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In this work, we address the task of unconditional head motion generation to animate still human faces in a low-dimensional

semantic space from a single reference pose. Diferent from traditional audio-conditioned talking head generation that seldom

puts emphasis on realistic head motions, we devise a GAN-based architecture that learns to synthesize rich head motion

sequences over long duration while maintaining low error accumulation levels. In particular, the autoregressive generation of

incremental outputs ensures smooth trajectories, while a multi-scale discriminator on input pairs drives generation toward

better handling of high- and low-frequency signals and less mode collapse. We experimentally demonstrate the relevance of

the proposed method and show its superiority compared to models that attained state-of-the-art performances on similar

tasks.
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1 INTRODUCTION

This work deals with learning the dynamics of a human face from a single initial pose. It relates to the task of

talking head generation, where the head and lip motion generation is conditioned on an audio clip, plus possible

additional signals such as emotional state or exemplar pose dynamics [21, 34, 36, 47, 53]. In the lack of a driving

audio signal, it is yet crucial for the synthesis model to produce natural and diverse head motions. This is relevant

in applications where no audio signal is available, e.g. when animating background characters in a scene or a video

game. In this unconditional generation setting, the focus shifts from audio-visual synchrony toward ensuring

long-term dynamics quality, which is known to be particularly challenging in the absence of a conditioning

signal [42]. Another advantage of tackling this problem is that the focus put on the ine handling of head dynamics

may beneit audio-conditioned talking head synthesis, where generating natural head motions has, until recently,

consistently received less attention. Following the common practice in talking head synthesis, we produce the

dynamics in a low-dimensional subspace [37, 41]. This is usually done to alleviate the diiculty of handling

both facial dynamics and photorealism directly in the image space. These low-dimensional representations

comprise supervised facial landmarks [8, 31, 54], 3D mesh [13] or unsupervised keypoints [44, 45], and following

the designation of high level semantics used in Villegas et al. [41], we refer to this space as the semantic space.
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In this work, we address the task of unconditional head motion sequence generation, i.e. synthesizing head

pose and facial expression from a single reference frame, in the 2D facial landmarks semantic space. Several

models were notably proposed to map landmarks to real-world images, making this representation relevant in

practice [29, 49ś51].

Continuous sequences such as facial landmark coordinates �� can be conveniently represented as a cumulative

sum of incremental displacements �� , or instantaneous velocities, starting from the observed initial position �0:

�� = ��−1 + �� = �0 +
︁

�≤�

�� . (1)

This approach has been followed successfully, for instance, by Lin and Amer [26] or Kundu et al. [24] for

human pose generation and by Gupta et al. [17] for trajectory prediction. As shown by Martinez et al. [28], this

formulation allows the use of shallower neural network architectures. Another feature of such cumulative sums is

that they can be properly described by autoregressive models [30]. In a most general deinition, an autoregressive

function� produces coordinates �� one by one given the input positions �0 and all previously generated positions:

�� = � (�0, �1:�−1) (2)

In practice, conditional independence property assumptions can be made to reduce the necessity to model all

previous time steps and allow for the use of a large diversity of network architectures on a ixed history length.

Although they can produce sequences of arbitrary length, autoregressive models may however accumulate error,

or alternatively end up generating average values over time when trained with a mean squared error loss [28].

This advocates for the use of other loss functions. We hereby introduce an adversarial framework to tackle head

motion generation as an autoregressive velocity prediction problem, which to the best of our knowledge has

never been done before for head motion prediction, be it speech-conditioned or not. To that end, we extend the

window-based multi-scale discriminator network we introduced in Airale et al. [1] for discrete token generation

to continuous head dynamics prediction, which are intricate data composed of temporal patterns that evolve

over varied timescales. Previous works have addressed the generation of such data with discriminator networks

operating on receptive ields of diferent sizes [23, 46] or on local windows, enabling a better representation of

high-frequency components [19]. On the contrary, our discriminator implements a multi-scale window-based

architecture in a single network, which allows it to operate at any temporal resolution. Last, in the light of Lin et al.

[27], we provide pairs of samples to the discriminator network as a mode collapse mitigation technique, but also

produce sample pairs in the generator. As we show, this approach does not change the optimization objective but

brings a signiicant performance boost for a limited additional overhead. The proposed GAN architecture, labeled

Semantic Unconditional Head Motion or SUHMo, allows for long-term head motion synthesis, and experiments

conirm its proiciency against a diversity of models and baselines.1

The contributions of this research work are:

• An autoregressive GAN framework for unconditional head motion generation in the 2D-landmarks domain,

able to mitigate error accumulation over long sequences that even extend the duration of training sequences,

• A training methodology that can be generalized over diverse architectures, for which we detail two

implementations based on LSTM and Transformers,

• An experimental validation of the efectiveness of the proposed SUHMo method on this novel task, where

we compare to prominent models on the closely related task of human pose prediction and other strong

baselines on two benchmark datasets.

1Source code and animated examples can be found at: https://github.com/LouisBearing/UnconditionalHeadMotion.
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2 RELATED WORK

2.1 Talking head generation

Talking head generation aims at syncing driving audio with head motions, and has seen tremendous recent

progress [8, 33, 43, 45, 52, 54]. Although early identiied as a key component for faithful face animation [16], the

prediction of head pose and facial expression beyond lip region has been noticeably less investigated, in favor of

the use of a driving head motion sequence [20, 48, 53]. As it is a one-to-many mapping, learning to generate head

motion from audio is challenging, and the usual mean squared error loss typically produces static average poses.

Successful attempts at handling head poses include [7, 47, 54], although the range of achieved motions remains

limited. Recently, Wang et al. [44] presented natural-looking results with head pose and face expression produced

in a sparse keypoints manifold by two separately trained modules, and further extended their work in Wang et al.

[45]. In comparison, our model generates all semantic data in a single module, learning possible correlations

between pose and expression, and uses an autoregressive formulation to enforce temporal consistency.

2.2 Deep continuous autoregressive models

Autoregressive models are ubiquitous in sequence modeling, as they enable strong temporal consistency thanks

to the explicit relation between consecutive outputs. In the context of deep continuous sequence prediction,

autoregressive models proved powerful in as diverse domains as waveform synthesis [23], human trajectory

prediction in a crowd [17], or human motion prediction [2, 24, 26, 28]. Surprisingly, the talking face generation

literature is much sparser on this subject, Fan et al. [13] presenting one of the few autoregressive talking head

generation architectures, but they do not attempt to generate head motions. Diferent from previous works, we

leverage the potential of autoregressive models to produce smooth and realistic head motions.

2.3 Multi-scale generative adversarial networks

Uncovering multiple patterns with GANs was irst addressed by Isola et al. [19] where the authors introduced a

discriminator network taking image patches as input to enhance high spatial frequency components. In Wang

et al. [46], an output image pyramid is processed by several discriminators that operate on decreased resolutions

and larger receptive ields, driving the generator network to produce realistic patterns at diferent scales. The

multi-scale discriminator has then been extended to sequence generation tasks [23, 26]. An interesting aspect

of the latter discriminator architectures is that they combine multi-scale with window-based evaluations in

a 1D equivalent of PatchGAN [19], and beneit from the advantages of processing short windows, such as a

lighter architecture and faster inference (see Figure 1 for a schematic representation of these discriminators). Our

window-based multi-scale discriminator extends that of our preceding work [1] to more diverse architectures and

to continuous input. This formulation has the advantage of being very lexible regarding the evaluation scales,

for a ixed number of parameters.

2.4 Mode collapse mitigation

Mode collapse reduction methods in GANs have comprised eforts towards better optimization procedures [3],

generation space regularization [6], or forcing the network to account for the noise vector [9], among a rich

body of literature. Lin et al. [27] proposed an intuitive way of driving the generator to produce diverse outputs

by feeding the discriminator with several input samples. We extend this framework by generating two inputs

together, which provided better results while leaving the optimization objective unchanged.

3 AUTOREGRESSIVE UNCONDITIONAL HEAD MOTION GENERATION

In this section, we formally deine the unconditional head motion generation task and the key components of our

learning framework. Given a set of facial landmarks �0 representing a face in an initial pose, we seek to generate

ACM Trans. Multimedia Comput. Commun. Appl.
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Fig. 1. One and two-dimension multi-scale & window-based discriminator architectures. (a) The purely window-based
PatchGAN discriminator [19]. (b) Extension to a 3-scale architecture in Wang et al. [46]. (c) The 1D multi-scale PatchGAN
structure used in DVGANs [26] and MelGAN [23] discriminators. (d) The proposed multi-scale window-based discriminator
has a unique set of parameters and takes sequences of any size as input, giving a free hand to select the scales.

a sequence �1:� = (�1, . . . , �� ) of arbitrary length � such that the probability distributions of the generated and

the ground truth data, �g and �data, match:

�g (�0:� ) = �data (�0:� ), ∀�0:� (3)

We hereafter describe our adversarial architecture to address this problem, an overview of which can be found

in Figure 2. Its main components include the autoregressive generator, described in Section 3.1, and the multi-scale

sequence discriminator, presented in Section 3.2. As an attempt to mitigate the potential negative impact of

mode collapse, we design our architecture to learn to generate and discriminate joint probability distributions, as

explained in Section 3.3. The overall loss function is presented in Section 3.4. Finally, in Section 3.5 we propose

two implementations of our method to stress its generalizibility.

3.1 Autoregressive velocity generation

We implement our generator network� as an autoregressive function of past landmark positions, that at each

time steps provides the instantaneous velocity:

�� = ��−1 +� (�0:�−1) (4)

Working with velocities ensures smooth transitions between subsequent time steps but also enables simpler model

architectures [28] and provides a convenient way to take advantage of the inherent potential of autoregressive

models to represent cumulative sums [30]. On the other hand, autoregressive models tend to accumulate errors

over time and special care must be taken in the training process to mitigate it, thus allowing for practical

applications. The following sections detail the architecture of our discriminator and the learning strategy that

enable long sequence generation.

3.2 Window-based multi-scale discriminator

We use a multi-scale, window-based discriminator network architecture to train the model to generate temporal

patterns unfolding over diferent timescales. To relieve the burden of training one network per input scale, we

build on a model we previously introduced [1] which considerably simpliies the discriminator architecture. Here

we give a more formal deinition of the window-based multi-scale discriminator that is not restricted to RNN

ACM Trans. Multimedia Comput. Commun. Appl.
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Fig. 2. Overview of SUHMo training process. The autoregressive generator produces pairs of outputs, that are evaluated by
three discriminator networks. At test time, the second sample is replaced by a transformed version of the reference pose.

variants and discrete inut data. First, let �m : (�� :�+� , � ) ∈ R
�×� × R�� ↦→ �m (�� :�+� ;� ) ∈ R be a discriminator

function parameterized by � that operates on sequences of �-dimension vectors of arbitrary length � . This

deinition includes RNNs, Transformers [40], and more generally any function enabling pooling in the time axis

or processing time steps separately. We then deine the window-based multi-scale discriminator �s on sequences

�0:� of length � as an expectation over evaluations of �m on temporal slices of �0:� :

�s (�0:� ;� ) = E�,� [�m (�� :�+� ;� )], � ≥ 0, � + � ≤ � (5)

where � and � are the duration, or equivalently the scale, and starting index of the window. In practice both � and

� are sampled from discrete uniform distributions. The advantage of this framework is that it gives a lexible way

to adjust the scales by choosing various distributions on � . Our discriminator is represented in Figure 1, along

with previous multi-scale and window-based architectures.

3.3 Learning to generate and discriminate joint probability distributions

To mitigate the mode collapse problem, we consider both the generation and discrimination of joint sample

distributions. Let the objective, with generic data points �1 and �2, write (superscript j for joint ground truth /

generated distributions):

E�1,�2∼�
j
data

[log� (�1, �2)] + E�1,�2∼�
j
g
[log(1 − � (�1, �2))] (6)

This has to be minimized (resp. maximized) w.r.t. the parameters of the generator � (resp. the discriminator �).

In the case of independent and identically distributed data and enough network capacity, the joint generated

distribution converges to the product of the marginal data distributions [15]:

�
j
g (�

1, �2) = �
j
data

(�1, �2) = �data (�
1)�data (�

2) (7)

If� produces samples independently, then �
j
g readily factorizes. This is the setting of [27], which proved useful

to reduce mode collapse. However, if � and � are produced together, then � simply learns to factorize. Both cases

lead to the equality of marginal distributions �g = �data, hence the optimization objective of Goodfellow et al. [15]

is unafected. In the real case scenario of limited network capacity, �
j
g does not factorize, and hence we argue that

if the generation is prone to mode collapse then the overall optimization can beneit from this joint generation

process. In such cases, it is an easy task for � to identify generated pairs by comparing the two samples, hence

driving � to leverage its two inputs to increase the generation diversity.

At test time, a single initial pose is typically provided. Since the model expects a pair of samples, one strategy

consists in providing a transformed version of the reference pose as a second input. To that end we used random

ACM Trans. Multimedia Comput. Commun. Appl.
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Fig. 3. The two architecture variants of the proposed SUHMo method.

lip, rescaling and translation. This approach gives a practical way of injecting stochasticity in the generation

process (see Section 4.3).

3.4 Training SUMHo

Following the discussion in 3.2 and 3.3, we propose to use two window-based multi-scale discriminators on the

generated sequences. The joint discriminator �
j
s operates on sample pairs, while a second network, �s, takes

single sequences as input and explicitly enforces the convergence of the marginal distributions �g and �data.

Finally, to complement the sequential losses, we employ a frame discriminator �f to measure the realism of each

time step of the produced sequences (see Figure 2). The generator adversarial losses writes:

L
j
s = −E�1

0:�
∼�g,�

2
0:�

∼�g

[

�
j
s (�

1
0:� , �

2
0:� )

]

, (8)

Ls = −E�0:� ∼�g [�s (�0:� )] , (9)

Lf = −E�0:� ∼�g

[

1

�

︁

�≥1

�f (�� )

]

. (10)

The overall loss function is the sum of these three losses plus a mean squared error term L����
2 that we scale to

remain negligible after the irst training epochs:

L = (L
j
s + Ls + Lf)

︸             ︷︷             ︸

Adversarial loss

+�L����
2 (11)

We employ the geometric GAN formulation of Lim and Ye [25] for the discriminator loss functions:

L�∗
= E�∼�g [max(0, 1 + �∗ (�))] + E�∼�data [max(0, 1 − �∗(�))] , (12)

where �∗ is replaced respectively by �f, �s and �
j
s and sequences are sampled as in equations 8 to 10.

3.5 Implementation

So far the discussion has not assumed any precise functional form for either the generator or the discriminator

network. Here we propose two implementations of the SUHMo method, based on LSTM and Transformers. The

motivation is to highlight that the provided methodological tools can be relevant beyond a single architecture, as

ACM Trans. Multimedia Comput. Commun. Appl.
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we further discuss in Section 4. An overview of both proposed variants can be found in Figure 3. To account for

pairs of inputs, we deine a batch-pool (BP) operator that acts as a max pooling layer of kernel size 2 along the

batch dimension; with the diference that the result is then repeated to preserve the input batch size:

�� = BP(�� ), (13)

��2�−1,�,� = ��2�,�,� = max(��2�−1,�,� , �
�
2�,�,� ), (14)

where the subscripts represent the batch, channel and dimension indices. In the LSTM-based generator, the

hidden state ℎ� goes through a BP layer, yielding a pooled vector �� that is concatenated with the next input

to the LSTM. A multi-layer perceptron is used on ℎ� to output the landmark positions. The joint discriminator

�
j
s is composed of a LSTM, a BP layer and a feed forward network; the marginal discriminator �s is similar but

without the BP layer (see Figure 3, left).

In the Transformer generator (Figure 3, right), pair mixing is done in a multi-head attention (MHA) layer by

inverting the batch indices of paired samples in the key and value vectors. This way, each sample in a pair can

attend to the history of the other sample. This layer is labelled batch-cross attention (BXA):

BXA(�, �, �) = MHA(�, �� , �� ), (15)

��2� = �2�−1, ��2�−1 = �2� ∀ 1 ≤ � ≤ � /2, (16)

��2� = �2�−1, ��2�−1 = �2� ∀ 1 ≤ � ≤ � /2, (17)

with � the batch size, and � = � = � in all experiments, i.e. query, key and value tokens originate from the

same sequences. We do not use positional encoding as we observed no change in performance, while omitting it

allows the generation of longer test sequences. As for the discriminator networks, a batch-pool layer replaces the

batch-cross attention in �
j
s as it only needs to provide a single score per pair. A learnable class token, prepended

to the input sequence, is used to give the inal score, as it has been customary for Transformers [12].

4 EXPERIMENTS

4.1 Experimental details

All networks in the RNN variant of our method are implemented as 1-layer LSTM with hidden size 1024, while

Transformer networks are implemented as a single self-attention block with one head. In the latter architecture,

embedding layers produce 1024 dimensional vectors for the generator and 128 dimensional vectors for the

discriminators, i.e. the balance between� and � is mainly controlled by the embedding dimension. Models were

trained on sequences of 40 time steps, and up to 5 observed frames were given as input to the LSTM to stabilize

training. At inference time a single reference frame is provided, and we explore predicting sequences of two

diferent durations, namely 40 and 80 time steps, or respectively 1.6� and 3.2� .

We set � in equation 11 to 10−2. Networks were trained with Adam optimizers with �1 and �2 parameters set

to 0.5 and 0.999, and with generator and discriminator learning rates set to 2 × 10−5 and 1 × 10−5 respectively.

Importantly, a step learning rate decay of a factor 10 was applied once performance started to stall, corresponding

to roughly 60k iterations for a batch size of 120 (∼ 3000 epochs for CONFER and 1000 epochs for our VoxCeleb2

subset). Training took on average two days on a single Titan RTX GPU.

We investigated concatenating velocities or instantaneous accelerations to landmark positions as input to

the generator or the discriminators, expecting that it might help penalizing static sequences produced by � . In

practice, we use positions and velocities as inputs to the generator and all three quantities in the discriminator

networks.

Experiments were conducted on two audio-visual datasets with upper-body frontal views of diferent speakers.

CONFER [14] contains 72 video clips of TV debates between two persons, each about 1 minute long. We

pre-processed the data preserving head translations and selected 5 clips as test data featuring persons unseen

ACM Trans. Multimedia Comput. Commun. Appl.
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Fig. 4. Sample sequences from CONFER and VoxCeleb2 datasets and the associated motion maps. Samples featuring litle
movement produce a very sharp motion map (example c). The other samples give a good illustration of the diferences
in dataset preprocessing: head translation is suppressed in VoxCeleb2 sequences that only contain rotations, hence the
quasi-static position of noise-tip landmarks in d, e and f. On the contrary, both translation and rotation movements are
visible in the motion maps of sample a and b.

at training. Second, we trained on a randomly selected subset from VoxCeleb2 [10], leaving 674 video clips

corresponding to 10 unseen identities as test set. In both datasets the video frame rate is 25 fps.

In order to draw robust conclusions despite the inherent variability associated with GAN training, each GAN

model was trained three times, such that the results reported in all tables contain both mean values and standard

deviations.

4.2 Metrics

The Fréchet Inception Distance (FID) [18] and Fréchet Video Distance (FVD) [38] are used to measure the distance

of the generated samples to the ground truth data distribution. While the FID gives a score of static face realism,

the FVD measures the smoothness of the dynamics. A preliminary rasterization step is applied on landmarks to

cast them in the image domain for the inceptionV3 [35] and I3D [5] networks. We also complement the FVD

with a second dynamical metric based on a FID measure on motion maps, that we use to represent sequences

on a single image. To do so, we compute an exponential moving average centered on the last time frame, thus

enforcing a visual correlation between pixel intensity and time step index. The resulting metric, that is relevant

in particular to discriminate sequences with little movement, is coined t-FID (t standing for time). Examples of

data samples and their corresponding motion maps are illustrated in Figure 4.

4.3 Models comparison

Quantitative comparison. As it is the irst unconditional head motion prediction method, we must rely on a

broader literature to assess the performances of SUHMo. Human pose prediction, which consists in predicting

future positions of body joints given a short observed sequence or an action label, is arguably the closest task to

ACM Trans. Multimedia Comput. Commun. Appl.
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Table 1. Model comparison on the head motion generation task from a single reference frame on CONFER and VoxCeleb2.
The FVD and t-FID are sequential metrics computed on fixed sequence lengths reported as subscript. Here all metrics are
computed over the 40 last predicted time steps.

Sequence length (frames) 40 80

Method FVD40 ↓ FID ↓ t-FID40 ↓ FVD40 ↓ FID ↓ t-FID40 ↓

CONFER [14]

HiT-DVAE [4] 368±19 6±0.4 130±7 764±35 50±2 157±12

ACTOR [32] 480±12 8±0.3 147±3 667±20 9±0.8 163±5

Δ-based 318±115 21±3 67±10 357±104 24±3 77±18

MLE 480±42 10±3 133±2 777±54 21±3 159±6

SUHMo - RNN 162±31 3±0.2 61±8 147±45 8±2 48±11

SUHMo - Trans. 175±46 4±0.7 67±12 169±33 7±1 52±4

VoxCeleb2 [10]

HiT-DVAE [4] 686±37 1±0.1 167±4 644±27 2±0.1 164±6

ACTOR [32] 357±55 4±0.5 78±9 431±26 5±2 145±21

Δ-based 386±32 48±6 89±4 518±48 60±30 112±31

MLE 530±20 2±0.2 158±6 684±23 8±0.8 172±9

SUHMo - RNN 76±8 3±0.7 21±3 135±33 9±5 31±7

SUHMo - Trans. 134±33 3±0.8 42±10 141±31 9±3 55±16

the one we address here. We therefore compare to two state-of-the-art architectures for human pose prediction,

HiT-DVAE [4] and ACTOR [32], which both implement Transformer-based Variational Autoencoder (VAE)

architectures [22], and that we train on our talking head datasets. One notable diference arises from the fact

that human pose prediction datasets are usually composed of several modes corresponding to a predeined set

of actions, and synthesis models typically account for this by conditioning the generation on an action label.

A minimal amount of changes is therefore necessary to adapt the previous models to our setting: we replace

in particular the action conditioning in ACTOR by the observed initial frame. We also seek to compare with

audio-conditioned talking head generation models. Although it is not possible to evaluate them directly in the

absence of a speech signal, we take inspiration from common practices in talking head generation to build two

additional baselines. The Δ-based model reproduces the SUHMo-RNN method, but similarly to Zhou et al. [54]

and Das et al. [11] produces displacements from a ixed set of reference points, in this case the initial landmark

positions. MLE, for maximum likelihood estimation, follows a common trend in head motion prediction and

relies on a single mean squared error loss. We evaluate the above models and our two architecture variants on

both CONFER and VoxCeleb2, on sequences of duration 40 and 80 frames. Note that this corresponds to one time

and twice the training sequence duration. Results are reported in table 1. SUHMo consistently outperforms all

other architectures in terms of dynamics quality. HiT-DVAE and ACTOR attain lower FID values on VoxCeleb2,

suggesting slightly sharper faces, but this is at the cost of producing quasi-static sequences, hence the poor

FVD and t-FID scores (see also next paragraph and Figure 5). The same is true for models trained with a �2

ACM Trans. Multimedia Comput. Commun. Appl.
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Fig. 5. ualitative evaluation of results from diferent models on in-the-wild images, and for sequence generation of one
hundred frames. Models are trained on CONFER dataset.

reconstruction loss (the likelihood-based method), advocating for the use of an adversarial loss to ensure realistic

dynamics. The Δ-based variant produces dynamics of uneven quality, as per the high standard deviations, and

the realism of produced faces falls signiicantly behind, as suggests the higher FID values. Interestingly, SUHMo

exhibits very little drift as time stretches and dynamics metrics remain very low, contrary for instance to HiT-

DVAE. We note however that this is an extreme setting for the use of HiT-DVAE in terms of generation over

observed length ratio which is typically of the order of 3 to 5 in Bie et al. [4], whereas here it exceeds 40.

Qualitative evaluation. An illustration of the results of diferent models on two in-the-wild images is represented

in Figure 5, along with the associated motion maps. It is clear from the observation of motion maps that ACTOR

produces very little movement. HiT-DVAE sequences are likewise almost static and start drifting after 40 time

steps. SUHMo sequences remain sharp after 100 time steps, suggesting a very limited error accumulation. These

results suggest that despite many similarities in the addressed problems, current human pose prediction models

cannot be readily trained on head motion data without sufering a degradation in performance.

An interesting feature of SUHMo is that the joint generation allows to produce diverse outputs given the same

reference pose. We illustrate this in Figure 6. This is important for many applications that require the ability

to generate diferent outcomes. These results also show that our training strategy is efective to prevent mode

collapse.

4.4 Ablation study

Multi-scale discriminator. To assess the ability of SUHMo to produce realistic patterns over diverse time scales

we measure the FVD on motion chunks of 10, 20, and 40 frames, and compare it with a model trained without the

window-based multi-scale discriminator (Table 2). Both models were trained to generate sequences of 40 frames

ACM Trans. Multimedia Comput. Commun. Appl.
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Table 2. FVD scores over diferent sub-sequence lengths, with andwithoutmulti-scale window-based discriminator (CONFER).
Subscripts indicate the length associated with the metric.

Method FVD10 FVD20 FVD40

SUHMo-RNN 28±8 35±4 162±31

w/o multi-scale discriminator 35±8 42±8 157±21

SUHMo-Transformer 34±9 40±12 175±46

w/o multi-scale discriminator 57±6 60±12 236±58

Table 3. Two-samples strategy ablation results on CONFER.

SUHMo variant RNN Transformer

Ablation FVD40 FID t-FID40 FVD40 FID t-FID40

Full 162±31 3±0.2 61±8 175±46 4±0.7 67±12

One-sample D 226±76 3±1 71±16 162±36 7±1 65±11

One-sample G 222±23 5±0.7 58±7 237±58 8±2 74±10

and therefore perform on par on this duration. The beneit of the window-based multi-scale approach however

clearly appears on shorter timescales, indicating a iner modeling of high-frequency patterns.

Joint generation and discrimination. We tried removing the pair mixing in the generator and the discriminator

at turns (Table 3). Models trained with a standard marginal discriminator ("One-sample D") fall behind in terms of

FVD and FID, respectively for the RNN and the Transformer model. Surprisingly, suppressing the joint generation

("One-sample G") has an even more detrimental efect, visible on the FVD and FID for both models. In addition to

its previously known beneits in mode collapse reduction, we observe that working with pairs of samples also

helps improve the overall quality of the generated motion sequences in the unconditional generation setting.

5 LIMITATIONS

Although several landmarks-to-image methods exist, most are still either unit for large pose changes or require

an additional ine-tuning step on unseen identities, which limits their usage on the produced motion sequences.

However our method is not speciic to 2D landmarks, which if needed may be replaced at almost no cost by any

other representation from which to reenact output videos. A second limitation stems from the autoregressive

nature of our model. Although this enables smooth and realistic dynamics, as the output sequence length grows

error inevitably accumulates, distorting the face and limiting in practice the maximum length. Possible solutions

include block-wise autoregression [30] or discretizing the action space [39], although the former does not

totally avoid error accumulation while inding the optimal codebook dimension to model the complex facial

conigurations is an open problem in the latter case.

6 CONCLUSION

In this paper we presented SUHMo, an unconditional head motion generation method able to animate a human

face over long sequences from a single initial frame in a semantic space. Our method is based on the autoregressive

generation of incremental displacements, or instantaneous velocities, of pairs of samples, and it is trained using a

window-based multi-scale discriminator. We showed that our methodological contributions can accommodate

ACM Trans. Multimedia Comput. Commun. Appl.
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Fig. 6. Illustrative examples of diverse results given the same reference pose, for both variants of SUHMo method. Models
are trained on VoxCeleb2 dataset.

several implementations, consistently outperforming state-of-the-art human pose generation methods and head

motion prediction baselines in terms of dynamics quality and pose realism. In a future work we plan to extend

our method and notably assess if it can improve the idelity of head motion in an audio-conditioned talking head

generation setting, which remains an open problem.
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