr(Ω). (16)
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We set

Ṽ =
{
T ∈ C∞(Ω) : ∂T∂z

∣∣∣∣
z=−h

= 0;
(
∂T
∂z + αT

)∣∣∣∣
z=0

= 0; ∂T
∂~n

∣∣∣∣
Γs
= 0
}
,

and denote by V the closure spaces of Ṽ in H1(Ω) under the H1−topology. For convenience, we also introduce
the following equivalent norm on V:

‖ϕ‖2V = κh‖∂xϕ(x, y, z)‖22 + κh‖∂yϕ(x, y, z)‖22 + κv
(
‖∂zϕ(x, y, z)‖22 + α‖ϕ(z = 0)‖2L2(M)

)
. (17)

The equivalence of this norm on V to the H1−norm can be justi�ed thanks to the Poincaré inequality (21),
below.

Next, we recall the following three-dimensional Sobolev and Ladyzhenskaya inequalities (see, e.g., [1],
[9], [10], [13])

‖ψ‖L3(Ω) ≤ C0‖ψ‖
1/2
L2(Ω)‖ψ‖

1/2
H1(Ω), (18)

‖ψ‖L4(Ω) ≤ C0‖ψ‖
1/4
L2(Ω)‖ψ‖

3/4
H1(Ω), (19)

‖ψ‖L6(Ω) ≤ C0‖ψ‖H1(Ω), (20)

for every ψ ∈ H1(Ω). Here C0 is a dimensionless positive constant which might depend on the shape of M
and Ω but not on their sizes. We also introduce the following version of Poincaré inequality

‖ψ‖2L2(Ω) ≤ 2h‖ψ(z = 0)‖2L2(M) + h
2‖ψz‖2L2(Ω), (21)

‖ψ‖6L6(Ω) ≤ 2h‖ψ(z = 0)‖6L6(M) + h
2‖ψ2 ψz‖2L2(Ω). (22)

By solving the linear system (4)–(6) we obtain

u = − ϵpx + fpyϵ2 + f 2 , (23)

v = fpx − ϵpyϵ2 + f 2 , (24)

w = T − pzδ . (25)

Observe that from the no-normal-�ow boundary condition (14) on the lateral boundary, Γs, one infers
that

(uz , vz) · ~n|Γs = 0. (26)

As a result of (23)-(25) and (26) one has
∂T
∂~e |Γs = δ

∂w
∂~e |Γs , (27)

where~e = ϵ~n+f~k×~n√
ϵ2+f 2

, and~k is the unit vector of vertical direction.We remark that the vectors~e and ~n are parallel
on Γs if and only if the Coriolis coe�cient f = 0.

Since we deal here with the case when the Coriolis coe�cient f ≠ 0, it is observed that when δ = 0
equations (14) and (27) imply two di�erent boundary conditions for the temperature on the lateral boundary
Γs:

∂T
∂~n |Γs = 0 and ∂T

∂~e |Γs = 0. (28)

Consequently, when δ = 0, (28) makes (8), the second-order parabolic equation for the temperature, over-
determined and ill-posed. However, when δ > 0, equation (27) does not generate an additional boundary
condition to the no-heat-�ux, (14), since the right-hand side δ ∂w∂~e |Γs in (27) is not speci�ed in advance, but it
adjusts itself dynamically to satisfy (27). Accordingly, one can view the δw term in (6) as a regularizing e�ect,
since it annihilates the ill-posedness situation when δ = 0.
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Next, we show how to solve for the pressure term and the e�ect of δ > 0 in regularizing the pressure.
Thanks to (23)-(25) and (7) we have the following elliptic system (since δ > 0) for the pressure

−
[(

ϵpx + fpy
ϵ2 + f 2

)
x
+
(
−fpx + ϵpy
ϵ2 + f 2

)
y
+
(
pz − T
δ

)
z

]
= 0. (29)

Using the boundary conditions (12) and (13) we infer from (23)-(25) the following boundary conditions for the
pressure:

on Γu and Γb : pz = T, and on Γs :
∂p
∂~e = 0, (30)

where ~e = ϵ~n+f~k×~n√
ϵ2+f 2

, as in (27).
Notice that by following the techniques developed in [12] and [37] (for the case of smooth domains, see,

for example, [13] p. 89, and [33]), the three-dimensional second order elliptic boundary–value problem (29)–
(30) has a unique solution for every given T; moreover, this solution enjoys the following regularity proper-
ties. Taking the L2(Ω) inner product of equation (29) with p, integrating by parts and applying the boundary
conditions (30) and using the Cauchy–Schwarz inequality, we obtain∫

Ω

[
ϵ

ϵ2 + f 2
(
p2x + p2y

)
+ p

2
z
δ

]
dxdydz = 1

δ

∫
Ω

Tpz dxdydz ≤
1
δ ‖T‖2‖pz‖2. (31)

Denote by

0 < F0 = min f < F1 = max f . (32)

We observe that the assumption F0 > 0 indicates that we are dealing with a mid-latitude case and away from
the equator. By using (32) and applying Young’s inequality to (31), we reach∫

Ω

[
ϵ

ϵ2 + F21

(
p2x + p2y

)
+ p

2
z

2δ

]
dxdydz ≤

∫
Ω

[
ϵ

ϵ2 + f 2
(
p2x + p2y

)
+ p

2
z

2δ

]
dxdydz ≤ 1

2δ ‖T‖
2
2. (33)

Furthermore, by (29) and the above estimate, we have∥∥∥∥ ϵ
ϵ2 + f 2 (pxx + pyy) +

pzz
δ

∥∥∥∥
2
=
∥∥∥∥βpx(ϵ2 − f 2) + 2ϵβfpy(ϵ2 + f 2)2 + Tzδ

∥∥∥∥
2

≤ C
(
β(‖px‖2 + ‖py‖2)

ϵ2 + F20
+
∥∥∥∥Tzδ

∥∥∥∥
2

)
≤ C
(

β(ϵ + F1)
ϵ1/2δ1/2(ϵ2 + F20)

‖T‖2 +
‖Tz‖2
δ

)
. (34)

As a result of the above and (23)-(25), we obtain

‖ϵu‖2 + ‖ϵv‖2 + ‖δ w‖2 ≤ C(‖∇p‖2 + ‖T‖2) ≤ C‖T‖2, (35)

and

‖ϵu‖H1(Ω) + ‖ϵv‖H1(Ω) + ‖δ w‖H1(Ω) ≤ C(‖∇p‖H1(Ω) + ‖T‖H1(Ω)) ≤ C‖T‖H1(Ω). (36)

De�nition 1. Let T0 ∈ V, and let T be a �xed positive time. (u, v, w, p, T) is called a strong solution of (4)–(8)
on the time interval [0, T] if
1)

T ∈ C([0, T], V) ∩ L2([0, T], H2(Ω)),
Tt ∈ L1([0, T], L2(Ω)),
Tt(z = 0) ∈ L1([0, T], H−1/2(M)).
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2) (u, v, w, p) satis�es (23)–(30).
3) Moreover, (8) is satis�ed in the weak sense, namely, for every t0 ∈ [0, T]∫

Ω

T(t)ψ dxdydz −
∫
Ω

T(t0)ψ dxdydz

+
t∫

t0

∫
Ω

(κhTxψx + κhTyψy + κvTzψz) dxdydz + κv α
∫
M

T(z = 0)ψ(z = 0) dxdy

 ds (37)

+
t∫

t0

∫
Ω

[
v ·∇T(s) + wTz(s)

]
ψ dxdydz ds =

t∫
t0

∫
Ω

Qψ dxdydz ds,

for every ψ ∈ V , and t ∈ [t0, T].

3 Short-time Existence of the Strong Solutions
In this section we will show the short-time existence of the strong solution of system (4)–(8).

Theorem 2. Let Q ∈ L2(Ω) and T0 ∈ V be given. Then there exists a strong solution (u, v, w, p, T) of sys-
tem (4)–(8) on the interval [0, T***], where T*** is a positive time given in (57), below. Furthermore, ∂tT ∈
L2([0, T***]; L2(Ω)) and ∂tT(z = 0) ∈ L2([0, T***];H−1/2(M)); and equation (8) holds as a functional equation
in L2([0, T***]; L2(Ω)).

Proof. We will use a Galerkin like procedure to show the existence of the strong solution for system (4)–(8).
First, we will show the existence of the weak solutions. Let {ϕk ∈ V ∩ H2(Ω)}∞k=1 and {λk ∈ R+}∞k=1 be the
eigenfunctions and their corresponding eigenvalues of the second order elliptic operators −κh (Txx + Tyy) −
κvTzz, subject to the boundary conditions (12)–(14) (see, e.g., [13]). The eigenvalues are ordered such that
0 < λ1 ≤ λ2 ≤ · · · ; moreover, {ϕk}∞k=1 is an orthogonal basis of L2(Ω). Let m ∈ Z+ be �xed and Hm be the
linear space generated by {ϕk}mk=1. We will denote by Pm : L2 → Hm, the orthogonal projection in L2. The
Galerkin approximating system of order m that we use for (4)–(8) reads:

ϵ um − f vm + ∂xpm = 0, (38)
ϵ vm + f um + ∂ypm = 0, (39)
δ wm + ∂zpm = Tm , (40)
∂xum + ∂yvm + ∂zwm = 0 (41)
∂tTm − κh (∂xxTm + ∂yyTm) − κv∂zzTm + Pm [um∂xTm + vm∂yTm + wm∂zTm] = PmQ, (42)
Tm(x, y, z, 0) = PmT0(x, y, z), (43)

where Tm =
∑m

k=1 ak(t)ϕk(x, y, z), and (um , vm , wm , pm) is the solution of the system (38)–(41) under bound-
ary condition wm|z=0 = wm|z=−h = 0; (um , vm) · ~n

∣∣
Γs
= 0. Based on discussion in the previous section, equa-

tion (42) is an ODE system with the unknown ak(t), k = 1, · · · ,m. Furthermore, it is easy to check that the
vector �eld in equation (42) is locally Lipschitz with respect to ak(t), k = 1, · · · ,m, since it is quadratic.
Therefore, there is a unique solution ak(t), k = 1, · · · ,m, to equation (42) for a short interval of time [0, T*m].
Let [0, T**m ) be the maximal interval of existence for system (38)–(43). We will focus our discussion below on
the interval [0, T**m ), and will show that T**m = +∞.

By taking the L2(Ω) inner product of equation (42) with Tm, we obtain

1
2
d‖Tm‖22
dt + κh

(
‖∂xTm‖22 + ‖∂yTm‖22

)
+ κv

(
‖∂zTm‖22 + α‖Tm(z = 0)‖22

)
(44)

+
∫
Ω

[um∂xTm + vm∂yTm + wm∂zTm] Tm dxdydz =
∫
Ω

Q Tm dxdydz. (45)
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It is easy to show by integrating by parts and by using the relevant boundary conditions (12)–(14) that∫
Ω

[um∂xTm + vm∂yTm + wm∂zTm] Tm dxdydz = 0. (46)

Furthermore, by the Cauchy–Schwarz inequality and (21) we have∣∣∣∣∣∣
∫
Ω

Q Tm dxdydz

∣∣∣∣∣∣ ≤ ‖Q‖2‖Tm‖2
≤ 1√

λ1
‖Q‖2

[
κh
(
‖∂xTm‖22 + ‖∂yTm‖22

)
+ κv

(
‖∂zTm‖22 + α‖Tm(z = 0)‖22

)]
,

where λ1 is the �rst eigenvalue discussed above. From the above estimates, we obtain

d‖Tm‖22
dt + κh

(
‖∂xTm‖22 + ‖∂yTm‖22

)
+ κv

(
‖∂zTm‖22 + α‖Tm(z = 0)‖22

)
≤ ‖Q‖

2
2

λ1
. (47)

Consequently, we have,

d‖Tm‖22
dt + λ1‖Tm‖22 ≤

‖Q‖22
λ1

.

Thanks to Gronwall inequality, we conclude that

‖Tm(t)‖22 ≤ ‖T0‖22 e−λ1 t +
‖Q‖22
λ21

, (48)

for every t ∈ [0, T**m ). From the above, we conclude that Tm(t) must exist globally, i.e., T**m = +∞. Therefore,
for any given T > 0 and any t ∈ [0, T], we have

‖Tm(t)‖22 ≤ ‖T0‖22 e−λ1 t +
‖Q‖22
λ21

. (49)

Furthermore, by integrating (47) with respect to the time variable over the interval [0, t], for t ∈ [0, T], and
by (49), we get

t∫
0

[
κh
(
‖∂xTm(s)‖22 + ‖∂yTm(s)‖22

)
+ κv

(
‖∂zTm(s)‖22 + α‖Tm(z = 0)(s)‖22

)]
ds

≤ ‖T0‖22 +
‖Q‖22 t
λ1

. (50)

As a result of all the above we have established that Tm exists globally in time, and that it is uniformly
bounded, with respect to m, in the L∞([0, T]; L2(Ω)) and L2([0, T];V) norms.

Next, and similar to the theory of 3D Navier–Stokes equations (see, e.g., [9] and [30]), let us show that
∂tTm is uniformly bounded, with respect to m, in the L 4

3 ([0, T];V ′) norm, where V ′ is the dual space of V.
From (42), we have, for every ψ ∈ V

〈∂tTm , ψ〉 =
〈
PmQ + κh(∂xxTm + ∂yyTm) + κv∂zzTm − Pm [um∂xTm + vm∂yTm + wm∂zTm] , ψ

〉
.

Here, 〈·, ·〉 is the dual action of V ′. It is clear that

|〈PmQ, ψ〉| ≤ ‖Q‖2‖ψ‖2, (51)

and by integration by parts and using boundary condition (12)–(14), we have∣∣〈κh(∂xxTm + ∂yyTm) + κv∂zzTm , ψ
〉∣∣ ≤ C‖Tm‖V ‖ψ‖V , (52)
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recall that ‖ · ‖V is de�ned in (17). Next, let us get an estimate for

|〈Pm [um∂xTm + vm∂yTm + wm∂zTm] , ψ〉|

=

∣∣∣∣∣∣
∫
Ω

[um∂xTm + vm∂yTm + wm∂zTm] ψm dxdydz

∣∣∣∣∣∣ ,
where ψm = Pmψ. Thus, by integration by parts and using (41), (35), (36) and relevant boundary conditions,
we obtain

|〈Pm [um∂xTm + vm∂yTm + wm∂zTm] , ψ〉|

=

∣∣∣∣∣∣
∫
Ω

[um∂xψm + vm∂yψm + wm∂zψm] Tm dxdydz

∣∣∣∣∣∣
≤ C [‖um‖4 + ‖vm‖4 + ‖wm‖4] ‖Tm‖4 ‖∇ψm‖2 (53)

≤ C
(
‖um‖1/42 ‖um‖

3/4
H1 + ‖vm‖1/42 ‖vm‖

3/4
H1 + ‖wm‖1/42 ‖wm‖

3/4
H1

)
‖Tm‖1/42 ‖Tm‖

3/4
H1 ‖∇ψm‖2

≤ C
(
‖Tm‖22 + ‖Tm‖1/22 ‖Tm‖

3/2
V

)
‖∇ψ‖2. (54)

Here C depends on ϵ and δ. Therefore, by the estimates (51)–(54), we have

|〈∂tTm , ψ〉| ≤ C
(
‖Q‖2 + ‖Tm‖V + ‖Tm‖22 + ‖Tm‖1/22 ‖Tm‖

3/2
V

)
‖ψ‖V .

Thus, we have

t∫
0

‖∂tTm(t)‖
4
3
V′dt ≤ C

t∫
0

(
‖Q‖4/32 + ‖Tm‖8/32 + (1 + ‖Tm‖22)1/3‖Tm‖2V

)
ds

≤ C

‖Q‖4/32 t + ‖Tm‖8/32 t + (1 + ‖Tm‖22)1/3
t∫

0

‖Tm‖2Vds


≤ C
(
‖Q‖

4
3
2 t + (‖T0‖

2
2 e−λ1 t +

‖Q‖22
λ21

)
4
3 t + C(κh , κv)(‖T0‖22 e−λ1 t +

‖Q‖22
λ21

)
1
3 (‖T0‖22 +

‖Q‖22 t
λ21

)
)
. (55)

Therefore, ∂tTm is uniformly bounded, with respect tom, in the L 4
3 ([0, T];V ′) norm. Thanks to (49), (50) and

(55), one can apply the Aubin’s compactness Theorem (cf., for example, [9], [30]) and extract a subsequence
{Tmj} of {Tm} and a subsequence {∂tTmj} of {∂tTm}; which converge to T ∈ L∞([0, T]; L2(Ω))∩ L2([0, T];V)
and ∂tT ∈ L

4
3 ([0, T];V ′), respectively, in the following sense:

Tmj → T in L2([0, T]; L2(Ω)) strongly;
Tmj → T in L∞([0, T]; L2(Ω)) weak-star;
Tmj → T in L2([0, T];H1(Ω)) weakly;
∂tTmj → ∂tT in L

4
3 ([0, T];V ′) weakly.

Moreover, from (38)–(41) (see also (4)–(7)) we observe that {um , vm , wm} depend linearly on Tm. There-
fore, the elliptic estimates (35) and (36) imply, thanks to (49) and (50), uniform bounds, with respect to
m, for {um , vm , wm} in L∞([0, T]; L2(Ω)) and L2([0, T];H1(Ω)), respectively. Therefore, we can extract a
subsequence of {umj , vmjwmj}, corresponding to the readily established converging subsequence for the
temperature {Tmj}, which will be also labeled {umj , vmjwmj}, that converges to {u, v, w} weak-star in
L∞([0, T]; L2(Ω)), and weakly in L2([0, T];H1(Ω)). By passing to the limit, one can show as in the case of
Navier–Stokes equations (see, for example, [9], [30]) that T also satis�es (37). In other words, T is a weak
solution of the system (4)–(8).
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By taking the L2(Ω) inner product of equation (42) with −κh(∂xxTm + ∂yyTm) − κv∂zzTm, we obtain

1
2
d
dt

[
κh
(
‖∂xTm‖22 + ‖∂yTm‖22

)
+ κv

(
‖∂zTm‖22 + α‖Tm(z = 0)‖22

)]
+ ‖κh(∂xxTm + ∂yyTm) + κv∂zzTm‖22

=
∫
Ω

(Q − um∂xTm + vm∂yTm + wm∂zTm)
(
κh(∂xxTm + ∂yyTm) + κv∂zzTm

)
dxdydz

≤ (‖Q‖2 + ‖um‖6‖∂xTm‖3 + ‖vm‖6‖∂yTm‖3 + ‖wm‖6‖∂zTm‖3) ‖κh(∂xxTm + ∂yyTm) + κv∂zzTm‖2
≤ (‖Q‖2 + C‖Tm‖6‖∇Tm‖3) ‖κh(∂xxTm + ∂yyTm) + κv∂zzTm‖2
≤
(
‖Q‖2 + C‖Tm‖22

)
‖κh(∂xxTm + ∂yyTm) + κv∂zzTm‖2

+C
[
κh
(
‖∂xTm‖22 + ‖∂yTm‖22

)
+ κv

(
‖∂zTm‖22 + α‖Tm(z = 0)‖22

)] 3
4 ‖κh(∂xxTm + ∂yyTm) + κv∂zzTm‖

3
2
2 .

Therefore, applying the Cauchy–Schwarz and Young inequalities to the above estimate and using (49), we
obtain

d
dt

[
κh
(
‖∂xTm‖22 + ‖∂yTm‖22

)
+ κv

(
‖∂zTm‖22 + α‖Tm(z = 0)‖22

)]
+ ‖κh(∂xxTm + ∂yyTm) + κv∂zzTm‖22

≤ ‖Q‖22 +
C‖Q‖42
λ41

+ C‖T0‖42 + C
[
κh
(
‖∂xTm‖22 + ‖∂yTm‖22

)
+ κv

(
‖∂zTm‖22 + α‖Tm(z = 0)‖22

)]3
. (56)

Let M = 1 + κh
(
‖∂xTm‖22 + ‖∂yTm‖22

)
+ κv

(
‖∂zTm‖22 + α‖Tm(z = 0)‖22

)
. Consequently, we have

dM
dt ≤ C(1 + ‖Q‖

4
2 + ‖T0‖42)M3.

Thanks to Gronwall inequality, we have

1 + κh
(
‖∂xTm‖22 + ‖∂yTm‖22

)
+ κv

(
‖∂zTm‖22 + α‖Tm(z = 0)‖22

)
≤

1 + κh
(
‖∂xT0‖22 + ‖∂yT0‖22

)
+ κv

(
‖∂zT0‖22 + α‖T0(z = 0)‖22

)(
1 − C t

(
1 + ‖T0‖42 + ‖Q‖42

) [
1 + κh

(
‖∂xT0‖22 + ‖∂yT0‖22

)
+ κv

(
‖∂zT0‖22 + α‖T0(z = 0)‖22

)])1/2 .
Therefore, for every t ∈ [0, T***], where

T*** := 1
4C
((
1 + ‖T0‖42 + ‖Q‖42

) [
1 + κh

(
‖∂xT0‖22 + ‖∂yT0‖22

)
+ κv

(
‖∂zT0‖22 + α‖T0(z = 0)‖22

)]) , (57)

we have

κh
(
‖∂xTm‖22 + ‖∂yTm‖22

)
+ κv

(
‖∂zTm‖22 + α‖Tm(z = 0)‖22

)
≤ 1 + 2

[
κh
(
‖∂xT0‖22 + ‖∂yT0‖22

)
+ κv

(
‖∂zT0‖22 + α‖T0(z = 0)‖22

)]
. (58)

Moreover, by integrating (56) we obtain

t∫
0

‖κh(∂xxTm(s) + ∂yyTm(s)) + κv∂zzTm(s)‖22 ds

≤ κh
(
‖∂xT0‖22 + ‖∂yT0‖22

)
+ κv

(
‖∂zT0‖22 + α‖T0(z = 0)‖22

)
+ C[1 + ‖Q‖42 + ‖T0‖42] t +

+C
[
1 + κh

(
‖∂xT0‖22 + ‖∂yT0‖22

)
+ κv

(
‖∂zT0‖22 + α‖T0(z = 0)‖22

)]3
t, t ∈ [0, T***]. (59)

Notice that Tm exists, globally.Whatwehave just proved is that the L2([0, T***];H2(Ω)) normof Tm is bounded
uniformlywith respect tom. As a result of all the abovewehave Tm exists, at least, on [0, T***] and is uniformly
bounded, with respect to m, in L∞([0, T***];V) and L2([0, T***];H2(Ω)) norms. Furthermore, and as for the
theory of the Navier-Stokes equations (see, for example, [9], [30]), we can use the above bounds (58) and
(59) to show that the L2([0, T***]; L2(Ω)) norm of ∂tTm and the L2([0, T***];H−1/2(M)) norm of ∂tTm(z = 0)
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are uniformly bounded with respect tom. Passing to the limits, we conclude that there is a strong solution to
system (4)–(8), at least, on [0, T***]. Furthermore, this strong solution enjoys the following properties:

∂tT ∈ L2([0, T***]; L2(Ω)) and ∂tT(z = 0) ∈ L2([0, T***];H−1/2(M)). (60)

The above regularity estimates are su�cient to complete the proof of Theorem 2, following standard tech-
niques from the theory of the Navier–Stokes equations (see, e.g., [9] and [30]). Furthermore, as a consequence
of the above estimates, in particular those implying (60), we conclude that equation (8) holds as a functional
equation in L2([0, T***]; L2(Ω)).

4 Global Existence and Uniqueness of the Strong Solutions
In the previous section we have established the short-time existence of the strong solution to system (4)–(8).
In this section we will show the global existence and uniqueness, i.e. global regularity, of strong solutions to
the system (4)–(8), and their continuous dependence on initial data.

Theorem 3. Let Q ∈ L2(Ω), T0 ∈ V and T > 0, be given. Then there exists a unique strong solution
(u, v, w, p, T) of the system (4)–(8), on the interval [0, T], which depends continuously on the initial data in
the sense speci�ed in equation (76) below.

Proof. Denote by (u, v, w, p, T) the strong solution corresponding to the initial data T0 withmaximal interval
of existence [0, T*), that hasbeen established inTheorem2.Wewill show thatT* = ∞. To show thisweassume
by contradiction that T* < ∞. Consequently, it is clear that

lim sup
t→T−*

‖T(t)‖H1(Ω) = ∞,

because, otherwise, and by virtue of Theorem 2, the solution can be extended beyond the maximal time of
existence,T*. Next, wewill show that ‖T(t)‖H1(Ω) is bounded uniformly on the interval [0, T*). Inwhat follows
we will focus our discussion and estimates on the �nite maximal interval of existence [0, T*).

4.1 L2 estimates

As a result of Theorem 2, equation (8) holds in L2loc([0, T*); L
2(Ω)), therefore we can take the inner product

of equation (8) with T, in L2(Ω), and obtain

1
2
d‖T‖22
dt + κh

(
‖∂xT‖22 + ‖∂yT‖22

)
+ κv

(
‖∂zT‖22 + α‖T(z = 0)‖22

)
=
∫
Ω

QT dxdydz −
∫
Ω

(u∂xT + v∂yT + w∂zT) T dxdydz.

After integrating by parts we get ∫
Ω

(u∂xT + v∂yT + w∂zT) T dxdydz = 0. (61)

As a result of the above we conclude

1
2
d‖T‖22
dt + κh

(
‖∂xT‖22 + ‖∂yT‖22

)
+ κv

(
‖∂zT‖22 + α‖T(z = 0)‖22

)
=
∫
Ω

QT dxdydz ≤ ‖Q‖2 ‖T‖2.
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By the inequality (21), we have

‖T‖2L2(Ω) ≤
h2
κv

(1 + 2
hα )

[
κv
(
‖∂xT‖22 + ‖∂yT‖22

)
+ κv

(
‖∂zT‖22 + α‖T(z = 0)‖22

)]
. (62)

Using (62) and the Cauchy–Schwarz inequality we obtain

2d‖T‖
2
2

dt + 2κh
(
‖∂xT‖22 + ‖∂yT‖22

)
+ κv

(
‖∂zT‖22 + α‖T(z = 0)‖22

)
(63)

≤ h
2

κv

(
1 + 2

αh

)
‖Q‖22. (64)

By (62) and thanks to Gronwall inequality the above gives

‖T‖22 ≤ e
− κv t

4(h2+2h/α) ‖T0‖22 +
h4

2κ2v

(
1 + 2

αh

)2
‖Q‖22, (65)

for are t ∈ [0, T*). Moreover, we also have
t∫

0

[
2κh

(
‖∂xT‖22 + ‖∂yT‖22

)
+ κv

(
‖∂zT‖22 + α‖T(z = 0)‖22

)]
ds

≤ ‖T0‖22 +
h2
κv

(
1 + 2

αh

)
‖Q‖22 t, (66)

for are t ∈ [0, T*).
We remark that estimates (65) and (66) also follow directly from (49) and (50), respectively.

4.2 L6 estimates

Recall from Theorem 2 that T ∈ L∞loc([0, T*), H
1(Ω)) ∩ L2loc([0, T*), H

2(Ω)), therefore |T|4T ∈
L2loc([0, T*); L

2(Ω)). Since by Theorem 2 equation (8) holds in L2loc([0, T*); L
2(Ω)) we can take the inner prod-

uct of the equation (8), in L2(Ω), with |T|4T to get

1
6
d‖T‖66
dt + 5

∫
Ω

[
κh
(
|∂xT|22 + |∂yT|22

)
+ κv|∂zT|22

]
|T|4 dxdydz + ακv‖T(z = 0)‖66

=
∫
Ω

Q|T|4T dxdydz −
∫
Ω

(uTx + vTy + wTz) |T|4T dxdydz.

By integration by parts, and using (7) and the boundary conditions (12)-(14) we get∫
Ω

(uTx + vTy + wTz) |T|4T dxdydz = 0. (67)

As a result of the above we conclude

1
6
d‖T‖66
dt + 5

∫
Ω

[
κh
(
|∂xT|22 + |∂yT|22

)
+ κv|∂zT|22

]
|T|4 dxdydz + ακv‖T(z = 0)‖66

=
∫
Ω

Q|T|4T dxdydz ≤ ‖Q‖2‖T‖510 ≤ C‖Q‖2
(
‖T‖26 ‖∇T3‖ + ‖T‖56

)
.

By the Cauchy–Schwarz inequality we get

d‖T‖66
dt +

∫
Ω

[
κh
(
|∂xT|22 + |∂yT|22

)
+ κv|∂zT|22

]
|T|4 dxdydz + ακv‖T(z = 0)‖66

=
∫
Ω

Q|T|4T dxdydz ≤ C‖Q‖22‖T‖46 + ‖Q‖2‖T‖
5
6 ≤ C‖Q‖

2
2‖T‖46 + ‖T‖

6
6.
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Thus, from the above and (22), we have

d‖T‖26
dt ≤ C‖Q‖22 + ‖T‖26 ≤ C

[
‖Q‖22 + ‖T‖22 + κh

(
‖∂xT‖22 + ‖∂yT‖22

)
+ κv‖∂zT‖22

]
.

By integrating the above inequality and using (65) and (66), we get

‖T(t)‖26 ≤ C
[
(1 + ‖Q‖22) (1 + t) + ‖T0‖2H1(Ω)

]
. (68)

4.3 H1 estimates

Recall again that T ∈ L∞loc([0, T*), H
1(Ω))∩ L2loc([0, T*), H

2(Ω)), and since, by Theorem 2, equation (8) holds
in L2loc([0, T*); L

2(Ω)) we can take the inner product of the equation (8) with −κh (Txx + Tyy)−κvTzz, in L2(Ω),
and use (60) to obtain, thanks to a Lemma of Lions-Magenes concerning the derivative of functions with
values in Banach space (cf. Chap. III-p.169- [30]),

1
2
d
dt

[
κh
(
‖∂xT‖22 + ‖∂yT‖22

)
+ κv

(
‖∂zT‖22 + α‖T(z = 0)‖22

)]
+ ‖κh (Txx + Tyy) + κvTzz‖22

= −
∫
Ω

Q [κh (Txx + Tyy) + κvTzz] dxdydz +
∫
Ω

(u∂xT + v∂yT + w∂zT) [κh (Txx + Tyy) + κvTzz] dxdydz

≤ [‖Q‖2 + (‖u‖6 + ‖v‖6 + ‖w‖6) ‖∇T‖3] ‖κh (Txx + Tyy) + κvTzz‖2
≤
[
‖Q‖2 + C‖T‖3/26 ‖κh (Txx + Tyy) + κvTzz‖1/22

]
‖κh (Txx + Tyy) + κvTzz‖2 .

By the Cauchy–Schwarz and Young’s inequalities we obtain

d
dt

[
κh
(
‖∂xT‖22 + ‖∂yT‖22

)
+ κv

(
‖∂zT‖22 + α‖T(z = 0)‖22

)]
+ ‖κh (Txx + Tyy) + κvTzz‖22

≤ C‖Q‖22 + C‖T‖66.

By Gronwall, we get

κh
(
‖∂xT(t)‖22 + ‖∂yT(t)‖22

)
+ κv

(
‖∂zT(t)‖22 + α‖T(z = 0)(t)‖22

)
+

t∫
0

‖κh
(
Txx(s) + Tyy(s)

)
+ κvTzz(s)‖22 ds

≤ C(1 + ‖Q‖22 + ‖T‖66) t + ‖T0‖2H1(Ω)

≤ C(1 + ‖Q‖22) t + C
[
(1 + ‖Q‖22) (1 + t) + ‖T0‖2H1(Ω)

]3
t + ‖T0‖2H1(Ω) =: Kv(t). (69)

Thus,
lim sup
t→T−*

‖T‖H1(Ω) = Kv(T*).

This contradicts the assumption that T* is �nite, therefore, T* = ∞, and the solution (u, v, w, p, T) exists
globally in time.

4.4 Uniqueness of the strong solution and continuous dependence on initial data

Next, we show the continuous dependence on the initial data and the the uniqueness of the strong solutions.
Let (u1, v1, w1, p1, T1) and (u2, v2, w2, p2, T2) be two strong solutions of the system (4)–(8) with correspond-
ing initial data (T0)1 and (T0)2, respectively. Denote by u = u1 − u2, v = v1 − v2, w = w1 −w2, p = p1 − p2 and
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θ = T1 − T2. It is clear that

ϵ u − f v + px = 0, (70)
ϵ v + f u + py = 0, (71)
δ w + pz = θ, (72)
ux + vy + wz = 0 (73)
∂tθ − κh (θxx + θyy) − κvθzz + u1θx + v1θy + w1θz + u∂xT2 + v∂yT2 + w∂zT2 = 0 , (74)

and (u, v, w) and θ satisfy boundary conditions (12)–(14). By Theorem 2 and Theorem 3 equation (74) holds
in L2([0, T]; L2(Ω)) and θ ∈ L∞([0, T), H1(Ω))∩ L2([0, T), H2(Ω)), for all T > 0. Therefore, by taking the inner
product of equation (74) with θ in L2(Ω), and using boundary conditions (12)–(14), we get

1
2
d‖θ‖22
dt + κh

(
‖∂xθ‖22 + ‖∂yθ‖22

)
+ κv‖∂zθ‖22 + α‖θ(z = 0)‖22

= −
∫
Ω

[
u1θx + v1θy + w1θz + u(T2)x + v(T2)y + w(T2)z

]
θ dxdydz.

By integration by parts and again boundary conditions (12)–(14), we get

−
∫
Ω

[u1θx + v1θy + w1θz] θ dxdydz = 0. (75)

Notice that∣∣∣∣∣∣
∫
Ω

[
u(T2)x + v(T2)y + w(T2)z

]
θ dxdydz

∣∣∣∣∣∣ ≤ C‖∇T2‖2 (‖u‖4 + ‖v‖4 + ‖w‖4) ‖θ‖4
≤ C‖∇T2‖2

(
‖u‖1/42 ‖u‖

3/4
H1 + ‖v‖1/42 ‖v‖

3/4
H1 + ‖w‖1/42 ‖w‖

3/4
H1

)
‖θ‖1/42 ‖θ‖

3/4
H1

≤ C‖∇T2‖2‖θ‖1/22 ‖θ‖
3/2
H1 ≤ C‖∇T2‖2

(
‖θ‖22 + ‖θ‖1/22 ‖∇θ‖

3/2
2

)
.

Thus,

1
2
d‖θ‖22
dt + κh

(
‖∂xθ‖22 + ‖∂yθ‖22

)
+ κv‖∂zθ‖22 + α‖θ(z = 0)‖22

≤ C‖∇T2‖2
(
‖θ‖22 + ‖θ‖1/22 ‖∇θ‖

3/2
2

)
.

By Young’s inequality, we get

d‖θ‖22
dt + κh

(
‖∂xθ‖22 + ‖∂yθ‖22

)
+ κv‖∂zθ‖22 + α‖θ(z = 0)‖22

≤ C‖∇T2‖42‖θ‖22.

Thanks to Gronwall inequality, we obtain

‖θ(t)‖22 ≤ ‖θ(t = 0)‖22eC
∫ t
0 ‖∇T2(s)‖42 ds .

Since T2 is a strong solution, we have by virtue of (69)

‖θ(t)‖22 ≤ ‖θ(t = 0)‖22 eC
∫ t
0 K

2
v (s)ds , (76)

where the value of T0 in the de�nition of Kv in (69) is replaced by T2(0). As a result, the above inequality
proves the continuous dependence of the solutions on the initial data. In particular, when θ(t = 0) = 0, we
have θ(t) = 0, and consequently also u(t) = v(t) = w(t) = 0, for all t ≥ 0. Therefore, the strong solution is
unique.
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