
PS

Facial expression has been a focus of emotion research 
for over a hundred years (Darwin, 1872/1998). It is central 
to several leading theories of emotion (Ekman, 1992; Izard, 
1977; Tomkins, 1962) and has been the focus of, at times, 
heated debate about issues in emotion science (Ekman, 
1994; Fridlund, 1994; Russell, 1994). Facial expression 
figures prominently in research on almost every aspect of 
emotion, including psychophysiology (Levenson, Ekman, 
& Friesen, 1990), neural correlates (Ekman, Davidson, 
& Friesen, 1990), development (Malatesta, Culver, Tes-
man, & Shepard, 1989), perception (Ambadar, Schooler, 
& Cohn, 2005), addiction (Griffin & Sayette, 2008), social 
processes (Hatfield, Cacioppo, & Rapson, 1992), depres-
sion (Reed, Sayette, & Cohn, 2007), and other emotion 
disorders (Tremeau et al., 2005), to name a few.

Because of the importance of facial expression to the 
study of emotion, a variety of observer-based systems 
of facial-expression measurement have been developed 
(Cohn & Ekman, 2005). Of these systems, the Facial Ac-
tion Coding System (FACS; Ekman, Friesen, & Hager, 
2002) is the most comprehensive, psychometrically rigor-
ous, and widely used (Ekman & Rosenberg, 2005). Using 
FACS and viewing video-recorded facial behavior at frame 
rate and slow motion, coders can manually code nearly all 
possible facial expressions, which are decomposed into 
action units (AUs), which, with some qualifications, are 
the smallest visually discriminable facial movements.

A major challenge in the use of FACS and other de-
tailed systems for annotating facial expression is the ex-

tensive time required in training and use. Training and 
passing the certification test for FACS can take 6 months, 
and additional training is required before coders are pre-
pared to use FACS to annotate observational data on their 
own. FACS is labor intensive, requiring up to 1 h to code a 
single minute of video (Cohn & Ekman, 2005). Undoubt-
edly, the exhaustive nature of FACS creates an obstacle to 
its widespread use.

Not surprisingly, there has been great interest in devel-
oping computer-based approaches to facial expression 
analysis that would permit FACS coding without the time-
consuming aspects of doing so manually. If successful, 
these approaches would greatly improve the efficiency and 
reliability of facial expression analysis, and, more impor-
tantly, make its use feasible in applied settings in addition 
to research. Current methods of assessing psychopathol-
ogy, for instance, depend almost entirely on verbal report 
(clinical interviews or questionnaires) of patients, their 
families, or caregivers. They lack systematic and efficient 
ways of incorporating behavioral observations that may 
be strong indicators of psychological disorder. Automated 
FACS coding could make it possible to use this important 
source of information.

Although the advantages of automated coding are ap-
parent, the challenges to developing such systems are con-
siderable. The face and facial features must be detected in 
video: Shape or appearance information must be extracted, 
then normalized for variation in pose, in illumination, and 
in individual differences in face shape and texture, and 
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The present test focused on a critical pair of AUs: AU 12 
is caused by contraction of the zygomatic major muscle, 
which pulls the lip corners obliquely. AU 6 is caused by 
contraction of the orbicularis oculi muscle, which raises 
the cheeks and causes crow-feet wrinkles to form lateral 
to the outer eye corners. When these actions occur to-
gether, they comprise what Ekman et al. (1990) termed 
the Duchenne smile, which is thought to be a “true smile” 
and to reflect happiness. 

Smiles are the most frequent of all emotion expressions, 
occurring as often as three or more times per minute dur-
ing social interaction (Schmidt & Cohn, 2001). They are 
one of a small number of expressions for which there is 
evidence of universality (Ekman, 1993). And in circum-
plex models of emotion (Larsen & Diener, 1992), they 
indicate positive valence (Cacioppo, Petty, Losch, & Kim, 
1986). To demonstrate that this expression can be auto-
matically coded in a reliable fashion during relatively un-
structured, multiperson social interaction would mark an 
important step forward in the development of automatic 
approaches to coding facial expression.

METHOD

Digital video from 3 participants, who were participating in a 
larger study, was used for the present test. These participants were in-
volved in a study (in progress) examining group formation processes 
(see Kirchner, Sayette, Cohn, Moreland, & Levine, 2006, for details 
of a study using this design). Although the experiment was advertised 
as a study examining the impact of alcohol on cognitive functioning, 
the group of participants used in the present FACS analyses had been 
assigned randomly to a no-alcohol control condition, in which they 
were told explicitly that they would receive—and they were indeed 
served—cranberry juice only. They drank juice throughout the obser-
vation period. All 3 individuals reported that they had not consumed 
alcohol or psychoactive drugs (except nicotine or caffeine) during the 
24-h period leading up to the observations, and all reported a 0 on a 
101-point intoxication scale during the experiment.

Observational Procedures
On arrival, participants’ height and weight were recorded. They 

also ate a light, weight-adjusted snack (a bagel with butter) and com-
pleted a consent form describing the study. To ensure that the group 
was composed of 3 unacquainted “strangers,” 4 people were invited 
to the laboratory (see Kirchner et al., 2006, for details of the overall 
procedures for a similar study). Participants were told that there was 
a slight chance that they might be asked to return on another day, 
in which case, they would receive an extra $20. Participants were 
greeted separately and were placed in different rooms. Then, they 
were casually introduced to each other one at a time while two re-
searchers observed them for any signs of recognition. None showed 
any sign of recognition. Following initial greetings, they also were 
asked whether they had ever met the others (they reported that they 
had not).

Setting and Equipment. The 3 members of the group were es-
corted to the experimental room and were seated equidistant from 
each other around a circular (75-cm diameter) table. They were asked 
to consume a control beverage consisting entirely of cranberry juice 
before engaging in a variety of cognitive tasks over a 36-min period. 
Separate wall-mounted cameras faced each person. It was explained 
that the cameras were focused on their drinks and would be used to 
monitor their consumption rate from the adjoining room. Following 
the drink and the cognitive tasks, participants were debriefed, paid, 
and permitted to leave.

The laboratory included a custom-designed video control system 
that permits synchronized video output for each participant, as well 

then used to segment and classify facial actions. Although 
human observers easily accommodate changes in pose, 
scale, illumination, occlusion, and individual differences, 
these and other sources of variation represent considerable 
challenges for a computer vision system. Then, there is the 
machine-learning challenge of automatically detecting ac-
tions that require significant training and expertise, even 
for human coders.

In the past decade, there has been significant effort to 
develop computer-vision-based approaches to automatic 
coding of facial expression. Early work focused on posed 
facial expressions with frontal camera orientation, little 
or no head motion or occlusion, and moderate-to-strong 
expressions (Bartlett, Hager, Ekman, & Sejnowski, 1999; 
Cohn, Zlochower, Lien, & Kanade, 1999; Essa & Pent-
land, 1997; Pantic & Rothkrantz, 2000). Tian, Kanade, 
and Cohn (2001), for example, automatically detected 
34 AUs and AU combinations in full-face frontal view 
images. More recently, investigators have made progress 
in the more demanding task of AU detection in nonposed 
facial images. Valstar, Gunes, and Pantic (2007) and 
Cohn and Schmidt (2004) automatically discriminated 
posed from nonposed, naturally occurring smiles. Amba-
dar, Cohn, and Reed (2009) used computer-vision-based 
measures to differentiate polite, happy, and embarrassed 
smiles. Dinges et al. (2005) detected stress from auto-
matic measures of facial expression. At least two groups 
have discriminated facial expressions or episodes of 
physical pain under relatively constrained conditions 
(Ashraf et al., 2009; Littlewort, Bartlett, Fasel, Susskind, 
& Movellan, 2006). Messinger, Mahoor, Chow, and Cohn 
(2009) demonstrated a pilot system for automatic mea-
surement of smiles in mothers and infants during face-to-
face interaction. Whitehill, Littlewort, Fasel, Bartlett, and 
Movellan (2009) detected smile intensity in video from 
5 participants while they individually watched a short 
video clip. At least one commercial product ( FaceReader; 
Theuws, 2007) has been released that attempts to identify 
emotion expressions from frontal video with little or no 
head motion or occlusion. In each of these studies, faces 
were recorded from frontal or near-frontal views, and 
behavior samples were obtained during relatively struc-
tured tasks, such as computer viewing, sitting in front of 
a computer display or camera, and structured face-to-face 
interaction.

The pending challenge is to demonstrate the ability 
of automatic methods to reliably detect nonposed facial 
actions in less constrained contexts. We used automated 
facial image analysis to provide the first test of automated 
FACS AU detection in a multiperson group of strangers 
interacting in a relatively unstructured context. None of 
the participants were associated with the experiment as 
experimenters or confederates, and, thus, the facial move-
ments were spontaneous and unscripted. Because partici-
pants were seated around a circular table, we anticipated 
that the video would include moderate-to-large head rota-
tion as they turned toward and away from each other. We 
also anticipated frequent occlusion, because participants 
frequently drank beverages (a glass of juice) supplied by 
the experimenters. 
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ance to control for variation due to rigid head motion (e.g., turning 
toward or away from other participants), and (3) detect FACS AUs.

AAM. AAMs decouple shape and appearance of a face image. 
Given a predefined linear shape model with linear appearance varia-
tion, AAMs align the shape model to an unseen image containing 
the face and facial expression of interest. To train an AAM for each 
participant, approximately 3% of key frames were manually labeled 
during a training phase. The remaining frames were automatically 
aligned using a gradient-descent AAM fit described in Matthews 
and Baker, 2004, and in Xiao, Baker, Matthews, and Kanade, 2004.

The shape s of an AAM is described by a 2-D triangulated mesh. 
In particular, the coordinates of the mesh vertices define the shape s 
(Ashraf et al., 2009). These vertex locations correspond to a source 
appearance image, from which the shape is aligned. Since AAMs 
allow linear shape variation, the shape s can be expressed as a base 
shape s0, plus a linear combination of m shape vectors si:

 
s s s0

1
pi i

i

m

,
 

where the coefficients p  ( p1, . . ., pm)T are the shape parameters 
(see Figure 2). Additionally, a global normalizing transformation (in 
this case, a geometric similarity transform) is applied to s to remove 
variation due to rigid motion (i.e., translation, rotation, and scale). 
The parameters pi are the residual parameters representing varia-
tions associated with the actual object shape (e.g., mouth opening 
and eye closing). Given a set of training shapes, Procrustes align-
ment is employed to normalize these shapes and to estimate the base 
shape s0, and principal component analysis (PCA) is then used to 
obtain the shape and appearance basis eigenvectors si (Matthews & 
Baker, 2004). A nonrigid structure from motion algorithm is used to 
estimate head pose parameters (e.g., pitch and yaw; Matthews, Xiao, 
& Baker, 2007; Xiao et al., 2004). Because AAMs are invertible, 
they can be used both for analysis, as in the present study, and for 
synthesizing new images (Theobald & Cohn, 2009).

as an overhead shot of the group and a quad-split image showing 
both the individual and group views (Figure 1). The individual view 
for each participant was used in this report. An example is shown 
below.

Manual FACS Coding
For each participant, 6 min of continuous video from the middle 

of the observation period was selected for analysis. Two certified 
FACS coders independently coded AUs 6 and 12 and instances of 
occlusion from the digital video using Observer Video-Pro Software 
(Noldus, Trienes, Hendriksen, Jansen, & Jansen, 2000). Occlusion 
was defined as any obstruction of part of the face by a hand, glass, or 
other object or as a portion of face moving out of the field of view. 
Self-occlusion, caused by nonrigid head motion, was not coded but 
was taken into account, as described in the following paragraph. The 
Observer system makes it possible to manually code digital video 
in stop-frame and at variable speed and to later synchronize codes 
according to digital time stamp. Interobserver exact (30 f /sec) agree-
ment was quantified using coefficient kappa, which is the propor-
tion of agreement above what would be expected to occur by chance. 
Kappa coefficients were .68 and .78 for AU 6 and AU 12, respec-
tively; it was .94 for occlusion.

Orientation to the camera was quantified automatically by using 
a nonrigid structure from motion algorithm as noted above. Head 
orientation is important, because the face looks different from differ-
ent views and because parts of the face may become self-occluded. 
We evaluated AU detection in relation to variation in pitch (the head 
rotating up or down, as in head nods) and yaw (the head rotating to 
the left or right, as in head turns).

Automatic Facial Image Analysis
Automatic facial image analysis comprised three steps: (1) extract 

the face shape and appearance using an active appearance model 
(AAM; Matthews & Baker, 2004), (2) normalize shape and appear-

Figure 1. An example of the image capture. Separate wall-mounted cameras were directed at each par-
ticipant. A ceiling-mounted camera recorded an overview. Face meshes from the active appearance model 
are superimposed on the source video.
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29 participants were used for training the classifiers. Classifiers then 
were tested on the independent participants from the present study.

RESULTS

Descriptive Statistics
AU 6 and AU 12 occurred 7% and 32% of the time, 

respectively. With the exception of only four video frames, 
AU 6 always occurred in the presence of AU 12. Thus, 
AU 6 was a reliable signal of Duchenne smiling.

Occlusion, defined as partial obstruction of the view 
of the face, occurred in 10.9% of video frames. Head ori-
entation was variable. Mean orientation was 6.78º from 
frontal view for pitch and 6.79º from frontal view for yaw. 
(Here and following, absolute values are reported for pitch 
and yaw.) For pitch, the 90th and 95th percentiles were 
12.85º and 15.54º from frontal, respectively. For yaw, the 
corresponding values were 12.53º and 15.86º. Maximum 
pitch was 28.82º; maximum yaw was 73.37º. 

Automatic AU Detection
We compared automatic and manual FACS coding of 

the three 6-min video streams of naturally occurring fa-
cial expression during the social interaction. The video 
included out-of-plane head motion (pitch and yaw) and 
partial occlusion, which are challenging for automatic 
coding. Figure 3 shows an example of face tracking. (For 
video demos, see the supplemental materials.) The face 
image with tracked facial features appears in the bottom 
panel. Across the top are the similarity-transformed and 
piecewise-warped appearance. The former is the appear-
ance after removal of rotation and translation; translation 
is variation due to change in horizontal and vertical motion 
and scale. In piecewise normalized appearance, variation 
due to out-of-plane head motion has been removed and, 
thus, stabilized for all but nonrigid motion (i.e., expres-
sion). To the right of the appearance are three representa-
tions of shape. The first is 2-D, the second is 3-D (a three-
quarter view of frontal pose), and the third is 3-D viewed 
from above the face. By stabilizing the face image and es-
timating change in rigid head motion, potential confounds 
in AU detection due to rigid head motion are removed. 
Also, head motion itself may be an important nonverbal 
cue and, thus, useful in its own right to measure.

As noted above, classifiers were trained on video from 
an independent database (RU–FACS) and were tested on 
the participants from the experiment in progress. Auto-
matically coded AU 6 and AU 12 for the present video 
were then compared frame-by-frame with manual FACS 
coding. Following previous literature (Ashraf et al., 2009; 
Pantic & Bartlett, 2007), we quantified accuracy using 
receiver–operating characteristic (ROC) curves. ROC 
curves illustrate the relation between true and false posi-
tive rates of classifiers as the decision threshold varies. 
Area under the curve (A ) can vary from 0 to 1.00, with .50 
representing the expected value of random guessing. 

ROC curves are used widely in signal detection, analy-
sis of diagnostic systems, and machine learning (Fawcett, 
2006). They are especially useful for skewed distributions, 
such as those for AUs and for unequal classification costs. 

AAM features. Although person-specifc AAM models were 
used for tracking, a global model of the shape variation across all 
sessions was built to obtain the shape basis vectors and correspond-
ing similarity normalized coefficients pi. A model common to all 
participants is necessary to ensure that the meaning of each of the 
coefficients is comparable across sessions. In the PCA dimensional-
ity reduction step, 95% of the energy was retained, resulting in 10 
principal components or shape eigenvectors.

AU Detection
AUs were detected using support vector machine classifiers (SVMs; 

Hsu, Chang, & Lin, 2005). SVMs attempt to find the hyperplane that 
maximizes the margin between positive and negative observations for 
a specified class. For AAM shape and appearance coefficients, they 
seek to maximize the boundary between each AU (e.g., AU 6) and all 
instances of other AUs including neutral faces (i.e., AU 0 in FACS).

To maximize generalizability, we trained and tested the SVMs 
on independent data. For training, we used the RU–FACS (Frank, 
Movellan, Bartlett, & Littlewort, n.d.) image database.  RU–FACS 
consists of digitized video and manual FACS coding of 34 young 
adults. They were recorded during an interview of approximately 
2-min duration, in which they lied or told the truth in response to an 
interviewer’s questions. Pose orientation was mostly frontal, with 
small out-of-plane head motion. Image data from 5 participants 
could not be analyzed due to image artifact. Thus, image data from 
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Figure 2. An example of the computation of active appearance 
model (AAM) shape and appearance. The figure shows the mean 
and first two modes of variation of 2-D AAM shape (A–C) and 
appearance (D–F) variation, and the mean and first two modes 
of 3-D AAM shape. From “Real-Time Combined 2D  3D Ac-
tive Appearance Models,” by J. Xiao, S. Baker, I. Matthews, and 
T. Kanade, 2004, in Proceedings of the IEEE Computer Society 
Conference on Computer Vision and Pattern Recognition (Vol. 2, 
pp. 535–542), Piscataway, NJ: IEEE Press. Copyright 2004 by 
IEEE. Reprinted with permission.
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For AU 6, false positive rates were well within accept-
able limits, even when true positive rate was set to 90% 
(Table 1). For AU 12, an 80% true positive rate yielded an 
acceptable false positive rate.

Concurrent validity as a function of occlusion and 
nonrigid head motion. To assess the influences of oc-
clusion on AU detection, we computed ROC curves sepa-
rately for video with and without occlusion. For AU 6, oc-
clusion reduced A  from .97 to .91. For AU 12, occlusion 
reduced A  from .90 to .75. 

To assess robustness to pitch and yaw, we computed 
ROC curves separately for every 5º variation of pitch and 
yaw. AU 6 occurred through 20º pitch and through all in-
tervals of yaw (Table 2). AU 12 occurred across the full 
range for both pitch and yaw. Most variation in both pitch 
and yaw variation was within intervals between 0º–20º; 
results for intervals outside of this range should be inter-
preted with caution.

With respect to pitch, A  for AU 6 was stable (M  .96) 
through 15º pitch and decreased to .89 at 15º–20º 
pitch (Table 2). For AU 12, A  was stable through 20º 

True positive rate (TPR), also known as sensitivity or 
recall, is defined as

 TPR  TP/(TP  FN ), 

where TP is true positive and FN is false negative. False 
positive rate (FPR), also known as false alarm rate or 
“1  sensitivity,” is defined as

 FPR  FP/(FP  TN ), 

where FP is false positive and TN is true negative. 
We first report results for the entire video and then report 

results in relation to occlusion and nonrigid head motion.
Concurrent validity for the entire video. Concurrent 

validity was high for both AU 6 and AU 12 (Figure 4). For 
AU 6, A  was .96 (SE  .002, p  .0001); for AU 12, A  
was .88 (SE  .004, p  .0001). For comparison with in-
terobserver agreement, we calculated false positive rates 
corresponding to 90% and 80% true positive rates. A hit 
rate of 70% is required to pass the FACS certification test; 
hit rates of 70% or above are common in research that uses 
FACS (Ekman & Rosenberg, 2005).

Figure 3. Screenshot of automated face tracking and action unit (AU) detection. Row 2 
shows a participant’s tracked face and frame-by-frame detection results for AU 6 and AU 12. 
Row 1 column A shows corresponding 2-D face appearance normalized for head translation, 
scale, and rotation. Row 1 column B shows the appearance after normalizing for pitch (e.g., 
head nodding) and yaw (e.g., head turning). Row 1 columns C–E show 2-D and 3-D represen-
tations of the corresponding face shapes. Row 1 column F shows the estimated 3-D parameters 
(pitch, roll, and yaw). Please see the supplementary materials for video examples (the video 
examples are also available at www.pitt.edu/~jeffcohn/D102_G006A1_trim.mov and www 
.pitt.edu/~jeffcohn/D102_G014A1_trim.mov).
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an acceptable error rate of 15%. These values may actually 
underestimate the effective reliability of automatic coding. 
That is because they are based on exact agreement. Most 
users of FACS and many similar coding systems estimate 
agreement within a precision window of 0.5–1.0 sec 
(Sayette, Cohn, Wertz, Perrott, & Parrott, 2001), which 
would effectively increase intersystem agreement.

When hits and misses were reviewed in the video, it 
appeared that many false positives occurred with talking 
or that there were confusions with talking. Talking has 
always been a challenge to manual FACS coding. Guide-
lines for manual FACS coding were initially to code “talk” 
(AU 50) in place of other AUs in the mouth region when 
it was present. Although this instruction often proves too 
costly in lost information, criteria for coding AUs in the 
presence of talking remain lacking. For an automatic sys-
tem, it may be helpful to code talking on a continuous time 
base and to include that in training AU 12 detectors. 

Partial occlusion was relatively common, occurring 
in about 11% of video frames. Face touching, holding a 
drink in front of or touching the face, and the face moving 
out of view were frequent causes. Had drinking not been 
part of the experimental protocol, partial occlusion may 
have occurred less often. Nevertheless, partial occlusion 
had minimal effect on accuracy for AU 6, perhaps because 
face touches and drinking were more likely to occlude 
only the lower face. For AU 12, area under the ROC curve 
decreased by about 15% when occlusion occurred. The ef-
fects of occlusion were not uniform, but varied with AU. 

Accuracy of action detection was stable within a range 
of about 15º–20º. Beyond that, accuracy decreased, al-
though it still remained within acceptable limits. The find-
ings with respect to larger values of pitch and yaw must be 
considered with caution, in that head orientation at higher 

pitch (M  .88) and then decreased to .70 over the interval 
between 20º–25º pitch. For pitch variation greater than 

25º, there was a small increase for AU 12.
With respect to yaw, AU 6 was stable (M  .97) through 
20º and then decreased to .89 and .83 at 20º–25º and 
25º or greater. For AU 12, A  was stable (M  .90) 

through 15º yaw and then decreased gradually to .78 
at yaw greater than 25º. Overall, the general pattern for 
both AU 6 and AU 12 for pitch and yaw was for A  to re-
main high for intervals through 15º or 20º and then to 
decrease. For no intervals did A  go below .70, and, in all 
but one case, it was at least .78. 

DISCUSSION

The present study provides initial support for the use 
of automatic facial image analysis for the detection of 
spontaneous facial expressions arising during unstruc-
tured social interaction. Specifically, when automated fa-
cial image analysis was used, two AUs critical to positive 
emotion, AUs 6 and 12, were automatically detected with 
high reliability as compared with that for two independent 
certified FACS coders. For AU 6, setting true positive rate 
as high as 90% resulted in only a small error rate of 6%. 
For AU 12, setting a true positive rate of 80% resulted in 

Table 1 
Selected Corresponding True and  

False Positive Rates for AU 6 and AU 12

 AU  True Positive Rate  False Positive Rate  

AU 6 90%  6%
80%  3%

AU 12 90% 37%
   80%  15%  
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Figure 4. The receiver-operating characteristic (ROC) curves for AU 6 and AU 12 in comparison with random guessing 
(depicted by the diagonal lines). The corresponding areas under the ROC were .94 (SE  .002, p  .0001) and .85 (SE .004, 
p  .0001).
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et al., 2009; Littlewort, Bartlett, & Lee, 2009), smiling 
(Ambadar et al., 2009; Cohn & Schmidt, 2004; Schmidt, 
Liu, & Cohn, 2006), and measurement of depression 
severity (Cohn, Simon Kreuz, et al., 2009; Wang et al., 
2008) over relatively brief periods under more controlled 
conditions. The present article is the first to use automated 
facial image analysis in relatively unconstrained small-
group interactions over relatively long spans of many 
minutes. In this expanded use, we found that automated 
facial image analysis had high concurrent validity with 
manual FACS coding. Automated facial image analysis 
appears on the verge of impacting a wide range of clinical 
and research applications. For the first time, precise and 
valid measurement will be possible without reliance on 
laborious training and coding. Efficiencies of scale—in-
cluding real-time applications (Ryan, Cohn, & Hamerski, 
2009)—are soon to significantly boost research produc-
tivity and open new areas of investigation.
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