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Abstract
Artificial Intelligence encompasses a range of technologies that replicate human-like cognitive abilities through computer 
systems, enabling the execution of tasks associated with intelligent beings. A prominent way to achieve this is machine 
learning (ML), which optimizes system performance by employing learning algorithms to create models based on data and 
its inherent patterns. Today, a multitude of ML models exist having diverse characteristics, including the algorithm type, 
training dataset, and resultant performance. Such diversity complicates the selection of an appropriate model for a specific 
use case, answering user demands. This paper presents an approach for ML models retrieval based on the matching between 
user inputs and ML models criteria, all described in a semantic ML ontology named SML model (Semantic Machine Learn-
ing model), which facilitates the process of ML models selection. Our approach is based on similarities measures that we 
tested and experimented to score the ML models and retrieve the ones matching, at best, user inputs.

Keywords Machine learning model · Supervised learning · Ontology · User input · Similarities criteria · ML models and 
user inputs alignment · ML models retrieval

1 Introduction

In contemporary times, artificial intelligence (AI) has 
emerged as a turning point across diverse domains, includ-
ing social, commercial, and industrial ones, such as speech 
recognition, medical diagnosis, autonomous vehicles, and 
building automation [1]. Essentially, AI represents a com-
puter system crafted to emulate human intelligence, leverag-
ing data from myriad sources and systems to make decisions 
and acquire knowledge from the outcomes. Machine learn-
ing (ML) acts as an instantiation of AI, allowing computers 
to learn from data without explicit programming [2]. Its pri-
mary focus lies in constructing models capable of learning 
from historical data, discerning meaningful relationships 

and patterns within the data [3], and autonomously making 
logical decisions with minimal or no human intervention. 
ML automates the creation of analytical models by utilizing 
diverse forms of numerical information, including numbers, 
words, images, and more.

In the world of Machine learning (ML), there exists a 
plethora of models available for users to adopt and reuse 
(particularly for non-experts), reducing the need to create 
new models for each task. In fact, the data necessary to cre-
ate the models are, often, not available, nor the machines/
processors that are used to train the models as they require 
a lot of performance and calculation time, hence the impor-
tance of reusing and adapting existing ML models to users 
needs. A learning model comes with its own set of specifi-
cations and applications, including distinct algorithm types 
(e.g., Linear Regression or Bayes Classifier [4]), the training 
dataset utilized, the application domain (e.g., finance, travel, 
and transportation), and the model performance. This diver-
sity adds complexity to the task of selecting an apt model 
that meets user demands, especially for non-expert users 
with limited or no ML knowledge. Selecting the appropri-
ate model for a specific use case, in alignment with user 
needs, holds paramount importance. The more closely a 
machine learning model matches a given case and fulfills 
user requirements, the more adeptly it can identify data 
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features or patterns, and meet user demands. This translates 
into improved decision-making, offering more accurate anal-
yses and forecasts. For instance, using a regression model 
trained on winter season data in France to predict informa-
tion relevant to a summer season (as it can be requested by 
the user) is likely to yield poor results and dissatisfy the 
user. This discrepancy arises because the model’s learning is 
based on a different data set pattern (in terms of season) that 
does not correspond to the user request. Hence, it becomes 
imperative to properly describe ML models and represent 
their characteristics, along with the specifications of user 
needs (or inputs), in a semantic format. This facilitates the 
understanding of how and where each model can be opti-
mally used or adopted, taking into account user requests. 
Such an approach enables the comparison, evaluation, and 
retrieval of the most suitable model(s) for a specific appli-
cation scenario, effectively addressing user requirements.

In the literature, numerous models, approaches, and 
reviews represent the characteristics, applicability, and 
performance of machine learning models. However, these 
works exhibit several limitations. Notably, a significant por-
tion of them, including references [5–9], inadequately details 
the datasets used for model training and testing. Moreover, 
a majority of the works, specifically [7–10], lacks in con-
sidering models application domain and operational perfor-
mance. Additionally, none of these sources comprehensively 
explores aspects such as models usability, their contexts 
(e.g., temporal and spatial contexts), and various levels 
of models metadata (e.g., ML model metadata, algorithm 
metadata, dataset metadata). Considering these essential ML 
criteria, and matching them with user demands, is crucial 
for enhancing the selection of ML models that satisfy, at 
best, user needs. After recognizing the limitations in existing 
representations of machine learning models, which are nec-
essary for the understating of their functioning and correct 
use, their applications, their evaluation and comparison, we 
present in this paper a framework for ML models represen-
tation and retrieval, as depicted in Fig. 2. The framework 
is based on an ontology-based model, named “SML”, for 
Semantic Machine Learning description. SML describes 
machine learning models characteristics through a vocabu-
lary understandable by both humans and machines, facilitat-
ing the comprehension of their behavior and use for a given 
context. SML also describes user input specifications, which 
can be compared to ML models characteristics to identify 
the best models matching user needs. In this context, the pre-
sented framework includes a formally defined user request 
(part of which is embedded in SML), and proposes similar-
ity calculations between the ML models characteristics and 
user inputs to retrieve the most suitable ML models aligning 
with users needs. The similarity measures are based mainly 
on four criteria: (1) Feature, (2) Feature Value Type, (3) 
Temporal Context, and (4) Spatial Context. As an ontology 

model [11], SML gives the same meaning to the specified 
ML model characteristics and user specifications. It eases 
the storage, integration, and sharing of ML knowledge and 
user inputs across diverse organizations and platforms, fos-
tering both syntactic and semantic interoperability.

The rest of the sections are organised as follows. In 
Sect. 2, a scenario is presented to highlight the motivation 
behind the usability and applicability of our work. Section 3 
provides a review of existing related works, emphasizing 
the added value of our solution. Detailed specifications of 
our proposed semantic machine learning model ontology, 
along with the defined similarities measures between ML 
characteristics and user inputs, are outlined in Sect. 4. Tests 
and experiments proving the efficiency and the performance 
of our approach are giving in Sect. 5. Lastly, Sect. 6 offers 
a summary of the work and delves into potential directions 
for future research.

2  Motivating Scenario

In order to show the motivation behind our proposal, let us 
consider the depicted Smart City scenario in Fig. 1. The 
environment is extensively covered by a Wireless Sensor 
Network (WSN), gathering diverse data (e.g., CO2 emis-
sions, lighting conditions, noise levels, energy consump-
tion, temperature) from the city. A team of experts has been 
assigned to monitor, analyze, and forecast elements within 
the city, aiming to transform it into a smart, proactive, safe, 
and healthy habitat for its residents. These experts, each with 
unique skills, focus on forecasting and analyzing data within 
their respective domains. Fig. 1 provides some examples: (i) 
environmental experts predict noise, air, and water pollution 
levels for a healthier city; (ii) road safety experts forecast 
traffic congestion, risky conditions, and road deterioration 
to prevent accidents; (iii) weather experts predict rising tem-
peratures and extreme conditions, proactively disseminat-
ing crucial information; and (iv) energy experts analyze and 
predict energy consumption and production for a greener, 
eco-friendly city.

In this collaborative environment, team members fre-
quently collaborate on interdisciplinary projects. More 
importantly, they all require the generation, training, testing, 
and deployment of prediction models that utilize the col-
lected data to provide necessary forecasts. In this dynamic 
and collaborative setting, the potential for a substantial num-
ber of machine learning models to be quickly developed is 
evident.

To sustain this collaborative workspace, prevent isolated 
analysis, and establish a decision-making process rooted 
in collective intelligence and shared insights, the team 
requires a system capable of storing and retrieving ML 
models for each new application use case. This approach 
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promotes model reusability rather than creating slightly 
different models for every prediction, ensuring experiment 
reproducibility in the context of open science. The system 
suggests and retrieves a fitting model (if it already exists), 
that meets experts needs, allowing them to generate a new 
model only when necessary. This will significantly prove 
useful, considering the growing number of ML models gen-
erated over time, and allows users to respond to their needs 
more quickly because they do not need to generate models, 
which are often very expensive. Furthermore, such system 
enhances users’ understanding of existing models, improves 
result explainability, and fosters more productive collabora-
tion within the team.

In order to be able to efficiently select ML models that 
meet users demands, several challenges have to be addressed 
related to: 

1. Model Representation this entails the challenges related 
to the unified description of the models, as well as their 
metadata, technical aspects (i.e., algorithmic specifi-
cations), used data sets (i.e., training, testing features/
data specifications), the application domains in which 
the models are eventually deployed, and the evaluation 
metrics/scores. More specifically: Challenge 1.a: How to 
extensively represent machine learning models and their 
descriptive metadata to facilitate ML models search, 
versioning, and retrieval? Challenge 1.b: How to cover 
technical aspects and map models to the algorithms that 
generated them, while categorizing technical specifica-
tions for efficient search and retrieval? Challenge 1.c: 
How to encompass the intricacies of training and testing 
datasets, capturing contextual information (spatial, tem-
poral, etc.) to compare model similarity from a data per-
spective and understand the usage context? Challenge 
1.d: How to include the application domains where the 
models are deployed, allowing higher-level clustering 

and categorization of ML models based on their field of 
application? Challenge 1.e: How to incorporate model 
evaluation metrics and scores in the representation for 
ranking and presenting models tailored to user needs?

2. User Input Representation this entails the challenges 
related to the description of user needs, more specifi-
cally: Challenge 2.a: Through what form (i.e., query 
expression model) users’ inputs can be defined, allow-
ing users to express easily what they aim for at different 
aspects, e.g., the application domain, the desired out-
come (data analysis, forecasting, classification, etc.), and 
specific contexts (e.g.,weather forecasts for a specified 
period or location)? Challenge 2.b: How to include user 
needs with ML models representation, in a way facili-
tating their matching analysis with the models differ-
ent characteristics? Challenge 2.c: What are the main 
users’ preferences to be considered in users’ input, e.g., 
to define priorities for the entities used to filter the nec-
essary ML models (based on their application domains, 
their type of algorithm, etc.), and to express the desired 
type of results (e.g., retrieve the set of the ML models 
having the top-k scores, or the ones having a max global 
score, etc.)?

3. Model Retrieval and Recommendation this entails a dif-
ferent set of challenges related to the alignment between 
user needs and ML models characteristics, for models 
retrieval, models recommendation and models optimiza-
tion. For this part, we focus, in this work, on the chal-
lenges related to the retrieval of ML models aligned with 
users inputs1: Challenge 3.a: What are the similarities 
criteria that can be used to study the matching between 
ML models specifications and users inputs? Challenge 

Fig. 1  Smart City Use Case

1 The other sub-challenges related to the ML models recommenda-
tion and optimization scopes, will be considered in a future dedicated 
work.
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3.b: How to compute a global similarity matching score 
to retrieve the most suitable ML models answering user 
needs/preferences based on the identified similarities 
criteria?

While existing works primarily focus on data set similar-
ity or certain performance metrics when suggesting ML 
models, our aim, in this paper, is to extend these solutions 
by considering a more comprehensive set of ML concepts 
(e.g., application domains, usage scenarios/contexts, tech-
nical algorithmic aspects) that could impact ML model 
retrieval and recommendations. We also consider user input 
representation, and propose similarity criteria to measure 
the matching between the ML models characteristics and 
user needs, in order to retrieve the most suitable ML models 
aligning with users demands. However, before delving into 
our proposal, we will review some works related to Machine 
Learning models representation, and evaluate them based on 
the challenges and requirements identified in our motivating 
scenario.

3  State of the Art

In this section, we investigate multiple models, approaches, 
and reviews focused on providing comprehensive knowledge 
about machine learning (ML) techniques and algorithms. 
This includes details about their categories, advantages, 
and other relevant aspects. The objective is to describe the 
performance and applicability of these ML methodologies. 
For this aim, we conducted a comparative analysis based on 
distinct criteria, grouped into two main categories: 

1. ML Representation Criteria This encompasses criteria 
used to represent ML models, their building/generation 
process, behavior, performance, and some useful meta-
data descriptors:

• Criterion 1.A. Algorithm Representation It assesses 
the ability to describe and link the ML models to the 
algorithms that generated them. This facilitates the 
inference of their usability and technical limitations.

• Criterion 1.B. Data Representation This evaluates 
how well ML datasets used for training and testing, 
are represented, including related characteristics 
such as their features, their values, and some statis-
tical descriptors.

• Criterion 1.C. Performance Representation It meas-
ures the ability to incorporate accuracy and perfor-
mance metrics/descriptions for each ML model. 
This provides insights into the quality of results, and 
allows for comparisons between ML models.

• Criterion 1.D. Metadata Representation This exam-
ines the capability of including ML models meta 
descriptors, enhancing the ML modeling process 
with various high-level information/features (e.g., 
model metadata, algorithm metadata, and dataset 
metadata).

2. ML Usability and Compatibility Criteria These criteria 
are focused on describing the application domain and 
the context of each ML model:

• Criterion 2.A. Application Domain Representation 
This refers to the ability to represent various appli-
cation domains via a keyword-based representation, 
and link them to the necessary ML models (e.g., 
associating a temperature prediction model with the 
environmental monitoring application domain).

• Criterion 2.B. Usability Representation It assesses 
the capacity of specifying various ML model con-
texts within each application domain. This knowl-
edge helps determine where each ML model is best 
used for achieving accurate results (e.g., adopting 
a prediction model that is trained on winter data to 
predict summer-related data outputs will negatively 
impact result quality).

3.1  Ontology‑Based Models for Describing Machine 
Learning

MLOnto [6], which stands for Machine Learning Ontol-
ogy, is an model designed to capture knowledge related 
to the field of Machine Learning. It comprises seven pri-
mary classes: ‘Applications’, ‘Algorithms’, ‘Dependencies’, 
‘Frameworks’, ‘Dictionary’, ‘MLTypes’, and ‘Involved’. 
While encompassing various ML types such as AutoML, 
Semi-supervised Machine Learning, Supervised Learning, 
Reinforcement Learning, and Unsupervised Learning, the 
model’s representation is limited. It falls short in address-
ing several critical criteria, e.g., representing models data 
sets (training and testing data sets), model performance, and 
model usability.

In [12], an approach based on an ontology model is intro-
duced to instill accountability in Machine Learning systems. 
The methodology unfolds three key phases: (1) the creation 
and deployment of predictive models to ensure availability, 
(2) the annotation of relevant information extracted from the 
models and forecasts using ontological terms, and (3) the 
storage of data annotations with provisions for utilizing them 
for accountability purposes. The second phase comprises 
two areas. In the first area, the forecasts generated by predic-
tive models are represented using three ontology models: 
the AffectedBy ontology (https:// iesna ola. github. io/ Affec 
tedBy), the Execution-Executor-Procedure (EEP) (https:// 
iesna ola. github. io/ EEP), and the Result Context (RC) 

https://iesnaola.github.io/AffectedBy
https://iesnaola.github.io/AffectedBy
https://iesnaola.github.io/EEP
https://iesnaola.github.io/EEP
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(https:// iesna ola. github. io/ RC). In the second area, the pre-
dictive procedures employed to generate forecasts are mod-
eled using the ML-Schema ontology [13]. Despite that these 
ontology models address various facets of Machine Learn-
ing, encompass model performance and represent model 
training datasets, they exhibit limitations in considering 
specific criteria. These include the model context (beyond 
temporal and spatial aspects) with its associated constraints 
when necessary, as well as the application domain of the 
model.

In [5], the authors introduce OnML, an ontology-based 
approach for Interpretable Machine Learning (IML). This 
methodology employs interpretable models, ontologies, 
and information extraction techniques to generate semantic 
explanations. The process involves the identification and 
inclusion of ontology-based tuples in a sampling strategy, 
wherein semantic relationships between terms, words, and 
ideas are sampled and incorporated into the training of 
the interpretable model, without employing each of them 
individually. Additionally, to streamline the search space 
for semantic explanations, the authors propose an anchor 
learning method. The primary focus of this work lies in 
leveraging ontology models for the semantic explanation 
of predicted ML results, without explicitly representing or 
describing ML datasets, their context, behavior, etc. None-
theless, by relying on some ontology models, the approach 
provides insights into the application domains of the utilized 
MLs, along with their usability.

3.2  Context‑Based Approaches for Describing 
Machine Learning

The research presented in [10] outlines an approach that 
employs contextual information for training ML models. The 
primary concept involves training ML models to optimize 
a specific scoring function tailored to each operational con-
text. In experimental comparisons, the results of the context-
aware approach, derived from specialized models trained for 
individual contexts, were contrasted with the utilization of 
a general model trained across all contexts. The outcomes 
indicate that the proposed approach mitigates bias towards a 
strategy employing a universally trained model, albeit with 
a relatively minor difference in error. Therefore, a thorough 
evaluation is necessary to determine the strategy that better 
aligns with specific application requirements. Nevertheless, 
the context-aware approach merits consideration, particu-
larly in relation to the criticality of application resource 
needs, such as connectivity and memory. In comparison 
to our approach, the ML model contexts in the proposed 
method are manually defined and utilized without being 
represented, along with other aspects like ML datasets and 
ML application domains, in a machine-understandable form. 

This representation allows for the correct and automatic uti-
lization of ML models in appropriate contexts.

3.3  Machine Learning Description Based 
on Reviews and Surveys

In [9], a comprehensive review is presented to establish defi-
nitions and a foundational understanding of various machine 
learning (ML) categories, including Unsupervised, Super-
vised, and Reinforcement Learning. The paper delves into 
the methodologies employed in the design of supervised ML 
studies, and introduces the bias-variance trade-off as a criti-
cal theoretical foundation in supervised machine learning. 
While the work provides an overview and description of 
common supervised ML algorithms such as Logistic Regres-
sion, Linear Regression, and Naive Bayes, it falls short of 
representing them, including aspects like ML datasets and 
ML application domains, in a comprehensive machine-
understandable model, which is essential for ensuring their 
accurate usage in specific scenarios.

In [8], a survey is presented to assess the strengths and 
weaknesses of various machine learning (ML) algorithms, 
including Logic basic algorithms (e.g., Learning Set of 
Rules and Decision Trees), Instance-based Learning, Sta-
tistical learning algorithms (e.g., Bayesian Networks), Deep 
Learning, and Support Vector Machines. While the survey 
outlines the utility of each ML algorithm, the descriptions 
are tailored for users with a certain level of expertise who 
understand how and where these ML methods are best 
applied. In contrast, our work extends this further, by pro-
viding detailed descriptions of ML models, encompassing 
aspects such as the ML datasets used, the corresponding 
ML application domains, and more. This information is pre-
sented in an intelligible machine-readable format, facilitat-
ing the use of ML models across different contexts.

A study is given in [7] to provide an overview of ML 
categories, including Unsupervised, Semi-supervised, and 
Reinforcement learning. It outlines three distinct ways in 
which ML models are applied in enterprises: Classification, 
Clustering, and Prediction. Additionally, the work introduces 
a process model for selecting ML algorithms based on fac-
tors such as data type, desired accuracy, and intended inter-
pretability. While the study contributes to understand the 
landscape of ML techniques and their relevance in enterprise 
applications, including the trade-off between interpretability 
and accuracy, it overlooks several important aspects. These 
include essential considerations for determining the most 
suitable ML model for specific cases, such as describing 
ML datasets, their related contexts, etc. Furthermore, the 
study fails to provide ML model descriptions in a compre-
hensible machine format, thereby limiting users’ expertise 
and knowledge.

https://iesnaola.github.io/RC
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In Table 1, we present a comparative analysis of the 
machine learning description models, approaches, and 
reviews discussed earlier, with respect to the criteria out-
lined at the beginning of this section. We use the symbol 
“+” to signify positive coverage of a criterion, “-” to denote 
the absence of coverage, the term “Limited” to indicate 
partial coverage, and the term“Limited∗ ” to denote partial 
coverage without an implemented or proposed model. Our 
comparative analysis show that, to our knowledge, there is 
no existing solution/approach able to describe ML models 
characteristics, with respect to the specified criteria.

4  ML Models Retrieval Approach

In this section, we present our approach for ML models 
retrieval, which is based on three main parts: (1) Machine 
Learning models representation, through the definition of a 
semantic model ontology that describes the characteristics 
of ML models, (2) User inputs representation, through a 
formally defined user request, and (3) the definition of the 
similarities measures that are used to match between ML 
models specifications and users needs.

Our proposal for ML models representation and retrieval 
is presented in a framework illustrated in Fig. 2. The frame-
work is composed of eight steps. In the first step, existing 
ML models are described using SML, a semantic ML model 
ontology that defines the characteristics of ML models based 
on a unified vocabulary (see Sect. 4.1). Once the models 
are described, we obtain, in the second step, ML model 
instances, which refer to concrete model entities exempli-
fied by the concepts and properties defined within the SML 
ontology. In the third step, some elements of the user request 
(presented formally in Eq. 1) are exploited by a Genera-
tive AI solution [14]. Specifically, the user can provide a 
set of keywords and a given file to specify his needs (e.g., 
the domain of application required for the ML models to be 
suggested, the desired type of ML model algorithm, etc.). 
In the fourth step, these user request elements are passed 

to the Generative AI solution, whose main objective is 
to complete the user given keywords with other relevant 
words based on the analysis of the user provided file. The 
set of keywords enriched by the Generative AI solution is 
then used in the fifth step to filter ML model instances and 
retrieve the ones matching user needs. This helps in reducing 
the search space and resources (time, memory consump-
tion, etc.) required to apply similarity measures between 
user demands and ML model specifications. Once the ML 
models are filtered, they are transferred to the Similarities 
Measures module (in the sixth step), along with other ele-
ments of the user request, i.e., the user provided file and 
user preferences (in the seventh step). Finally, in the eighth 
step, a matching between some user input elements and the 
filtered ML models is applied by the Similarities Measures 
module, based on multi-criteria similarity measures (i.e., 
Feature, Feature Value Type, Temporal Context, and Spatial 
Context), to retrieve the ML models that meet user needs.

4.1  SML: Semantic Machine Learning Model 
Ontology

In this part, we introduce our ontology-based model called 
“SML” (Semantic Machine Learning), defined to describe 
and to store the characteristics of ML models. This is crucial 
for enhancing the understanding of ML models and facili-
tating their selection in specific contexts. SML, which is 
designed using entities and relations between these entities 
(see Fig. 3), relies on a vocabulary that ensures a common 
description of ML models, applicable across various envi-
ronments and platforms. It is worth noting that attributes of 
each entity are omitted in Fig. 3 for clarity.

4.1.1  SML Model Representation and Application

As depicted in Fig. 4, our SML representation is crafted 
to discern patterns or behaviors within collected data. This 
is accomplished by leveraging previous or historical data 
known as the training data set (SML:TrainingDataSet). The 

Table 1  Evaluation of prevailing machine learning (ML) description models and approaches in relation to the specified criteria

1. ML representation criteria 2. ML usability & compatibility

Algorithm Data  Performance  Metadata  Application domain  Usability

 MLOnto, 2020 [6] + − − Limited + −
 ML-Schema, 2021 [12] + + + Limited − Limited
 OnML Approach, 2022 [5] − − − − Limited Limited
Context-aware ML-based 

Approach, 2018 [10]
− − − − − Limited

 Review, 2019 [9] Limited∗ − Limited∗ − Limited∗ Limited
 Survey, 2015 [8] Limited∗ − Limited∗ − Limited∗ Limited
 Study, 2020 [7] Limited∗ − Limited∗ − Limited∗ Limited
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training data set, which inherits from the SML:DataSet 
entity, is utilized during the learning phase to tailor (train) 
the model for predicting or classifying values known in the 

training set but unknown in other (future) data. Each model 
has its own metadata (SML:MetaData) that give some infor-
mation about the created model, such as Model Creation 

Fig. 2  Framework of our pro-
posal for ML models represen-
tation and retrieval
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Fig. 3  Overview of the proposed Semantic Machine Learning (SML) model ontology
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Date and Model Developer. Furthermore, every model 
is specifically applicable in defined application domains 
(SML:ApplicationDomain), such as smart buildings, health-
care, transportation, and more.

The learning models use distinct algorithms 
(SML:Algorithm), such as Decision Trees, Support Vector 
Machines, Naïve Bayes, etc. Each algorithm is associated 
with metadata (e.g., Algorithm Creation Date, Algorithm 
Description) and specific parameters represented as key-
value pairs. Categorization of algorithms is defined through 
a category entity (SML:Category), encompassing types like 
Classification and Regression, potentially including subcat-
egories linked by the “hasUpperCategory” relation. Certain 
models that are related to specific algorithms (e.g., Linear 
Regression), may demonstrate compliance with other algo-
rithms (e.g., Lasso Regression) through the “isCompliant-
With” relation. This alignment can be discerned through 
some calculations and analyses conducted on the training 
data set of the models, taking into account their respective 
contexts (detailed in the subsequent subsection).

4.1.2  ML Data Set Modeling and Context

As illustrated in Fig. 5, a dataset (SML:DataSet), can be 
partitioned into several categories, including: (1) a training 
dataset (SML:TrainingDataSet), used for training the learn-
ing model, and (2) a testing dataset (SML:TestingDataSet), 
employed to assess and evaluate the model post-train-
ing (refer to Fig.  6). A dataset comprises some data 
items (SML:DataItem), each associated to metadata 
(SML:MetaData). The metadata for each data item includes 

a feature (SML:Feature), such as the Creation Date, the 
Description, Humidity, Location, and a corresponding value 
(SML:Value) linked to a value type (SML:ValueType). Con-
cepts have been defined for each Feature, Value, and Value 
Type, enabling our solution to define specific constraints (as 
elaborated below) on certain feature values. This is neces-
sary in many cases for accurately describing the context of 
ML models.

A dataset, associated to some metadata, has at least 
two features, each possessing attributes such as Name, 
Type (e.g., Categorical, Textual, Numerical), Range, and 
a Boolean value indicating if it is an independent feature. 
An independent feature serves as the cause, and its value 
is unaffected by other variables in the study. Conversely, a 
dependent feature is the effect, as its value is contingent on 
changes in the independent feature. Features are related to 
topics (SML:Topic), which are used for the description of the 
application domain (SML:ApplicationDomain) of a learn-
ing model. A dataset encompasses a context (SML:Context) 
that has some constraints (SML:Constraint). Each constraint 
comprises a source operand (i.e., SML:Feature), a target 
operand (i.e., SML:Value), and an operator (SML:Operator). 
For example, a spatio-temporal context could be defined 
by the “Season” feature with the value “Winter” and the 
“Location” feature with “Paris” as its value. This context 
informs that, for instance, the training dataset of a specific 
ML model is associated with Paris during Winter. Contexts 
also facilitate the usage of certain datasets for other ML 
models, depending on the degree of matching or closeness 
of their respective contexts.
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Fig. 4  ML model representation and application
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4.1.3  ML Model Evaluation

Upon constructing the machine learning model with the 
training dataset, a crucial step involves testing its perfor-
mance using a distinct set of data known as the testing 
dataset (SML:TestingDataSet). This dataset is employed to 
assess the performance of the ML model’s training, with 
potential adjustments or optimizations to enhance results. 
As depicted in Fig. 6, a testing dataset entails an evalua-
tion (SML:Evaluation). Each evaluation is associated to 
some metadata (SML:hasEvaluationMetaData) and to a 
computed score (SML:Score), derived from specific met-
rics (SML:Metric), such as MSE (Mean Squared Error) and 
MAPE (Mean Absolute Percentage Error) [15]. The metrics 
are categorized into categories (SML:Category) based on the 
algorithm employed in constructing the ML model.

4.1.4  SML‑Based ML Model Instantiation Example

Let us consider a brief example of an instantiated ML model 
described using the concepts and properties defined in the 
SML ontology. As illustrated in Fig. 7, an instance of the 
class SML:MachineLearningModel is created and named 
Machine Learning Model 1. Machine Learning Model 
1 is based on a Linear Regression algorithm, which falls 
under the Regression category. This category refers to ML 
models instances used to predict a continuous target vari-
able based on one or more predictor variables. The Linear 
Regression algorithm has a Description instance of the class 
SML:MetaData, which is associated with the SML:Algorithm 
concept. The description states that the linear regression 
algorithm is a supervised learning algorithm used for pre-
dicting a continuous target variable. Additionally, the Linear 
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Fig. 5  ML data set modeling and context
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Regression algorithm instance has a Fit Intercept parameter 
set to ”True”, meaning that the model is configured to find 
the best-fit line that does not necessarily pass through the 
origin (0,0). This provides greater flexibility and potentially 
leads to a more accurate representation of the relationship 
between the variables.

The Machine Learning Model 1, which has the Smart 
Building instance as its application domain, includes meta-
data named Creation Date with the value “29/07/2024”. 
It comprises: (1) a Training Dataset, Training DataSet 1, 
that is of type SML:DataSet (DataSet1a) having a metadata 
instance, Dataset Size, with a value of “30” MB, and (2) a 
Testing Dataset, Testing DataSet 1, which is also of type 
SML:DataSet (DataSet2b). The Training DataSet 1 instance 
utilizes two features: Energy Consumption and Temperature, 
both belonging to the same topic instance: Building Energy 
Management, describing the Smart Building application 
domain. Additionally, Training DataSet 1 is composed of 
several data item instances, such as DataItem1a1 and Data-
Item1ax, each containing a metadata instance named Fre-
quency with a value of “5”.

The Training DataSet 1 has a context, Context 1. This 
context holds a source operand (i.e., Temperature feature 
instance), a target operand (i.e., “45” value instance) with 
a value type (i.e., Float), and an operator (i.e., “>”) that 
refers to the “greater than” operator instance. The context 
indicates that all temperature values included within the 

Training DataSet 1 are greater than “45” Celsius degrees. 
In addition to providing insights into the data sets, contexts 
facilitate the use of certain data sets for other ML models, 
based on the degree of similarity or closeness between their 
respective contexts.

As per the Evaluation DataSet 1, it has a score instance, 
Score TDataSet1, that was calculated using the RSME met-
ric (Root Mean Square Deviation). The value of RSME, 
which designates the differences between the observed 
values and predicted ones, is equal to “0.5”, showing good 
prediction accuracy of the ML model. Also, the Evalua-
tion DataSet 1 has some metadata instance, i.e., Software 
Dependencies, inherited from the SML:MetaData class. The 
Software Dependencies has the value of “textitscikit-learn 
0.24.2, numpy 1.19.5”.

4.1.5  User Input Representation

In order to allow and facilitate the matching between user 
needs and ML models, we represent user input by using two 
main concepts: “SML:UserInput” and “SML:UserData”, 
which are related together through “SML:hasData” prop-
erty. In our work, we considered that the user data is a data 
set (SML:DataSet) that has the same representation of any 
ML training or testing data set, each, having an applica-
tion domain, data-items, features, contexts, etc. This eases 
the study of the similarities measures between user data 

Fig. 7  An example of an instanced ML model using SML ontology concepts and properties
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and ML data characteristics, and makes it more efficient, 
as both matching entities derive from the same concept 
(SML:DataSet) (Fig. 8).

4.2  User Request Definition

Our approach, outlined in this paper, suggests employing 
several similarity measures between the characteristics of 
ML models and user inputs, to retrieve the most suitable 
ML models that align with users requests. In our work, we 
formally define a user request as follows:

where,

• {Keywords}: refers to a bag of words that are, option-
ally, given by the user. These words can be tagged by the 
user for pre-structuring purposes, according to different 
ML models characteristics (or entities): “Application 
Domain”, “Category”, “Algorithm” and “MetaData”. 
These pre-structured words are used to filter the models 
that correspond more to user needs. This helps in reduc-
ing the search space and similarities measures, in terms 
of time and memory consumption (see the following sec-
tions), between ML models and user demands. It is to 
be noted that, in our approach, the set of keywords can 
be completed by other words (not specified by the user), 
through the help of the Generative AI (GAI) [14], applied 

(1)
User Request = {Keywords},UserGivenFile∗, {User Preferences}

on the user data file (see below). The GAI involves the 
creation of digital content, in our case a set of words, 
based on AI models that extract and understand informa-
tion provided by human (in this case the user data file).

• UserGivenFile*: it is a required variable that can include 
one of the following: 

1. Either a data file, holding some data items with 
features and values. When provided, it is compared 
to existing ML models characteristics (mainly ML 
training datasets) to identify the ones that can act at 
best on the given data.

2. Or a ML model file, covering the behavior of a 
developed model. In this case, the file is compared 
to existing ML models to identify the ones that 
can perform better for instance (with some recom-
mended optimizations that may be applicable), or 
the ones that are similar (in terms of context for 
example), etc.

   In this work, we will focus on the alignment between 
the specifications of given user data files and ML mod-
els characteristics.2 A user data file is exploited by the 
GAI to retrieve some useful words used for ML models 
filtering (as mentioned above), and is compared to the 
training data sets of existing ML models, according to the 
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Fig. 8  SML user input representation

2 The user files having the type of ML models files will be treated in 
another dedicated paper.
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following similarities criteria (see sections below): (1) 
Feature, (2) Value Type, (3) Temporal Context, and (4) 
Spatial Context, to retrieve the most convenient models 
matching user needs. The user data file is represented by 
the “SML:UserData” entity in the SML model. Since 
“SML:UserData” has the same structure of the ML 
models training data set (SML:TrainingDatSet), as both 
are sub-classes of “SML:DataSet” entity, the matching 
between their characteristics will be straightforward 
based on their related entities.

• {User Preferences} = {Filtering Order}, top-k, top-max, 
{ � , � , � , � }, where:

– {Filtering Order}, involves the preferences that the 
user can, optionally, give (through a specified order) 
to the entities used to apply the filtering process on 
the ML models based on the set of keywords. For 
example, the user may prefer to start the filtering of 
the ML models according to their application domain 
(SML:ApplicationDomain) at first, then according 
to their categories (SML:Category). In this case, an 
order of ‘1’ will be given to the application domain, 
and an order of ‘2’ will be set to the categories. Thus, 
the {Filtering Order} = {1234}, with ‘3’ and ‘4’ 
refer to the ordering related to the rest of the entities 
“SML:Algorithm” and “SML:MetaData”, respec-
tively (if existed).

– top-k, is an integer type variable that can be specified 
by the user, whenever he wants to retrieve the ML 
models having the ‘top-k’ scores.

– top-max, is a boolean type variable that can be speci-
fied by the user, whenever he requires the best ML 
model(s) having the ‘top-max’ global score.

– {� , � , � , � }, are weights that can be given by the 
user (between 0 and 1), respectively to: the ‘Syntac-
ticScore’, the ‘SemanticScore’, the ‘DataFreqScore’, 
and the ‘TemporalCoverageScore’ (see Eqs. 4 and 5). 
� and � are weights that the user may use to specify 
the type of similarity score he wants to emphasize 
more while matching the features between the exist-
ing ML models and those in his given file (UserGi-
venFile). � is a weight value attributed to the ‘Syn-
tacticScore‘, and � is a weight value assigned to 
the ‘SemanticScore‘, such that � + � = 1 . Both, the 
‘SyntacticScore‘ and the ‘SemanticScore‘, are used 
in the calculations of the ‘FeatureSimScore‘ (see 
Eq. 4). � and � are wights that the user can assign to 
determine the type of similarity score he requires to 
highlight more when computing the temporal context 
similarity score ‘TempSimScore‘ (see Eq. 5). � is a 
weight value given to the ‘DataFreqScore‘, and � is a 
weight value given to the ‘TemporalCoverageScore‘, 
such that � + � = 1.

When receiving a user request, our solution begins the pro-
cess of ML models filtering based on the set of keywords, 
which is enriched by the GAI applied on the given user data 
file. Then, the similarity score calculations start between 
the user data file and the filtered ML model training data 
sets. The similarities measures rely on a multidimensional 
representation, unique in the literature, that is based on four 
criteria: (1) Feature, (2) Feature Value Type, (3) Temporal 
Context, and (4) Spatial Context. A global score is given to 
each training data set related to the filtered models, based 
on their matching with the user request (including his pref-
erences), and the best ones, having the highest scores and 
answering user needs, are finally retrieved.

4.3  Similarities Measures for ML and User Needs 
Alignment

Before presenting the computations of the different simi-
larities measures, we propose, in this work, the formulas: 
A and B (see Eqs. 2 and 3), that we used to normalize the 
obtained scores values (when it is necessary) between 0 and 
1. In cases where the higher the result is, the most similar 
the entities are, Formula A is applied (e.g., When adopt-
ing Jaccard, algorithm, which is a string-based matching 
algorithm [16]). Whereas, in cases where the higher the 
result is, the most dissimilar the entities are, Formula B is 
applied (e.g., When adopting Levenshtein algorithm, another 
string-based matching algorithm [17]). While there are vari-
ous normalization functions available in the literature [18], 
the decision to use formulas: A and B, is driven by the fact 
that they offer a straightforward approach to normaliza-
tion, making the calculations easier to interpret and under-
stand. Moreover, the chosen normalization functions align 
well with the specific requirements and constraints of our 
approach, by ensuring that the scores are scaled in a manner 
that preserves the relative differences between them, which 
is crucial for the accurate comparison and combination of 
scores in our context.

where,

where,

(2)Formula A =
x

x + 1

(3)
lim
x→0

f (x) = 0, and lim
x→∞

f (x) = 1

Formula B =
1

1 + x

lim
x→0

f (x) = 1, and lim
x→∞

f (x) = 0
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4.3.1  Feature‑Based Criteria

The first matching measure applied in our proposal is 
done between the features of ML models training data set 
(SML:TrainingDataSet), and the features of the user data 
file (SML:UserData). The similarity between the identified 
features is realized according to two aspects: (1) Syntactic, 
and (2) Semantic. For each of these aspects, a score is given, 
and thus, we, formally, define the feature similarity score as 
follows:

where,

• � and � are weights given to ‘SyntacticScore’ and 
‘SemanticScore’, respectively, and with: � + � = 1.

• ‘SyntacticScore’, is a normalized score computed using 
a string-based matching algorithm, e.g., Levenshtein, 
Cosine, and Jaccard [17], between each of the features 
extracted from the user data file (SML:UserData), and 
the features forming the ML models training datasets 
(SML:TrainingDataset).

• ‘SemanticScore’, is a normalized score computed using a 
knowledge-based or topological method, e.g., Path, Wup, 
and Lin [19], between each of the features extracted from 
the user data file, and the features forming the ML mod-
els training datasets. The semantic similarity between 
features helps in assessing the proximity of their mean-
ings rather than relying solely on their lexical resem-
blance. And thus, it increases the understanding of the 
sense of words in different contexts, independently from 
their lexicographical similarity.

• U ∈ ℕ∗ , and V ∈ ℕ∗ , refer to the number of features pre-
sented, respectively, in the user data file and in a ML 
model training data set.

In the definition of the ‘FeatureSimScore‘ equation (Eq. 4), 
we employed the weighted-average aggregation method [20]. 
This well-known method is particularly suitable for deci-
sion making scenarios where different criteria have varying 
degrees of importance. While other aggregation methods, 
such as the arithmetic mean or median, could be employed, 

(4)
FeatureSimScore =

∑U
u=1

∑V
v=1(�.SyntacticScoreu,v + �.SemanticScoreu,v)

U + V

they do not account for the varying importance of each cri-
terion. For instance, the arithmetic mean treats all criteria 
equally, which is not suitable given the differing relevance of 
each criterion in our approach. On the other hand, methods 
like the OWA (Ordered Weighted Averaging) operator [21] 
may not offer significant advantages in our specific context, 
specifically as weights in OWA are assigned to the ordered 
position of the values rather than the values themselves.

In order to illustrate the feature similarity score calcula-
tions, we give some examples in Table 2. In the presented 
table, there are three ML model training datasets, having one 
feature, respectively: ‘Temperature’, ‘Humidity’, ‘ CO2 ’. By 
comparing each of these features with the extracted feature 
from user data file ‘Temp’, and based on the normalized syn-
tactic/semantic scores, the highest feature similarity score 
is the one between ‘Temperature’ and ‘Temp’, thus, the ML 
Model Training dataset A is the most convenient to the user 
input.

4.3.2  Feature Value Type‑Based Criteria

The second matching measure, FeatureValTypeScore, is 
related to the value type of the previously matched features 
between ML models training data sets and user data file (see 
Sect. 4.3.1). In fact, and whenever the ‘FeatureSimScore’ 
is ⩾ 0.5, based on Eq. 4, the feature value-type score calcu-
lations are launched. As such, if the matched two features 
(any ML model training dataset feature and any user data 
file feature) have the same data type, e.g., Integer, String, or 
Boolean, ‘FeatureValTypeScore’ is incremented to 1. In the 
end, to normalize the obtained score, the latter is divided 
by the sum of the number of times there were two matching 
features (i.e., ‘FeatureSimScore’ is ⩾ 0.5).

4.3.3  Temporal Context‑Based Criteria

The temporal context similarity score, TempSimScore, is cal-
culated based on the similar observations (or frequency), 
and the intersected time covered by the ML models training 
data, and the user given data (user data file). Formally, it is 
defined as follows:

(5)
TempSimScore = (� .DataFreqScore) + (�.TemporalCoverageScore)

Table 2  Examples of feature 
similarity scores calculations

ML model 
training 
dataset

Feature used 
in the training 
dataset

Feature extracted 
from user data file

SyntacticScore 
(Levenshtein)

Seman-
ticScore 
(Path)

FeatureSimScore

A Temperature Temp 0.125 0.1 0.1125
B Humidity Temp 0.125 0.083 0.104
C CO

2
Temp 0.2 0.013 0.1065
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where,

• � and � are weights given to ‘DataFreqScore’ and ‘Tem-
poralCoverageScore’, respectively, and with: � + � = 1.

• ‘DataFreqScore’, which is computed only if the ML 
model training data and the user data are regular, refers to 
the difference of the number of observations per second. 
Such score is normalized using Formula B (see Eq. 3), 
because the lower the score is, the more similar two enti-
ties are. As illustrated in Tables 3 and 4, we can see that 
ML model A is more similar, in terms of the observations 
per second, to user data.

• ‘TemporalCoverageScore’: refers to the covered time 
periods between ML model training data, and user given 
data (user data file). It is defined as: TemporalCoverag-
eScore = TemporalOverlapScore × TemporalDistanceS-
core, such that:

– ‘TemporalOverlapScore’ = TimePeriodIntersection
TimePeriodUnion

 , is the 
time period intersection between ML model train-
ing data and user data, divided by the union of the 
periods (see Fig. 9).

– ‘ T e m p o r a l D i s t a n c e S c o r e ’  = 
MLModelTimePeriod − UserDataTimePeriod  ,  i s 
the normalized difference between the time period 
related to the ML model training data and the time 
period covered by user data. For example, in Fig. 9, 
the ‘TemporalDistanceScore’ is equal to 0 (before 
normalization), as there is an overlap between both 
periods. After normalization, ‘TemporalDistanceS-
core’ is equal to 1 (based on Formula B presented in 
Eq. 3). It is to be noted, that whenever the ML model 
training data period covers different years, we con-
sider that both periods are in the same year to avoid 
having a ‘TemporalDistanceScore’ equal to 0. An 
example of such case is given in Fig. 10.

To illustrate the overall value of the temporal similarity 
score, TempSimScore, we give few examples in Table 5, 
where we consider that � = 0.5 and � = 0.5.

4.3.4  Spatial Context‑Based Criteria

The spatial context similarity score, SpatialSimScore, is 
based on the intersection between the location covered by 
the ML model training data, and the location covered by the 
user given data. Formally, we define the spatial similarity 
score as follows:

where,

• ‘LocGranIntersection’, refers to the common locations 
types covered by the ML model training data, and the 
user given data (user data file), starting from a continent 
granularity till the smallest location granularity, which 
is based on the latitude and the longitude.

• ‘LocGranUnion’, is the set of all the possible location 
types that two or more set of data can share. In our work, 
we define it as: ‘LocGranUnion’ = {L} = {Continent, 
Country, City, Street, Building, Floor, Room, Location}.

We illustrate the spatial similarity score calculations in dif-
ferent examples given in Table 6.

4.3.5  Global Similarity Score

After computing the different similarities scores between user 
data file and ML models training data sets (obtained after ML 
models filtering process as explained in Eq. 1), we present, for-
mally, the global similarity score, GlobalSimScore, assigned to 
a ML model training data, based on the previously calculated 
measures:

where,

• ‘SumScores’, is the sum of all the matching similarities 
measures based on four criteria: (1) Feature (Featu-
reSimScore), (2) Feature Value Type (FeatureValTypeS-

(6)SpatialSimScore =
LocGranIntersection

LocGranUnion

(7)GlobalSimScore =
SumScores

ScoresNumber

Fig. 9  An example of the ‘Tem-
poralOverlapScore’ calculation
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core), (3) Temporal Context (TempSimScore), and (4) 
Spatial Context (SpatialSimScore).

• ‘ScoresNumber’, refers to the number of the matching 
scores used in ‘SumScores’ for normalisation between 
0 and 1. In this work, ‘ScoresNumber’ is equal to ‘4’.

The ‘GlobalSimScore’ formula is calculated using the 
average operator, which refers to a method of aggregat-
ing multiple scores into a single composite score by tak-
ing their average [22]. The resulting score represents the 
overall similarity matching value between an existing ML 
model and a user request. In our current work, we used 
this aggregative approach instead of a non-aggregative 
one [23], which does not consolidate multiple scores into 
a single composite measure, to provide a straightforward 
summary matching measure and allow for quick com-
parison between different ML models. Nevertheless, as 

non-aggregative methods maintain the distinctiveness of 
each score, providing a more detailed view of evaluation, 
it will also be interesting to consider them in future work. 
The choice of the scoring method used to compute the 
matching between ML models and user requests can be 
defined by the user based on his preferences.

Based on the user preferences included in user request 
(see Eq. 1), if the user assigns a number in the ‘top-k’ vari-
able, our solution will return the ML models having the 
top-k highest global similarity scores (GlobalSimScore). In 
case the user assigns ‘true’ in the ‘top-max’ variable, the 
ML model(s) having the max global similarity score will 
be retrieved.

5  Experimental Evaluation

In this section, we present the experimental process 
employed for assessing: (1) the defined SML model ontol-
ogy (defined in the following file: http:// tinyu rl. com/ yxhu6 
bt5), and (2) the applicability of the proposed similarities 
measures between user inputs and ML models specifications.

Fig. 10  An example of the ‘TemporalDistanceScore’ calculation

Table 3  Example of a ‘DataFeqScore’ between user data and ML 
model A

User data file 
observation/Sec

ML model A 
observation/Sec

DataFreqScore 
(before nor-
malization)

DataFreqScore 
(after normali-
zation)

9 15 15 − 9 = 6 1/(1+6) = 0.143

Table 4  Example of a ‘DataFeqScore’ between user data and ML 
model B

User data file 
observation/Sec

ML model B 
observation/
Sec

DataFreqScore 
(before nor-
malization)

DataFreqScore 
(after normali-
zation)

9 28 28 - 9 = 19 1/(1+19) = 0.05

Table 5  Examples of temporal similarity scores calculations

Data-
FreqScore

Temporal-
Overlap-
Score

TemporalD-
istanceScore

Temporal-
CoverageS-
core

Temp-
SimScore

0.143 6/12 (0.5) 1 0.5 0.32
0.05 6/12 (0.5) 6/12 (0.5) 0.25 0.15

http://tinyurl.com/yxhu6bt5
http://tinyurl.com/yxhu6bt5
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5.1  SML Evaluation

The evaluation of SML ontology is based on two distinct 
parts:

• Efficiency Evaluation: This involves determining whether 
the concepts and properties (data and objects properties) 
defined in the SML ontology can effectively address the 
model representation challenges outlined in Sect. 2, and 
the criteria outlined in Sect. 3.

• Performance Evaluation: This includes examining the 
response time of the SML ontology through the applica-
tion of various simple and complex queries on simulated 
instances of ML models. These instances are created 
based on different configurations, such as increasing the 
number of ML models, the number of ML models data 
items, and the number of the models features utilized in 
the training datasets.

5.1.1  SML Efficiency Evaluation

In this part, we establish the most beneficial queries (refer 
to Table 7) that can be applied on the SML ontology, aim-
ing to address the model representation challenges outlined 
in Sect. 2. Additionally, we evaluate the effectiveness of 
these queries in fulfilling the criteria outlined in Sect. 3. 
The list of queries used, presented in SPARQL (a standard 
query language for retrieving and manipulating data stored 
in Resource Description Framework (RDF) format), can be 
accessed through the following link: http:// tinyu rl. com/ 2z2fy 
jw3.

As depicted in Table 7, diverse queries are available 
for interrogating the SML ontology. For instance, Query 

Q1, which seeks the algorithm of a specified ML model, 
addresses challenge 1.b, by mapping models to the algo-
rithms that generated them. The representation of a ML 
model algorithm is a criterion related to the ML representa-
tion, hence the link between Query Q1 and the ML repre-
sentation criteria.

Another example is Query Q7, which necessitates the 
description of the training dataset context for a given ML 
model. This query tackles challenge 1.c, encompassing 
the context of data sets (training or testing data sets) that 
is important for constructing and evaluating ML models. 
Moreover, Query Q7 aligns with ML usability and compat-
ibility criteria by specifying the ML context.

5.1.2  SML Performance Evaluation

In this part, we considered five different scenarios to assess 
the performance of the SML ontology in terms of response 
time. This evaluation involved applying various queries to 
the SML in simulated scenarios created using the “Protégé” 
tool (https:// prote ge. stanf ord. edu/). All details about ML 
data sets, ML metadata, etc., were filled using this tool, and 
the scenarios were diversified based on: (1) the number of 
ML model instances, (2) the number of data items in the 
models training data sets, (3) the number of features used 
in the models training data sets, (4) the number of metrics 
utilized to compute the score of the models testing data sets, 
and (5) the number of metadata associated to the models.

We present the query response time (in milliseconds) in 
the experiments, computed according to the results average 
of 10 sequential executions for each query. The tests were 
conducted using “Stardog” (https:// www. stard og. com/), a 
platform for enterprise knowledge graph, operating on a 

Table 6  Examples of spatial similarity scores calculations

User data location ML dataset location LocGranIntersection LocGranUnion Spa-
tial-
Sim-
Score

France United States { } {L} 0/8
France Italy {Continent} {L} 1/8
Paris (France) La Défense (France) {Continent, Country} {L} 2/8
1st Arrondissement (France) 5th Arrondissement (France) {Continent, Country, City} {L} 3/8
Areva (La Défense) Total (La Défense) {Continent, Country, City, Street} {L} 4/8
AXA Investment (Majunga Tower, La 

Défense)
Deloitte (Majunga Tower, La 

Défense)
{Continent, Country, City, Street, 

Building}
{L} 5/8

Meeting Room 1 (23rd Floor, 
Deloitte)

Meeting Room 2 (23rd Floor, 
Deloitte)

{Continent, Country, City, Street, 
Building, Floor}

{L} 6/8

Meeting Room 1 Meeting Room 1 {Continent, Country, City, Street, 
Building, Floor, Room}

{L} 7/8

Lat1, Long1 (Meeting Room 1) Lat1, Long1 (Meeting Room 1) {Continent, Country, City, Street, 
Building, Floor, Room, Location}

{L} 8/8

http://tinyurl.com/2z2fyjw3
http://tinyurl.com/2z2fyjw3
https://protege.stanford.edu/
https://www.stardog.com/
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Windows 10 Professional machine with an Intel i7-8665U 
CPU @ 1.90GHz 2.11GHz processor and 1 GB RAM.

Impact of ML Models Instances and their Metadata. In 
the initial scenario (refer to Fig. 11-(a)), we explored the 
influence of varying the number of instances of ML models 
while requiring the models sharing a specific algorithm (i.e., 
Linear Regression). In this scenario, we kept the number of 
algorithms constant at 50. Each ML model, ranging from 
100 to 10,000 models, was associated with a single algo-
rithm, as defined in the SML ontology. The corresponding 
query response time was measured.

According to the resulting graph curve, the query runtime 
exhibits nearly linear growth with the increasing number of 
ML model instances. Notably, the time evolution is very 
noticeable between the initial two tests, where the number of 
ML models increased from 100 to 1000 (a difference of 900 
models), in contrast to subsequent tests where the increase 
in the number of ML models remained more consistent (a 
difference of 2000/3000 models).

In the second scenario (refer to Fig. 11b), we examined 
the effect of changing the number of metadata associated 

with each instance of an ML model, particularly when 
requesting the metadata set linked to a specific model. In 
this scenario, we held the number of ML models constant at 
500, altered the number of the models data items (ranging 
from 5 to 40), and measured the respective query response 
time. The resulting curve illustrates that the query execu-
tion time progresses linearly with the augmented number of 
metadata defined for each ML model.

Impact of Data Items and Features used in ML Training 
Data Sets. In Fig. 12a, we examined the impact of altering 
the number of data items present in the training data sets of 
ML models, while requesting the set of data items for a spe-
cific model. During the tests, we constrained the number of 
ML models to 100, varied the number of the data items used 
in the models training data sets (ranging from 100 to 1000), 
and subsequently measured the query response time. The 
depicted graph illustrates that as more metadata are speci-
fied for each ML model’s training data set, the query runtime 
exhibits linear growth.

In Fig. 12b, we explored the consequences of increasing 
the number of features employed in the training data sets of 

Table 7  List of useful queries addressing the specified challenges and fulfilling the necessary criteria

ML Representation Criteria ML Usability and Compatibility Criteria

Challenge 1.a Q5- Retrieve the metadata of a given ML model, with those 
related to its algorithm, its training data set, its testing data set, 
and to the evaluations applied to the testing data

Challenge 1.b Q1 - Retrieve the algorithm of a given ML model
Challenge 1.c Q2 - Describe the training data set of a given ML model Q3 - 

Describe the testing data set of a given ML model
Q7 - Describe the training data context of a given ML model

Challenge 1.d Q6 - Find the application domain of each ML model, and 
give a clear description of this domain

Challenge 1.e Q4 - Retrieve the performance of a given ML model (i.e., the 
scores and the metrics used to calculate the evaluation applied to 
the testing data)
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ML models, while requesting the set of features used for a 
specific model. For each test, we limited the number of ML 
models to a maximum of 1000, assigned different numbers 
of features (ranging from 2 to 20) to each ML model’s train-
ing data set, and subsequently recorded the corresponding 
query response time. The resulting graph illustrates that the 
runtime progresses linearly with the increased number of 
features utilized in each ML model’s training data set.

Impact of ML Evaluation Metrics. In the final scenario, 
we examined the impact of the number of metrics used into 
the evaluation score of the testing data set of ML models 
(refer to Fig. 12c). In the tests, where we requested the top 
3 ML models with the highest evaluation scores, we kept 
the number of ML models constant at 1000 and varied the 
number of the score metrics from 1 to 10 (e.g., MAPE and 
MSE [15]). Subsequently, we recorded the corresponding 
query response time. The depicted graph reveals that as 
the number of metrics used in the score (for evaluating ML 
models’ testing data sets) increases, the runtime progresses 
linearly.

Discussion. The outcome of the experimental scenarios 
reveals encouraging and positive linear trends, indicating 
that the query execution response time increases proportion-
ally with the expanding number of instances of ML models, 
models metadata, models data items, models features used in 
the models training data, and the metrics employed to com-
pute the score related to models testing data sets. This shows 
a consistent relationship with a uniform growth between the 
various variables considered and the query execution time. 
Notably, the findings highlight certain scenarios where 
the growth is more substantial, specifically, in the graphs 
where we increased the number of ML model instances (see 
Fig. 11a), resulting in a time jump of 20 ms, and in the case 
where we increased the number of score metrics for ML 
model evaluation (see Fig. 12c), resulting in a time jump of 
21 ms. In these scenarios, the impact is more significant than 
in others, where the time jumps are 15 ms, 4 ms, and 15 ms, 
respectively, in Figs. 11b and 12a, b.

In Fig. 11a, the notable time jump is attributed to the 
large number of ML model instances used (10000), 
while in Fig. 12c, the substantial jump can be attributed 
to the increased number of concepts targeted in the query 
(SML:MachineLearningModel, SML:TestingDataSet, 
SML:Evaluation, SML:Score, and SML:Metric). Addition-
ally, it is observed that the increased number of metadata and 
the number of features used in ML model training data sets 
exhibit similar resulting curves with a time jump of 15 ms, 
despite differing variables: from 5 to 40 for the number of 
metadata, compared to 2 to 20 for the features number. This 
can be explained by the very close response times (405 and 
407 ms) when both variables are equal to 20.

Regarding the increased number of data items in the train-
ing data sets of ML models, it has the least impact on the 
query response time, with a time jump of 4 ms.

5.2  ML Models and User Input Matching Evaluation

In this section, we test the performance of our solution when 
matching ML models specifications with user inputs. For 
this aim, we considered the following user request example3 
(refer to its formal definition in Eq. 1):

User Request = {Energy Efficiency,,Regression,}, User-
DataFile.csv, {{1234},,true, {0.5,0.5,0.5,0.5}}, where: (1) 
“Energy Efficiency” and “Linear Regression” are values 
related, respectively, to “SML:ApplicationDomain” and 
“SML:Algorithm” entities, and used to filter the correspond-
ing ML models, (2) UserDataFile.csv, is a file that contains 
time-series temperature data (i.e., “Date” and “Tempera-
ture” values), and (3) {{1234},,true, {0.5,0.5,0.5,0.5}} are 
user preferences given to the filtering process ordering, the 
resulted retrieved ML models (i.e., the ones having the high-
est score with top-max=true), and the weights used in the 
similarities measures.
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3 It is an example of a user request that helps in evaluating the ML 
models filtering process, as well as the matching similarities meas-
ures between user needs, including user given file, and ML models.
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5.2.1  Filtering Process Evaluation

The matching between user request and ML models speci-
fications starts by reducing the search space of ML mod-
els before applying the necessary similarities measures. To 
do so, a filtering process of ML models is done according 
to the given set of words in user request4 (in our example: 
“Energy Efficiency” and “Linear Regression”, which are 
related, respectively, to the ML application domains and 
algorithms). In the experiments, in which we used the data 
presented in: http:// tinyu rl. com/ ymjac h45, we applied two 
different scenarios regarding the filtering process. In the first 
scenario, we varied the number of ML models between 100 
and 400, and applied the filtering process based on “Energy 
Efficiency” value, that is related to the ML application 
domains (see Fig. 13a). In the second scenario, we used 
the same number of ML models (between 100 and 400), 
and executed the ML filtering process based “Energy Effi-
ciency” and “Linear Regression”, related, respectively, to 
ML application domains and algorithms (see Fig. 13b). In 
both scenarios, we retrieved the query response time (in mil-
liseconds), computed according to the results average of 10 
sequential executions for each filtering query. As it is shown 
in both curves, the response time of the filtering process 
evolves with the number of ML models. The increase in the 
response time is a bit more noticeable in the second scenario, 
compared to the first one (with a 6 ms of difference in aver-
age), since the filtering process is based on more than one 
criteria (i.e., application domain and algorithm) instead of 
only one (i.e., application domain).

5.2.2  Similarities Measures Evaluation

Once the filtering process is done, the similarities meas-
ures between the user given file and ML specifications are 
launched, with respect to the user preferences. In our tests, 
based on the data presented in http:// tinyu rl. com/ s23cy ka5, 
which include the filtered ML models according to mod-
els application domains and algorithms (see Fig. 13b), we 
assumed the following:

• The feature (s), e.g., “Temperature”, with their values 
data types that are included in the filtered ML models 
training data sets and the user given data set (in the user 
given file) are already obtained, using SPARQL queries 
applied on the SML model ontology.

• The ‘DataFreqScore’ and the ‘TemporalOverlapScore’ 
between the filtered ML models training data sets and 
the user given data set are, also, already retrieved.

• The filtered ML models training data sets and the user 
given data set correspond to the same zone, with ‘Spa-
tialSimScore’ = 5/8.

Based on the previous assumptions, we show, in Table 8, 
some examples of the data used to conduct our similari-
ties measures experiments. The similarities calculations 
have been realized between the filtered ML models (var-
ied between 12 and 50 models) obtained from the filter-
ing process in Fig. 13b, and the user given data file (i.e., 
UserDataFile.csv in this case). We considered that each of 
the filtered ML model training data set and the user given 
data set, has one single feature (apart from the ‘Date’ col-
umn). The features were compared together on the syntactic 
level (using the Levenshtein algorithm), as well as on the 
semantic level (using the Wup methodology), to calculate 
the ‘FeatureSimScore’. Using the retrieved value types of the 
features included in the ML model training data sets and user 
data set (refer to Table 8), the ‘FeatureValTypeScore’ was 
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4 In the current tests, we did not rely on the Generative AI to enrich 
the set of keywords used for ML models filtering. This will be held in 
other dedicated work.

http://tinyurl.com/ymjach45
http://tinyurl.com/s23cyka5
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calculated. As per the ‘TempSimScore’ value, it has been 
computed according to the ‘DataFreqScore’ values (that 
have been normalized) and the ‘TemporalOverlapScore’ 
values. All of these scores (‘FeatureSimScore’, ‘FeatureVal-
TypeScore’, and ‘TempSimScore’), along with the ‘Spatial-
SimScore’, have been used to compute the ‘GlobalSim-
Score’ based on the Eq. 7. In Table 9, we show the different 
similarities scores applied between the filtered ML models 
listed in Table 8, and user request (defined in the begin-
ning of Sect. 5.2). As presented in the table, we highlight in 
green the ML model (i.e., ML ID 2) having the maximum 
‘GlobalSimScore’ value that is ‘0,736’, corresponding to the 
best ML model matching user input.

In order to test the impact of the number of filtered ML 
models on the calculation of the similarity measures, we 
conducted experiments to observe the response time (in ms) 
to obtain the similarity scores when having different num-
bers of filtered ML models. The results, shown in Fig. 14, 

were obtained using Jupyter Notebook5 with Python as the 
programming language. The experiments results reveal a 
positive linear relationship between the time taken for the 
similarity calculations and the number of filtered ML mod-
els. This can be attributed to the increased number of simi-
larity measures that need to be computed with more filtered 
ML models.

6  Conclusion

This paper introduces a Semantic Machine Learning Model 
ontology called: SML, aimed at describing the character-
istics and operational details of Machine Learning (ML) 
models. The descriptions encompass various elements 
such as ML models used algorithms, ML models metadata, 

Table 8  Examples of data 
used to compute similarities 
measures between user input 
and ML specifications

ML Id ML Feature ML Feature 
Value Type

User Data File Feature User Data File 
Feature Value 
Type

Data-
FreqScore

Temporal-
Overlap-
Score

1 Temperature String Temperature Float 6 0,50
2 Temperature Float Temperature Float 6 0,50
3 CO2 Float Temperature Float 5 0,67
4 Energy Float Temperature Float 8 0,42
5 Occupants Integer Temperature Float 7 0,50
6 Temp Float Temperature Float 6 0,75
7 CO2 Float Temperature Float 7 0,33
8 Temp String Temperature Float 10 0,58
9 Energy Float Temperature Float 9 0,50
10 Energy String Temperature Float 9 0,67
11 Temperature Float Temperature Float 5 0,33
12 CO2 Float Temperature Float 12 0,58

Table 9  Similarity measures 
values between the filtered ML 
models and user request, before 
retrieving the model with the 
highest GlobalSimScore

ML Id FeatureSimScore FeatureVal-
TypeScore

TempSimScore SpatialSimScore GlobalSimScore

1 1 0 0,321 0,625 0,486
2 1 1 0,321 0,625 0,736
3 0,184 0 0,416 0,625 0,306
4 0,341 0 0,263 0,625 0,307
5 0,135 0 0,312 0,625 0,268
6 0,562 1 0,446 0,625 0,658
7 0,184 0 0,229 0,625 0,259
8 0,562 0 0,336 0,625 0,381
9 0,341 0 0,3 0,625 0,316
10 0,341 0 0,383 0,625 0,337
11 1 1 0,249 0,625 0,718
12 0,184 0 0,329 0,625 0,284

5 https:// jupyt er. org/.

https://jupyter.org/
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ML models training and testing datasets, and ML models 
evaluation metrics. SML facilitates the dissemination of 
ML knowledge across diverse platforms and environments, 
thereby enhancing the understanding of ML models and 
aiding their selection in different scenarios. Following the 
implementation of SML, we conducted evaluations to assess 
its efficiency and performance across various scenarios. Our 
experimental findings demonstrate promising and encourag-
ing results.

Based on SML model, we also propose, in this work, an 
approach for retrieving ML models by leveraging the align-
ment between user inputs, which we formally defined, and 
ML models characteristics. Our approach relies on similar-
ity measures related to four criteria: (1) Feature, (2) Feature 
Value Type, (3) Temporal Context, and (4) Spatial context. 
We have examined and experimented the proposed similarity 
computations to assess and identify ML models that closely 
align with user inputs.

As part of our ongoing assessment of SML ontology, our 
objectives include verifying its consistency to ensure that 
the defined concepts and properties do not introduce any 
structural inconsistencies. This verification process involves 
employing various reasoners. Additionally, we aim to assess 
its clarity by examining whether the names or labels of the 
concepts and properties are understandable to both experts 
and non-experts. Furthermore, we plan to integrate the SML 
ontology into real-world environments or projects to fur-
ther evaluate its practical utility. Moreover, and based on 
the proposed similarities measures that we defined to study 
the matching between user inputs and ML models character-
istics, we will focus on developing a dedicated recommen-
dation engine that recommends the most appropriate ML 
model(s) for specific contexts and diverse scenarios, while 
giving some optimizations applicable for models adjust-
ments (related to the existing models in SML or to the ML 
models that can be given by the user in his request), etc. 
And finally, we seek to study the usage of the Generative AI 

(on ML models metadata for instance) to enrich the set of 
keywords that are used for ML models filtering.
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