
SICS Software-Intensive Cyber-Physical Systems (2021) 35:201–236
https://doi.org/10.1007/s00450-021-00429-1

REGULAR PAPER

Beyond the limitations of real-time scheduling theory: a unified
scheduling theory for the analysis of real-time systems

Frank Slomka1 ·Mohammadreza Sadeghi2

Received: 13 April 2021 / Accepted: 18 October 2021 / Published online: 29 November 2021
© The Author(s) 2021

Abstract
We investigate the mathematical properties of event bound functions as they are used in the worst-case response time analysis
and utilization tests. We figure out the differences and similarities between the two approaches. Based on this analysis, we
derive a more general form do describe events and event bounds. This new unified approach gives clear new insights in the
investigation of real-time systems, simplifies the models and will support algebraic proofs in future work. In the end, we
present a unified analysis which allows the algebraic definition of any scheduler. Introducing such functions to the real-time
scheduling theory will lead two a more systematic way to integrate new concepts and applications to the theory. Last but not
least, we show how the response time analysis in dynamic scheduling can be improved.

Keywords Scheduling theory · Scheduling test · Response time analysis · Static scheduling · Dynamic scheduling ·
Unification of scheduling theory · Dirac delta · Heaviside function

1 Introduction

If we have a careful review of existing work in real-time
scheduling theory, mainly two different approaches to sat-
isfy the real-time capability of an embedded system exist: the
bound test or, inmore general, the utilization based approach1

and the response time analysis. The bound tests tests compute
the utilization of a hardware resource as the response time
analysis focus on the behaviour of tasks. In system analy-
sis, both approaches are helpful. However, looking at related
work, the two approaches are different in a tiny detail: while
the utilization based computations built on the floor operator,
the response time analysis uses the ceiling operator. Never-
theless, looking closer to previous work leads to problems in
formulating a utilization-based test for static scheduling and
a response time analysis for dynamic scheduling. However,
in the practical use of the scheduling theory, the analysis of

B Frank Slomka
frank.slomka@uni-ulm.de

1 Embedded Systems/Real-Time Systems, Ulm University,
Ulm, Germany

2 Inchron AG, Erlangen, Germany

1 Some people differ between bound tests and demand bound tests.
In this paper, we follow an application-based structure: the interest of
developers in response times and the problem of finding the utilization
of a processor as a step in design space exploration.

static scheduling prefers the response time analysis while the
analysis in dynamic scheduling prefers the utilization based
test. The observation is that the mathematical expressiveness
of both functions is limited: the floor and the ceiling operator
does not support algebraic properties such as distributivity
and commutativity. Besides, these operators are not analyti-
cal in the sense that calculus is not well supported. The work
of [12] and [43] show the limitations on floor and ceil oper-
ators in the context of the real-time scheduling theory. Both
papers postulate new analysis techniques if an event count
with more mathematical expressiveness is known. From a
practical perspective, real-time analysis work always covers
one concrete problem, and the algorithms published are solv-
ing just this particular problem. Combining different ideas is
difficult because the task models often change. Sometimes
different algorithms are used to address different problems
in the application of the theory. Ref. [5] discusses different
real-time analysis methods to compute task response times
to cover multiple issues in the automotive industry and find
that different approaches are necessary to cover all aspects
needed.

This paper presents an approach to address both problems
directly. If we look at another domain in science and engi-
neering, the problem of discrete and continuous behaviour
was already addressed. In digital signal processing and digi-
tal control theory bothworlds, the discrete and the continuous

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00450-021-00429-1&domain=pdf
http://orcid.org/0000-0002-7933-6652

202 F. Slomka, M. Sadeghi

nature of systems are combined. The idea of this paper is to
adapt mathematical models used in physics, signal- and con-
trol theory to the problem of real-time scheduling analysis.
As a result, we present

– A new universal mathematical framework, which allows
to replace geometric only proofs given by diagrams and
known from previous work with new algebraic and ana-
lytical methods in an intuitive way.

– A new generic approach to formulate interfering tasks in
different scheduling policies

– and therefore a unified formulation of the bound tests- and
the response time analysis in static and dynamic schedul-
ing based on just one equation.

– Additionally we adopt assumptions of the analysis of
arbitrary deadlines to the analysis of response times in
dynamic scheduled systems and found a deterministic
and tighter analysis as in previous work.

2 Related work

Real-time systems are computer systems whose software
must complete calculations within fixed deadlines. For this
purpose, the algorithms of an application are split into
individual tasks, and these tasks are independently exe-
cutable. A system requires an operating system that generates
predictable execution sequences to ensure a time-related
response. If an operating system delivers predictable sched-
ules a mathematical model can be derived and deadline
compliance can be calculated. During the Apollo missions
to the moon, the first today-like real-time computer was used
for guidance and navigation (Apollo Guidance Computer,
AGC, [33], p.221 ff). During this time, software engineers
expect a task utilization of 80% will guarantee correct real-
time behaviour of the AGC. However, on the 20th of July
1969, during the first human-crewed landing, the computer
of the lunar module Eagle gave a program alarm at decent to
the moon’s surface. The computer had to be reset three times
during the whole landing, and the mission was short before
abort. A later analysis at NASA figured out, that a wrong
real-time behavior and the missing of the deadline of a flight
critical task led to the problem. Later on, a mathematical
analysis of [32] showed that the assumption a utilization of
80% on static real-time scheduling (rate monotonic schedul-
ing, RMS) resulted in missing deadlines. [32] showed that
the utilization limit of a static real-time task set is dependent
on the number of tasks, and in the limit on a large number of
tasks is only 69%. However, while this limit is only sufficient
and not necessary, it was necessary to develop further real-
time tests.While [32] considered the utilization of a task set in
static and dynamic scheduling, other researchers followed an
different approach, computing the response times of all tasks

of a task set, as given by [27]. Since both, [32] as well as [27]
assumed implicit deadlines defined by the period of events,
[30] showed that deadline monotonic scheduling DMS) was
the optimal priority assignment when the deadline is smaller
than the period and [29] introduced a schedulability test on
given checkpoints to DMS.

This first work in real-time scheduling theorywere limited
to uni-processor systems.An extention to distributed systems
gives [49] by introducing a jitter based periodic event model.
Later on, the response time analysis was generalized by [40]
to integrate more complex event models. The response time
analysis as given by [29] is limited to systems with static
priorities. The extension for dynamically scheduled (earli-
est deadline first, EDF) real-time systems [38,39] needs to
distinguish between different dynamic cases during analysis.
Thismakes the approach complex.The real-time analysis dis-
tinguishes between load analysis (processor load) [32] and
response time analysis [29]. Therefore, both directions are
discussed independently in literature. The utilization based
approach was extended and improved by [9], who introduced
deadlines shorter than periods to the bound tests analysis of
dynamic scheduling. However, this work supports only the
periodic and sporadic event model wich does not allow the
formulation of bursty events. A more general approach to
model different and complex worst-case event patterns was
first introduced by [23]. This event stream model could be
very easy combined with Baruah’s approach as shown by
[3]. Because the analysis algorithm has a bad run-time com-
plexity some approximations are introduced by [3] and [4]
for dynamic scheduling and for static scheduling [21]. While
thework of [23] does notmodel event bursts in an appropriate
way, [1] introduce hierarchical event streams. Additionally,
[24] use Baruahs utilization based scheduling test to design a
novel response time analysis for dynamic scheduling. Other
extensions are the multiframe- [34], the generalized multi-
frame [8] and the reccurring real-time task model [6]. These
techniques allow the modeling of periodic task sequences
with jobs with different execution times and extend real-time
scheduling theory to the domain of stream processing sys-
tems [7,35] and with the most powerful model of [42].

In addition to these works, which are assigned to the clas-
sical theory of real-time systems (scheduling theory), the
real-time behaviour of task systems can also be verified with
the real-time calculus (RTC). The real-time calculus is based
on the network calculus [13,18,19] which describes a mathe-
matical framework for analyzing the flowof data in networks.
[36,46] introducing the real-time calculus and apply their
work [16,44,45] to the analysis of network processors. It
was shown that the classical methods can be replaced by
the real time calculus. In contrast to prior work, the real-time
calculus allows the calculation of systems with many dif-
ferent scheduling strategies as static- (DMS) and dynamic
scheduling (EDF), time-division multiplex access (TDMA)

123

Beyond the limitations of real-time scheduling theory: a unified scheduling... 203

and others. While the approach is modular it also allows
hierarchical scheduling. Finally, by [28,40] response time
analysis as given by the classical theory were combined with
real-time calculus to build an analysis that highlights the
strengths of each technique. The disadvantage of this work
is that the modelling is not generic and must be redefined for
each system to be modelled.

However, the existing work is split in utilization based
techniques, response time analysis and the real-time calcu-
lus. Each approach has its advantages and disadvantages.
Sometimes authors like to combine the different work but
often they are missing event bound functions with different
properties as given by the established theory. The need for
new approaches is given in [12,24,43]. Other authors pre-
fer an analysis technique independent from the application
structure [28,40].

A way to introduce analytical proofs in real-time schedul-
ing theory is presented in [14]. This work is limited to the
busy window approach while the goal of the presented work
is to combine utilization based test with the response time
analysis. Because our new approach uses advanced tech-
niques given by theoretical physics and signal theory, it is
more compact and expressive than previous work in the real-
time domain. Because of its expressiveness, it allows the
formulation of a closed algebraic method. This method is
open to different problems in real-time analysis. Such an
approach leads to an easy formulation of utilization based and
response-time based analysis in static as well as in dynamic
scheduling. The idea allows a straightforward combination of
both scheduling techniques without the overhead to formu-
late different equations and algorithms. It combines different
event models and gives a new approach to the response time
analysis of dynamic task systems. For the first time in litera-
ture, we present an approach that allows an explicit function
to describe different schedulers.

3 Model of computation

Different computational models to analyze real-time systems
exist. In this work, we consider the bounded execution time
model. We are assuming that the execution flow in real-time
systems separates into different tasks. A task is a kind of
programming function assigned to an external or internal
interrupt - an event - of the system. The tasks are periodi-
cally time- or event-controlled. Each event requests a task,
and the concrete instance which occurs is called a job. Each
job must be executed in a limited time interval: the deadline.
In the bounded execution time model, tasks are preempted
by higher priority tasks. The priority of the execution of a job
can be assigned statically or dynamically. Bounding jobs of a
task to a deadline allows any scheduling permutation without
any sophisticated scheduling algorithm. In static schedul-

ing, like rate monotonic/deadline monotonic (RMS/DMS)
scheduling, the priorities are assigned statically to each task
depending on the request rate of the triggering events. In
dynamic scheduling, like the earliest deadline first (EDF)
policy, the priority of each job depends on the next approach-
ing deadline. Therefore, the scheduling priority is not strictly
assigned to tasks. In the classical scheduling theory by [32],
the bound tests of a task set in the sense if deadlines met, is
proved by computing the utilization of resources like proces-
sors or the maximal response time of any worst-case job.

3.1 Events

A timing relationship between events is needed to compute
a task set’s utilization or the response time of the worst-
case job or all other jobs as well. The established model
defines a sequence of periodic events and the distance in
time between events is denoted by a single value: the period
p ∈ R

+
0 . Because each task has different periods, a function

pτ := p(τ) may always return the period of the considered
task. This event model has been extended to the sporadic
event model where the period interprets as minimal inter-
task arrival time. The periodic event model with jitter allows
considering distributed systems in holistic real-time analy-
sis [47,49]. This model was extended to include task offsets
[51] and arbitrary deadlines to the response time analysis
[48]. However, a more general model on events was first
introduced by [23], has limitations to express bursty event
patterns. Hierarchical event streams give a shorthand formu-
lation to solve this problem. In this paper, we consider the
periodic or sporadic event model and the event streammodel
in parallel. The periodic model in this work is used to give
the reader a simple link to previous work, while the event
stream model is more general and includes all derivates like
the sporadic, the bursty, or the periodic model with jitter.

Definition 1 (Event stream) An event stream is an array of
event tuples or an event list. Each event tuple ε describes a
periodic sequence of events ε′:

E =
{(

pε

φε

)}
(1)

The event stream must be valid, which means the order of
the time intervals φε must be subadditive or superadditive. If
the event list does not fulfil the requirement of subadditivity,
we call it an event sequence.

An event tuple consists of the period p of an event
sequence and a minimal distance φ to another event. The
position of the event tuple in the stream array has a meaning:
The first tuple initializes the stream. It always has φ = 0.
The second tuple describes the minimal distance between
two events, the third between three events and so on. This

123

204 F. Slomka, M. Sadeghi

means the interval given in each list element contains all pre-
vious events. Therefore each tuple represents the minimal
distance of the related number of events and its periodical
repetition.2 In this work, each event sequence is indexed by
ε. Therefore, pε denotes the period of event sequence ε and
φε the minimal distance φ between n-events. The number n
of the events is given by the position of the event tuple in the
event stream. Note, that in this model sporadic events can
be described easily: an event which occurs only once has an
infinite period.

Example 1 (Event model: periodic) Assume an event which
occurs periodically every p time:

Eperiodic =
{(

p
0

)}
(2)

The minimal distance of the first initial event is φ = 0. The
event recurs with the period p.

In the end, to formulate schedulability tests, a bound func-
tion to event streams is required:

Definition 2 (Right-continuous event bound) Assume any
event stream as given by Definition 1, the event bound func-

tion or event bound
�
E : τ × R → N of any task is given

by

�
E τ (t) =

∑
ε∈Eτ

⌊
t − φτ,ε

pτ,ε

+ 1

⌋
(3)

Final, the event bound of a task set is the sum of all indepen-
dent task bounds.3

3.2 Tasks

The inter-arrival pattern of events only describes the occur-
rence of events. At each event, an independent part of a
program is executed by the operating system. Such an execu-
tion unit is called a task τ . A real-time application separates
into several tasks. Therefore each task is an element of a task
set: Γ := {τ1, τ2, . . . , τn}. All tasks must schedule on the
given processor in a way that all deadlines met. A scheduler
is optimal if no algorithm exists, which produces a better
valid schedule. In [32] was proven that RMS is optimal for
static, and EDF is optimal for dynamic scheduling. Therefore

2 Note, that the bounds of valid event streams can be interpreted as
curves of the real-time calculus. Such a bound is defined in Eq. 40.
Because of the subadditive or superadditive nature of valid event streams
the critical instant theorem holds for any valid event stream.
3 The function pτ,ε = p(τ, ε) defines a function which returns the
period of an event sequence described by the event tuple ε of the task
τ .

an execution time must be added to the model. Because the
execution of a task’s job varies and we are only interested
in worst-case bounds [32]. In the real-time analysis, a task
is defined by an inter-arrival pattern of events and the two
execution times. In the bounded execution model, the rela-
tive deadline specifies the time a task has to finish after being
requested. If all tasks are independent, it is not necessary
to consider the best case execution time. This parameter is
only needed if tasks with data dependencies are running on
different processors [22].

Definition 3 (Execution time) The execution time of a task
is the time the execution of the task needs if a processor
exclusively executes the task with no interruption by other
tasks. The execution timemaydependondata attributes given
to the task. Therefore we distinguish between the worst-case
or maximal (c+, WCET) and best-case or minimal execution
time (c−, BCET).

As we consider the bounded execution model, a deadline
must be assigned to each task. The deadline is a time interval
inwhich the execution of a taskmust finish. It is distinguished
between a relative deadline (d) and an absolute deadline (D).

Definition 4 (Relative Deadline) The relative deadline dτ of
a task bounds the execution of any job related to the request
time tr of this job.

Definition 5 (AbsoluteDeadline) The absolute deadline Dn
τ,ε

of the n’th job is related to t = 0. Therefore the n’th absolute
deadline of the job is

Dn
τ,ε = φτ,ε + npτ,ε + dτ,ε (4)

During the execution of the task set, the operating system
has to schedule jobs of the task set. The operating system
determines the execution order of the jobs based on the rela-
tive or absolute deadline assigned to each job. In some cases,
fixed priority numbers given by the programmer replacing
deadline-based scheduling.

Definition 6 (Static priority) Let π ∈ N and assume two
independent tasks τ and τ ′, a task τ ′ has a higher assigned
priority than task τ , if πτ ′ > πτ and assume a task with
higher priority preempts tasks with lower priority. The set of
all higher priority tasks of task τ is

Γ τ := {τ ′ ∈ Γ | πτ ′ > πτ } (5)

Therefore, a task can be specified formally:

Definition 7 (Task) A task τ ∈ Γ is a quadruple including
the inter-arrival pattern of events E, the worst-case and best-
case execution time of a task and a relative deadline d by
which the task execution bounds:

τ := {E, c+, c−, d, π} (6)

123

Beyond the limitations of real-time scheduling theory: a unified scheduling... 205

Fig. 1 Demand-bound- versus
busy-window-test: the different
properties of bounds

demand bound function

response time

Interference

c+τ +
τ ∈Γ

t

pτ
c+τ = t

τ∈Γ

t− dτ

pτ
+ 1 c+τ

t t

busy window computation

Note, that the relative deadline can be replaced or amended
by a static priority π . Access to the data structure of a task
can be granted by task dependent functions: pτ = p(τ),
c+
τ = c+(τ),4 etc.
In some work, to each job of a task different execution

times assigned. In such a case, the execution times of a task
are specified by a vector. Job-related execution times are
introduced by the multi-frame task model [34]. If job-related
deadlines added, this is called the generalized multi-frame
model [8]. Therefore jobs must introduced in the task model:

Definition 8 (Job) A job is the instance of a task τε ∈ τ

triggered by any event of the event stream related to a task.

4 Motivation to a unified theory

Figure 1 summarizes the two approaches for the analysis
of real-time systems. The demand bound test has to check if
each value given by the demand bound is smaller than a given
processor resource. Consider the left side of Fig. 1, to check
for an intersection of the demand bound to the bisecting line
left of the demand. We must consider each left bounded step
of the demand bound function. Opposite to that approach,
the response-time analysis checks for the intersection of the
request bound with the processor resource. As seen on the
right side of Fig. 1 only the left points must be checked for
an intersection. Assuming a positive worst-case execution
time of the considered task, this is the most right point of the
request bound of all interfering tasks. Therefore, it is clear
that both bounds need different mathematical properties.

4.1 Event bound approaches to real-time systems
analysis

The demand bound function (dbf,
�
DΓ (t)) is a composition

of the deadline-shifted request bound function (rbf,
�
RΓ (t)).

4 More general: fk,l = f (k, l).

On a given event bound function, the request bound is just
the event bound multiplied by the worst-case execution time,
while to construct the demand bound each deadline shifts this
function to the right [9] as shown on the left side of Fig. 1:

�
DΓ (t) =

∑
τ∈Γ

�
Rτ (t − dτ) =

∑
τ∈Γ

�
E τ (t − dτ)c

+
τ

=
∑
τ∈Γ

⌊
t − dτ

pτ

+ 1

⌋
c+
τ (7)

It is necessary to count the number of interfering events
of a task’s job to compute the utilization of a resource or
the worst-case response time. In other words, this means that
the analysis adds the execution time of a job to the response
time of the considered task if both interfere in the same time
interval. Relatedwork formulates variations of such a request
bound to model the interfering of higher priority tasks.

Opposite to the event bound given in the bound tests test,
in response time analysis, the event bound is given by a left
continuous function [29]:

r+
τ,n := c+

τ +
∑

τ ′∈Γ τ

�
E τ ′ (r+

τ,n−1)c
+
τ ′

= c+
τ +

∑
τ ′∈Γ τ

�
Rτ ′ (r+

τ,n−1)

= c+
τ +

∑
τ ′∈Γ

⌈
r+
τ,n−1

pτ ′

⌉
c+
τ ′ (8)

What is the reason for the difference? As mentioned,
the demand bound test has to check the left points of the
demand bound while the busy window approach looks for
an intersection on the right side of the request bound with
the intersecting line. The initial value of the response time
analysis gives the worst-case execution time of the consid-
ered task. In contrast to the demand bound test, the time point
t = 0 does not matter because the minimal response time is
if a task does not execute and always equal the best- or worst-
case execution time. As this time interval is the starting point

123

206 F. Slomka, M. Sadeghi

of the fixed-point iteration, 0 never occurs in the equation.
However, to find the intersection with the resource function,
the bound must be left-continuous. Therefore, at the end of
the busy interval, an event should not count. If a task finishes
its execution and at the exact moment a new task requests,
this request is superfluous.

It is obvious that
�
EΓ (t) is not equivalent to

�
EΓ (t),

while
⌊

0
pτ

+ 1
⌋

= 1 �= 0 =
⌈

0
pτ

⌉
. However, in this work

wewant to consider the different properties of both functions
to extend the theory and therefore we discuss them in more
detail:

Lemma 1 (Identity) The event bound functions
�
EΓ (t) and

�
EΓ (t) are not identical:

�
EΓ (t) �≡�EΓ (t).

Proof To keep the proof simple, we only prove the lemma in
the periodic case. Consider tn, t ′ ∈ R

+ and ∀τ ∈ Γ : 0 ≤
t ≤ pτ .We investicate the three periodical repeating intervals
Δn−1,n = ({n−1}pτ , npτ], Δn,n+1 = [npτ , {n+1}pτ] and
Δn+1,n+2 = ({n + 1}pτ , {n + 2}pτ] to find the properties of
the bounds given in scheduling theorie. Additional assume
∀n ∈ N0 : tn := npτ + t ′, then the right-continuous event
bound function has the following properties:

∀t ∈ Δn−1,n : �
E τ (t) =

⌊
t

pτ

+ 1

⌋

= lim
t→np−

τ

⌊
t

pτ

+ 1

⌋

=
⌊
npτ

pτ

+ 1

⌋
= n + 1

∀t ∈ Δn,n+1 : �
E τ (t) = lim

t→np+
τ

⌊
t

pτ

+ 1

⌋

=
⌊
npτ

pτ

+ 1

⌋
= n + 1

�
E τ (t) = lim

t→(n+1)p−
τ

⌊
t

pτ

+ 1

⌋

=
⌊
npτ

pτ

+ 1

⌋
= n + 1

∀t ∈ Δn+1,n+2 : �
E τ (t) = lim

t→(n+1)p+
τ

⌊
t

pτ

+ 1

⌋

=
⌊

(n + 1)pτ

pτ

+ 1

⌋
= n + 2

The properties of the left-continous event bound are given by

∀t ∈ Δn−1,n : �
E τ (t) =

⌈
t

pτ

⌉
= lim

t→np−
τ

⌈
t

pτ

⌉

=
⌈
npτ

pτ

⌉
= n

∀t ∈ Δn,n+1 : �
E τ (t) = lim

t→np+
τ

⌈
t

pτ

⌉

=
⌈
npτ

pτ

⌉
= n

�
E τ (t) = lim

t→(n+1)p−
τ

⌈
t

pτ

⌉

=
⌈
npτ

pτ

⌉
= n + 1

∀t ∈ Δn+1,n+2 : �
E τ (t) = lim

t→(n+1)p+
τ

⌈
t

pτ

⌉

=
⌈

(n + 1)pτ

pτ

⌉
= n + 1

Both functions are inequal in all time points t := npτ .
The event bound considered for only one task can easily be

extended to the whole task set: Because
�
EΓ (t) = ∑

τ∈Γ

�
E τ

(t) and
�
EΓ (t) = ∑

τ∈Γ

�
E τ (t) the inequation

�
EΓ (t) �≡�EΓ

(t) is true. 	

To conclude, the right-continuous event bound and the
left-continuous event bound differ in all-time points tn =
npτ .

4.2 Problem formulation

Is it necessary two use two different functions? The goal of
this work is to find a function which is right-continuous in all
tn = npτ except the last onewhich should be left-continuous.
Therefore, the utilization test and the response time analy-
sis should use the same function except at the end of the
considered timing interval. Remember, the demand bound
test evaluates all event requests until the hyper-periodP, and
the response-time analysis counts all events until the result
of the last iteration. In contrast the response time analysis,
only the last time point must necessarily be considered and
should be left-continuous. The left- and the right-continuous
event bounds only differ in their left and right-hand limits
of the investigated timing interval. The goal of this work is
to find a function which is right-continuous in all tn = npτ

except the last one which should be left-continuous. There-
fore, both algorithms should use the same function except at
the end of the considered timing interval. If we extend the
event bound function Eτ : R2 → R we can specify a bound
time interval Δa,b := [ta, tb) = [a, b) which restricts the
time in which the event bound counts. If we integrate the
hyper-period as bounding restriction to the demand bound
function, it is possible to formulate a general unified event
bound. Let us discuss this idea in more general:

Problem 1 (Unified event bound function or unified event
bound, ueb) Investigate if a function with the following prop-
erties exist: Assume the time interval Δa,b = [ta, tb) and
each time point is given by ∀n ∈ N0 : tn := npτ + t ′. In the

123

Beyond the limitations of real-time scheduling theory: a unified scheduling... 207

intervalΔa,b a unified event bound functionE : Γ × t2 → N

of any task must fulfill the following properties:

t ′ = 0 : lim
t ′→0

Eτ (t,Δa,b) = n + 1 (9)

0 < t ′ < pτ : Eτ (t,Δa,b) = n + 1 (10)
t ′ = pτ : lim

t ′→pτ

Eτ (t,Δa,b) = n + 2 (11)

t ′ = pτ ∧ tn = tb : lim
t→tb

Eτ (t,Δa,b) = lim
t ′→pτ

Eτ (t,Δa,b) (12)

Such a function is equivalent to the right-continuous event
bound except at t = tb. Note that for the response time
analysis only this point in time is relevant and it is not neces-
sary that all other points of the function are left-continuous.
Therefore this function can be used for bound tests tests as
well as for response time analysis. A function with these
properties are postulated in [12,43]. Both papers accepted
an over-approximation by using the right-continuous request
bound. These properties follow direct from Lemma 1.

Problem 2 (Postulated demand bound test) Assume the exis-
tence of a unified event bound function. Then the demand
bound test in the periodic event model can be written as:

DΓ (t,P) ≤ t (13)∑
τ∈Γ

Rτ (t − dτ ,P) ≤ t (14)

∑
τ∈Γ

Eτ (t − dτ ,P)c+
τ ≤ t (15)

Problem 3 (Postulated Response Time Analysis) If a unified
event bound function exists, the response time in the periodic
event model can be written as:

r+
τ,n := c+

τ +
∑

τ ′∈Γ τ

Eτ ′(r+
τ,n−1, r

+
τ,n−1)c

+
τ ′ (16)

c+
τ +

∑
τ ′∈Γ τ

Eτ ′(t, t)c+
τ ′ − t = 0 (17)

Assume the following definition for interfering tasks: τ ′ ∈
τ ∪Γ τ , then the response time analysis can be reformulated
as the well known fixed-point iteration. In other words, the
response time analysis will become a root-finding problem:

∑
τ ′∈τ∪Γ τ

Eτ ′(t, t)c+
τ ′ − t = 0 (18)

The idea to integrate the request of the considered task
and all higher priority tasks in just one function simplifies the
mathematical framework. As we will later see in this paper,
the concept of a unified event bound allows the integration
of different task models developed during the past decades
to only one analysis approach. This opportunity opens a way
to integrate a lot of already done work in bound tests tests

to the busy-window approach and vice versa. If the unified
event bound function exists for event streams as well, the
new framework is responsible for each eventmodel published
during the last decades.

4.2.1 Goals and organization

The goal of this work is finding a unified event bound and
investigating its mathematical properties. As shown in the
previous section, the right and left-continuous event bound
are only different in their limits at the integer times tn = n·pτ .
If we assume this as a limited value problem, calculus should
be used to solve it. Digital signal theory and theoretical
physics already handle discrete events or objects in a con-
tinuous environment. Therefore these methods are adapted
to real-time analysis. Digital signal processing describes dis-
crete signals by a series of Dirac pulses. This idea can be
used to count events, as well. While digital signal processing
builds upon a rich mathematical framework, these methods
became applicable to real-time systems. This mathemati-
cal framework has one significant advantage compared with
approaches in related work: Computation is not limited to
bound functions. By using Dirac deltas to count events, it
is possible to apply algebraic operations directly on events
before computing the bound function. This advantage allows
constructing constructive interference bounds to model all
kind of different real-time schedulers. Therefore, problems
in the real-time analysis could be expressed more simply and
expressively than in the establishedwork.Aswewill see later
in the paper, the response time of static and dynamic schedul-
ing is computed by only one expression. This new method is
so powerful that other priority schemes are described easy in
the same way.

The paper is organized as follows: First, we derive a uni-
fied event bound function using methods from calculus and
distribution theory. Second, we will show how hierarchical
event streams can be easily described and computed by using
the Dirac delta function. Based on the idea, we develop a
unified real-time scheduling theory considering static and
dynamic priorities in one holistic approach for bound tests
and response time analysis as well. For the first time, we
derive both analysis techniques from only one axiom, the
average load of a processor. We will then prove past results
just by using the new theory. Applying the new theory to
past results shows how the unified theory gives an algebraic
toolbox for proofs. Now it is not necessary anymore to do
any geometric relations on task and job requests in time-
based Gantt diagrams as widely done in related work. The
new approach is more straightforward and leads to accessi-
ble computational models. As a special treat, we can develop
a tighter response time analysis as given in related work
for dynamic scheduling at the end by just adding the same
assumption to dynamic scheduling as already done to model

123

208 F. Slomka, M. Sadeghi

task with arbitrary deadlines already done in static schedul-
ing. In the end, we will compute the response times of some
interesting tasks set in static, dynamic and hierarchical5

scheduling. The paper ends with an Appendix A conclud-
ing the used mathematical symbols and explaining special
notations borough from theoretical physics. An additional
Appendix B discusses a complete example calculated by a
computer algebra system (CAS).

5 The unified event bound function

During the next section, we develop a strict formal view
to events as known in signal theory. The idea is to express
all needed mathematical properties in the model implicitly
without any informal or hidden assumptions. First, we intro-
duce events, and then we show how they can be count in an
alternative way compared to the floor and ceil operation. We
discuss the mathematical properties and will show how the
new method is related to previous work.

5.1 Amathematical view on events and tasks

In real-time systems analysis or scheduling theory, events
and jobs introduced semi-formal. Tasks or better jobs were
often given as geometrical objects such as rectangles in Gantt
charts. Then the length of the rectangle models execution
demand of the job and the place of the rectangle determines
by its position in time. The hight of the rectangles does not
matter and is most often given to 1 as seen in Fig. 2a. The
goal of the following section is to formalize release times
and time durations appreciatively. Therefore we transform
informal geometric proofs to analytical descriptions which
are computed algebraically.

5.1.1 Modeling jobs

In each computer system, a computational activity has a dura-
tion or in other words, an execution time. The time between
the release of a job and its non-preempted execution end starts
at a defined point in time ta and ends later at a second point in
time tb. If the job is not interrupted by any other activity this
time is called the worst-case execution time c+. However,
if we assume independent tasks on a unique processor, we
can concentrate on c+. Calling ta the request time, each job
of a task ends after c+ if no other job interrupts the execu-
tion. Therefore the job finishes at tb = ta + c+. Figure 2a.
shows such a simple behaviour as it is described in most of
the previous work by a Gantt–Chart. Therefore, during the

5 In this work hierarchical schedulingmeans amixed scheduling policy
where any dynamic or static scheduler may embed a scheduler of any
lower hierarchy. Therefore we follow the definition of [31] or [50]

execution of a job, the processor is busy and has a utiliza-
tion of one. In contrast to related work, we first look for an
algebraic formulation of this behaviour. Formally the geo-
metric Gantt–Chart description of a job can be replaced by a
composition of Heaviside functions.

Definition 9 (Heaviside function) Assume s ∈ [0, 1]. The
Heaviside or step function H : R → {0, 1} is defined6 as

H(t) =
⎧⎨
⎩
0 t < 0
s t = 0
1 t > 0

(19)

Based on this definition, it is easy to introduce the concept
of theDirac delta function or shortly the delta function,which
becomes our base to define events formally:

Definition 10 (Dirac delta) The Dirac delta function δ(t) is
given by:

H(t) =
t∫

−∞
δ(t ′) dt ′ (20)

This equation does not define a function in a traditional,
well-known way. Therefore it is correctly called a distribu-
tion. It was first introduced by Paul Dirac in the early 1930s
and is a well established mathematical tool in theoretical
physics and signal theory [15]. As we will see later, the idea
of Paul Dirac can be applied to find and define the unified
event bound. It is very important to have inmind that δ(t) = 0
for all t �= 0 which directly follows from the definition.

Let us next consider how any job of task τ with execu-
tion time c+

τ requested at time tε′ can be modeled. Let us
first assume that all jobs has the same execution demand.
Therefore we call the task homogenous.

Lemma 2 (Dirac job) A job requested at time tε′ is modeled
by

c+
τ (tε′) =

∞∫
−∞

δ(t ′ − tε′) · c+
τ dt ′ (21)

Proof A non-preemptive real-time task instance or job needs
two Heaviside functions for its algebraic description: one to
represent the request H(t − ta) and one to model the com-
pletion of the task H(tb − t). Consider Fig. 2b. Multiplying
both functions builds a rectangle of hight one defined by the
execution function c : R → {0, 1}:

6 Note that different definitions of the Heaviside function exist. The
above definition supports the requirements needed in this work best.

123

Beyond the limitations of real-time scheduling theory: a unified scheduling... 209

Fig. 2 Algebraic task modeling

(a)

(b)

(c)

(d)

(e)

cτ (t, ta) = H(t − ta) · H(tb − t)

= H(t − ta) · H(ta + c+
τ − t) (22)

Alternativ it is possible to use

cτ (t, ta) = H(t − ta) − H(t − tb)

= H(t − ta) − H(t − [ta + c+
τ]) (23)

It is important to note that such a description does not con-
sider preemption, and therefore, it does not support the
bounded execution model completely. As a consequence,
it is necessary to model the behaviour of interfering com-
putational loads such as interrupts and higher priority jobs
explicitly. The idea of the following is to describe the occur-
rence frequency of jobs and their requested load concerning
the available computation time in a given time interval [ta, t].
Let us first rewrite the equation for the computational load
without changing anything:7

cτ (t, ta) =
t∫

−∞
H(t ′ − ta) · H(ta + c+

τ − t ′) dt ′ (24)

The complete non-preempted execution starting at ta is given
by

c+
τ (ta) =

∞∫
−∞

H(t ′ − ta) · H(ta + c+
τ − t ′) dt ′ (25)

7 The integral looks a little bit oversized because both Heaviside func-
tions return only 1. However, introducing the integral is crucial as we
will see later.

The release of each job needs a context switch at the begin-
ning and end of execution, and some time ε this context
switch. It is common sense in scheduling theory not to
consider this time.8 However, to catch the value limitation
problem, we first introduce this overhead, and later it will be
removed mathematically:

c+
τ (ta) =

∞∫
−∞

1

2ε
H(t ′ − (ta + ε))

·H((ta + ε) + c+
τ − t ′) dt ′ (26)

For our first event ε′ we are not interested when it starts so
let us move it to the origin ta = 0:

c+
τ (0) =

∞∫
−∞

1

2ε
H(t ′ − ε)) · H(ε + c+

τ − t ′) dt ′ (27)

Let us now modify Eq. 27 by describing the computational
load not by its horizontal time:

c+
τ (0) =

∞∫
−∞

c+
τ

2ε
· H(t ′ − ε) · H(ε − t ′) dt ′ (28)

In real-time analysis, we are interested only in the load given
by the real-time tasks themselves. Such an assumption is
permissible because the job’s execution time is much longer
than the interruption time by the operating system, and it

8 If scheduling overhead should be modelled assume a separate task
described the operating system.

123

210 F. Slomka, M. Sadeghi

Fig. 3 Modelling preemptive
jobs by applying Eq. 31

(a) (b)

should be ignored. Therefore we look at what happens if
the operating systemoverhead approaches 0.Mathematically
the request span can be simplified under the assumption that
∞∫

−∞
1
2εH(t − ε) · H(ε − t) dt = 1. The obvious solution to

eliminate the time 2ε in the Eq. 28 by setting ε = 0 does not
work in general. If we now assume a Heaviside function with
s = 0 thenH(t−ε)H(ε− t) = 0 and not 1. Therefore, we set
of ε in a way, that all possible Heaviside functions s ∈ [0, 1]
will be supported as well. Mathematically we apply limit
value analysis to the problem: If the term addressed by the
integral is divided by 2ε and ε → 0 we get

lim
ε→0

∞∫
−∞

1

2ε
· H(t − ε) · H(ε − t) dt =

∞∫
−∞

δ(0) dt ′ = 1 (29)

Assume the substitution δ(0) = limε→0
1
2ε ·H(t−ε)·H(ε−t)

to rewrite Eq. 28.Consider Fig. 2c. for illustration. Therefore,

c+
τ (0) =

∞∫
−∞

δ(0) · c+
τ dt ′ (30)

And if we like to consider a job requested at time tε′ :

c+
τ (tε′) =

∞∫
−∞

δ(t ′ − tε′) · c+
τ dt ′ (31)

	

5.1.2 Events as Dirac delta

Let us now apply the delta function by defining events as
needed in real-time systems analysis in a strictly formal way:

Definition 11 (Event) An event ε′ : R → [0, 1] is a request
at a point in time tε′ ∈ R with infinitely short time span:

ε′(tε′) =
⎧⎨
⎩

t∫
−∞

δ(t ′ − tε′) dt ′ = 1 t = tε′

δ(t − tε′) = 0 t �= tε′
(32)

The time point tε′ calls the request time of the event.

In other words, an event ist a timeless state change in any sys-
tem. Computing only the area bounded by a given Heaviside
function does not allow to consider preemption as needed
in the bounded execution model. Multiplying a Dirac delta
with any given WCET results in a peak with the amplitude
of the execution time at the request time of the event, as
shown in Fig. 3a by alieng equation . Running overtime t the
value of these peaks is reduced exactly by t in the interval
t . Because the model considers the release time of events,
we can add a peak of execution time at any time an inter-
fering job of higher priority interrupts the execution of the
considered job. Consider Fig. 3 which illustrates the idea.
At time t = 0 task τ1 and τ2 are requested. After the spec-
ified period p1 task τ1 is requested again. Figure 3b. shows
the behaviour of the resulting function. Note, that such a
saw-function is equal to the well-known request bound func-
tion of these two tasks subtracting t . Changing the point of
view transforms the established fixed-point iteration of the
busy window approach to find the roots of the equivalent
sawtooth-wave.

5.1.3 Event models

The definition of only one event does not support the mod-
elling of tasks as a sequence of jobs. Therefore a formal
description of a series or sequence of events is required to
model sequential jobs. Mathematically this is expressed by a
series of Dirac deltas called a Dirac comb in the case all
events are strictly periodic. However, the general way to
describe any sequence of requesting events is to describe
event streams. An event stream can be described by a Dirac
comb as well:

Definition 12 (Event density) A sequence of k events is given
by:

xτ (k, t) =
∑
ε∈Eτ

k−1∑
n=0

δ(t − φε − npε) (33)

123

Beyond the limitations of real-time scheduling theory: a unified scheduling... 211

callingxτ (k, t) an event stream or event density.9 Therefore
an event sequence10 ε specifying k periodic events ε′ with
offset can be written with the event tuple:

ε =< p, φ >k (34)

Moreover, as a short form notation a set of corresponding
event tuples defines the event density formally:

E = {< p, φ >k} (35)

We choose the notation < a, b >k to distinguish the new
approach clearly from the event stream notation.

This definition introduces a new perspective and insight
into event streams. A mathematical equation now describes
an event stream with precisely defined mathematical proper-
ties instead of only writing a weak set of tuples. To describe
event densities which model valid event streams, we assume
a maximal event density x+

Δ and a minimal event density
x−

Δ. Both are event densities which have the mathematical
property of sub- or super-additivity. Additionally, it is very
easy to bound the number of events. Instead of previousmod-
els, the term event density allows specifying a fixed number
of events as a sporadic or bursty event stream.

Example 2 (Periodic event model) The periodic event model
describes an infinite number of periodic events.Assumeφε =
0, therefore k = ∞ and the sequence of events is given by

xτ (∞, t) =
∞∑
n=0

δ(t − npτ) =
∑
n∈N0

δ(t − npτ) (36)

Assume a sporadic event which occurs only once. In the
event streammodel, the definition of the event bound requires
to set the period of the given event tuple of the sporadic event
to pτ = ∞. Now the period is zero if an event occurs only
once and the sum limits the occurrence:

Example 3 (Sporadic event) A event which is sporadic and
which occurs only at tε = 10ms is described by

E = {< 0, 10 >1 ms}
= {< 0, 10 > ms} in contrast to E =

{(∞
10

)
ms

}
(37)

as originally defined by [23].

9 This work introduces the term ’event density’. As we will see later,
this is a more intuitive term than the name event stream as used in
previous work.
10 We distinguish between the event density as a sum of Dirac deltas
and the event tuple describing the parameters of the event density.

Example 4 (Periodic eventmodelwith jitter) First assume the
established periodic event model with jitter:

EJ i t ter = {< 0, 0 >1,< p, p − 2 j >∞}
= {< 0, 0 >,< p, p − 2 j >} (38)

Now consider we only like to describe four events in this
model:

EJ i t ter = {< 0, 0 >1,< p, p − 2 j >3} (39)

Such a description is natural, easier to understand, and more
potent than the original form.

5.1.4 To count or not to count

After defining the event density, we have to consider how to
count the events. As we have seen in Lemma 2, the execution
time of a job is computed by integrating a couple of Dirac
deltas. Therefore, we will find the number of events by inte-
grating over a series of Dirac deltas or events, called event
density. However, the integral gives us the freedom two sum
over event densities in any given time interval. As we will
see, this is a significant advantage compared to the counting
of events in related work.

5.1.5 Counting by integrating dirac deltas

To compute the execution demand of a processor, events and
a series of events must be counted during a given time. This
number of events then ismultiplied by the specified execution
time of the task. By changing the event model to Dirac deltas,
we have to count the number of deltas in a given timing
interval. Integrating the series of Dirac deltas results in the
number of events given in the time bounded by the limits of
the integral:

Lemma 3 (Finite event bound) Assume any time interval
Δa,b := [ta, tb] ∈ R. The number of events then can be
counted by a function E : Γ × R × N → N

Eτ (Δa,b)k =
∫

Δa,b

∑
ε∈Eτ

k−1∑
n=0

δ(t ′ − φε − npε) dt
′

=
tb∫

ta

xτ (k, t
′) dt ′ (40)

Also, in the particular case of the periodic event model with
countless events, this simplifies to:

Eτ (Δa,b) =
tb∫

ta

∑
n∈N0

δ(t ′ − npτ) dt
′ =
⌊

Δa,b

pτ

+ 1

⌋
(41)

123

212 F. Slomka, M. Sadeghi

Proof We have to sum all events of an event density:

∑
ε∈Eτ

ε(tε) (42)

According to the definition of an event ε(tε) == ∫∞
−∞

δ(t ′ − tε)t ′, we get for any event density in Δa,b

Eτ (Δa,b)k =
∑
ε∈Eτ

k−1∑
n=0

tb∫
ta

δ(t ′ − φε − npε) dt
′ (43)

By definition the number of event tuples is limited and the
series given by equation 43 converges absolute for k ∈
[0,∞), because of the bound Δa,b and n ∈ N. In the case
of a finite number of events, the convergence of the sum is
trivial. Therefore, the integral and the sum can be switched:

Eτ (Δa,b) =
tb∫

ta

∑
n∈N0

δ(t ′ − npτ) dt
′ =
⌊

Δa,b

pτ

+ 1

⌋
(44)

Note, that the first assumption does not holt if Δa,b ∈
(−∞,∞). However, as we will see later, the sum or event
density is always limited. 	

By definition of the unified event bound, we do not want
to count events at tb. However, by definition in calculus, the
Riemann integral is bounded by the interval [ta, tb] and this
is not the postulated interval Δb

a ∈ [ta, tb). Transforming the
limits of the integral in a right-open interval can be done by
masking the desired interval with the help of Heaviside func-
tions. In this case, two variants of the infinite set of Heaviside
functions as defined in Definition 9 are needed:

Definition 13 (Upper Heaviside function) Assume the gen-
eral Heaviside function with s ∈ [0, 1] and let s = 1. Then
the upper Heaviside function H : R → {0, 1} is

H (t) =
{
0 t < 0
1 t ≥ 0

(45)

Definition 14 (Lower Heaviside function) Assume the gen-
eral Heaviside function with s ∈ [0, 1] and let s = 0. Then
the lower Heaviside function H : R → {0, 1} is

H (t) =
{
0 t ≤ 0
1 t > 0

(46)

By applying Definitions 13 and 14 to Lemma 3 we can
formulate the unified event bound as illustrated in Fig. 4:

Theorem 1 (Unified event bound function, ueb) Assume E :
Γ ×R

2×N → N, then the number of events in any bounded
interval Δa,b = [ta, tb) can be counted by

Eτ (t,Δa,b)k =
t∫

−∞

∑
ε∈Eτ

k−1∑
n=0

δ(t ′ − φε − npε)

·H (t ′ − ta
) · H (tb − t ′

)
dt ′ (47)

=
t∫

ta

∑
ε∈Eτ

k−1∑
n=0

δ(t ′ − φε − npε)

·H (tb − t ′
)
dt ′ (48)

in the special case of a periodic event model this becomes

Eτ (t,Δa,b)k =
t∫

−∞

∑
n∈N0

δ(t ′ − npτ)

·H (t ′ − ta
) · H (tb − t ′

)
dt ′ (49)

=
t∫

ta

∑
n∈N0

δ(t ′ − npτ) · H (tb − t ′
)
dt ′ (50)

Proof Assume we count the events in a bounded interval
[ta, tb]. Instead of the infinite interval given in Eq. 40, we
bound the integral by its limits:

Eτ ([ta, , tb])k =
tb∫

ta

∑
ε∈Eτ

k−1∑
n=0

δ(t ′ − φε − npε) dt
′ (51)

The limits of the integration include ta and tb by definition.
While H

(
t ′ − ta

) · H (tb − t ′
) = 1 only if ta ≤ t ≤ tb and 0

in all other cases, equation (51) can be rewritten as:

Eτ ([ta, tb])k =
tb∫

ta

∑
ε∈Eτ

k−1∑
n=0

δ(t ′ − φε − npε) dt
′ (52)

=
∞∫

−∞

∑
ε∈Eτ

k−1∑
n=0

δ(t ′ − φε − npε)

·H (t ′ − ta
) · H (tb − t ′

)
dt ′ (53)

Changing the termH
(
tb − t ′

)
toH

(
tb − t ′

)
excludes tb from

the bound.11 Therefore, the integration over Δa,b ∈ [ta, tb)

11 This is an excellent mathematical trick to bound integrals to open
intervals borrowed from physics.

123

Beyond the limitations of real-time scheduling theory: a unified scheduling... 213

can be formulated as

Eτ ([ta, , tb))k =
∞∫

−∞

∑
ε∈Eτ

k−1∑
n=0

δ(t ′ − φε − npε)

·H (t ′ − ta
) · H (tb − t ′

)
dt ′ (54)

We observe that this integral is not only bounded by Δa,b.
Assume ta ≤ t < tb, then this function is also bounded by t,
and therefore we can write12

Eτ (t,Δa,b)k =
t∫

−∞

∑
ε∈Eτ

k−1∑
n=0

δ(t ′ − φε − npε) · H (t ′ − ta
)

·H (tb − t ′
)
dt ′ (55)

=
t∫

ta

∑
ε∈Eτ

k−1∑
n=0

δ(t ′ − φε − npε)

·H (tb − t ′
)
dt ′ (56)

The proof for the periodic or sporadic model is obvious. 	

In worst case response time analysis and the demand

bound test, the starting time of the analysis interval is implic-
itly set to ta = 0 by definition. Therefore, Δ0,b = [0, tb).
Then the unified event bound function can be written as

Eτ (t, tb)k =
t∫

0

∑
ε∈Eτ

k−1∑
n=0

δ(t ′ − φε − npε) · H (tb − t ′
)
dt ′ (57)

Compare Eq. 57 with Eq. 41 given by Lemma 3 which shows
the limitation of the scheduling theory: In contrast to previous
work, the unified event bound allows computing the number
of events in any time interval. Therefore the computation
of the bound can be moved to any time point t ∈ R, and
the unified event bound is invariant in time. However, Theo-
rem 1 has additional properties useful in real-time scheduling
analysis: Defining the event bound by integrating over Dirac
pulses and limiting this integral by two different Heaviside
functions, the upper and lower Heaviside function, we find
several and different bounds if we combine different descrip-
tions for integral limits. This results in four different cases:

i The bound of the number of events k.
ii The lower timing bound ta defined by, the lower Heav-

iside mask or, the lower limit of the integral.
iii The timing bound t given by the limitation of the Dirac

comb or the upper limit of the integral.

12 The integral
t∫
a
t ′ dt ′ is defined on the interval [a, t]. Therefore the

above simplification holds.

iv The above timingbound tb as definedby the upperHeav-
iside mask.

The first result of this paper shows that previouswork defined
different event bound functions because not considering the
limits of time intervals like in calculus. We have proven that
a unified function has to consider the limits of a well-defined
integration problem as we can see in Fig. 4. Additionally,
we know from distribution theory, that the Dirac delta is the
derive of the Heaviside function [15]. As a consequence, it is
obvious to call an event stream an event density: The event
count in the real-time analysis is equal to an integral over a
dense series of Dirac deltas.

Definition 15 (Heaviside mask) The pair of Heaviside func-
tions limits the integration interval by masking bounds:

M(t,Δa,b) := H(t − ta) · H(tb − t) (58)

WithH(t−ta) the left or earlymask andH(tb−t) the right or
late mask. Note, that both Heaviside functions can be upper
or lower Heaviside functions. Therefore four different masks
exist: M(t,Δb

a),M(t,Δ
b
a), M(t,Δb

a) and M(t,Δ
b
a).

5.1.6 Traditional unified event bound

The previous section concludes that the unified event bound
is a problem of finding the correct limitations or bounds to
count the events. Let us investigate whether it is possible
to reformulate the standard tests as given by equation 7 in
a unified way. In this section, we study if it is possible to
express the floor and ceil function by the unified approach as
well.

Lemma 4 (Right-continuous event bound) If t ∈ R, the
right-continuous event bound function is equal to a sum of
Heaviside functions bounded by H (0) and H (∞) which is
equal to the limits of an integral:

�
E τ (t) =

⌊
t

pτ

+ 1

⌋
=

t∫
0

∑
n∈N0

δ(t ′ − npτ) dt
′ (59)

Proof Assume any time point t = np + t ′′ in the periodic
event model. The event bound only changes in the points
tn = np. Therefore, we have only to check what happens
when the time t approaches np from the left and the right
site:

�
E τ (t) =

t∫
0

∑
n∈N0

δ(t ′ − npτ) dt ′

= lim
t ′′→0

npτ +t ′′∫
0

∑
n∈N0

δ(t ′ − npτ) dt ′ (60)

123

214 F. Slomka, M. Sadeghi

Fig. 4 To count or not to count

= lim
t ′′→0

∞∫
−∞

∑
n∈N0

δ(t ′ − npτ) · H (t ′ − 0
)

·H (npτ + t ′′ − t ′
)
dt ′ (61)

=
∞∫

−∞

n∑
0

δ(t ′ − npτ) · H (t ′) · H (npτ − t ′
)
dt ′ (62)

=
n∑
0

∞∫
−∞

δ(t ′ − npτ) · H (t ′) · H (npτ − t ′
)
dt ′ (63)

= (n + 1)

∞∫
−∞

δ(0) dt ′ = n + 1 (64)

Now, we apply Lemma 3 at the last step.13 Let t ′′ ∈ (0, pτ),
then the number of events is computed by

�
E τ (t) =

∞∫
−∞

∑
n∈N0

δ(t ′ − npτ) · H (t ′ − 0
) · H (t − t ′

)
dt ′ (65)

=
npτ +t ′′∫
0

∑
n∈N0

δ(t ′ − npτ) dt ′ (66)

=
npτ∫
0

n∑
0

δ(npτ − npτ) dt ′ +
t ′′∫

npτ

n∑
0

δ(t ′ − npτ) dt ′ (67)

=
∞∫

−∞

n∑
0

δ(0) dt ′ +
t ′′∫
0

n∑
0

δ(t ′′) dt ′ (68)

=
∞∫

−∞
(n + 1)δ(0) dt ′ + 0 = n + 1 (69)

13 Note that the event bound is limited by the Heaviside mask, then
convergence is ensured.

Note, that if t ′′ ∈ (0, pτ) no event is counted in this interval.
Last we have to prove the equality for t = npτ + pτ :

�
E τ (t) =

∞∫
−∞

∑
n∈N0

δ(t ′ − npτ) · H (t ′ − 0
)

·H (t − t ′
)
dt ′ (70)

=
t∫

0

∑
n∈N0

δ(t ′ − npτ) dt
′

= lim
t ′′→pτ

npτ +t ′′∫
0

∑
n∈N0

δ(t ′ − npτ) dt
′ (71)

=
npτ +pτ∫
0

∑
n∈N0

δ(t ′ − npτ) dt
′

=
∞∫

−∞

n+1∑
0

δ((n + 1)pτ − npτ) dt
′ (72)

=
∞∫

−∞
(n + 2)δ(0) dt ′ = n + 2 (73)

In all three cases the number of counted events is equal to
the number of events given in the proof of lemma 1. 	

After showing that the new approach can express the right
continuous event bound, we check how the left continuous
event bound function can be described:

Lemma 5 (Left-continuous event bound function) Assume
t, t ′and t ′′ ∈ R

+. The left-continous event bound is equal to
an integral overDirac deltas bounded byH

(
t ′ − 0

) = H
(
t ′
)

and H
(
t − t ′

)
:

�
E τ (t) =

⌈
t

pτ

⌉
=

∞∫
−∞

∑
n∈N0

δ(t ′ − npτ) · H (t ′)

123

Beyond the limitations of real-time scheduling theory: a unified scheduling... 215

·H (t − t ′
)
dt ′ (74)

Proof Assume any time point t = npτ + t ′′ in the periodic
event model. Again we check how many events are counted
at t = npτ , t = npτ + t ′′ and t = npτ + pτ . If t = npτ then
t ′′ = 0 and the number of events is given by

�
E τ (t)=

∞∫
−∞

∑
n′∈N0

δ(t ′−n′ pτ) · H (t ′) · H (t−t ′
)
dt ′ (75)

= lim
t ′′→0

∞∫
−∞

∑
n′∈N0

δ(t ′ − n′ pτ) · H (t ′) · H (t − t ′
)
dt ′ (76)

=
∞∫

−∞

n∑
0

δ(0) · H (t − t ′
)
dt ′ =

∞∫
−∞

n−1∑
0

δ(0) dt ′ (77)

=
∞∫

−∞
n · δ(0) dt ′ = n (78)

Now let t ′′ ∈ (0, pτ), then the number of events is computed
by

�
E τ (t)=

∞∫
−∞

∑
n′∈N0

δ(t ′ − n′ pτ) · H (t ′−0
) · H (t−t ′

)
dt ′ (79)

=
npτ +t ′′∫
0

∑
n′∈N0

δ(t ′ − n′ pτ) · H (t ′) · H (t − t ′
)
dt ′ (80)

=
npτ∫
0

n∑
0

δ(t ′ − n′ pτ) · H (t ′) dt ′ (81)

=
∞∫

−∞

n∑
0

δ(0) dt ′ =
∞∫

−∞
(n + 1)δ(0) dt ′ = n + 1 (82)

Last, we have to prove the equality for t = npτ + pτ :

�
E τ (t) =

∞∫
−∞

∑
n′∈N0

δ(t ′ − n′ pτ) · H (t ′ − 0
)

·H (t ′ − t ′
)
dt ′ (83)

= lim
t ′′→pτ

npτ +t ′′∫
0

∑
n′∈N0

δ(t ′ − n′ pτ) · H (t − t ′
)
dt ′ (84)

=
(n+1)pτ∫

0

∑
n′∈N0

δ(t ′ − n′ pτ) · H (t − t ′
)
dt ′ (85)

=
∞∫

−∞

n+1∑
0

δ(0) · H (t − t ′
)
dt ′ =

∞∫
−∞

n∑
0

δ(0) dt ′ = n + 1 (86)

In all three cases the number of counted events is equal to
the number of events given in the proof of lemma 1. 	

We can conclude from the previous considerations that it
should be possible to formulate the unified event bound by
using the ceil or floor operators. As the unified event bound
has to replace the left-continuous event bound in most timing
points, we construct the unified event bound with the floor
operator:

Theorem 2 (Unified event boundwithfloor operator)Assume
the interval Δa,b = [ta, tb):

Eτ (t,Δa,b) =
∑
ε∈E

⌊
t − φε

pε

+ H (tb − t)

⌋
· H (t − ta) (87)

and in the periodic model

Eτ (t,Δa,b) =
⌊

t

pτ

+ H (tb − t)

⌋
· H (t − ta) (88)

is equal in the interval, and only in the Δa,b = [ta, tb) to
the unified event bound function given in Eq. 47. Note, that
if ta < 0 and t > tb, Eqs. 47 and 87 are not equal.

Proof For simplification and compatibility to related work
we prove this only for the periodic eventmodel. If ta ≤ t < tb
then H (t − ta) = 1 and H (tb − t) = 1. Then

∀t < tb : Eτ (t,Δa,b) =
⌊

t

pτ
+ H (tb − t)

⌋
=
⌊

t

pτ
+ 1

⌋
(89)

and if t ≥ tb then H (tb − t) = 0 and H (tb − t) = 1

∀t ≥ tb : Eτ (t,Δa,b) =
⌊

t

pτ

+ H (tb − t)

⌋
=
⌊

t

pτ

⌋
(90)

According to Lemma 4, Eq. 59 is equal to Eq. 89 if t < tb
and Eq. 74 is equivalent to 90 if t ≥ tb. 	

If we want to express the traditional event bound used in
the demand bound test, we can write t ′ = Δ0,tb = [0, tb),
and therefore

Eτ (t, t
′) =

⌊
t

pτ

+ H
(
t ′ − t

)⌋
(91)

Someone will remark that Theorem 1 is hard to compute
numerical. However, Theorem 2 shows that this can easily
be done traditionally just bymodifying the well-known event
bound. Therefore the new approach is a theoretical improve-
ment of the previous related work and extends the theory.
It is important to recognize that Eq. 91 does not hold for
t ≥ tb + p. In this case, both functions are not equal any-
more. It should be easily shown that a full compatible unified

123

216 F. Slomka, M. Sadeghi

Table 1 Relations between
traditional [10,32] and uniform
theory in the interval [0, t]

Traditional model Unified model

�
E τ (t)

⌈
t
pτ

⌉
=

∞∫
−∞

∑
n∈N0

δ(t − npτ) · H (t ′) · H (t − t ′
)
dt ′

F
⌊

t
p

⌋
=

∞∫
−∞

∑
n∈N0

δ(t − npτ) · H (t ′) · H (t − t ′
)
dt ′

�
E τ (t)

⌊
t
pτ

+ 1
⌋

=
t∫

−∞
∑
n∈N0

δ(t − npτ) · H (t ′) · H (t − t ′
)
dt ′

Eτ (t,Δb
a)

⌊
t
pτ

+ H
(
b − t ′

)⌋
=

t∫
−∞

∑
n∈N0

δ(t − npτ) · H (t ′ − a
) · H (b − t ′

)
dt ′

event bound with the floor operation exists. However, the tra-
ditional related work can not limit the number of events by a
given number of events k. In traditional notation, we always
assume k = ∞. Table 1 concludes the results.14

6 Unified analysis of real-time systems

In this section, we consider how the unified event bound
can be used to solve real-time analysis problems. As the new
eventmodel ismore expressive than the traditionalmodel, we
will present some impressive results. For the first time in real-
time analysis, it is possible to formulate the bound tests test
and the response time analysis only by different expressions
of the same mathematical approach in static as in dynamic
scheduling as well. For the first time in real-time analysis, it
is possible to formulate the bound tests test and the response
time analysis only by different expressions of the samemath-
ematical approach in static as in dynamic scheduling as well.
Furthermore, it is possible to model additional conditions on
task scheduling without modification of the structure of our
analysis equation. Therefore it is easy to derivate variants
to model bursty or hierarchical event patterns or hierarchical
schedulers.15 The first step in this section is to investigate the
relationship between digital signal processing and real-time
analysis. Then we will consider some useful definitions and
preliminaries to derivate the analysis equations for static and
dynamic bound tests and response time analysis from only
two axioms. Moreover, in the end, we discuss the results
related to previous work.

6.1 A general event model: The event spectrum

Simple event models become complex in bursty events. Dif-
ferent solutions address this problem [2,48]. However, both

14 [32] introduced the symbol F to proof optimality.
15 Such schedulers are called hierarchical in real-time calculus. How-
ever, [32] call it mixed schedulers. Therefore term also differs from
[11,26,52]. In this paper, we mention a scheduler which schedules all
jobs with the same priority according to their dynamic deadlines.

approaches are not intuitive and require different models to
describe the synchronization of events. The two papers solve
the problem in different ways but lack to give mathemati-
cal or formal approaches to their solutins. Applying now the
mathematical toolset developed in Sect. 5 a hierarchical event
stream as described by [2] can be derived mathematically.
Assume two independent event densities: One event density
with a small period and a second one with a much larger
one. Both densities together form a new bursty event stream
if they are synchronized. The convolution of Dirac combs
computes the composition of two event densities. Therefore,
synchronization in real-time scheduling can be modelled by

Theorem 3 (Hierarchical event density composition) Any
hierarchical event stream is a composition of two flat event
densities and can be computed by the convolution of the two
event densities:

x̂k,l
εo,εi

= xk
E1

∗ xl
E2

(92)

Proof To make the proof easy to follow, we assume δ(τ −
t)ε = ∑

ε∈E
∑k−1

n=0 δ(t − φε − npε) and tn = φε1 + npε1 and

tm = φε2 + mpε2 :

xk
E1

∗ xl
E2

=
∞∫

−∞
xk

E1
· xl

E2
dτ (93)

=
∞∫

−∞
δ(τ − tn)ε1 · δ(t − τ − tm)ε2 dτ (94)

=
∞∫

−∞
δ(τ − tn)ε1 · δ(t − [τ + tm])ε2 dτ (95)

Substitute ξ = τ − tn and dτ = dξ :

xn
t,k ∗ xm

t,l =
∞∫

−∞
δ(ξ)ε1 · δ(t − [ξ + tn + tm])ε2 dξ (96)

123

Beyond the limitations of real-time scheduling theory: a unified scheduling... 217

=
∞∫

−∞
δ(ξ)ε1 · δ(t − [tn + tm] − ξ)ε2 dξ (97)

For ξ �= 0, the trival solution is xn
t,k ∗ xm

t,l = 0. The only
nontrivial solution of the last equation is for ξ = 0: We get
∞∫

−∞
δ(0)ε1 dξ = 1 and therefore

∞∫
−∞

δ(0)ε1 dξ · δ(t − [tn + tm])ε2 = δ(t − [tn + tm])Ê (98)

xn
t,k ∗ xm

t,l =
k−1∑
n=0

l−1∑
m=0

δ(t − [φε1 + npε1 + φε2 + mpε2])

(99)

=
k−1∑
n=0

l−1∑
m=0

δ(t − [φε1 + φε2 + npε1 + mpε2])

(100)

In other words, the product of the Dirac delta becomes zero,
exactly if τ − tn = 0 and if τ + tm = t . Therefore the theorem
holds. 	

Definition 16 (Event spectrum) As a result from the previ-
ous theorem the following 3-tuple describes hierarchical and
synchronized event densities:

ε =< φεo + φεi , pεo , pεi >k,l (101)

with the hierarchical event density or event spectrum

x̂k,l
εo,εi

=
k−1∑
n=0

l−1∑
m=0

δ(t − [φεo + φεi + npεo + mpεi]) (102)

The event spectrum is the most general form of an event
model. An event spectrum can express all other known event
models.According toLemma2, the event bound is calculated
only by integrating the event spectrum density. Additionally,
Theorem 3 gives us the possibility to compute composite
event models during analysis. To best of our knowledge, no
previous work in any known real-time analysis technique
covers this aspect.

6.2 Taskmodel: the request bound

The previous presented mathematical framework allows the
formulation of advanced analysis techniques. Next, we dis-
cuss how to integrate the generalized multi-frame model and
how easily interfering request bounds can be constructed to
describe different scheduling policies.

6.2.1 Generalized request bound

The new approach to describe events with Dirac deltas is
compelling: The advantage compared to established tech-
niques is that the Dirac comb of Definition 12 addresses each
event separately, and therefore, each eventmay have different
properties. As a result, the model allows assigning different
execution times to different events without any additional
effort. In the established analysis, the request bound is given
by a multiplication of the event bound and the worst-case
execution time of the task. However, because it is easy to
address each event separately by the unified event bound,
the multiframe- [34] and the generalized multiframe model
[8] integrates easily into the new approach. Formulating the
event- and the request bound unified allows addressing each
job with separate execution time. Therefore, it is possible
to model task sets with complex execution time behaviour.
However, often it is not necessary to assign an own execu-
tion time to each job. In this case, the execution time vector
contains fewer elements as events occur by a task. Then the
execution time can be addressed by restricted access to the
given vector: The length of the vector then bounds the access
as it could be described by n mod |Cn

τ,ε | as also given in the
multiframe model:

Definition 17 (Execution time vector) The execution time
vector introduced by [34] of k different execution times of a
task is given by

Cτ,ε[n] = Cn
τ,ε = [c+

1 , . . . , c+
k] (103)

Note the style of the notation: The idea is to address each
component of the vector by n. If we like to address each event
separately, it is not possible anymore to use the notation given
in related work by defining request and demand bound func-
tions. Addressing different events and jobs in one equation
require to write an integral and two sum symbols every time.
Therefore, it is necessary to introduce a short-form notation
to simplify the writing and reading of event- and request
bounds. Based on Einstein’s well-known shorthand notation
[20],16 it is possible to define a shorthand notation for an
event- and request bound that allows us to address each event
or job of a given task separately:

Definition 18 (Short form notation for request bounds)
Assuming δ(t ′ −φε −npε)

n≤k
τ,ε ·Cτ,ε[n] is a short-hand nota-

tion for
∑

ε∈Eτ

k−1∑
n=0

δ(t − φε − npε)Cτ,ε[n] and C is a vector

16 A detailed description gives the Appendix A.

123

218 F. Slomka, M. Sadeghi

that contains different execution times for different jobs, it is
possible to write

t∫
0

∑
ε∈Eτ

k−1∑
n=0

δ(t ′ − φε − npε) · Cτ,ε[n] · H (t ′ − ta
) · H (tb − t ′

)
dt ′

=
t∫

0

δ(t ′ − φε − npε)
n≤k
τ,ε · Cτ,ε[n] · H (t ′ − ta

) · H (tb − t ′
)
dt ′

=
[t,tb)∫
ta

δ(t ′ − φε − npε)
n≤k
τ,ε · Cτ,ε[n] dt ′

= En≤k
τ,ε (t, Δb

a) · Cn
τ,ε = Rn≤k

τ,ε (t, Δb
a)

To complete the integration of the multiframe model first
introducedby [8] in thiswork,weneed to redefine the concept
of deadlines:

Definition 19 (Deadline Vector) The deadline vector is given
by

Dτ,ε[n] = Dn
τ,ε = [d1, . . . , dk] (104)

6.2.2 The request bound of interfering jobs

The request bound function, as defined in general, does not
distinguish between task priorities. Therefore it sums the
requested execution times of all tasks. It is necessary to
compute the interference of jobs to differentiate between the
request of higher prior jobs that interrupt and interfere with
a given job and other jobs that will have no impact on the
final response. The following section will consider static as
dynamic priorities aswell.We look at how the same approach
can solve both problems. Additionally, we find a unified solu-
tion of hierarchical scheduling of both algorithms which can
be used in general to describe one of the two algorithms as
well as a combination of them. Finally, the functions given
in this section are solving the problems given by [43] and
[12]. First,we formulate an abstract interfering request bound
which can easily be adapted to different scheduling criteria:

Theorem 4 (Interference request bound)Assumeany criteria
� and � ≥ � has a higher or equal priority and any job of
τ ′
� interfere with τ�. The interfering jobs execution time is
selected by masking the request bound:

R�≥�
τ,ε (t,Δb

a) = E
n≤k
τ ′,ε (t,Δb

a) · Cn
τ ′,ε · H (�τ ′ − �τ) (105)

Proof The Heaviside function as given by Definition 13
returns 1 if �τ ′ − �τ ≥ 0 therefore

∞∫
−∞

∑
ε∈Eτ

k−1∑
n=0

δ(t − φε − npε) · Cτ,ε[n] · H (�τ ′ − �τ) dt

(106)

If a priority criterium of task τ ′ is higher than the criterium of
task τ ′, then the task τ ′ interrupts τ , the Heaviside function
becomes 1, and the request of the higher priority task is added
to the request bound. If the criterium of task τ ′ is smaller
than the one of task τ the Heaviside function is equal to 0
modelling no interrupt. 	

The idea is to describe interference of jobs is generalized
to a bunch of different relations H : R → {0, 1} mapping
any difference or real or integer numbers to boolean values:

Definition 20 (Heaviside relation) Again, assume any crite-
ria �, the main relations can be computed by the following
heaviside functions:

� = � := H (� − �) · H (� − �) = δ�,�
� ≤ � := H (� − �)

� ≥ � := H (� − �)

� < � := H (� − �)

� > � := H (� − �)

TheKronecker delta δ�,� is awell known short-formwriting
if criteria are equal.

Definition 21 (Task scheduler) Any boolean equation of
Heaviside relations models a scheduler in real-time analysis
because it defines whether two tasks interfere or not. Assume
anyHeaviside relationφ ∈ {H�=�,H�≤�,H�≥�,H�<�,

H�>�} the function S : Γ 2 → {0, 1} represents a task
scheduler which describes the interference of two tasks:

S
�
τ,τ ′ := max{min

φ
{xφ}} (107)

Note, the operation max and min represents or and and on

integers.

Example 5 (Static task scheduler) Assume static priorities as
given in Definition 6. Two jobs interfere if

S
π
τ,τ ′ := max{Hπτ <πτ ′ ,min{Hπτ ′=πτ ,Htr

τ ′<trτ }} (108)

In deadline monotonic scheduling the priority is not needed,
it is possible to write directly

S
d
τ,τ ′ := max{Hdτ ′<dτ ,min{Hdτ ′=dτ ,Htr

τ ′<trτ }} (109)

Hdτ ′<dτ and Hdτ ′=dτ are disjunct, therefore

S
d
τ,τ ′ := Hπτ ′<πτ + Hπτ ′=πτ · Htr

τ ′<trτ (110)

S
d
τ,τ ′ := Hdτ ′<dτ + Hdτ ′=dτ · Htr

τ ′<trτ (111)

123

Beyond the limitations of real-time scheduling theory: a unified scheduling... 219

Suppose the upcoming analysis using interfering request
bounds should support arbitrary deadlines, then we have to
consider jobs with the same static priorities. Therefore jobs
with the same priority interfere if the requested job starts later
than the interfering job.17

Example 6 (Dynamic task scheduler) In dynamic schedul-
ing the job with the earliest absolute deadline is scheduled.
Therefore we have only to change the relative deadline to
the absolute deadline in definition 5. In this case, the con-
sideration of the request time is mandatory because system
designers and programmers can not guarantee different abso-
lute deadlines if the specified relative deadlines are different.

S
Dn

τ,τ ′ := max{HDn
τ ′<Dn

τ
,min{HDn

τ ′=Dn
τ
,Htr

τ ′<trτ }} (112)

Note, that indifference to the static task scheduler the abso-
lute deadline of each job must considered.18 HDn

τ ′<Dn
τ
and

HDn
τ ′=Dn

τ
are disjunct, therefore

S
Dn

τ,τ ′ := HDn
τ ′<Dn

τ
+ HDn

τ ′=Dn
τ

· Htr
τ ′<trτ (113)

The first step in the discussion is the formulation of the
interfering request bound for static schedulers and task pri-
orities specified by fixed numbers:

Corollary 1 (Interference request bound in static scheduling)
Assume any static scheduler with a priority πτ assigned to
each task. If task τ ′ has a higher priority than task τ and a
higher number of πτ ′ > πτ specifies this behaviour, then the
interference request boundRπτ ′≥πτ : Γ 2×R

2 → R is given
by

R
πτ ′≥πτ

τ,τ ′ (t,Δb
a) = E

n≤k
τ ′,ε (t,Δb

a) · Cn
τ ′,ε

·[H (πτ ′ − πτ) + δπτ ′ ,πτ · H (trτ − trτ ′
)]

(114)

Contrarily, if task τ ′ has a higher priority than task τ and
a lower number of πτ ′ < πτ ′ specifies this behaviour, then
the priority difference in the equation changes. If we assume
deadline monotone scheduling the interfering request bound
can express this directly:

R
dτ ′≤dτ

τ,τ ′ (t,Δb
a) = E

n≤k
τ ′,ε (t,Δb

a) · Cn
τ ′,ε

17 Such an assumption looks oversized. However, if we distinguish the
jobs with different request times, arbitrary deadlines are integrated into
the model for free. Note that it is possible to describe the established
models by using the upper Heaviside function without a distinction of
request times.
18 In scheduling theory, we assume that any job could be executed
if absolute deadlines are equal. It can be described again by the upper
Heaviside function without any assumption about request times. Again,
arbitrary deadlines could be modelled easily, considering request times.

·[H (dτ − dτ ′) + δdτ ,dτ ′ · H (trτ − trτ ′
)]
(115)

Proof Consider Theorem 4: For πτ ′ > πτ the Heaviside
functionH (πτ ′ − πτ) = 1, and the execution request of task
τ ′ is added to the interference task set of τ . If two priorities
are equal the job with the earliest request is scheduled. The
interference mask become one if trτ − tr

τ ′ ≥ 0. The proof of
the other DMS equation is obvious. 	

According to this well-known definition of absolute dead-
lines, the interfering request bound in dynamic scheduling
can be formulated by:

Corollary 2 (Interference request bound in dynamic schedul-
ing) The interfering request boundRDn

τ ′≥Dn
τ : Γ 2×R

2 → R

of higher priority tasks in dynamic scheduling is

R
Dn

τ ′≤Dn
τ

τ,τ ′ (t,Δb
a) = E

n≤k
τ ′,ε (t,Δb

a) · Cn
τ ′,ε

·[H (Dn
τ − Dn

τ ′
)+ δDn

τ ′ ,Dn
τ

· H (trτ − trτ ′
)]
(116)

Proof Assume dynamic scheduling and a given job τε,n .
The request bound of this job is the sum of all execu-
tion times of job’s τ ′

ε,n with an absolute deadline shorter
than the job’s τε,n deadline. According to Theorem 4, the
subtraction Dn

τ − Dn
τ ′ is positive if Dn

τ ′ ≤ Dn
τ , there-

fore in this case H
(
Dn

τ − Dn
τ ′
) = 1. If Dn

τ ′ > Dn
τ the

inequality H
(
Dn

τ − Dn
τ ′
) = 0. This means H

(
Dn

τ − Dn
τ ′
)

selects the higher priority jobs in dynamic scheduling. This
approach models scheduling were any task instance with
an absolute deadline smaller than the absolute deadline of
the considered task instance interfere in the considered task.
However, what happens if two instances have the same
absolute deadline? In this case, a tie-breaking condition is
needed. The instance with the smaller request is scheduled
to avoid scheduling overhead.19 This behaviour is modelled
by δDn

τ ′ ,Dn
τ

· H (trτ − tr
τ ′
)
. 	

In real-time scheduling theory, the structure of equations
changes on any newproblem.Aswedemonstrated the unified
theory, the request bound of interfering jobs can be expressed
by just one equation choosing the Heaviside mask’s cor-
rect parameters. It does not matter if we like to consider
static or dynamic scheduling. Having just one theoretical
approach is a decisive advantage compared to related work:
While the structure of an equation does not change depend-
ing on the scheduling, it is possible to construct combined

19 This assumption does not hold in general. However, if any job is
scheduled if deadlines are equal only the Heaviside mask should be
modified to model such a scheduling behavior. But this leads to an anal-
ysis over approximation. We will discuss this in detail later in section
6.7.1. example 7 and theorem 12.

123

220 F. Slomka, M. Sadeghi

schedulers and formulate their analysis by constructing new
equations. As an example, let us consider a hierarchical static
and dynamic or a mixed scheduler.

Theorem 5 (Interference request bound in hierarchical
scheduling) Assume a task set and assign a static priority
to each task. Then tasks with different priorities schedule
by static scheduling and tasks with equal priority sched-
ule according to their deadlines dynamically. In the case of
such hierarchical scheduling, the interfering request bound
Rτ ′≥τ : Γ 2 × R

2 → R is

R
τ ′≥τ
τ,τ ′ (t,Δb

a) = En≤k
τ,ε (t,Δb

a) · Cnτ,ε ·
max

(
H
(
πτ ′ − πτ

)
, δτ,τ ′

·
[
H
(
Dn

τ − Dn
τ ′
)+ δDn

τ ′ ,Dn
τ

· H (trτ ′ − trτ
)])
(117)

Proof If a task has a higher priority than the considered task,
the function H (πτ ′ − πτ) = 1 else it is 0. If the priority of
the tasks is equal and the absolute deadline of the interfering
task is smaller than the absolute deadline of the considered
task the scheduling is described by δτ,τ ′ · [H (Dn

τ − Dn
τ ′
)+

δDn
τ ′ ,Dn

τ
·H (tr

τ ′ − trτ
)], as we already know from corollary 2.

This function is only 1 if the absolute deadline of a potential
interfering task τ ′ is shorter than the deadline of the consid-
ered task τ and the request time of the interfering task τ ′ is
earlier than the request time of the considered task τ . There-
fore, the selecting criteria to identify an interfering task leads
to 0 or 1 dependently on the tasks priority or absolute dead-
line. The function max(H (πτ ′ − πτ)),H

(
Dn

τ − Dn
τ ′
)
) = 1

if max(0, 1), max(0, 1) or max(1, 1). This implements an
or -operation between static and dynamic scheduling. 	

6.3 Analysis preliminaries

We need some additional assumptions to derive bound tests
tests or a response time analysis based on the interfering
request bound. In this section, we will introduce the con-
cept of the remaining load to compute the backlog, which
is not proceeded by a processor during a given time inter-
val. Besides, we will give some useful definitions related to
a generalized analysis framework.

Theorem 6 (Remaining load) The remaining load of a job
interfered with other jobs is the computational demand of a
given time interval [0, t) which cannot be computed by the
processor during this time interval. Assume that the timing
intervalΔt

0 = t , then the remaining load Lτ ′≥τ : Γ 2 ×R →
R is:

L
τ ′≥τ
τ,τ ′ (t) = max

0≤s≤t
{Rτ ′≥τ

τ,τ ′ (t, t) − R
τ ′≥τ
τ,τ ′ (s, t) − t} (118)

Proof If ∀t ∈ R : L
τ ′≥τ
τ,τ ′ (t) ≥ 0 und L

τ ′≥τ
τ,τ ′ (t) =

R
τ ′≥τ
τ,τ ′ (t, t) − t , then

R
τ ′≥τ
τ,τ ′ (t, t) − L

τ ′≥τ
τ,τ ′ (t) − t ≤ 0 (119)

R
τ ′≥τ
τ,τ ′ (t − s, t) − L

τ ′≥τ
τ,τ ′ (t − s) − t ≤ 0 (120)

R
τ ′≥τ
τ,τ ′ (t, t) − R

τ ′≥τ
τ,τ ′ (s, t) − L

τ ′≥τ
τ,τ ′ (t) − L

τ ′≥τ
τ,τ ′ (s) − t ≤ 0

(121)

Because Lτ ′≥τ
τ,τ ′ (t)−L

τ ′≥τ
τ,τ ′ (s) ≤ L

τ ′≥τ
τ,τ ′ (t − s) ([13], p. 7) the

following equation holds:

L
τ ′≥τ
τ,τ ′ (t) ≥ R

τ ′≥τ
τ,τ ′ (t, t) − R

τ ′≥τ
τ,τ ′ (s, t) − t (122)

L
τ ′≥τ
τ,τ ′ (t) = sup

0≤s≤t
{Rτ ′≥τ

τ,τ ′ (t, t) − R
τ ′≥τ
τ,τ ′ (s, t) − t} (123)

At this point, we can carefully review the properties of
the unified event bound as given by Theorem 1: Note that
the domain of this function is a compact space: Because
we defined the limits of the integral as an open interval,
the domain t is compact. If we define any analysis in a
bounded domain, then the unified event bound and there-
fore, the request and demand bound are compact. Bounding
periodic task sets to their hyper-period bounds the timing
interval as well. Therefore, the supremum of the function is
equal to its maximum: sup = max . Then

L
τ ′≥τ
τ,τ ′ (t) = max

0≤s≤t
{Rτ ′≥τ

τ,τ ′ (t, t) − R
τ ′≥τ
τ,τ ′ (s, t) − t} (124)

	

The proof builds on the leaky bucket algorithm. In the case
no load is requested to a processor, the remaining load is equal
to 0. Only if service is requested, the processor executes it
with the rate of t . The above proof is directly adapted from the
network calculus as given by ([13], p.10, f.). By applying the
leaky bucket approach from network calculus to the problem
of remaining load in real-time analysis is elegant and leads
to a beautiful result. Because we defined a compact unified
event-, request- and demand bound by using an integral and
we model its limits by a Heaviside function, we can now
combine the result of the network respective the real-time
calculuswith thework done in established scheduling theory.
If supremum and infimum become maximum and minimum
in all cases, we can further use effective maximization and
minimization techniques supported by numerical mathemat-
ics and therefore it is easy to apply this theory to computer
algebra systems or numerical math tools.

123

Beyond the limitations of real-time scheduling theory: a unified scheduling... 221

Definition 22 (Average load) Given any time interval
[a, b]20, the average load Δt

0 = t , the remaining load
U : Γ × R → R is the mean value of the requested load
related to the interval. The average load of a task set is the
sum of the average loads of each task.

UΓ (Δb
a) =

∑
τ∈Γ

Uτ (Δ
b
a)

= 1

b − a
·
⎛
⎝LΓ (a) +

b∫
a

∑
τ∈Γ

(
xk

τ · c+
τ

)
dt ′
⎞
⎠
(125)

Lemma 6 (Average load by the unified request bound) The
average load in any time interval [a, b) of a task set on a
processor is given by

UΓ (Δb
a) = LΓ (a) + RΓ (Δb

a,Δ
b
a)

b − a
(126)

and in the special case in the interval [0, t)

UΓ (Δt
0) = UΓ (t) = RΓ (t, t)

t
(127)

Now only tasks with the same or a higher priority should be
considered, we use

U
τ ′≥τ
τ,τ ′ (Δb

a) = L
τ ′≥τ
τ,τ ′ (a) + R

τ ′≥τ
τ,τ ′ (Δb

a,Δ
b
a)

b − a
(128)

and

U
τ ′≥τ
τ,τ ′ (t) = R

τ ′≥τ
τ,τ ′ (t, t)

t
(129)

for the interval [0, t).
Proof The average load of the requested jobs in any interval
related to the duration of this interval. In some cases, there
is some load left from previous intervals. That remains in an
additional load:

UΓ (Δb
a) = 1

Δb
a

·
⎛
⎜⎝LΓ (a) +

∫

Δb
a

∑
τ∈Γ

xk
τ · c+

τ dt

⎞
⎟⎠ (130)

= 1

b − a
·
⎛
⎝LΓ (a) +

b∫
a

∑
τ∈Γ

xk
τ · c+

τ dt

⎞
⎠ (131)

20 We assume only to count events in [0, t) as given by our unified
request bound. However, to define a utilization interval a closed interval
is needed.

= LΓ (a) + RΓ (Δb
a,Δ

b
a)

b − a
(132)

Note that the computation of the utilization requires a sum-
mation during [a, b). Therefore, the request bound is given
by RΓ (Δb

a,Δ
b
a). Let us now consider the utilization in the

interval [0, t):

UΓ (t) =
∑
τ∈Γ

Uτ (t) (133)

=
∑
τ∈Γ

⎛
⎝1

t
·

t∫
0

xk
τ · c+

τ dt ′
⎞
⎠ (134)

= 1

t
·

t∫
0

∑
τ∈Γ

(
xk

τ · c+
τ

)
dt ′ (135)

= RΓ (t, t)

t
(136)

	

6.4 Unified bound tests analysis

bound tests tests build on utilization bounds. Therefore we
have to check whether the utilization of task set is always
smaller than 1 or 100%. A utilization bound given for any
time interval based on the interference request bound, and
the average load allows bound tests tests for static, dynamic,
and hierarchical scheduling.

Theorem 7 (bound tests analysis for static and dynamic
scheduling)Assume a task set and a hierarchical scheduler. If
a task has a higher priority than another task, it executes first,
and if two tasks have the same priority, they are scheduling
under earliest deadline first. The bound tests of a given inde-
pendent task set executed by one computing resource with
a hierarchical static, and a dynamic scheduler can then be
guaranteed, if and only if

∀t ∈ PΓ : R
πτ ′≥πτ

τ,τ ′ (t,PΓ) + R
πτ ′≥πτ

τ,τ ′ (t,PΓ) ≤ t (137)

Proof The bound tests test can be derived from the utilization
bound21

UΓ (Δb
a) = LΓ (t) + RΓ (Δb

a,Δ
b
a)

tb − ta
(138)

and in the special case in the interval [0, t)

UΓ (Δt
0) = UΓ (t) = RΓ (t, t)

t
(139)

21 To keep the proof simple we do not consider the request times.

123

222 F. Slomka, M. Sadeghi

A task set is feasible if ∀t ∈ [0,PΓ] for any task the utiliza-
tion uτ (t) ≤ 1. If ta = t0 = 0 then L(0) = 0 and therefore22

∀t ∈ PΓ : R
πτ ′≥πτ

τ,Γ (t,PΓ)

t
≤ 1 (140)

Now we separate all higher priority tasks from tasks with the
same priority and multiply by t :

∀t ∈ PΓ : R
πτ ′=πτ

τ,Γ (t,PΓ) + R
πτ ′>πτ

τ,Γ (t, t) ≤ t (141)

or

∀t ∈ PΓ ,∀τ ∈ Γ :
∑
τ ′∈Γ

Rτ ′(t − dτ ′ ,PΓ) · δπτ ′ ,πτ (142)

+
∑
τ ′∈Γ

Rτ ′(t, t) · H (πτ ′ − πτ) ≤ t (143)

Note that we consider tasks with the same priority and tasks
with higher priorities in independent terms because we want
to derive a bound tests test for static and dynamic scheduling
as well. Therefore we have to consider two cases:

A If πτ ′ = πτ then δπτ ′ ,πτ = 1 andH (πτ ′ − πτ) = 0. The
bound tests test for dynamic scheduling is then given by

∀t ∈ PΓ ,∀τ ∈ Γ :
∑
τ ′∈Γ

Eτ ′(t − dτ ′ ,PΓ) · c+
τ ′

=
∑
τ ′∈Γ

Rτ ′(t − dτ ′ ,PΓ) ≤ t (144)

In this case τ ′ = τ and therefore

∀t ∈ PΓ :
∑
τ∈Γ

Eτ (t − dτ ,PΓ) · c+
τ ′

=
∑
τ∈Γ

Rτ (t − dτ ,PΓ) ≤ t (145)

which is equal to the processor demand test or Problem2.
B Consider πτ ′ �= πτ : Now δπτ ′ ,πτ = 0 only for the con-

sidered task τ and in all other cases δπτ ′ ,πτ = 0 and
H (πτ ′ − πτ) = 1 if a task τ ′ has a higher priority than
the considered task τ . Then we get

∀t ∈ PΓ ,∀τ ∈ Γ : Eτ (t − dτ ,PΓ) · c+
τ

+
∑

τ ′∈Γ τ

Eτ ′(t, t) · c+
τ ≤ t (146)

or

∀t ∈ PΓ ,∀τ ∈ Γ : Rτ (t − dτ ,PΓ)

22 Remember PΓ is the hyperperiod of the considered task set.

+
∑

τ ′∈Γ τ

Rτ ′(t, t) ≤ t (147)

where τ is the considered task and τ ′ are all higher pri-
ority tasks. This result is equivalent to

∀t ∈ PΓ ,∀τ ∈ Γ :
Rτ (t − dτ ,PΓ) ≤ t −

∑
τ ′∈Γ τ

Rτ ′(t, t)

(148)

which is equal to the processor demand test for static
scheduling originally given by [6]. 	

6.5 Unified response time analysis

In this section, we will derive a response time analysis based
on the average load and the unified event bound to simplify
the mathematical framework as given by related work. As a
result of the section, we will see that the unified event bound
solves Problem 3.

Theorem 8 (Unified response time analysis) If a job is sched-
uled by any scheduling algorithm assuming priorities given
by any relation between two different variables � ≥ �,
the request time of the job is tτ,ε . Let the response time

rτ,ε = t fτ,ε − trτ,ε be the difference of the finishing time t fτ,ε
and the request time. The response time rτ,ε is bounded by

∀τε ∈ Γ : L
�≥�
τ,τ ′ (trτ,ε) + R

�≥�
τ,τ ′ (rτ,ε, rτ,ε) − rτ,ε = 0

(149)

Proof Again, we start with the average load. The average
load of any given time interval [ta, tb) is given by:

UΓ (Δb
a) = LΓ (a) + RΓ (Δb

a,Δ
b
a)

Δb
a

≤ 1 (150)

Now, we consider the interval Δb
a = t fτ,ε − trτ,ε = rτ,ε for

each job of all tasks, therefore

∀τε ∈ Γ : LΓ (trτ,ε) + RΓ (rτ,ε, rτ,ε)

rτ,ε
≤ 1 (151)

We only have to consider all tasks of the same or a higher
priority than the considered task’s priority:

∀τε ∈ Γ : L
�≥�
τ,τ ′ (trτ,ε) + R

�≥�
τ,τ ′ (rτ,ε, rτ,ε)

rτ,ε
≤ 1 (152)

During a busy period, the average load is positive and
more significant than 100% because the requested execution

123

Beyond the limitations of real-time scheduling theory: a unified scheduling... 223

demand is higher than the elapsed processor time. The aver-
age load will be smaller than 100% if the requested demand
in a time interval is smaller than the processing time interval.
In this case, the processor is idle. Therefore, the end of the
busy period is exact if the average load is equal to 100%:

∀τε ∈ Γ :
L

�≥�
τ,τ ′ (trτ,ε) + R

�≥�
τ,τ ′ (rτ,ε, rτ,ε)

rτ,ε
= 1 (153)

∀τε ∈ Γ : L
�≥�
τ,τ ′ (trτ,ε) + R

�≥�
τ,τ ′ (rτ,ε , rτ,ε) = rτ,ε (154)

∀τε ∈ Γ : L
�≥�
τ,τ ′ (trτ,ε) + R

�≥�
τ,τ ′ (rτ,ε , rτ,ε) − rτ,ε = 0 (155)

Aswewant to compute the response time rτ,ε , we also except
task sets with an average load equal to 100%, which means
after a job has finished the next higher priority job starts
immediately, and the processor does not idle. As a result, we
have to end the summation of task requests exactly at rτ,ε
and we get

∀τε ∈ Γ : L
�≥�
τ,τ ′ (trτ,ε) + R

�≥�
τ,τ ′ (rτ,ε, rτ,ε) − trτ,ε = 0

(156)

Note that in the worst-case in static scheduling we only have
to consider the first job of each task. The remaining load then
is Lπ ′≥π

τ,τ ′ (0) = 0 and the worst-case response time becomes

∀τ ∈ Γ : : R�≥�
τ,τ ′ (r+

τ,ε, r
+
τ,ε) − r+

τ,ε = 0 (157)

	

Theorem 8 describes an unified abstract form of the busy

window approach. In real-time scheduling theory, static and
dynamic scheduling aremajor scheduling algorithms. There-
fore, the unified approach has to be adapted to static as well
as to dynamic scheduling 23:

Corollary 3 (Static response time analysis) Assume a given
task set with static priorities. The abstract given relation
� ≥ � is then replaced by πτ ′ ≥ πτ formulating the static
priority scheme. The response time then becomes

∀τε ∈ Γ : L
πτ ′≥πτ

τ,τ ′ (tτ,ε) + R
πτ ′≥πτ

τ,τ ′ (rτ,ε , rτ,ε) − rτ,ε = 0

(158)

Proof Replacing � ≥ � with πτ ′ ≥ πτ , the proof follows
directly from Theorems 1 and 8. 	

Corollary 3 solves Problem 3.

Corollary 4 (Dynamic response time analysis) Assume a
given task set with dynamic priorities. The abstract given
relation � ≥ � is then replaced by Dn

τ ′ ≤ Dn
τ , formulating

23 Including other scheduling schemes should be future work.

the dynamic priority scheme corresponding to EDF schedul-
ing. The response time then becomes

∀τε ∈ Γ : L
Dn

τ ′≤Dn
τ

τ,τ ′ (tτ,ε) + R
Dn

τ ′≤Dn
τ

τ,τ ′ (rτ,ε, rτ,ε)

−rτ,ε = 0 (159)

Proof Replacing � ≥ � with Dn
τ ′ ≤ Dn

τ , the proof follows
directly from Theorems 2 and 8. 	

A logical combination of the two selecting Heaviside
functions describes a hierarchical scheduler, as shown inThe-
orem 5.

Corollary 5 (Hierarchical response time analysis) Assume a
scheduler which scheduled tasks by their given priorities and
all tasks with the same priority by their deadline. A hierar-
chical busy window response time analysis is given by

∀τε ∈ Γ : L
≤
τ,τ ′(tτ,ε) + R

≤
τ,τ ′(rτ,ε, rτ,ε)

−rτ,ε = 0 (160)

Proof The analysis directly follows from Theorems 5 and 8.
	

6.6 Relationship to related work

After discussing the unified approach to static and dynamic
bound tests and response time analysis, we will consider its
relationship to prior work. The question of this section is if
the newmethodology can express advanced techniques in the
real-time analysis as extensions to the busywindow approach
introduced by [29]. In detail, we will discuss the model
of bursty or sporadic events and arbitrary deadlines [48],
the relative complex analysis of response time in dynamic
scheduling as discussed by [37,41]. Note that in the orig-
inal work the analysis equations are derivate geometrically
fromGantt charts. In this work, we have formalized theGantt
chart approach algebraic. Therefore it should be possible to
show themathematical relationship of recent work to the new
algebraic approach and how the new unified theory help in
proving theorems. The algebraic method is compatible with
related work and can be easily used in future work to proof
new theorems or to adapt specula case results to the general
model.

6.7 Bursty events in response time analysis

Tindell et al. [48] investigates the response time analysis of
bursty event sequences and gives an event bound for this
so-called sporadic event model:

123

224 F. Slomka, M. Sadeghi

Eτ (t) =
⌊

t

po

⌋
b + min

⎛
⎝
⎡
⎢⎢⎢
t −
⌊

t
po

⌋
po

pi

⎤
⎥⎥⎥ , b

⎞
⎠ (161)

Now, we can show how this equation is related to the new
approach. First,we have to consider both parts of the equation
separately to combine them later in the theorem:

Lemma 7 (Counting full bursts) The first part of the equation
for the event bound of sporadic tasks describes the number
of fully covered bursts and multiplies the number of them by
the maximal number of events per burst. The unified event
bound describes it as

⌊
t

po

⌋
b =

⌊
t
po

⌋
po∫

0

(∞∑
n=0

δ(t ′ − npo) ·
b−1∑
m=0

δ(t ′ − mpI)

)
dt ′

(162)

Proof If we describe
⌊

t
po

⌋
b by a Dirac comb we find

⌊
t

po

⌋
b =

∞∫
−∞

∞∑
n=0

δ(t ′ − npo) · b · H (t ′)

·H
(⌊

t

po

⌋
po − t ′

)
dt ′ (163)

=
∞∫

−∞

∞∑
n=0

δ(t ′ − npo)
b−1∑
m=0

δ(t ′ − mpi)H
(
t ′
)

·H
(⌊

t

po

⌋
po − t ′

)
dt ′ (164)

=

⌊
t
po

⌋
po∫

0

∞∑
n=0

δ(t ′ − npo) ·
b−1∑
m=0

δ(t ′ − mpi) dt
′

(165)

	

Lemma 8 (Counting part bursts) In some cases, the last burst
does not fit in the time interval examined. In this case, just
events of a part of the burst are count:

min

⎛
⎝
⎡
⎢⎢⎢
t −
⌊

t
po

⌋
po

pi

⎤
⎥⎥⎥ , b

⎞
⎠ =

∞∫
−∞

b−1∑
m=0

δ(t ′ − mpi)

·H
(
t −
⌊

t

po

⌋
po

)
· H (t − t ′

)
dt ′ (166)

Proof The second part of the event bound is given by

min

(⌈
t−
⌊

t
po

⌋
po

pi

⌉
, b

)
. We therefore have to enumerate all

events between
⌊

t0
p0

⌋
p0 and t . These events occour with the

inner period pi and we have to count

∞∫
−∞

b−1∑
m=0

δ(t ′ − mpi) · H
(
t −
⌊

t

po

⌋
po

)
· H (t − t ′

)
dt ′ (167)

events. 	

After showing how the two parts of the sporadic model fit
to the unified event bound, the final theorem can be formu-
lated:

Theorem 9 (Unified response time analysis for the bursty or
sporadic event model) The sporadic or event model can be
derived from event streams:

⌊
t

po

⌋
b + min

⎛
⎝
⎡
⎢⎢⎢
t −
⌊

t
po

⌋
po

pi

⎤
⎥⎥⎥ , b

⎞
⎠

=
∞∫

−∞
x̂k,l

εo,εi
· H (t ′) · H (t − t ′

)
dt ′ (168)

Proof Applying Lemmas 7 and 8, the number of events
counted by the event bound of the bursty or sporadic event
model writes

Eτ (t) =
⌊

t

po

⌋
b + min

⎛
⎝
⎡
⎢⎢⎢
t −
⌊

t
po

⌋
po

pi

⎤
⎥⎥⎥ , b

⎞
⎠ (169)

=
∞∫

−∞

∞∑
n=0

δ(t ′ − npo)
b−1∑
m=0

δ(t ′ − mpi)H
(
t ′
)

·H
(⌊

t

po

⌋
po − t ′

)
dt ′ (170)

+
∞∫

−∞

b−1∑
m=0

δ(t ′ − mpi) · H
(
t ′ −

⌊
t

po

⌋
po

)

·H (t − t ′
)
dt ′ (171)

=
∞∫

−∞

∞∑
n=0

δ(t ′ − npo) ·
b−1∑
m=0

δ(t ′ − mpi)

·H (t ′) · H
(⌊

t

po

⌋
po − t ′

)
(172)

+
b−1∑
m=0

δ(t ′ − mpi)

·H
(
t −
⌊

t

po

⌋
po

)
· H (t − t ′

)
dt ′ (173)

123

Beyond the limitations of real-time scheduling theory: a unified scheduling... 225

While
∑b−1

m=0 δ(t ′ − mpi) ·H (t ′) ·H (⌊ t
po

⌋
po − t ′

)
counts

all inner events until
⌊

t
po

⌋
po and

∑b−1
m=0 δ(t ′ − mpi) ·

H

(
t −
⌊

t
po

⌋
po
)

· H (t − t ′
)
counts all inner events from⌊

t
po

⌋
po to t both parts can be substituted by

∑b−1
m=0

δ(t ′ − mpi) · H (t ′) · H (t − t ′
)
:

=
∞∫

−∞

∞∑
n=0

δ(t ′ − npo) ·
b−1∑
m=0

δ(t ′ − mpi)

·H (t ′) · H (t − t ′
)
dt ′ (174)

=
∞∫

−∞

∞∑
n=0

b−1∑
m=0

δ(t ′ − npo) · δ(t ′ − mpi) ·

·H (t ′) · H (t − t ′
)
dt ′ (175)

=
∞∫

−∞

∞∑
n=0

b−1∑
m=0

δ(t ′ − npo − mpi) · H (t ′) · H (t − t ′
)
dt ′

(176)

Assume φo = 0 and φi = 0 and the inner period pεi = pi
and the outer period is pεo = po. It can be seen that the
sporadic event model is a special case of the event spectrum
as computed by Theorem 3:

=
∞∫

−∞

∞∑
n=0

b−1∑
m=0

δ(t ′ − φo − φi − npo − mpi) ·

·H (t ′) · H (t − t ′
)
dt ′ (177)

=
∞∫

−∞

∞∑
n=0

b−1∑
m=0

δ(t ′ − φε1 − φε2 − npεo − mpεi) ·

·H (t ′) · H (t − t ′
)
dt ′ (178)

=
∞∫

−∞
x̂k,l

εo,εi
· H (t ′) · H (t − t ′

)
dt ′ (179)

with k = ∞ and l = b which proves the theorem. 	

As second [48] covers in his work are the question of what

happens if deadlines are longer than the interarrival time of
jobs. Such an extension generalizes the analysis approach
and opens real-time analysis to a wide range of industrial
applications.

Theorem 10 (Unified response time analysis for arbitrary
deadlines) The unified response time analysis can be used to
derive the analysis for arbitrary deadlines as given in [48]:

∀τε ∈ Γ : L
π ′≥π
τ,τ ′ (trτ,ε) + R

π ′≥π
τ,τ ′ (rτ,ε ,Δ

rτ,ε
trτ,ε

) − rτ,ε = 0 (180)

is identical to

wτ (q) = (q + 1) · c+
τ +

∑
τ ′∈Γ τ

⌈
wτ (q)

pτ ′

⌉
· c+

τ ′ (181)

for all jobs in the first busy interval.

Proof Applying the general form to the response time anal-
ysis to find response times for tasks with arbitrary deadlines
we assume that during a busy period more than one job of
the considered task will start:

∀τε ∈ Γ : L
π ′≥π
τ,τ ′ (trτ,ε) + R

π ′≥π
τ,τ ′ (rτ,ε,Δ

rτ,ε
trτ,ε

) − rτ,ε = 0

(182)

Jobs in [48] are denoted with the symbol q instead of ε in
this work:

∀τε ∈ Γ : L
π ′≥π
τ,τ ′ (tτ,q) + R

π ′≥π
τ,τ ′ (rτ,q ,Δ

rτ,q
trτ,q

)

−rτ,q = 0 (183)

By definition, the average load in the considered inter-
val [0, tτ,q] is greater than 1, therefore L

π ′≥π
τ,τ ′ (tτ,q) =

R
π ′≥π
τ,τ ′ (rτ,q ,Δ

trτ,q
0) − trτ,q and we get

∀τε ∈ Γ : R
π ′≥π
τ,τ ′ (rτ,q ,Δ

trτ,q
0) − trτ,q

+R
π ′≥π
τ,τ ′ (rτ,q ,Δ

rτ,q
trτ,q

) − rτ,q = 0 (184)

Assuming periodic bursts and the periodic event model: If
a fixed number of jobs with the same priority and a fixed

period aτ occur during the interval Δ
trτ,q
0 , the request bound

of all jobs is:

∑
τ ′∈Γ

Rτ ′(trτ,q ,Δ
trτ,q
0) · δπτ ,πτ ′ =

⌈
trτ,q
aτ

⌉
· c+

τ (185)

and according to Lemma 4, Eq. 184 is equal to

rτ,q =
⌈
trτ,q
aτ

⌉
· c+τ +

∑
τ ′∈Γ τ

⌈
trτ,q
pτ ′

⌉
· c+

τ ′ − trτ,q + c+τ

+
∑

τ ′∈Γ τ

⌈
rτ,q
pτ ′

⌉
· c+

τ ′ (186)

rτ,q =
⌈
trτ,q
aτ

⌉
· c+τ − trτ,q + c+τ +

∑
τ ′∈Γ τ

⌈
tτ,q + rτ,q

pτ ′

⌉
· c+

τ ′

(187)

rτ,q =
⌈
qaτ

aτ

⌉
· c+τ − qaτ + c+τ +

∑
τ ′∈Γ τ

⌈
qaτ + rτ,q

pτ ′

⌉
· c+

τ ′

(188)

123

226 F. Slomka, M. Sadeghi

All response times during the busy interval are given by rτ =
{∀q ∈ N : wτ (q) − q · aτ } and wτ (q) = rτ,q + q · aτ . We
substitute rτ,q + q · aτ :

wτ (q) = qc+
τ + c+

τ +
∑

τ ′∈Γ τ

⌈
wτ (q)

pτ ′

⌉
· c+

τ ′ (189)

wτ (q) = (q + 1) · c+
τ +

∑
τ ′∈Γ τ

⌈
wτ (q)

pτ ′

⌉
· c+

τ ′ (190)

As r+
τ = max∀q∈N{wτ (q)−q ·aτ }wederived the test for arbitrary

deadlines from the unified model. 	

As a result, we found that the well-known sporadic or

bursty event model and the analysis for arbitrary deadlines is
a particular case of the unified event bound approach.

6.7.1 Response time analysis in dynamic scheduling

The sporadic and arbitrary model developed by [48] was
applied to dynamic scheduling by [41]. The work of [37]
generalizes [41] approach. The proof of the following the-
orem shows that the new theory can express the previous
analysis by the same equations of the unified approach as
used in the static scheduling analysis.

Theorem 11 (Equivalence of Spuri’s dynamic analysis) The
response time analysis extension to the arbitrary busy win-
dow approach as given by Spuri is equivalent to the unified
response time analysis:

wτ ′ (t, Dτ) = min

{⌈
t

pτ ′

⌉
,

⌊
Dτ − dτ ′

pτ ′

⌋}

=
t∫

0

∑
ε∈Eτ

k−1∑
n=0

δ(t ′ − φε − npε) · H (Dn
τ − Dn

τ ′
)

· H (t − t ′
)
dt ′

(191)

Proof To simplify the equations, we only consider the inter-
fering request bound of one task with all others. There is no
loss of generality while the busy window is the sum of all
tasks request bounds. Because of Lemmas 4 and 5 Spuri’s
busy window can be written as

wτ ′ (t, Dτ) = min

⎧⎨
⎩

t∫
0

∑
ε∈Eτ

k−1∑
n=0

δ(t ′ − φε − npε)H
(
t − t ′

)
dt ′,

t∫
0

∑
ε∈Eτ

k−1∑
n=0

δ(t − φε − npε) · H (Dn
τ − dτ ′ − t ′

)
dt ′
⎫⎬
⎭

(192)

=
t∫

0

∑
ε∈Eτ

k−1∑
n=0

δ(t ′ − φε − npε)

·min {H (t − t ′
)
,H
(
Dτ − dτ ′ − t ′

)} dt ′ (193)

Because H
(
t − t ′

) → {0, 1} and H
(
Dτ − dτ ′ − t ′

) →
{0, 1} the function min(a, b) is equal to a logical or and
therefore min(a, b) = a · b:

wτ ′(t, Dτ) =
t∫

0

∑
ε∈Eτ

k−1∑
n=0

δ(t ′ − φε − npε)

·H (Dτ − dτ ′ − t ′
) · H (t − t ′

)
dt ′

(194)

H
(
Dτ − dτ ′ − t ′

) = 1 if t ′ − dτ ′ < Dτ . The point at which
the Heaviside function switches from 1 to 0 is at t ′ = φτ ′ +
npτ ′ = Dτ ′ and therefore

t∫
0

∑
ε∈Eτ

k−1∑
n=0

δ(t ′ − φε − npε) · H (Dn
τ − Dn

τ ′
)

·H (t − t ′
)
dt ′ (195)

	

Example 7 (Spreadingworst case in dynamic scheduling)Let
us nowconsider the schedules of the example task set as given
in Appendix B and its schedules shown in Fig. 5 as given in
detail: Figure 5a the static schedule and does not hold the
deadline of task τ3 because the task sets utilization is exact
UΓ = 1. Therefore it exists only a dynamic schedule. Related
work [25,41] assumes that, if the absolute deadlines of jobs
are equal, any of these jobs are scheduled. This assumption
leads to different schedules as shown in Fig. 5b–d. Theworst-
case in this scenario is that the worst-case response time
of each task is equal to its relative deadline because of the
chosen utilization. This leads to theworst case response times
r+
τ1

= 8, r+
τ2

= 16 and r+
τ3

= 24. However, as seen in Fig. 5,
the worst case of different tasks occur in different schedules.

The behaviour of a dynamic scheduler like EDF is non-
deterministic. If no additional criterion is given, a dynamic
schedulermaydispatch any of the tasks if deadlines are equal.
However, this is true for static scheduling as well, and this
case is prevented by giving different priorities to tasks. In
the model of arbitrary deadlines, the original concept given
by [32] has been expanded by [48]. In this model, any job
of a task with the same priority is dispatched if its request
time is shorter than any request time of other jobs with the
same priority. If we add this simple criterion to dynamic
scheduling, the schedule of all jobs becomes deterministic.

Theorem 12 (Spreading worst case in dynamic scheduling)
On the assumption that a dynamic scheduler is free do decide
which job is scheduled if the absolute deadlines are equal the
worst-case respond time of different tasks occur in different

123

Beyond the limitations of real-time scheduling theory: a unified scheduling... 227

Fig. 5 Schedules of the
example tasks set: in static (a)
and dynamic scheduling (b–d)

(a) (b)

(c) (d)

schedules and therefore the worst case response time is over
estimated:

En≤k
τ,ε (t,Δb

a) · Cn
τ,ε · H (Dn

τ − Dn
τ ′
)+ δDn

τ ′ ,Dn
τ

· H (trτ ′ − trτ
)

≤ En≤k
τ,ε (t,Δb

a) · Cn
τ,ε · H (Dn

τ − Dn
τ ′
)

(196)

Proof If we consider the interfering request bound the proof
follows directly from Corollary 2 and Theorem 11:

En≤k
τ,ε (t,Δb

a) · Cn
τ,ε · H (Dn

τ − Dn
τ ′
) = En≤k

τ,ε (t,Δb
a) · Cn

τ,ε

·H (Dn
τ − Dn

τ ′
)+ δDn

τ ′ ,Dn
τ

(197)

Therefore, if we add any criteria in the case that the absolute
deadlines are equal, e.g. the request time of a job like δDn

τ ′ ,Dn
τ
·

H
(
tr
τ ′ − trτ

)
, than in some cases no interference will occur.

If an interference will not occur in some cases the resulting
request is lower:

En≤k
τ,ε (t,Δb

a) · Cn
τ,ε · H (Dn

τ − Dn
τ ′
)+ δDn

τ ′ ,Dn
τ

· H (trτ ′ − trτ
)

≤ En≤k
τ,ε (t,Δb

a) · Cn
τ,ε · H (Dn

τ − Dn
τ ′
)

(198)

Because in periodically scheduling the critical jobs of n − 1
task will have a request time shorter than the request time
of one task, the worst case response time of all these jobs,
except one, will be short compared to the situation the job
can be free choose by the scheduler. 	

As we have seen in by the schedules of example given
in the Appendix B and shown in Fig. 5b–d. the worst-case
behaviour of dynamically scheduled tasks spreads over dif-
ferent schedules. Theorem 12 proofs that a task set of n tasks
will have shorter worst-case response bounds for n− 1 tasks
and one worst-case time equal to related work. Therefore,

to the best of our knowledge, we found a closer worst-case
response time estimation bound than any related work. If
we only assume a dynamic schedule schedules the task with
the lowest request time first, if the absolute deadlines are
equal, then the worst case response time is tighter.24 Con-
sider Example 7 again: If we add this additional criteria to
the scheduler, the maximal response times become r+

τ1
= 8,

r+
τ2

= 10 and r+
τ3

= 20. However, because of the presented
assumptions and theorems, we can always be sure to be equal
or better than previous work 25.

7 Conclusion

This paper wasmotivated by the question whether it exists
one unified event- or request bound for all kind of analy-
sis purposes in real-time scheduling theory. Such a function
was discovered by applying mathematical techniques from
theoretical physics and digital signal processing to the real-
time analysis problem. It could be shown that such a unified
request bound, and the definition of an average load in
real-time systems allows to derivate most of the established
real-time analysis algorithms from only these two assump-
tions. This results in an utilization based analysis and task
response time analysis by just one unified event bound. Addi-
tionally, static and dynamic scheduling is considered as well
in just one equation. The new equation system also covers
the analysis of bursty event sequences by introducing hier-
archical event streams or event densities as a computation

24 This assumption is well accepted in static scheduling, therefore it is
not surprising to adapt it to dynamic scheduling.
25 Note, if two jobs will have the same request time and the same
absolute deadline the problem arises again and another criterion must
be considered. However, it is easy to add any of this to the interference
mask.

123

228 F. Slomka, M. Sadeghi

Table 2 Unified real time
scheduling analysis

Request bound for
Static scheduling Dynamic scheduling

R
dτ ′ ≤dτ
τ,ε (t,Δb

a) = R
Dn

τ ′ ≤Dn
τ

τ,ε (t,Δb
a) =

En≤k
τ,ε (t,Δb

a) · Cn
τ,ε · H (dτ − dτ ′) En≤k

τ,ε (t,Δb
a) · Cn

τ,ε · H (Dn
τ − Dn

τ ′
)

+δdτ ′ ,dτ · H (trτ − tr
τ ′
) +δDn

τ ′ ,Dn
τ

· H (trτ − tr
τ ′
)

Hierarchical Scheduling

En≤k
τ,ε (t,Δb

a) · Cn
τ,ε · max(H (πτ ′ − πτ) , δτ,τ ′ · [H (Dn

τ − Dn
τ ′
)+ δDn

τ ′ ,Dn
τ

· H (trτ − tr
τ ′
)])

Average Load

UΓ (Δb
a) = UΓ (t) = RΓ (t,∞)

t

Utilization Analysis Response Time Analysis

R∗≤∗
τ,ε (t − dτ,ε ,P) ≤ t L∞

τ (Δt
0) + R∗≤∗

τ,ε (t, t) − t = 0

of the convolution of two independent event densities. Addi-
tional, it is shown that the unified request bound covers the
model of arbitrary deadlines as well. As a beautiful result,
thework allows easily defining hierarchical schedulers. Table
2 gives an overview of the concluding results of this work.
We conclude that an interfering request bound for static and
dynamic scheduling for the first time in real-time schedul-
ing theory is described by using the same equation structure!
Both aspects are covered if we use, for static scheduling,
the relative deadlines, and for dynamic scheduling, the abso-
lute deadlines in the equation of interference. It could easily
be seen that a few equations with a general mathematical
structure will cover the main aspects in preemptive static
and dynamic scheduling in the bounded execution time pro-
gramming of real-time systems. In addition to these results,
we also noted that the well-known response time analysis in
dynamic scheduling overestimates. In the context of our new
mathematical model, we found a better limit for the response
time in dynamic scheduling as given in related work.

In future work, the new model is extended to the adaptive
rate model. Because of the rich mathematical models are
given in calculus, it should be interesting to investigate the
impact of the work. First, by considering the real-time cal-
culus to extend modular models and develop new models for
modernFieldbus devices.As the general approachof interfer-
ing request bounds builts on an abstract criterion, it should be
easy to extend the work to multicriticality systems and other
widely implemented scheduling algorithms such as timedivi-
sion multiplex (TDMA). In this paper, we have not discussed
the computational complexity of the problem. The first goal
was to develop a new toolbox for real-time scheduling anal-
ysis. Combining the approach of this work with the concept
of [14] should be an exciting task in the future. In such work,
the equation presented should be an input to the theorem
proofer used in [14]. Bringing theseworks togetherwill allow
simple construction of any scheduler while the correctness
will be proved automatically. However, the complexity of the

problem is exponential. Therefore approximation techniques
already discussed has to be integrated into future work.

Acknowledgements This work was supported by the Deutsche
Forschungsgemeinschaft (DFG) under grand SL 47/17-1. We grate-
fully thank Chekib Khezami to simplify the proof of the remaining
load, Iwan Feras Fattohi for his critical comments and Kilian Kempf
for proofreading. Finally, the paper is dedicated to Ulrich. First of all, to
Frank Slomkas dad, Cpt. Ulrich Slomka, who teaches me the curiosity
to the world, second to Prof. Ulrich Herzog who helped Frank Slomka
to tame this curiosity and to give my work a scientific structure.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A Mathematical framework

The main focus of the paper is the adaption of the mathemat-
ics used in theoretical physics and digital signal theory. In this
appendix, we explain a few notations which are typically not
well-known or widely used in the real-time systems com-
munity. Additionally, a list of symbols clarifies the notation.
One of the goals of this paper is to formulate an easy to use
mathematical theory of real-time systems with a clear focus
on intuitively simple equations. Therefore a table which lists
all symbols is given at the end of the appendix.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Beyond the limitations of real-time scheduling theory: a unified scheduling... 229

For intuitive reading we write pτ . This means a function
which gives the period of the specified task; The idea is a
short notation for pτ = p(τ). The next two definitions are
from theoretical physics. In the real-time analysis, we often
write summations, and in this paper, we get integrals over two
summations. However, writing this in each equation brings
a lot of overhead and redundant information. Therefore, we
adopt an index based writing notation to the problem:

Definition 23 (Einstein’s notation)

i ∈ {1, ..., n} : ci x
i = c1x

1 + ... + c3x
3 =

n∑
i=1

ci x
i

(199)

The notation was introduced by [20] to simplify multidi-
mensional equations in gravity. However, it can be used to
simplify the notations in real-time analysis as well. In this
work we use two modified forms to reduce the complexity
of equations:

Definition 24 (Modified Einstein’s Notation)

cki xi = c1x1 + · · · + ckxk =
k∑

i=1

ci xi (200)

cki, j xi, j =
k∑

i=1

∑
j∈J

k · ci, j xi, j (201)

This idea can be adapted to the request bound:

∞∫
−∞

δ(t ′ − φε − npε)
n≤k
τ,ε · Cτ,ε [n mod |C|]

·H (t ′ − ta
) · H (tb − t ′

)
dt ′

=
∫

[a,b)

δ(t ′ − φε − npε)
n≤k
τ,ε · Cτ,ε [n mod |C|]·Sτ,ε

τ ′,φε+npε ,
dt ′

= En≤k
τ,ε (t,Δb

a) · Cnτ,ε · Sn
τ,ε,τ ′ = Rn≤k

τ,ε (t,Δb
a) · Sn

τ,ε,τ ′

An other useful symbol is the Kronecker delta. This func-
tion only returns 1 if both arguments are equal. In the other
case the result is 0. It is used in physics as a short hand nota-
tion for matrices. In our case it is used to collect tasks of the
same priority. It also can be used to collect jobs of the same
tasks.

Definition 25 (KroneckerDelta) TheKronecker delta is used
to write matrices in a compact form. The function returns a
1 if the two elements given to the function are equal. In all
other cases it returns 0. In real-time analysis this property
can be used to identify tasks with the same priority:

δi, j =
{
1 i = j
0 i �= j

(202)

The following table concludes all symbols used in the
paper. The first part of the table gives the functions applied
from theoretical physics. The second part list all time-related
symbols, while the third part introduces event-related ele-
ments. The fourth part presents all parameters related to tasks,
and the last part lists the symbols used in real-time analysis.

Symbol Meaning

δ(t) Dirac delta
δi, j Kronecker delta
H(t) Heaviside function
H (t) Upper Heaviside function
H (t) Lower Heaviside function
ta Point in time
tε′ Request time of an event
Δ Time interval
Δ+ Maximal time interval
Δ− Minimal time interval
Δ0 Interval related to time 0, equivalent to t0
Δb

a Interval between ta and tb
p Period
j Jitter
φ Minimal distance, phase or offset
P Hyper period, the least commonmultiplier of a set

of periods
PΓ Hyper period of a task set
ε′ Event
ε Event tuple describing a periodic event sequence
E List of event tuples
x Event sequence of an event list
xΔ Event stream or event density
x+

Δ Maximal event density
x−

Δ Minimal event density
τ, τn Task
τn,ε Job
τ ′ Interfering task
τ ′
, Interfering job

Γ Task set
π Priority
Γ τ Higher priority task set of task τ

d Relative deadline
D Absolute deadline D = p + d
c Computational load, execution time
c− Best case execution time
c+ Worst case execution time
C+

τ,ε A vector of different worst case execution times
C−

τ,ε A vector of different best case execution times
D A vector of different relative deadlines
S

�
τ,τ ′ Scheduler, schedules jobs of tasks τ, τ ′ according

to criterion �
E Event bound function
Eτ Event bound function of a task
EΓ Event bound function of a task set
R Request bound function
D Demand bound function
L Remaining load
rτ Response time of a task
r+
τ Maximal response time of a task
r−
τ Minimal response time of a task
Uτ Utilization of a task
UΓ Utilization of a task set

123

230 F. Slomka, M. Sadeghi

B Examples

We use a computer algebra system (CAS) [17] to validate the
approach. TheCAS allows us to verify the algebraic structure
of the work. Additionally, it is possible to consider numeric
examples as well. Table 3 gives a task set used as a run-
ning example in the rest of the paper. Just for simplification,
we only consider periodic tasks. Therefore we specify three
tasks by their period, their worst-case execution time and the
relative deadlinewhich is given by the deadline aswell.Addi-
tionally, the last column of the table states the input for the
computer algebra system, as mentioned earlier. Note that this
task set has a utilization equal to one. Therefore it is schedu-
lable by dynamic scheduling and not by static scheduling
as shown later in Fig. 5. Considering a utilization of one is
essential to investigate the differences in static and dynamic
scheduling and the tightness of a response-time analysis as
seen later. Let us first compute the Event Densi ty follow-
ing Definition 12 by the CAS to build the algebraic equation
from a given nested list as task description:

The variable I oE (Instance of Event) denotes the number
of the considered job and the function Event Densi ty com-
putes the Dirac comp as discussed earlier. Replacing it by n
or any other counting variable leads to the formal notation
given earlier. Note that the sequence of variables given in the
CAS output follows the rules defined in computer algebra.
Therefore we do not change outputs of the CAS to be com-
patible with the equations defined. Assume nowwe defined a
function DiracCount to count events. Then the CAS gives
tho following output if we like to count the events in the
interval [0, T):

The interfering request bounds in static and dynamic
scheduling are given in Fig. 6. In this example, we consider

the interfering request bounds of the two jobs τ1,2 and task
τ2,2. Because only two jobs during the hyper-period occur
from task τ3, we consider the interfering request bound of
the second job τ3,1. Note that it is possible to compute the
interference of each job of each task. However, we chose
the example jobs because the difference between static and
dynamic scheduling is easily seen. The following CAS input
produces the resulting graphs of 6:

123

Beyond the limitations of real-time scheduling theory: a unified scheduling... 231

Table 3 Example task set Task Period Wcet Relative deadline CAS input
p [t .u.] c+ [t .u.] d [t .u.]

τ1 8 2 8 {{{{{0, 8}, I n f ini t y}}, 2}}
τ2 16 4 16 {{{{{0, 16}, I n f ini t y}}, 4}}
τ3 24 12 24 {{{{{0, 24}, I n f ini t y}}, 12}}

Let us compute the remaining load of job 3 for a static and
dynamic scheduler by the followingCAS input. The resulting
plot is shown on the left hand in Fig. 7. Additionally, we
consider as an example, the remaining load of task τ3, job 1.
Figure 7 shows the result for static and dynamic scheduling.

The average load of job 1 and job 2 of task τ3 are given in
Fig. 6. Note that this diagram clearly shows the busy window
of both jobs. The following CAS input produces the plots
(Fig. 8):

The response time analysis implemented in the CAS sup-
ports static and dynamic scheduling. The CAS gives the fol-
lowing output for the example task set. The output is printed
as a list with the following format: {trτ,ε,Lτ ′≥τ

τ,τ ′ (t), rτ,ε, dτ }.
In the following each of this lists represent a task and the
analysis provides the response times of each job.

123

232 F. Slomka, M. Sadeghi

Fig. 6 Intefering request bound of the example task set on selected jobs

Fig. 7 Remaining load of the third job τ1,2 and the first job τ3,0

Fig. 8 Average load of first job τ3,0 and the second job τ3,1. It is easily seen when the utilization condition fulfills

123

Beyond the limitations of real-time scheduling theory: a unified scheduling... 233

Based on this output, it is possible to build an intuitive
plot showing the response times of all tasks instances or jobs
as bars on their release time. In such a diagram, an orange
plot bar indicates the computed response time at the specified
release time. Negative blue bars give the remaining load at
the release time as well. Additionally, in the plots given in
Figs. 9 and 10 the relative deadline is given as a lightweight
orange colour in the background.26 Note that the results are
the same as expected from the schedules given in Fig. 5.

To consider hierarchical scheduling, the task set given in
Table 3 is modified. To highlight the effect of hierarchical
scheduling, we add a few tasks and to decrease the utilization
of the original task set. Some other parameters are changed
as well. We therefore use the following task set:

In this task set, the last number denotes the priority level,
ignored under dynamic scheduling. In static scheduling, a
taskwith the lowest number has the highest priority. TheCAS
computes the following output, plotted in Figs. 11 and 12:

26 The plots shown are originally given from the CAS.

As a result, the schedule of the second task set is feasible
if all tasks scheduled dynamically. If a hierarchical scheduler
is used then the worst-case response time of all jobs of task τ1
is decreased because of its high priority, while task τ6 does
not hold its deadline anymore, because of its low priority.
All other tasks except task τ5 have the same priority an,
therefore, are scheduled dynamically. However, task τ2 and
task τ3 will miss their deadlines because of the high priority
of task τ1.

123

234 F. Slomka, M. Sadeghi

Fig. 9 Response time analysis plot of the example task set scheduled under DMS

Fig. 10 Response time analysis plot of the example task set scheduled under EDF

Fig. 11 Response time analysis plot of the second task set scheduled hierarchical by DMS and EDF

123

Beyond the limitations of real-time scheduling theory: a unified scheduling... 235

Fig. 12 Response time analysis plot of the second task set scheduled only by EDF

References

1. Albers K, Bodmann F, Slomka F (2006) Hierarchical event streams
and event dependency graphs: a new computational model for
embedded real-time systems. In: 18th Euromicro conference on
real-time systems, ECRTS’06, 5–7 July 2006, Dresden, Germany,
Proceedings, pp 97–106

2. Albers K, Bodmann F, Slomka F (2008) Advanced hierachical
event-stream model. In: Euromicro conference on real-time sys-
tems, 2008. In: ECRTS’08. IEEE, pp 211–220

3. Albers K, Slomka F (2004) An event stream driven approximation
for the analysis of real-time systems. In: 16thEuromicro conference
on real-time systems (ECRTS 2004), 30 June–2 July 1004, Catania,
Italy, proceedings, pp 187–195

4. Albers K, Slomka F (2005) Efficient bound tests analysis for real-
time systems with EDF scheduling. In: 2005 Design, automation
and test in Europe conference and exposition (DATE 2005), 7–11
March 2005. Munich, Germany, pp 492–497

5. Anssi S, Kuntz S, Gérard S, Terrier F (2013) On the gap between
schedulability tests and an automotive task model. J Syst Architect
59(6):341–350

6. Baruah S (2003) Dynamic- and static-priority scheduling of recur-
ring real-time tasks. Real Time Syst 24:93–128. https://doi.org/10.
1023/A:1021711220939

7. Baruah S (2010) The non-cyclic recurring real-time task model.
In: 2010 IEEE 31st real-time systems symposium (RTSS), pp 173
–182

8. Baruah S, Chen D, Gorinsky S, Mok A (1999) Generalized mul-
tiframe tasks. Real Time Syst 17:5–22. https://doi.org/10.1023/A:
1008030427220

9. Baruah S, Howell R, Rosier L (1993) bound tests problems for
recurring tasks on one processor. Theor Comput Sci 118(1):3–20

10. Baruah S, Mok A, Rosier L (1991) Preemptively scheduling hard-
real-time sporadic tasks on one processor. In: 90 Real-time system
on symposium. IEEE, pp 182–190

11. Baruah SK, Bonifaci V, d’AngeloG,Marchetti-SpaccamelaA,Van
Der Ster S, Stougie L (2011) Mixed-criticality scheduling of spo-
radic task systems. In: European symposium on algorithms, pp
555–566. Springer

12. Biondi A, Melani A, Marinoni M, Natale MD, Buttazzo G
(2014) Exact interference of adaptive variable-rate tasks under
fixed-priority scheduling. In: Proceedings of the 26th Euromicro
conference on real-time systems (ECRTS)

13. Boudec J-YL (1998)Application of network calculus to guaranteed
service networks. IEEE Trans Inf Theory 44(3):1087–1096

14. Bozhko S, Brandenburg BB (2020) Abstract response-time anal-
ysis: a formal foundation for the busy-window principle. In:
32nd Euromicro conference on real-time systems (ECRTS 2020).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik

15. Bracewell R (2000) The Fourier transform and its applications.
Electrical engineering series. McGraw Hill, New York

16. Chakraborty S, Künzli S, Thiele L (2003) A general framework for
analysing system properties in platform-based embedded system
designs. In: Design, automation and test in Europe conference and
exhibition 2003, pp 190–195

17. Cohen JS (2003) Computer algebra and symbolic computation:
mathematical methods. CRC Press, Boca Raton

18. Cruz RL (1991) A calculus for network delay. i. Network elements
in isolation. IEEE Trans Inf Theory 37(1):114–131

19. Cruz RL (1991) A calculus for network delay. ii. network analysis.
IEEE Trans Inf Theory 37(1):132–141

20. EinsteinA (1916) The foundation of the general theory of relativity.
Princton University Press, Princton

21. Fisher N, Baruah S (2005) A polynomial-time approximation
scheme for bound tests analysis in static-priority systems with
bounded relative deadlines. In: Proceedings of the 13th interna-
tional conference on real-time systems

22. Graham R (1976) Bounds on the performance of scheduling algo-
rithms. Comput Job Sched Theory, pp 165–227

23. Gresser K (1993) An event model for deadline verification of hard
real-time systems. In: Fifth Euromicro workshop on real-time sys-
tems, 1993. Proceedings. IEEE, pp 118–123

24. Guan N, Yi W (2014a) General and efficient response time anal-
ysis for edf scheduling. In: Design, automation & test in Europe
conference & exhibition (DATE)

25. GuanN, YiW (2014b) General and efficient response time analysis
for edf scheduling. In: Proceedings of the conference on design,
automation & test in Europe, DATE ’14, pp 255:1–255:6, 3001

123

https://doi.org/10.1023/A:1021711220939
https://doi.org/10.1023/A:1021711220939
https://doi.org/10.1023/A:1008030427220
https://doi.org/10.1023/A:1008030427220

236 F. Slomka, M. Sadeghi

Leuven, Belgium, Belgium. European Design and Automation
Association

26. Ittershagen P, Hartmann PA, Grüttner K, Rettberg A (2013)
Hierarchical real-time scheduling in the multi-core era-an
overview. In: 2013 IEEE 16th international symposium on
object/component/service-oriented real-time distributed comput-
ing (ISORC). IEEE, pp 1–10

27. Joseph M, Pandya P (1986) Finding response times in a real-time
system. Comput J 29(5):390–395

28. Künzli S, HamannA, Ernst R, Thiele L (2007) Combined approach
to system level performance analysis of embedded systems. In:
Proceedings of the 5th IEEE/ACM international conference on
hardware/software codesign and system synthesis, CODES+ISSS
’07. ACM, New York, NY, USA, pp 63–68

29. Lehoczky JP (1990) Fixed priority scheduling of periodic task sets
with arbitrary deadlines. In: 11th real-time systems symposium,
1990. Proceedings, pp 201 –209

30. Leung JY-T, Whitehead J (1982) On the complexity of fixed-
priority scheduling of periodic, real-time tasks. Perform Eval
2(4):237–250

31. Lipari G, Bini E (2005) A methodology for designing hierarchical
scheduling systems. J Embed Comput 1(2):257–269

32. Liu CL, Layland JW (1973) Scheduling algorithms for multipro-
gramming in a hard-real-time environment. J ACM 20:46–61

33. Mindell D (2008) Digital Apollo: human and machine in space-
flight. Inside technology series. MIT Press, Cambridge

34. Mok AK, Chen D (1997) A multiframe model for real-time tasks.
IEEE Trans Softw Eng 23(10):635–645

35. Moyo NT, Nicollet E, Lafaye F, Moy C (2010) On schedulability
analysis of non-cyclic generalized multiframe tasks. In: 2010 22nd
Euromicro conference on Real-time systems (ECRTS), pp 271 –
278

36. Naedele M, Thiele L, Eisenring M (1998) Characterising variable
task releases and processor capacities. Technical Report 45, Com-
puter Engineering and Networks Laboratory, ETH Zurich

37. Palencia JC, Harbour MG (1998) Schedulability analysis for tasks
with static and dynamic offsets. In: The 19th IEEE real-time sys-
tems symposium, 1998. Proceedings, pp 26 –37

38. Palencia JC, Harbour MG (2003) Offset-based response time anal-
ysis of distributed systems scheduled under edf. In: 15th Euromicro
conference on real-time systems proceedings of the proceedings

39. Palencia JC, Harbour MG (2005) Response time analysis of edf
distributed real-time systems. In: J Embed Comput, Nr. 2

40. RichterK (2005)Compositional scheduling analysis using standars
event models. Ph.D. thesis, TU Braunschweig

41. Spuri M (1996) Analysis of deadline scheduled real-time systems.
Ph.D. thesis, Inria

42. Stigge M, Ekberg P, Guan N, Yi W (2011) The digraph real-time
taskmodel. In: 201117th IEEE real-time and embedded technology
and applications symposium (RTAS), pp 71 –80

43. Stigge M, Yi W (2013) Combinatorial abstraction refinement for
bound tests analysis. In: Proceedings of the 34th IEEE real-time
systems symposium (RTSS)

44. Thiele L, Chakraborty S, Gries M, Künzli S (2002) A framework
for evaluating design tradeoffs in packet processing architectures.
In: 39th design automation conference, 2002. Proceedings, pp 880–
885

45. Thiele L, Chakraborty S, Gries M, Maxiaguine A, Greutert J
(2001) Embedded software in network processors—models and
algorithms. In: Henzinger T, Kirsch C (eds) Embedded software,
volume of 2211 lecture notes in computer science. Springer, Berlin,
pp 416–434

46. Thiele L, Chakraborty S, Naedele M (2000) Real-time calculus for
scheduling hard real-time systems. In: International symposium on
circuits and systems ISCAS (2000) vol 4. Switzerland, Geneva, pp
101–104

47. Tindell KW, Burns A, Wellings AJ (1994) An extendible approach
for analyzing fixed priority hard real-time tasks. Real Time Syst
6:133–151. https://doi.org/10.1007/BF01088593

48. Tindell KW, Burns A, Wellings AJ (1994) An extendible approach
for analyzing fixed priority hard real-time tasks. Real Time Syst
6(2):133–151

49. Tindell KW, Clark J (1994) Holistic schedulability analysis for
distributed hard real-time systems. Microprocess Microprogram
40(2–3):117–134

50. Wandeler E, Thiele L (2006) Interface-based design of real-time
systems with hierarchical scheduling. In: 12th IEEE real-time and
embedded technology and applications symposium (RTAS’06).
IEEE, pp 243–252

51. W.Tindell K (1994) Adding time-offsets to schedulability analysis.
Technical report, Department of Computer Science, University of
York

52. Zhu H, Goddard S, Dwyer MB (2011) Response time analysis
of hierarchical scheduling: the synchronized deferrable servers
approach. In: 2011 IEEE 32nd real-time systems symposium
(RTSS). IEEE, pp 239–248

Frank Slomka received the Dipl.-
Ing. degree in electrical engineer-
ing with the Technical Univer-
sity of Braunschweig, Germany,
in 1993 and the Ph.D. degree from
the University of Erlangen–
Nuremberg, Germany, in 2002. He
was with Bosch Telecom, Ger-
many, from 1993 to 1996, where
he was responsible for the devel-
opment of system software for
digital wireless telephones. From
1996 to 2001, he worked on a
research project on hardware/soft-
ware codesign of communication

systems with the University of Erlangen–Nuremberg. In 2002, he
founded the company INCHRON, Germany, together with some col-
leagues from Erlangen. The company deals with all aspects of real-
time analysis. Since then he has been a Technical Consultant with
INCHRON. From 2002 to 2007, he was an Assistant Professor of
embedded systems with the University of Oldenburg, Germany, and
since 2007, he has been a Full Professor of embedded and real-time
systems with Ulm University, Ulm, Germany.

Mohammadreza Sadeghi received
his M.Sc. degree in communica-
tion technology in 2016 from the
Ulm University, Germany. He is
currently working with INCHRON
AG, Erlangen, Germany and pur-
suing his Ph.D. degree at the
Department of Embedded/Real-
Time Systems, Ulm University,
Germany. His current research
interests include real-time analy-
sis of systems running adaptive
variable-rate tasks.

123

https://doi.org/10.1007/BF01088593

	Beyond the limitations of real-time scheduling theory: a unified scheduling theory for the analysis of real-time systems
	Abstract
	1 Introduction
	2 Related work
	3 Model of computation
	3.1 Events
	3.2 Tasks

	4 Motivation to a unified theory
	4.1 Event bound approaches to real-time systems analysis
	4.2 Problem formulation
	4.2.1 Goals and organization

	5 The unified event bound function
	5.1 A mathematical view on events and tasks
	5.1.1 Modeling jobs
	5.1.2 Events as Dirac delta
	5.1.3 Event models
	5.1.4 To count or not to count
	5.1.5 Counting by integrating dirac deltas
	5.1.6 Traditional unified event bound

	6 Unified analysis of real-time systems
	6.1 A general event model: The event spectrum
	6.2 Task model: the request bound
	6.2.1 Generalized request bound
	6.2.2 The request bound of interfering jobs

	6.3 Analysis preliminaries
	6.4 Unified bound tests analysis
	6.5 Unified response time analysis
	6.6 Relationship to related work
	6.7 Bursty events in response time analysis
	6.7.1 Response time analysis in dynamic scheduling

	7 Conclusion
	Acknowledgements
	A Mathematical framework
	B Examples
	References

