
Vol.:(0123456789)

Data Science and Engineering (2024) 9:409–430
https://doi.org/10.1007/s41019-024-00262-x

RESEARCH PAPER

Towards ML Models’ Recommendations

Lara Kallab1 · Elio Mansour2 · Richard Chbeir3

Received: 18 February 2024 / Revised: 5 August 2024 / Accepted: 3 September 2024 / Published online: 28 October 2024
© The Author(s) 2024

Abstract
Artificial Intelligence encompasses a range of technologies that replicate human-like cognitive abilities through computer
systems, enabling the execution of tasks associated with intelligent beings. A prominent way to achieve this is machine
learning (ML), which optimizes system performance by employing learning algorithms to create models based on data and
its inherent patterns. Today, a multitude of ML models exist having diverse characteristics, including the algorithm type,
training dataset, and resultant performance. Such diversity complicates the selection of an appropriate model for a specific
use case, answering user demands. This paper presents an approach for ML models retrieval based on the matching between
user inputs and ML models criteria, all described in a semantic ML ontology named SML model (Semantic Machine Learn-
ing model), which facilitates the process of ML models selection. Our approach is based on similarities measures that we
tested and experimented to score the ML models and retrieve the ones matching, at best, user inputs.

Keywords Machine learning model · Supervised learning · Ontology · User input · Similarities criteria · ML models and
user inputs alignment · ML models retrieval

1 Introduction

In contemporary times, artificial intelligence (AI) has
emerged as a turning point across diverse domains, includ-
ing social, commercial, and industrial ones, such as speech
recognition, medical diagnosis, autonomous vehicles, and
building automation [1]. Essentially, AI represents a com-
puter system crafted to emulate human intelligence, leverag-
ing data from myriad sources and systems to make decisions
and acquire knowledge from the outcomes. Machine learn-
ing (ML) acts as an instantiation of AI, allowing computers
to learn from data without explicit programming [2]. Its pri-
mary focus lies in constructing models capable of learning
from historical data, discerning meaningful relationships

and patterns within the data [3], and autonomously making
logical decisions with minimal or no human intervention.
ML automates the creation of analytical models by utilizing
diverse forms of numerical information, including numbers,
words, images, and more.

In the world of Machine learning (ML), there exists a
plethora of models available for users to adopt and reuse
(particularly for non-experts), reducing the need to create
new models for each task. In fact, the data necessary to cre-
ate the models are, often, not available, nor the machines/
processors that are used to train the models as they require
a lot of performance and calculation time, hence the impor-
tance of reusing and adapting existing ML models to users
needs. A learning model comes with its own set of specifi-
cations and applications, including distinct algorithm types
(e.g., Linear Regression or Bayes Classifier [4]), the training
dataset utilized, the application domain (e.g., finance, travel,
and transportation), and the model performance. This diver-
sity adds complexity to the task of selecting an apt model
that meets user demands, especially for non-expert users
with limited or no ML knowledge. Selecting the appropri-
ate model for a specific use case, in alignment with user
needs, holds paramount importance. The more closely a
machine learning model matches a given case and fulfills
user requirements, the more adeptly it can identify data

 * Lara Kallab
 larakallab@gmail.com

 Elio Mansour
 emansourfr@gmail.com

 Richard Chbeir
 richard.chbeir@univ-pau.fr

1 Huntington Beach, CA 92646, USA
2 Brussels, Belgium
3 University Pau & Pays Adour, 64600 Anglet,

Pyrénées-Atlantiques, France

http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-024-00262-x&domain=pdf

410 L. Kallab et al.

features or patterns, and meet user demands. This translates
into improved decision-making, offering more accurate anal-
yses and forecasts. For instance, using a regression model
trained on winter season data in France to predict informa-
tion relevant to a summer season (as it can be requested by
the user) is likely to yield poor results and dissatisfy the
user. This discrepancy arises because the model’s learning is
based on a different data set pattern (in terms of season) that
does not correspond to the user request. Hence, it becomes
imperative to properly describe ML models and represent
their characteristics, along with the specifications of user
needs (or inputs), in a semantic format. This facilitates the
understanding of how and where each model can be opti-
mally used or adopted, taking into account user requests.
Such an approach enables the comparison, evaluation, and
retrieval of the most suitable model(s) for a specific appli-
cation scenario, effectively addressing user requirements.

In the literature, numerous models, approaches, and
reviews represent the characteristics, applicability, and
performance of machine learning models. However, these
works exhibit several limitations. Notably, a significant por-
tion of them, including references [5–9], inadequately details
the datasets used for model training and testing. Moreover,
a majority of the works, specifically [7–10], lacks in con-
sidering models application domain and operational perfor-
mance. Additionally, none of these sources comprehensively
explores aspects such as models usability, their contexts
(e.g., temporal and spatial contexts), and various levels
of models metadata (e.g., ML model metadata, algorithm
metadata, dataset metadata). Considering these essential ML
criteria, and matching them with user demands, is crucial
for enhancing the selection of ML models that satisfy, at
best, user needs. After recognizing the limitations in existing
representations of machine learning models, which are nec-
essary for the understating of their functioning and correct
use, their applications, their evaluation and comparison, we
present in this paper a framework for ML models represen-
tation and retrieval, as depicted in Fig. 2. The framework
is based on an ontology-based model, named “SML”, for
Semantic Machine Learning description. SML describes
machine learning models characteristics through a vocabu-
lary understandable by both humans and machines, facilitat-
ing the comprehension of their behavior and use for a given
context. SML also describes user input specifications, which
can be compared to ML models characteristics to identify
the best models matching user needs. In this context, the pre-
sented framework includes a formally defined user request
(part of which is embedded in SML), and proposes similar-
ity calculations between the ML models characteristics and
user inputs to retrieve the most suitable ML models aligning
with users needs. The similarity measures are based mainly
on four criteria: (1) Feature, (2) Feature Value Type, (3)
Temporal Context, and (4) Spatial Context. As an ontology

model [11], SML gives the same meaning to the specified
ML model characteristics and user specifications. It eases
the storage, integration, and sharing of ML knowledge and
user inputs across diverse organizations and platforms, fos-
tering both syntactic and semantic interoperability.

The rest of the sections are organised as follows. In
Sect. 2, a scenario is presented to highlight the motivation
behind the usability and applicability of our work. Section 3
provides a review of existing related works, emphasizing
the added value of our solution. Detailed specifications of
our proposed semantic machine learning model ontology,
along with the defined similarities measures between ML
characteristics and user inputs, are outlined in Sect. 4. Tests
and experiments proving the efficiency and the performance
of our approach are giving in Sect. 5. Lastly, Sect. 6 offers
a summary of the work and delves into potential directions
for future research.

2 Motivating Scenario

In order to show the motivation behind our proposal, let us
consider the depicted Smart City scenario in Fig. 1. The
environment is extensively covered by a Wireless Sensor
Network (WSN), gathering diverse data (e.g., CO2 emis-
sions, lighting conditions, noise levels, energy consump-
tion, temperature) from the city. A team of experts has been
assigned to monitor, analyze, and forecast elements within
the city, aiming to transform it into a smart, proactive, safe,
and healthy habitat for its residents. These experts, each with
unique skills, focus on forecasting and analyzing data within
their respective domains. Fig. 1 provides some examples: (i)
environmental experts predict noise, air, and water pollution
levels for a healthier city; (ii) road safety experts forecast
traffic congestion, risky conditions, and road deterioration
to prevent accidents; (iii) weather experts predict rising tem-
peratures and extreme conditions, proactively disseminat-
ing crucial information; and (iv) energy experts analyze and
predict energy consumption and production for a greener,
eco-friendly city.

In this collaborative environment, team members fre-
quently collaborate on interdisciplinary projects. More
importantly, they all require the generation, training, testing,
and deployment of prediction models that utilize the col-
lected data to provide necessary forecasts. In this dynamic
and collaborative setting, the potential for a substantial num-
ber of machine learning models to be quickly developed is
evident.

To sustain this collaborative workspace, prevent isolated
analysis, and establish a decision-making process rooted
in collective intelligence and shared insights, the team
requires a system capable of storing and retrieving ML
models for each new application use case. This approach

411Towards ML Models’ Recommendations

promotes model reusability rather than creating slightly
different models for every prediction, ensuring experiment
reproducibility in the context of open science. The system
suggests and retrieves a fitting model (if it already exists),
that meets experts needs, allowing them to generate a new
model only when necessary. This will significantly prove
useful, considering the growing number of ML models gen-
erated over time, and allows users to respond to their needs
more quickly because they do not need to generate models,
which are often very expensive. Furthermore, such system
enhances users’ understanding of existing models, improves
result explainability, and fosters more productive collabora-
tion within the team.

In order to be able to efficiently select ML models that
meet users demands, several challenges have to be addressed
related to:

1. Model Representation this entails the challenges related
to the unified description of the models, as well as their
metadata, technical aspects (i.e., algorithmic specifi-
cations), used data sets (i.e., training, testing features/
data specifications), the application domains in which
the models are eventually deployed, and the evaluation
metrics/scores. More specifically: Challenge 1.a: How to
extensively represent machine learning models and their
descriptive metadata to facilitate ML models search,
versioning, and retrieval? Challenge 1.b: How to cover
technical aspects and map models to the algorithms that
generated them, while categorizing technical specifica-
tions for efficient search and retrieval? Challenge 1.c:
How to encompass the intricacies of training and testing
datasets, capturing contextual information (spatial, tem-
poral, etc.) to compare model similarity from a data per-
spective and understand the usage context? Challenge
1.d: How to include the application domains where the
models are deployed, allowing higher-level clustering

and categorization of ML models based on their field of
application? Challenge 1.e: How to incorporate model
evaluation metrics and scores in the representation for
ranking and presenting models tailored to user needs?

2. User Input Representation this entails the challenges
related to the description of user needs, more specifi-
cally: Challenge 2.a: Through what form (i.e., query
expression model) users’ inputs can be defined, allow-
ing users to express easily what they aim for at different
aspects, e.g., the application domain, the desired out-
come (data analysis, forecasting, classification, etc.), and
specific contexts (e.g.,weather forecasts for a specified
period or location)? Challenge 2.b: How to include user
needs with ML models representation, in a way facili-
tating their matching analysis with the models differ-
ent characteristics? Challenge 2.c: What are the main
users’ preferences to be considered in users’ input, e.g.,
to define priorities for the entities used to filter the nec-
essary ML models (based on their application domains,
their type of algorithm, etc.), and to express the desired
type of results (e.g., retrieve the set of the ML models
having the top-k scores, or the ones having a max global
score, etc.)?

3. Model Retrieval and Recommendation this entails a dif-
ferent set of challenges related to the alignment between
user needs and ML models characteristics, for models
retrieval, models recommendation and models optimiza-
tion. For this part, we focus, in this work, on the chal-
lenges related to the retrieval of ML models aligned with
users inputs1: Challenge 3.a: What are the similarities
criteria that can be used to study the matching between
ML models specifications and users inputs? Challenge

Fig. 1 Smart City Use Case

1 The other sub-challenges related to the ML models recommenda-
tion and optimization scopes, will be considered in a future dedicated
work.

412 L. Kallab et al.

3.b: How to compute a global similarity matching score
to retrieve the most suitable ML models answering user
needs/preferences based on the identified similarities
criteria?

While existing works primarily focus on data set similar-
ity or certain performance metrics when suggesting ML
models, our aim, in this paper, is to extend these solutions
by considering a more comprehensive set of ML concepts
(e.g., application domains, usage scenarios/contexts, tech-
nical algorithmic aspects) that could impact ML model
retrieval and recommendations. We also consider user input
representation, and propose similarity criteria to measure
the matching between the ML models characteristics and
user needs, in order to retrieve the most suitable ML models
aligning with users demands. However, before delving into
our proposal, we will review some works related to Machine
Learning models representation, and evaluate them based on
the challenges and requirements identified in our motivating
scenario.

3 State of the Art

In this section, we investigate multiple models, approaches,
and reviews focused on providing comprehensive knowledge
about machine learning (ML) techniques and algorithms.
This includes details about their categories, advantages,
and other relevant aspects. The objective is to describe the
performance and applicability of these ML methodologies.
For this aim, we conducted a comparative analysis based on
distinct criteria, grouped into two main categories:

1. ML Representation Criteria This encompasses criteria
used to represent ML models, their building/generation
process, behavior, performance, and some useful meta-
data descriptors:

• Criterion 1.A. Algorithm Representation It assesses
the ability to describe and link the ML models to the
algorithms that generated them. This facilitates the
inference of their usability and technical limitations.

• Criterion 1.B. Data Representation This evaluates
how well ML datasets used for training and testing,
are represented, including related characteristics
such as their features, their values, and some statis-
tical descriptors.

• Criterion 1.C. Performance Representation It meas-
ures the ability to incorporate accuracy and perfor-
mance metrics/descriptions for each ML model.
This provides insights into the quality of results, and
allows for comparisons between ML models.

• Criterion 1.D. Metadata Representation This exam-
ines the capability of including ML models meta
descriptors, enhancing the ML modeling process
with various high-level information/features (e.g.,
model metadata, algorithm metadata, and dataset
metadata).

2. ML Usability and Compatibility Criteria These criteria
are focused on describing the application domain and
the context of each ML model:

• Criterion 2.A. Application Domain Representation
This refers to the ability to represent various appli-
cation domains via a keyword-based representation,
and link them to the necessary ML models (e.g.,
associating a temperature prediction model with the
environmental monitoring application domain).

• Criterion 2.B. Usability Representation It assesses
the capacity of specifying various ML model con-
texts within each application domain. This knowl-
edge helps determine where each ML model is best
used for achieving accurate results (e.g., adopting
a prediction model that is trained on winter data to
predict summer-related data outputs will negatively
impact result quality).

3.1 Ontology‑Based Models for Describing Machine
Learning

MLOnto [6], which stands for Machine Learning Ontol-
ogy, is an model designed to capture knowledge related
to the field of Machine Learning. It comprises seven pri-
mary classes: ‘Applications’, ‘Algorithms’, ‘Dependencies’,
‘Frameworks’, ‘Dictionary’, ‘MLTypes’, and ‘Involved’.
While encompassing various ML types such as AutoML,
Semi-supervised Machine Learning, Supervised Learning,
Reinforcement Learning, and Unsupervised Learning, the
model’s representation is limited. It falls short in address-
ing several critical criteria, e.g., representing models data
sets (training and testing data sets), model performance, and
model usability.

In [12], an approach based on an ontology model is intro-
duced to instill accountability in Machine Learning systems.
The methodology unfolds three key phases: (1) the creation
and deployment of predictive models to ensure availability,
(2) the annotation of relevant information extracted from the
models and forecasts using ontological terms, and (3) the
storage of data annotations with provisions for utilizing them
for accountability purposes. The second phase comprises
two areas. In the first area, the forecasts generated by predic-
tive models are represented using three ontology models:
the AffectedBy ontology (https:// iesna ola. github. io/ Affec
tedBy), the Execution-Executor-Procedure (EEP) (https://
iesna ola. github. io/ EEP), and the Result Context (RC)

https://iesnaola.github.io/AffectedBy
https://iesnaola.github.io/AffectedBy
https://iesnaola.github.io/EEP
https://iesnaola.github.io/EEP

413Towards ML Models’ Recommendations

(https:// iesna ola. github. io/ RC). In the second area, the pre-
dictive procedures employed to generate forecasts are mod-
eled using the ML-Schema ontology [13]. Despite that these
ontology models address various facets of Machine Learn-
ing, encompass model performance and represent model
training datasets, they exhibit limitations in considering
specific criteria. These include the model context (beyond
temporal and spatial aspects) with its associated constraints
when necessary, as well as the application domain of the
model.

In [5], the authors introduce OnML, an ontology-based
approach for Interpretable Machine Learning (IML). This
methodology employs interpretable models, ontologies,
and information extraction techniques to generate semantic
explanations. The process involves the identification and
inclusion of ontology-based tuples in a sampling strategy,
wherein semantic relationships between terms, words, and
ideas are sampled and incorporated into the training of
the interpretable model, without employing each of them
individually. Additionally, to streamline the search space
for semantic explanations, the authors propose an anchor
learning method. The primary focus of this work lies in
leveraging ontology models for the semantic explanation
of predicted ML results, without explicitly representing or
describing ML datasets, their context, behavior, etc. None-
theless, by relying on some ontology models, the approach
provides insights into the application domains of the utilized
MLs, along with their usability.

3.2 Context‑Based Approaches for Describing
Machine Learning

The research presented in [10] outlines an approach that
employs contextual information for training ML models. The
primary concept involves training ML models to optimize
a specific scoring function tailored to each operational con-
text. In experimental comparisons, the results of the context-
aware approach, derived from specialized models trained for
individual contexts, were contrasted with the utilization of
a general model trained across all contexts. The outcomes
indicate that the proposed approach mitigates bias towards a
strategy employing a universally trained model, albeit with
a relatively minor difference in error. Therefore, a thorough
evaluation is necessary to determine the strategy that better
aligns with specific application requirements. Nevertheless,
the context-aware approach merits consideration, particu-
larly in relation to the criticality of application resource
needs, such as connectivity and memory. In comparison
to our approach, the ML model contexts in the proposed
method are manually defined and utilized without being
represented, along with other aspects like ML datasets and
ML application domains, in a machine-understandable form.

This representation allows for the correct and automatic uti-
lization of ML models in appropriate contexts.

3.3 Machine Learning Description Based
on Reviews and Surveys

In [9], a comprehensive review is presented to establish defi-
nitions and a foundational understanding of various machine
learning (ML) categories, including Unsupervised, Super-
vised, and Reinforcement Learning. The paper delves into
the methodologies employed in the design of supervised ML
studies, and introduces the bias-variance trade-off as a criti-
cal theoretical foundation in supervised machine learning.
While the work provides an overview and description of
common supervised ML algorithms such as Logistic Regres-
sion, Linear Regression, and Naive Bayes, it falls short of
representing them, including aspects like ML datasets and
ML application domains, in a comprehensive machine-
understandable model, which is essential for ensuring their
accurate usage in specific scenarios.

In [8], a survey is presented to assess the strengths and
weaknesses of various machine learning (ML) algorithms,
including Logic basic algorithms (e.g., Learning Set of
Rules and Decision Trees), Instance-based Learning, Sta-
tistical learning algorithms (e.g., Bayesian Networks), Deep
Learning, and Support Vector Machines. While the survey
outlines the utility of each ML algorithm, the descriptions
are tailored for users with a certain level of expertise who
understand how and where these ML methods are best
applied. In contrast, our work extends this further, by pro-
viding detailed descriptions of ML models, encompassing
aspects such as the ML datasets used, the corresponding
ML application domains, and more. This information is pre-
sented in an intelligible machine-readable format, facilitat-
ing the use of ML models across different contexts.

A study is given in [7] to provide an overview of ML
categories, including Unsupervised, Semi-supervised, and
Reinforcement learning. It outlines three distinct ways in
which ML models are applied in enterprises: Classification,
Clustering, and Prediction. Additionally, the work introduces
a process model for selecting ML algorithms based on fac-
tors such as data type, desired accuracy, and intended inter-
pretability. While the study contributes to understand the
landscape of ML techniques and their relevance in enterprise
applications, including the trade-off between interpretability
and accuracy, it overlooks several important aspects. These
include essential considerations for determining the most
suitable ML model for specific cases, such as describing
ML datasets, their related contexts, etc. Furthermore, the
study fails to provide ML model descriptions in a compre-
hensible machine format, thereby limiting users’ expertise
and knowledge.

https://iesnaola.github.io/RC

414 L. Kallab et al.

In Table 1, we present a comparative analysis of the
machine learning description models, approaches, and
reviews discussed earlier, with respect to the criteria out-
lined at the beginning of this section. We use the symbol
“+” to signify positive coverage of a criterion, “-” to denote
the absence of coverage, the term “Limited” to indicate
partial coverage, and the term“Limited∗ ” to denote partial
coverage without an implemented or proposed model. Our
comparative analysis show that, to our knowledge, there is
no existing solution/approach able to describe ML models
characteristics, with respect to the specified criteria.

4 ML Models Retrieval Approach

In this section, we present our approach for ML models
retrieval, which is based on three main parts: (1) Machine
Learning models representation, through the definition of a
semantic model ontology that describes the characteristics
of ML models, (2) User inputs representation, through a
formally defined user request, and (3) the definition of the
similarities measures that are used to match between ML
models specifications and users needs.

Our proposal for ML models representation and retrieval
is presented in a framework illustrated in Fig. 2. The frame-
work is composed of eight steps. In the first step, existing
ML models are described using SML, a semantic ML model
ontology that defines the characteristics of ML models based
on a unified vocabulary (see Sect. 4.1). Once the models
are described, we obtain, in the second step, ML model
instances, which refer to concrete model entities exempli-
fied by the concepts and properties defined within the SML
ontology. In the third step, some elements of the user request
(presented formally in Eq. 1) are exploited by a Genera-
tive AI solution [14]. Specifically, the user can provide a
set of keywords and a given file to specify his needs (e.g.,
the domain of application required for the ML models to be
suggested, the desired type of ML model algorithm, etc.).
In the fourth step, these user request elements are passed

to the Generative AI solution, whose main objective is
to complete the user given keywords with other relevant
words based on the analysis of the user provided file. The
set of keywords enriched by the Generative AI solution is
then used in the fifth step to filter ML model instances and
retrieve the ones matching user needs. This helps in reducing
the search space and resources (time, memory consump-
tion, etc.) required to apply similarity measures between
user demands and ML model specifications. Once the ML
models are filtered, they are transferred to the Similarities
Measures module (in the sixth step), along with other ele-
ments of the user request, i.e., the user provided file and
user preferences (in the seventh step). Finally, in the eighth
step, a matching between some user input elements and the
filtered ML models is applied by the Similarities Measures
module, based on multi-criteria similarity measures (i.e.,
Feature, Feature Value Type, Temporal Context, and Spatial
Context), to retrieve the ML models that meet user needs.

4.1 SML: Semantic Machine Learning Model
Ontology

In this part, we introduce our ontology-based model called
“SML” (Semantic Machine Learning), defined to describe
and to store the characteristics of ML models. This is crucial
for enhancing the understanding of ML models and facili-
tating their selection in specific contexts. SML, which is
designed using entities and relations between these entities
(see Fig. 3), relies on a vocabulary that ensures a common
description of ML models, applicable across various envi-
ronments and platforms. It is worth noting that attributes of
each entity are omitted in Fig. 3 for clarity.

4.1.1 SML Model Representation and Application

As depicted in Fig. 4, our SML representation is crafted
to discern patterns or behaviors within collected data. This
is accomplished by leveraging previous or historical data
known as the training data set (SML:TrainingDataSet). The

Table 1 Evaluation of prevailing machine learning (ML) description models and approaches in relation to the specified criteria

1. ML representation criteria 2. ML usability & compatibility

Algorithm Data Performance Metadata Application domain Usability

 MLOnto, 2020 [6] + − − Limited + −
 ML-Schema, 2021 [12] + + + Limited − Limited
 OnML Approach, 2022 [5] − − − − Limited Limited
Context-aware ML-based

Approach, 2018 [10]
− − − − − Limited

 Review, 2019 [9] Limited∗ − Limited∗ − Limited∗ Limited
 Survey, 2015 [8] Limited∗ − Limited∗ − Limited∗ Limited
 Study, 2020 [7] Limited∗ − Limited∗ − Limited∗ Limited

415Towards ML Models’ Recommendations

training data set, which inherits from the SML:DataSet
entity, is utilized during the learning phase to tailor (train)
the model for predicting or classifying values known in the

training set but unknown in other (future) data. Each model
has its own metadata (SML:MetaData) that give some infor-
mation about the created model, such as Model Creation

Fig. 2 Framework of our pro-
posal for ML models represen-
tation and retrieval

SML:Machine
LearningModel

SML:DataSet SML:MetaData

SML:Algorithm

SML:Training
DataSet

hasTrainingDataSet
(1,1)(1,n)

SML:Application
Domain

hasApplication
Domain(1,n) (0,n)

hasMetaData

(1,n)

(1,n)

SML:Category

+hasAlgorithm
isCompliantWith

(1,1)

(1,n)

(0,n)

isSplitInto
(1,1)

hasMetaData

(1,n) (1,n)

SML:DataItem

isComposedOf

(1,n)

SML:Context

hasContext

(0,1)

(1,n)

SML:Topic

Contains

(1,n)

ReliesOn
(2,n)(1,1)

(1,n)

BelongsTo
(1,n)

has
FeatureSML:Feature SML:Value

(1,1) (1,1)

has
Value

hasAlgorithm
MetaData

(1,1)

(1,n)

SML:ConstrainthasConstraint
(1,n)(1,n)

Describes

(1,n)

(0,n)

hasMost
Specific
Category

(0,n)(1,n)

hasUpperCategory (0,n)

SML:Testing
DataSet

isSplitInto

(1,n)

SML:Evaluation

SML:Score SML:Metric

(1,1)(1,n)

SML:Operator

hasOperator

(0,1)

hasSourceOperand
(1,1)

(0,n)

hasTargetOperand

(1,n)

(0,n)

(0,n)

(1,n)

(0,n)

isCalculated
By (1,1)

has
Evaluation

(1,n)

hasScore
(1,n)

(1,n)

hasEvaluationMetaData

(0,n)

(1,n)

(1,n)

hasTestingDataSet
(1,n)

SML:ValueType

hasValueType

(1,1)

(1,n)

isA
isA

(1,1)

Range
SubClassOf

SML:Parameter

(1,n)(1,n)

hasParameter
(1,n)

SML:
UserData

SML:User
Input

isSplit
Into(1,1)

has
Data

(0,n)

(1,1)
isA

Fig. 3 Overview of the proposed Semantic Machine Learning (SML) model ontology

416 L. Kallab et al.

Date and Model Developer. Furthermore, every model
is specifically applicable in defined application domains
(SML:ApplicationDomain), such as smart buildings, health-
care, transportation, and more.

The learning models use distinct algorithms
(SML:Algorithm), such as Decision Trees, Support Vector
Machines, Naïve Bayes, etc. Each algorithm is associated
with metadata (e.g., Algorithm Creation Date, Algorithm
Description) and specific parameters represented as key-
value pairs. Categorization of algorithms is defined through
a category entity (SML:Category), encompassing types like
Classification and Regression, potentially including subcat-
egories linked by the “hasUpperCategory” relation. Certain
models that are related to specific algorithms (e.g., Linear
Regression), may demonstrate compliance with other algo-
rithms (e.g., Lasso Regression) through the “isCompliant-
With” relation. This alignment can be discerned through
some calculations and analyses conducted on the training
data set of the models, taking into account their respective
contexts (detailed in the subsequent subsection).

4.1.2 ML Data Set Modeling and Context

As illustrated in Fig. 5, a dataset (SML:DataSet), can be
partitioned into several categories, including: (1) a training
dataset (SML:TrainingDataSet), used for training the learn-
ing model, and (2) a testing dataset (SML:TestingDataSet),
employed to assess and evaluate the model post-train-
ing (refer to Fig. 6). A dataset comprises some data
items (SML:DataItem), each associated to metadata
(SML:MetaData). The metadata for each data item includes

a feature (SML:Feature), such as the Creation Date, the
Description, Humidity, Location, and a corresponding value
(SML:Value) linked to a value type (SML:ValueType). Con-
cepts have been defined for each Feature, Value, and Value
Type, enabling our solution to define specific constraints (as
elaborated below) on certain feature values. This is neces-
sary in many cases for accurately describing the context of
ML models.

A dataset, associated to some metadata, has at least
two features, each possessing attributes such as Name,
Type (e.g., Categorical, Textual, Numerical), Range, and
a Boolean value indicating if it is an independent feature.
An independent feature serves as the cause, and its value
is unaffected by other variables in the study. Conversely, a
dependent feature is the effect, as its value is contingent on
changes in the independent feature. Features are related to
topics (SML:Topic), which are used for the description of the
application domain (SML:ApplicationDomain) of a learn-
ing model. A dataset encompasses a context (SML:Context)
that has some constraints (SML:Constraint). Each constraint
comprises a source operand (i.e., SML:Feature), a target
operand (i.e., SML:Value), and an operator (SML:Operator).
For example, a spatio-temporal context could be defined
by the “Season” feature with the value “Winter” and the
“Location” feature with “Paris” as its value. This context
informs that, for instance, the training dataset of a specific
ML model is associated with Paris during Winter. Contexts
also facilitate the usage of certain datasets for other ML
models, depending on the degree of matching or closeness
of their respective contexts.

SML:Machine
LearningModel

SML:DataSet

SML:MetaData

SML:Algorithm

SML:Training
DataSet

hasTrainingDataSet
(1,1)

(1,n)

Is-A

SML:Application
Domain

hasApplication
Domain(1,n) (0,n)

hasMetaData

(1,n)

(1,n)

SML:Category

hasAlgorithm isCompliant
With

(1,1)

(0,n)

isSplitInto
(1,1)

hasAlgorithmMetaData

(1,n)

(1,n)
hasMost
Specific
Category

(0,n)(1,n)

hasUpperCategory

(0,n)

(0,n)

(1,n)

SML:Parameter

hasParameter

(0,n)

(1,n)

Fig. 4 ML model representation and application

417Towards ML Models’ Recommendations

4.1.3 ML Model Evaluation

Upon constructing the machine learning model with the
training dataset, a crucial step involves testing its perfor-
mance using a distinct set of data known as the testing
dataset (SML:TestingDataSet). This dataset is employed to
assess the performance of the ML model’s training, with
potential adjustments or optimizations to enhance results.
As depicted in Fig. 6, a testing dataset entails an evalua-
tion (SML:Evaluation). Each evaluation is associated to
some metadata (SML:hasEvaluationMetaData) and to a
computed score (SML:Score), derived from specific met-
rics (SML:Metric), such as MSE (Mean Squared Error) and
MAPE (Mean Absolute Percentage Error) [15]. The metrics
are categorized into categories (SML:Category) based on the
algorithm employed in constructing the ML model.

4.1.4 SML‑Based ML Model Instantiation Example

Let us consider a brief example of an instantiated ML model
described using the concepts and properties defined in the
SML ontology. As illustrated in Fig. 7, an instance of the
class SML:MachineLearningModel is created and named
Machine Learning Model 1. Machine Learning Model
1 is based on a Linear Regression algorithm, which falls
under the Regression category. This category refers to ML
models instances used to predict a continuous target vari-
able based on one or more predictor variables. The Linear
Regression algorithm has a Description instance of the class
SML:MetaData, which is associated with the SML:Algorithm
concept. The description states that the linear regression
algorithm is a supervised learning algorithm used for pre-
dicting a continuous target variable. Additionally, the Linear

SML:DataSet SML:MetaData

SML:Training
DataSet

SML:Application
Domain

isSplitInto
(1,1)

hasMetaData

(1,n)
(1,n)

SML:DataItem

isComposedOf

(0,n)

SML:Context

hasContext

(0,1)

(1,n)

SML:Topic

Contains

(1,n)

ReliesOn
(2,n)(1,1) (1,n)

BelongsTo
(1,n)

has
FeatureSML:Feature SML:Value

(1,1) (1,1)

has
Value

(1,1)

SML:ConstrainthasConstraint
(0,n)(1,n)

(0,n)

Describes

(1,n)

(0,n)

SML:Testing
DataSet

isSplitInto

(1,n)

SML:Operator

hasOperator

(0,1)

hasSourceOperand
(1,1)

(0,n)

hasTargetOperand

(1,n)

(0,n)

(0,n)

isA

SML:ValueType

(1,1)

(1,n)

hasValueType
isA

Fig. 5 ML data set modeling and context

SML:DataSet

SML:AlgorithmSML:Category

(0,n)(1,1)

hasMost
Specific
Category

(0,n)(1,n)

hasUpperCategory

(0,n)

SML:Testing
DataSet

isSplitInto

SML:EvaluationSML:Score

SML:Metric

hasEvaluation(1,n)
(1,n)

hasScore (1,n)

isCalculatedBy

hasCategory
(1,1)

(1,n)

(1,1)

(1,n)

(0,n)

SML:MetaData

hasEvaluationMetaData

(1,n)

(1,n)

isA

Fig. 6 ML model evaluation

418 L. Kallab et al.

Regression algorithm instance has a Fit Intercept parameter
set to ”True”, meaning that the model is configured to find
the best-fit line that does not necessarily pass through the
origin (0,0). This provides greater flexibility and potentially
leads to a more accurate representation of the relationship
between the variables.

The Machine Learning Model 1, which has the Smart
Building instance as its application domain, includes meta-
data named Creation Date with the value “29/07/2024”.
It comprises: (1) a Training Dataset, Training DataSet 1,
that is of type SML:DataSet (DataSet1a) having a metadata
instance, Dataset Size, with a value of “30” MB, and (2) a
Testing Dataset, Testing DataSet 1, which is also of type
SML:DataSet (DataSet2b). The Training DataSet 1 instance
utilizes two features: Energy Consumption and Temperature,
both belonging to the same topic instance: Building Energy
Management, describing the Smart Building application
domain. Additionally, Training DataSet 1 is composed of
several data item instances, such as DataItem1a1 and Data-
Item1ax, each containing a metadata instance named Fre-
quency with a value of “5”.

The Training DataSet 1 has a context, Context 1. This
context holds a source operand (i.e., Temperature feature
instance), a target operand (i.e., “45” value instance) with
a value type (i.e., Float), and an operator (i.e., “>”) that
refers to the “greater than” operator instance. The context
indicates that all temperature values included within the

Training DataSet 1 are greater than “45” Celsius degrees.
In addition to providing insights into the data sets, contexts
facilitate the use of certain data sets for other ML models,
based on the degree of similarity or closeness between their
respective contexts.

As per the Evaluation DataSet 1, it has a score instance,
Score TDataSet1, that was calculated using the RSME met-
ric (Root Mean Square Deviation). The value of RSME,
which designates the differences between the observed
values and predicted ones, is equal to “0.5”, showing good
prediction accuracy of the ML model. Also, the Evalua-
tion DataSet 1 has some metadata instance, i.e., Software
Dependencies, inherited from the SML:MetaData class. The
Software Dependencies has the value of “textitscikit-learn
0.24.2, numpy 1.19.5”.

4.1.5 User Input Representation

In order to allow and facilitate the matching between user
needs and ML models, we represent user input by using two
main concepts: “SML:UserInput” and “SML:UserData”,
which are related together through “SML:hasData” prop-
erty. In our work, we considered that the user data is a data
set (SML:DataSet) that has the same representation of any
ML training or testing data set, each, having an applica-
tion domain, data-items, features, contexts, etc. This eases
the study of the similarities measures between user data

Fig. 7 An example of an instanced ML model using SML ontology concepts and properties

419Towards ML Models’ Recommendations

and ML data characteristics, and makes it more efficient,
as both matching entities derive from the same concept
(SML:DataSet) (Fig. 8).

4.2 User Request Definition

Our approach, outlined in this paper, suggests employing
several similarity measures between the characteristics of
ML models and user inputs, to retrieve the most suitable
ML models that align with users requests. In our work, we
formally define a user request as follows:

where,

• {Keywords}: refers to a bag of words that are, option-
ally, given by the user. These words can be tagged by the
user for pre-structuring purposes, according to different
ML models characteristics (or entities): “Application
Domain”, “Category”, “Algorithm” and “MetaData”.
These pre-structured words are used to filter the models
that correspond more to user needs. This helps in reduc-
ing the search space and similarities measures, in terms
of time and memory consumption (see the following sec-
tions), between ML models and user demands. It is to
be noted that, in our approach, the set of keywords can
be completed by other words (not specified by the user),
through the help of the Generative AI (GAI) [14], applied

(1)
User Request = {Keywords},UserGivenFile∗, {User Preferences}

on the user data file (see below). The GAI involves the
creation of digital content, in our case a set of words,
based on AI models that extract and understand informa-
tion provided by human (in this case the user data file).

• UserGivenFile*: it is a required variable that can include
one of the following:

1. Either a data file, holding some data items with
features and values. When provided, it is compared
to existing ML models characteristics (mainly ML
training datasets) to identify the ones that can act at
best on the given data.

2. Or a ML model file, covering the behavior of a
developed model. In this case, the file is compared
to existing ML models to identify the ones that
can perform better for instance (with some recom-
mended optimizations that may be applicable), or
the ones that are similar (in terms of context for
example), etc.

 In this work, we will focus on the alignment between
the specifications of given user data files and ML mod-
els characteristics.2 A user data file is exploited by the
GAI to retrieve some useful words used for ML models
filtering (as mentioned above), and is compared to the
training data sets of existing ML models, according to the

SML:
UserData

SML:User
Input hasData

(0,n) (1,1)

SML:DataItem

SML:DataSet ReliesOn SML:Feature

isComposedOf
(1,1)

(1,n)

(2,n)(1,n)
SML:Context SML:Value

SML:Constraint

hasTargetOperand

SML:ValueType

hasContext

(1,n)

hasConstraint

hasSourceOperand

(1,1)

(1,n)

hasValueType

(1,n)

(1,n)
(0,1)

(0,n)

(1,1)

(0,n)

(1,n)

Application
Domain

(0,n)

hasAppDomain

(1,n)

SML:Operator

hasOperator

(0,n)

(0,1)

isSplitInto
(1,1)

Fig. 8 SML user input representation

2 The user files having the type of ML models files will be treated in
another dedicated paper.

420 L. Kallab et al.

following similarities criteria (see sections below): (1)
Feature, (2) Value Type, (3) Temporal Context, and (4)
Spatial Context, to retrieve the most convenient models
matching user needs. The user data file is represented by
the “SML:UserData” entity in the SML model. Since
“SML:UserData” has the same structure of the ML
models training data set (SML:TrainingDatSet), as both
are sub-classes of “SML:DataSet” entity, the matching
between their characteristics will be straightforward
based on their related entities.

• {User Preferences} = {Filtering Order}, top-k, top-max,
{ � , � , � , � }, where:

– {Filtering Order}, involves the preferences that the
user can, optionally, give (through a specified order)
to the entities used to apply the filtering process on
the ML models based on the set of keywords. For
example, the user may prefer to start the filtering of
the ML models according to their application domain
(SML:ApplicationDomain) at first, then according
to their categories (SML:Category). In this case, an
order of ‘1’ will be given to the application domain,
and an order of ‘2’ will be set to the categories. Thus,
the {Filtering Order} = {1234}, with ‘3’ and ‘4’
refer to the ordering related to the rest of the entities
“SML:Algorithm” and “SML:MetaData”, respec-
tively (if existed).

– top-k, is an integer type variable that can be specified
by the user, whenever he wants to retrieve the ML
models having the ‘top-k’ scores.

– top-max, is a boolean type variable that can be speci-
fied by the user, whenever he requires the best ML
model(s) having the ‘top-max’ global score.

– {� , � , � , � }, are weights that can be given by the
user (between 0 and 1), respectively to: the ‘Syntac-
ticScore’, the ‘SemanticScore’, the ‘DataFreqScore’,
and the ‘TemporalCoverageScore’ (see Eqs. 4 and 5).
� and � are weights that the user may use to specify
the type of similarity score he wants to emphasize
more while matching the features between the exist-
ing ML models and those in his given file (UserGi-
venFile). � is a weight value attributed to the ‘Syn-
tacticScore‘, and � is a weight value assigned to
the ‘SemanticScore‘, such that � + � = 1 . Both, the
‘SyntacticScore‘ and the ‘SemanticScore‘, are used
in the calculations of the ‘FeatureSimScore‘ (see
Eq. 4). � and � are wights that the user can assign to
determine the type of similarity score he requires to
highlight more when computing the temporal context
similarity score ‘TempSimScore‘ (see Eq. 5). � is a
weight value given to the ‘DataFreqScore‘, and � is a
weight value given to the ‘TemporalCoverageScore‘,
such that � + � = 1.

When receiving a user request, our solution begins the pro-
cess of ML models filtering based on the set of keywords,
which is enriched by the GAI applied on the given user data
file. Then, the similarity score calculations start between
the user data file and the filtered ML model training data
sets. The similarities measures rely on a multidimensional
representation, unique in the literature, that is based on four
criteria: (1) Feature, (2) Feature Value Type, (3) Temporal
Context, and (4) Spatial Context. A global score is given to
each training data set related to the filtered models, based
on their matching with the user request (including his pref-
erences), and the best ones, having the highest scores and
answering user needs, are finally retrieved.

4.3 Similarities Measures for ML and User Needs
Alignment

Before presenting the computations of the different simi-
larities measures, we propose, in this work, the formulas:
A and B (see Eqs. 2 and 3), that we used to normalize the
obtained scores values (when it is necessary) between 0 and
1. In cases where the higher the result is, the most similar
the entities are, Formula A is applied (e.g., When adopt-
ing Jaccard, algorithm, which is a string-based matching
algorithm [16]). Whereas, in cases where the higher the
result is, the most dissimilar the entities are, Formula B is
applied (e.g., When adopting Levenshtein algorithm, another
string-based matching algorithm [17]). While there are vari-
ous normalization functions available in the literature [18],
the decision to use formulas: A and B, is driven by the fact
that they offer a straightforward approach to normaliza-
tion, making the calculations easier to interpret and under-
stand. Moreover, the chosen normalization functions align
well with the specific requirements and constraints of our
approach, by ensuring that the scores are scaled in a manner
that preserves the relative differences between them, which
is crucial for the accurate comparison and combination of
scores in our context.

where,

where,

(2)Formula A =
x

x + 1

(3)
lim
x→0

f (x) = 0, and lim
x→∞

f (x) = 1

Formula B =
1

1 + x

lim
x→0

f (x) = 1, and lim
x→∞

f (x) = 0

421Towards ML Models’ Recommendations

4.3.1 Feature‑Based Criteria

The first matching measure applied in our proposal is
done between the features of ML models training data set
(SML:TrainingDataSet), and the features of the user data
file (SML:UserData). The similarity between the identified
features is realized according to two aspects: (1) Syntactic,
and (2) Semantic. For each of these aspects, a score is given,
and thus, we, formally, define the feature similarity score as
follows:

where,

• � and � are weights given to ‘SyntacticScore’ and
‘SemanticScore’, respectively, and with: � + � = 1.

• ‘SyntacticScore’, is a normalized score computed using
a string-based matching algorithm, e.g., Levenshtein,
Cosine, and Jaccard [17], between each of the features
extracted from the user data file (SML:UserData), and
the features forming the ML models training datasets
(SML:TrainingDataset).

• ‘SemanticScore’, is a normalized score computed using a
knowledge-based or topological method, e.g., Path, Wup,
and Lin [19], between each of the features extracted from
the user data file, and the features forming the ML mod-
els training datasets. The semantic similarity between
features helps in assessing the proximity of their mean-
ings rather than relying solely on their lexical resem-
blance. And thus, it increases the understanding of the
sense of words in different contexts, independently from
their lexicographical similarity.

• U ∈ ℕ∗ , and V ∈ ℕ∗ , refer to the number of features pre-
sented, respectively, in the user data file and in a ML
model training data set.

In the definition of the ‘FeatureSimScore‘ equation (Eq. 4),
we employed the weighted-average aggregation method [20].
This well-known method is particularly suitable for deci-
sion making scenarios where different criteria have varying
degrees of importance. While other aggregation methods,
such as the arithmetic mean or median, could be employed,

(4)
FeatureSimScore =

∑U
u=1

∑V
v=1(�.SyntacticScoreu,v + �.SemanticScoreu,v)

U + V

they do not account for the varying importance of each cri-
terion. For instance, the arithmetic mean treats all criteria
equally, which is not suitable given the differing relevance of
each criterion in our approach. On the other hand, methods
like the OWA (Ordered Weighted Averaging) operator [21]
may not offer significant advantages in our specific context,
specifically as weights in OWA are assigned to the ordered
position of the values rather than the values themselves.

In order to illustrate the feature similarity score calcula-
tions, we give some examples in Table 2. In the presented
table, there are three ML model training datasets, having one
feature, respectively: ‘Temperature’, ‘Humidity’, ‘ CO2 ’. By
comparing each of these features with the extracted feature
from user data file ‘Temp’, and based on the normalized syn-
tactic/semantic scores, the highest feature similarity score
is the one between ‘Temperature’ and ‘Temp’, thus, the ML
Model Training dataset A is the most convenient to the user
input.

4.3.2 Feature Value Type‑Based Criteria

The second matching measure, FeatureValTypeScore, is
related to the value type of the previously matched features
between ML models training data sets and user data file (see
Sect. 4.3.1). In fact, and whenever the ‘FeatureSimScore’
is ⩾ 0.5, based on Eq. 4, the feature value-type score calcu-
lations are launched. As such, if the matched two features
(any ML model training dataset feature and any user data
file feature) have the same data type, e.g., Integer, String, or
Boolean, ‘FeatureValTypeScore’ is incremented to 1. In the
end, to normalize the obtained score, the latter is divided
by the sum of the number of times there were two matching
features (i.e., ‘FeatureSimScore’ is ⩾ 0.5).

4.3.3 Temporal Context‑Based Criteria

The temporal context similarity score, TempSimScore, is cal-
culated based on the similar observations (or frequency),
and the intersected time covered by the ML models training
data, and the user given data (user data file). Formally, it is
defined as follows:

(5)
TempSimScore = (� .DataFreqScore) + (�.TemporalCoverageScore)

Table 2 Examples of feature
similarity scores calculations

ML model
training
dataset

Feature used
in the training
dataset

Feature extracted
from user data file

SyntacticScore
(Levenshtein)

Seman-
ticScore
(Path)

FeatureSimScore

A Temperature Temp 0.125 0.1 0.1125
B Humidity Temp 0.125 0.083 0.104
C CO

2
Temp 0.2 0.013 0.1065

422 L. Kallab et al.

where,

• � and � are weights given to ‘DataFreqScore’ and ‘Tem-
poralCoverageScore’, respectively, and with: � + � = 1.

• ‘DataFreqScore’, which is computed only if the ML
model training data and the user data are regular, refers to
the difference of the number of observations per second.
Such score is normalized using Formula B (see Eq. 3),
because the lower the score is, the more similar two enti-
ties are. As illustrated in Tables 3 and 4, we can see that
ML model A is more similar, in terms of the observations
per second, to user data.

• ‘TemporalCoverageScore’: refers to the covered time
periods between ML model training data, and user given
data (user data file). It is defined as: TemporalCoverag-
eScore = TemporalOverlapScore × TemporalDistanceS-
core, such that:

– ‘TemporalOverlapScore’ = TimePeriodIntersection
TimePeriodUnion

 , is the
time period intersection between ML model train-
ing data and user data, divided by the union of the
periods (see Fig. 9).

– ‘ T e m p o r a l D i s t a n c e S c o r e ’ =
MLModelTimePeriod − UserDataTimePeriod , i s
the normalized difference between the time period
related to the ML model training data and the time
period covered by user data. For example, in Fig. 9,
the ‘TemporalDistanceScore’ is equal to 0 (before
normalization), as there is an overlap between both
periods. After normalization, ‘TemporalDistanceS-
core’ is equal to 1 (based on Formula B presented in
Eq. 3). It is to be noted, that whenever the ML model
training data period covers different years, we con-
sider that both periods are in the same year to avoid
having a ‘TemporalDistanceScore’ equal to 0. An
example of such case is given in Fig. 10.

To illustrate the overall value of the temporal similarity
score, TempSimScore, we give few examples in Table 5,
where we consider that � = 0.5 and � = 0.5.

4.3.4 Spatial Context‑Based Criteria

The spatial context similarity score, SpatialSimScore, is
based on the intersection between the location covered by
the ML model training data, and the location covered by the
user given data. Formally, we define the spatial similarity
score as follows:

where,

• ‘LocGranIntersection’, refers to the common locations
types covered by the ML model training data, and the
user given data (user data file), starting from a continent
granularity till the smallest location granularity, which
is based on the latitude and the longitude.

• ‘LocGranUnion’, is the set of all the possible location
types that two or more set of data can share. In our work,
we define it as: ‘LocGranUnion’ = {L} = {Continent,
Country, City, Street, Building, Floor, Room, Location}.

We illustrate the spatial similarity score calculations in dif-
ferent examples given in Table 6.

4.3.5 Global Similarity Score

After computing the different similarities scores between user
data file and ML models training data sets (obtained after ML
models filtering process as explained in Eq. 1), we present, for-
mally, the global similarity score, GlobalSimScore, assigned to
a ML model training data, based on the previously calculated
measures:

where,

• ‘SumScores’, is the sum of all the matching similarities
measures based on four criteria: (1) Feature (Featu-
reSimScore), (2) Feature Value Type (FeatureValTypeS-

(6)SpatialSimScore =
LocGranIntersection

LocGranUnion

(7)GlobalSimScore =
SumScores

ScoresNumber

Fig. 9 An example of the ‘Tem-
poralOverlapScore’ calculation

423Towards ML Models’ Recommendations

core), (3) Temporal Context (TempSimScore), and (4)
Spatial Context (SpatialSimScore).

• ‘ScoresNumber’, refers to the number of the matching
scores used in ‘SumScores’ for normalisation between
0 and 1. In this work, ‘ScoresNumber’ is equal to ‘4’.

The ‘GlobalSimScore’ formula is calculated using the
average operator, which refers to a method of aggregat-
ing multiple scores into a single composite score by tak-
ing their average [22]. The resulting score represents the
overall similarity matching value between an existing ML
model and a user request. In our current work, we used
this aggregative approach instead of a non-aggregative
one [23], which does not consolidate multiple scores into
a single composite measure, to provide a straightforward
summary matching measure and allow for quick com-
parison between different ML models. Nevertheless, as

non-aggregative methods maintain the distinctiveness of
each score, providing a more detailed view of evaluation,
it will also be interesting to consider them in future work.
The choice of the scoring method used to compute the
matching between ML models and user requests can be
defined by the user based on his preferences.

Based on the user preferences included in user request
(see Eq. 1), if the user assigns a number in the ‘top-k’ vari-
able, our solution will return the ML models having the
top-k highest global similarity scores (GlobalSimScore). In
case the user assigns ‘true’ in the ‘top-max’ variable, the
ML model(s) having the max global similarity score will
be retrieved.

5 Experimental Evaluation

In this section, we present the experimental process
employed for assessing: (1) the defined SML model ontol-
ogy (defined in the following file: http:// tinyu rl. com/ yxhu6
bt5), and (2) the applicability of the proposed similarities
measures between user inputs and ML models specifications.

Fig. 10 An example of the ‘TemporalDistanceScore’ calculation

Table 3 Example of a ‘DataFeqScore’ between user data and ML
model A

User data file
observation/Sec

ML model A
observation/Sec

DataFreqScore
(before nor-
malization)

DataFreqScore
(after normali-
zation)

9 15 15 − 9 = 6 1/(1+6) = 0.143

Table 4 Example of a ‘DataFeqScore’ between user data and ML
model B

User data file
observation/Sec

ML model B
observation/
Sec

DataFreqScore
(before nor-
malization)

DataFreqScore
(after normali-
zation)

9 28 28 - 9 = 19 1/(1+19) = 0.05

Table 5 Examples of temporal similarity scores calculations

Data-
FreqScore

Temporal-
Overlap-
Score

TemporalD-
istanceScore

Temporal-
CoverageS-
core

Temp-
SimScore

0.143 6/12 (0.5) 1 0.5 0.32
0.05 6/12 (0.5) 6/12 (0.5) 0.25 0.15

http://tinyurl.com/yxhu6bt5
http://tinyurl.com/yxhu6bt5

424 L. Kallab et al.

5.1 SML Evaluation

The evaluation of SML ontology is based on two distinct
parts:

• Efficiency Evaluation: This involves determining whether
the concepts and properties (data and objects properties)
defined in the SML ontology can effectively address the
model representation challenges outlined in Sect. 2, and
the criteria outlined in Sect. 3.

• Performance Evaluation: This includes examining the
response time of the SML ontology through the applica-
tion of various simple and complex queries on simulated
instances of ML models. These instances are created
based on different configurations, such as increasing the
number of ML models, the number of ML models data
items, and the number of the models features utilized in
the training datasets.

5.1.1 SML Efficiency Evaluation

In this part, we establish the most beneficial queries (refer
to Table 7) that can be applied on the SML ontology, aim-
ing to address the model representation challenges outlined
in Sect. 2. Additionally, we evaluate the effectiveness of
these queries in fulfilling the criteria outlined in Sect. 3.
The list of queries used, presented in SPARQL (a standard
query language for retrieving and manipulating data stored
in Resource Description Framework (RDF) format), can be
accessed through the following link: http:// tinyu rl. com/ 2z2fy
jw3.

As depicted in Table 7, diverse queries are available
for interrogating the SML ontology. For instance, Query

Q1, which seeks the algorithm of a specified ML model,
addresses challenge 1.b, by mapping models to the algo-
rithms that generated them. The representation of a ML
model algorithm is a criterion related to the ML representa-
tion, hence the link between Query Q1 and the ML repre-
sentation criteria.

Another example is Query Q7, which necessitates the
description of the training dataset context for a given ML
model. This query tackles challenge 1.c, encompassing
the context of data sets (training or testing data sets) that
is important for constructing and evaluating ML models.
Moreover, Query Q7 aligns with ML usability and compat-
ibility criteria by specifying the ML context.

5.1.2 SML Performance Evaluation

In this part, we considered five different scenarios to assess
the performance of the SML ontology in terms of response
time. This evaluation involved applying various queries to
the SML in simulated scenarios created using the “Protégé”
tool (https:// prote ge. stanf ord. edu/). All details about ML
data sets, ML metadata, etc., were filled using this tool, and
the scenarios were diversified based on: (1) the number of
ML model instances, (2) the number of data items in the
models training data sets, (3) the number of features used
in the models training data sets, (4) the number of metrics
utilized to compute the score of the models testing data sets,
and (5) the number of metadata associated to the models.

We present the query response time (in milliseconds) in
the experiments, computed according to the results average
of 10 sequential executions for each query. The tests were
conducted using “Stardog” (https:// www. stard og. com/), a
platform for enterprise knowledge graph, operating on a

Table 6 Examples of spatial similarity scores calculations

User data location ML dataset location LocGranIntersection LocGranUnion Spa-
tial-
Sim-
Score

France United States { } {L} 0/8
France Italy {Continent} {L} 1/8
Paris (France) La Défense (France) {Continent, Country} {L} 2/8
1st Arrondissement (France) 5th Arrondissement (France) {Continent, Country, City} {L} 3/8
Areva (La Défense) Total (La Défense) {Continent, Country, City, Street} {L} 4/8
AXA Investment (Majunga Tower, La

Défense)
Deloitte (Majunga Tower, La

Défense)
{Continent, Country, City, Street,

Building}
{L} 5/8

Meeting Room 1 (23rd Floor,
Deloitte)

Meeting Room 2 (23rd Floor,
Deloitte)

{Continent, Country, City, Street,
Building, Floor}

{L} 6/8

Meeting Room 1 Meeting Room 1 {Continent, Country, City, Street,
Building, Floor, Room}

{L} 7/8

Lat1, Long1 (Meeting Room 1) Lat1, Long1 (Meeting Room 1) {Continent, Country, City, Street,
Building, Floor, Room, Location}

{L} 8/8

http://tinyurl.com/2z2fyjw3
http://tinyurl.com/2z2fyjw3
https://protege.stanford.edu/
https://www.stardog.com/

425Towards ML Models’ Recommendations

Windows 10 Professional machine with an Intel i7-8665U
CPU @ 1.90GHz 2.11GHz processor and 1 GB RAM.

Impact of ML Models Instances and their Metadata. In
the initial scenario (refer to Fig. 11-(a)), we explored the
influence of varying the number of instances of ML models
while requiring the models sharing a specific algorithm (i.e.,
Linear Regression). In this scenario, we kept the number of
algorithms constant at 50. Each ML model, ranging from
100 to 10,000 models, was associated with a single algo-
rithm, as defined in the SML ontology. The corresponding
query response time was measured.

According to the resulting graph curve, the query runtime
exhibits nearly linear growth with the increasing number of
ML model instances. Notably, the time evolution is very
noticeable between the initial two tests, where the number of
ML models increased from 100 to 1000 (a difference of 900
models), in contrast to subsequent tests where the increase
in the number of ML models remained more consistent (a
difference of 2000/3000 models).

In the second scenario (refer to Fig. 11b), we examined
the effect of changing the number of metadata associated

with each instance of an ML model, particularly when
requesting the metadata set linked to a specific model. In
this scenario, we held the number of ML models constant at
500, altered the number of the models data items (ranging
from 5 to 40), and measured the respective query response
time. The resulting curve illustrates that the query execu-
tion time progresses linearly with the augmented number of
metadata defined for each ML model.

Impact of Data Items and Features used in ML Training
Data Sets. In Fig. 12a, we examined the impact of altering
the number of data items present in the training data sets of
ML models, while requesting the set of data items for a spe-
cific model. During the tests, we constrained the number of
ML models to 100, varied the number of the data items used
in the models training data sets (ranging from 100 to 1000),
and subsequently measured the query response time. The
depicted graph illustrates that as more metadata are speci-
fied for each ML model’s training data set, the query runtime
exhibits linear growth.

In Fig. 12b, we explored the consequences of increasing
the number of features employed in the training data sets of

Table 7 List of useful queries addressing the specified challenges and fulfilling the necessary criteria

ML Representation Criteria ML Usability and Compatibility Criteria

Challenge 1.a Q5- Retrieve the metadata of a given ML model, with those
related to its algorithm, its training data set, its testing data set,
and to the evaluations applied to the testing data

Challenge 1.b Q1 - Retrieve the algorithm of a given ML model
Challenge 1.c Q2 - Describe the training data set of a given ML model Q3 -

Describe the testing data set of a given ML model
Q7 - Describe the training data context of a given ML model

Challenge 1.d Q6 - Find the application domain of each ML model, and
give a clear description of this domain

Challenge 1.e Q4 - Retrieve the performance of a given ML model (i.e., the
scores and the metrics used to calculate the evaluation applied to
the testing data)

380

388

393
395

397
400

375

380

385

390

395

400

405

100 1000 3000 5000 7000 10000

)s
m(

e
miT

esnopseR

Number of ML Models Instances

Number of ML Models Impact on
Retrieving Specific Models

398

402

405

410

413

396
398
400
402
404
406
408
410
412
414

5 10 20 30 40

Re
sp

on
se

 T
im

e
(m

s)

Number of Metadata per Model

Number of Metadata Impact on
Retrieving a Specific Model(a) (b)

Fig. 11 Impact of the number of ML models instances and the number of ML models metadata

426 L. Kallab et al.

ML models, while requesting the set of features used for a
specific model. For each test, we limited the number of ML
models to a maximum of 1000, assigned different numbers
of features (ranging from 2 to 20) to each ML model’s train-
ing data set, and subsequently recorded the corresponding
query response time. The resulting graph illustrates that the
runtime progresses linearly with the increased number of
features utilized in each ML model’s training data set.

Impact of ML Evaluation Metrics. In the final scenario,
we examined the impact of the number of metrics used into
the evaluation score of the testing data set of ML models
(refer to Fig. 12c). In the tests, where we requested the top
3 ML models with the highest evaluation scores, we kept
the number of ML models constant at 1000 and varied the
number of the score metrics from 1 to 10 (e.g., MAPE and
MSE [15]). Subsequently, we recorded the corresponding
query response time. The depicted graph reveals that as
the number of metrics used in the score (for evaluating ML
models’ testing data sets) increases, the runtime progresses
linearly.

Discussion. The outcome of the experimental scenarios
reveals encouraging and positive linear trends, indicating
that the query execution response time increases proportion-
ally with the expanding number of instances of ML models,
models metadata, models data items, models features used in
the models training data, and the metrics employed to com-
pute the score related to models testing data sets. This shows
a consistent relationship with a uniform growth between the
various variables considered and the query execution time.
Notably, the findings highlight certain scenarios where
the growth is more substantial, specifically, in the graphs
where we increased the number of ML model instances (see
Fig. 11a), resulting in a time jump of 20 ms, and in the case
where we increased the number of score metrics for ML
model evaluation (see Fig. 12c), resulting in a time jump of
21 ms. In these scenarios, the impact is more significant than
in others, where the time jumps are 15 ms, 4 ms, and 15 ms,
respectively, in Figs. 11b and 12a, b.

In Fig. 11a, the notable time jump is attributed to the
large number of ML model instances used (10000),
while in Fig. 12c, the substantial jump can be attributed
to the increased number of concepts targeted in the query
(SML:MachineLearningModel, SML:TestingDataSet,
SML:Evaluation, SML:Score, and SML:Metric). Addition-
ally, it is observed that the increased number of metadata and
the number of features used in ML model training data sets
exhibit similar resulting curves with a time jump of 15 ms,
despite differing variables: from 5 to 40 for the number of
metadata, compared to 2 to 20 for the features number. This
can be explained by the very close response times (405 and
407 ms) when both variables are equal to 20.

Regarding the increased number of data items in the train-
ing data sets of ML models, it has the least impact on the
query response time, with a time jump of 4 ms.

5.2 ML Models and User Input Matching Evaluation

In this section, we test the performance of our solution when
matching ML models specifications with user inputs. For
this aim, we considered the following user request example3
(refer to its formal definition in Eq. 1):

User Request = {Energy Efficiency,,Regression,}, User-
DataFile.csv, {{1234},,true, {0.5,0.5,0.5,0.5}}, where: (1)
“Energy Efficiency” and “Linear Regression” are values
related, respectively, to “SML:ApplicationDomain” and
“SML:Algorithm” entities, and used to filter the correspond-
ing ML models, (2) UserDataFile.csv, is a file that contains
time-series temperature data (i.e., “Date” and “Tempera-
ture” values), and (3) {{1234},,true, {0.5,0.5,0.5,0.5}} are
user preferences given to the filtering process ordering, the
resulted retrieved ML models (i.e., the ones having the high-
est score with top-max=true), and the weights used in the
similarities measures.

405
406

407
408

409

404
405
406
407
408
409
410

100 300 500 700 1000

)s
m(

e
miT

esnopseR

Number of Data Items per Training Data Set

Number of Data Items Impact on
Retrieving a Specific Model

402

408
413

416
420

423

400
405
410
415
420
425

1 2 4 6 8 10

Re
sp

on
se

 T
im

e
(m

s)

Number of Metrics per Model Evalua�on

Number of Metrics Impact on
Retrieving Specific Models

392
395

400
404

407

390

395

400

405

410

2 5 10 15 20

Re
sp

on
se

 T
im

e
(m

s)

Number of Features per Training Data Set

Number of Features Impact on
Retrieving a Specific Model(a) (b) (c)

Fig. 12 Impact of the training data set data items, the number of the training data set features, and the number of ML evaluation metrics

3 It is an example of a user request that helps in evaluating the ML
models filtering process, as well as the matching similarities meas-
ures between user needs, including user given file, and ML models.

427Towards ML Models’ Recommendations

5.2.1 Filtering Process Evaluation

The matching between user request and ML models speci-
fications starts by reducing the search space of ML mod-
els before applying the necessary similarities measures. To
do so, a filtering process of ML models is done according
to the given set of words in user request4 (in our example:
“Energy Efficiency” and “Linear Regression”, which are
related, respectively, to the ML application domains and
algorithms). In the experiments, in which we used the data
presented in: http:// tinyu rl. com/ ymjac h45, we applied two
different scenarios regarding the filtering process. In the first
scenario, we varied the number of ML models between 100
and 400, and applied the filtering process based on “Energy
Efficiency” value, that is related to the ML application
domains (see Fig. 13a). In the second scenario, we used
the same number of ML models (between 100 and 400),
and executed the ML filtering process based “Energy Effi-
ciency” and “Linear Regression”, related, respectively, to
ML application domains and algorithms (see Fig. 13b). In
both scenarios, we retrieved the query response time (in mil-
liseconds), computed according to the results average of 10
sequential executions for each filtering query. As it is shown
in both curves, the response time of the filtering process
evolves with the number of ML models. The increase in the
response time is a bit more noticeable in the second scenario,
compared to the first one (with a 6 ms of difference in aver-
age), since the filtering process is based on more than one
criteria (i.e., application domain and algorithm) instead of
only one (i.e., application domain).

5.2.2 Similarities Measures Evaluation

Once the filtering process is done, the similarities meas-
ures between the user given file and ML specifications are
launched, with respect to the user preferences. In our tests,
based on the data presented in http:// tinyu rl. com/ s23cy ka5,
which include the filtered ML models according to mod-
els application domains and algorithms (see Fig. 13b), we
assumed the following:

• The feature (s), e.g., “Temperature”, with their values
data types that are included in the filtered ML models
training data sets and the user given data set (in the user
given file) are already obtained, using SPARQL queries
applied on the SML model ontology.

• The ‘DataFreqScore’ and the ‘TemporalOverlapScore’
between the filtered ML models training data sets and
the user given data set are, also, already retrieved.

• The filtered ML models training data sets and the user
given data set correspond to the same zone, with ‘Spa-
tialSimScore’ = 5/8.

Based on the previous assumptions, we show, in Table 8,
some examples of the data used to conduct our similari-
ties measures experiments. The similarities calculations
have been realized between the filtered ML models (var-
ied between 12 and 50 models) obtained from the filter-
ing process in Fig. 13b, and the user given data file (i.e.,
UserDataFile.csv in this case). We considered that each of
the filtered ML model training data set and the user given
data set, has one single feature (apart from the ‘Date’ col-
umn). The features were compared together on the syntactic
level (using the Levenshtein algorithm), as well as on the
semantic level (using the Wup methodology), to calculate
the ‘FeatureSimScore’. Using the retrieved value types of the
features included in the ML model training data sets and user
data set (refer to Table 8), the ‘FeatureValTypeScore’ was

95

100,9

105,1

109,4

90

95

100

105

110

115

100 200 300 400

)s
m(

e
miT

esnopseR

Number of ML Models

ML Models Filtering per Domain Applica�on(a)

98,4

105,7

110,9

119,6

95
100
105
110
115
120
125
130

100 200 300 400

Re
sp

on
se

 T
im

e
(m

s)

Number of ML Models

ML Models Filtering per
Domain Applica�on & Algorithm

(b)

Fig. 13 Filtering process according to ML domain application and algorithm

4 In the current tests, we did not rely on the Generative AI to enrich
the set of keywords used for ML models filtering. This will be held in
other dedicated work.

http://tinyurl.com/ymjach45
http://tinyurl.com/s23cyka5

428 L. Kallab et al.

calculated. As per the ‘TempSimScore’ value, it has been
computed according to the ‘DataFreqScore’ values (that
have been normalized) and the ‘TemporalOverlapScore’
values. All of these scores (‘FeatureSimScore’, ‘FeatureVal-
TypeScore’, and ‘TempSimScore’), along with the ‘Spatial-
SimScore’, have been used to compute the ‘GlobalSim-
Score’ based on the Eq. 7. In Table 9, we show the different
similarities scores applied between the filtered ML models
listed in Table 8, and user request (defined in the begin-
ning of Sect. 5.2). As presented in the table, we highlight in
green the ML model (i.e., ML ID 2) having the maximum
‘GlobalSimScore’ value that is ‘0,736’, corresponding to the
best ML model matching user input.

In order to test the impact of the number of filtered ML
models on the calculation of the similarity measures, we
conducted experiments to observe the response time (in ms)
to obtain the similarity scores when having different num-
bers of filtered ML models. The results, shown in Fig. 14,

were obtained using Jupyter Notebook5 with Python as the
programming language. The experiments results reveal a
positive linear relationship between the time taken for the
similarity calculations and the number of filtered ML mod-
els. This can be attributed to the increased number of simi-
larity measures that need to be computed with more filtered
ML models.

6 Conclusion

This paper introduces a Semantic Machine Learning Model
ontology called: SML, aimed at describing the character-
istics and operational details of Machine Learning (ML)
models. The descriptions encompass various elements
such as ML models used algorithms, ML models metadata,

Table 8 Examples of data
used to compute similarities
measures between user input
and ML specifications

ML Id ML Feature ML Feature
Value Type

User Data File Feature User Data File
Feature Value
Type

Data-
FreqScore

Temporal-
Overlap-
Score

1 Temperature String Temperature Float 6 0,50
2 Temperature Float Temperature Float 6 0,50
3 CO2 Float Temperature Float 5 0,67
4 Energy Float Temperature Float 8 0,42
5 Occupants Integer Temperature Float 7 0,50
6 Temp Float Temperature Float 6 0,75
7 CO2 Float Temperature Float 7 0,33
8 Temp String Temperature Float 10 0,58
9 Energy Float Temperature Float 9 0,50
10 Energy String Temperature Float 9 0,67
11 Temperature Float Temperature Float 5 0,33
12 CO2 Float Temperature Float 12 0,58

Table 9 Similarity measures
values between the filtered ML
models and user request, before
retrieving the model with the
highest GlobalSimScore

ML Id FeatureSimScore FeatureVal-
TypeScore

TempSimScore SpatialSimScore GlobalSimScore

1 1 0 0,321 0,625 0,486
2 1 1 0,321 0,625 0,736
3 0,184 0 0,416 0,625 0,306
4 0,341 0 0,263 0,625 0,307
5 0,135 0 0,312 0,625 0,268
6 0,562 1 0,446 0,625 0,658
7 0,184 0 0,229 0,625 0,259
8 0,562 0 0,336 0,625 0,381
9 0,341 0 0,3 0,625 0,316
10 0,341 0 0,383 0,625 0,337
11 1 1 0,249 0,625 0,718
12 0,184 0 0,329 0,625 0,284

5 https:// jupyt er. org/.

https://jupyter.org/

429Towards ML Models’ Recommendations

ML models training and testing datasets, and ML models
evaluation metrics. SML facilitates the dissemination of
ML knowledge across diverse platforms and environments,
thereby enhancing the understanding of ML models and
aiding their selection in different scenarios. Following the
implementation of SML, we conducted evaluations to assess
its efficiency and performance across various scenarios. Our
experimental findings demonstrate promising and encourag-
ing results.

Based on SML model, we also propose, in this work, an
approach for retrieving ML models by leveraging the align-
ment between user inputs, which we formally defined, and
ML models characteristics. Our approach relies on similar-
ity measures related to four criteria: (1) Feature, (2) Feature
Value Type, (3) Temporal Context, and (4) Spatial context.
We have examined and experimented the proposed similarity
computations to assess and identify ML models that closely
align with user inputs.

As part of our ongoing assessment of SML ontology, our
objectives include verifying its consistency to ensure that
the defined concepts and properties do not introduce any
structural inconsistencies. This verification process involves
employing various reasoners. Additionally, we aim to assess
its clarity by examining whether the names or labels of the
concepts and properties are understandable to both experts
and non-experts. Furthermore, we plan to integrate the SML
ontology into real-world environments or projects to fur-
ther evaluate its practical utility. Moreover, and based on
the proposed similarities measures that we defined to study
the matching between user inputs and ML models character-
istics, we will focus on developing a dedicated recommen-
dation engine that recommends the most appropriate ML
model(s) for specific contexts and diverse scenarios, while
giving some optimizations applicable for models adjust-
ments (related to the existing models in SML or to the ML
models that can be given by the user in his request), etc.
And finally, we seek to study the usage of the Generative AI

(on ML models metadata for instance) to enrich the set of
keywords that are used for ML models filtering.

Acknowledgements Not applicable.

Author Contributions All authors contributed to the study conception
and design. Material preparation, data collection and analysis were
performed by Lara Kallab. The first draft of the manuscript was writ-
ten by Lara Kallab, and all authors commented on previous versions
of the manuscript. All authors read and approved the final manuscript.

Funding Not applicable.

Data Availability Enquiries about data and materials availability should
be directed to the authors.

Declarations

Conflict of interest All authors declare that there is no conflict of inter-
est regarding the publication of this article.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Hassani H, Silva ES, Unger S, Taj Mazinani M, Mac Feely S
(2020) Artificial intelligence (ai) or intelligence augmentation
(ia): what is the future? Ai 1(2), 8

 2. Ngiam KY, Khor W (2019) Big data and machine learning algo-
rithms for health-care delivery. Lancet Oncol 20(5):262–273

 3. Janiesch C, Zschech P, Heinrich K (2021) Machine learning and
deep learning. Electron. Markets 31(3):685–695

 4. Lindholm, A., Wahlström, N., Lindsten, F., Schön, T.B.: Super-
vised machine learning. Department of Information Technology,
Uppsala University: Uppsala, Sweden, 112 (2019)

 5. Ayranci P, Lai P, Phan N, Hu H, Kolinowski A, Newman D, Dou
D (2022) Onml: an ontology-based approach for interpretable
machine learning. J Combin Optim 1–24

 6. Braga J, Dias JL, Regateiro F (2020) A machine learning ontology
 7. Lee I, Shin YJ (2020) Machine learning for enterprises: appli-

cations, algorithm selection, and challenges. Bus Horizons
63(2):157–170

 8. Muhammad I, Yan Z (2015) Supervised machine learning
approaches: a survey. ICTACT J Soft Comput 5(3)

 9. Rashidi HH, Tran NK, Betts EV, Howell LP, Green R (2019)
Artificial intelligence and machine learning in pathology: the
present landscape of supervised methods. Academic Pathol
6:2374289519873088

 10. Nascimento N, Alencar P, Lucena C, Cowan D (2018) A context-
aware machine learning-based approach. In: Proceedings of the
28th annual international conference on computer science and
software engineering, pp. 40–47

8,6

12,5

17,3

23

7

12

17

22

27

12 25 37 50

)s
m(

e
miT

esnopseR

Number of Filtered ML Models

Similarity Score Calcula�ons per
Filtered ML Models

Fig. 14 Similarity score calculations applied on the filtered ML mod-
els

http://creativecommons.org/licenses/by/4.0/

430 L. Kallab et al.

 11. Mishra S, Jain S (2020) Ontologies as a semantic model in IoT.
IJCA 42(3):233–243

 12. Esnaola-Gonzalez I (2021) An ontology-based approach for mak-
ing machine learning systems accountable. Semantic Web J

 13. Publio GC, Esteves D, Ławrynowicz A, Panov P, Soldatova L,
Soru T, Vanschoren J, Zafar H (2018) Ml-schema: exposing the
semantics of machine learning with schemas and ontologies.
arXiv preprint arXiv: 1807. 05351

 14. Cao Y, Li S, Liu Y, Yan Z, Dai Y, Yu PS, Sun L (2023) A compre-
hensive survey of ai-generated content (aigc): a history of genera-
tive ai from gan to chatgpt. arXiv preprint arXiv: 2303. 04226

 15. Chicco D, Warrens MJ, Jurman G (2021) The coefficient of deter-
mination r-squared is more informative than SMAPE, MAE,
MAPE, MSE and RMSE in regression analysis evaluation. PeerJ
Comput Sci 7:623

 16. Rinartha K, Suryasa W, Kartika LGS (2018) Comparative analysis
of string similarity on dynamic query suggestions. In: 2018 elec-
trical power, electronics, communications, controls and informat-
ics seminar (EECCIS), pp 399–404. IEEE

 17. Ochelska-Mierzejewska J (2018) The evaluation of text string
matching algorithms as an aid to image search. J Appl Comput
Sci 26(1):33–62

 18. Patro S, Sahu KK (2015) Normalization: a preprocessing stage.
arXiv preprint arXiv: 1503. 06462

 19. Zhu G, Iglesias CA (2016) Computing semantic similarity of
concepts in knowledge graphs. IEEE Trans Knowl Data Eng
29(1):72–85

 20. Vafaei N, Ribeiro RA, Camarinha-Matos LM (2018) Selection
of normalization technique for weighted average multi-criteria

decision making. In: Doctoral conference on computing, electrical
and industrial systems, pp 43–52. Springer

 21. Csiszar O (2021) Ordered weighted averaging operators: a short
review. IEEE Syst Man Cyber Mag 7(2):4–12

 22. Sahoo SK, Goswami SS (2023) A comprehensive review of mul-
tiple criteria decision-making (MCDM) methods: advancements,
applications, and future directions. Dec Making Adv 1(1):25–48

 23. Zlaugotne B, Zihare L, Balode L, Kalnbalkite A, Khabdullin A,
Blumberga D (2020) Multi-criteria decision analysis methods
comparison. Rigas Tehniskas Universitates Zinatniskie Raksti
24(1):454–471

http://arxiv.org/abs/1807.05351
http://arxiv.org/abs/2303.04226
http://arxiv.org/abs/1503.06462

	Towards ML Models’ Recommendations
	Abstract
	1 Introduction
	2 Motivating Scenario
	3 State of the Art
	3.1 Ontology-Based Models for Describing Machine Learning
	3.2 Context-Based Approaches for Describing Machine Learning
	3.3 Machine Learning Description Based on Reviews and Surveys

	4 ML Models Retrieval Approach
	4.1 SML: Semantic Machine Learning Model Ontology
	4.1.1 SML Model Representation and Application
	4.1.2 ML Data Set Modeling and Context
	4.1.3 ML Model Evaluation
	4.1.4 SML-Based ML Model Instantiation Example
	4.1.5 User Input Representation

	4.2 User Request Definition
	4.3 Similarities Measures for ML and User Needs Alignment
	4.3.1 Feature-Based Criteria
	4.3.2 Feature Value Type-Based Criteria
	4.3.3 Temporal Context-Based Criteria
	4.3.4 Spatial Context-Based Criteria
	4.3.5 Global Similarity Score

	5 Experimental Evaluation
	5.1 SML Evaluation
	5.1.1 SML Efficiency Evaluation
	5.1.2 SML Performance Evaluation

	5.2 ML Models and User Input Matching Evaluation
	5.2.1 Filtering Process Evaluation
	5.2.2 Similarities Measures Evaluation

	6 Conclusion
	Acknowledgements
	References

