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Generalized Perron Identity for broken lines

par Oleg KARPENKOV et Matty VAN-SON

Résumé. Dans cet article, nous généralisons l’identité de Perron pour les
minima de Markov. Nous exprimons les valeurs des formes quadratiques bi-
naires à discriminant positif en termes des fractions continues associées aux
lignes brisées passant par les points où les valeurs sont calculées.

Abstract. In this paper, we generalize the Perron Identity for Markov
minima. We express the values of binary quadratic forms with positive dis-
criminant in terms of continued fractions associated to broken lines passing
through the points where the values are computed.

Introduction
Consider a binary quadratic form f with positive discriminant ∆(f).

In this paper we give a geometric interpretation and generalization of the
Perron Identity relating the minimal value of |f | at integer points except
the origin and their corresponding continued fractions:

(0.1) inf
Z2\{(0,0)}

∣∣f ∣∣ = inf
i∈Z

( √
∆(f)

ai + [0; ai+1 : ai+2 : . . . ] + [0; ai−1 : ai−2 : . . . ]

)
.

Here [a0; a1 : . . . ] and [0; a−1 : a−2 : . . . ] are regular continued fractions
of the slopes of linear factors of corresponding reduced linear forms. Recall
that a continued fraction is regular if all its elements are non negative. We
discuss this in more detail further in Section 1.

The Perron Identity was shown by A. Markov in his paper on minima
of binary quadratic forms and the Markov spectrum in the open interval
(−∞, 3) in [14]. The statement holds for the entire Markov spectrum (see,
e.g., the books by O. Perron [15], and T. Cusick and M. Flahive [1]). Re-
cently Markov numbers were used in relation to Federer–Gromov’s stable
norm, ([5, 16]). There is not much known about a higher dimensional ana-
logue of Markov spectrum. It is believed to be discrete (note that the exis-
tence of an accumulation point in the higher dimensional Markov spectrum
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will give a counterexample of the Oppenheim conjecture on best approx-
imations, see in Chapter 18 of [10]). Various values of three-dimensional
Markov spectrum were constructed by H. Davenport in [2, 3, 4].

In this paper we show the geometric interpretation of the Perron Identity
in terms of sails of the form (Remark 3.5) and generalise this expression
in the spirit of integer geometry. This establishes a relationship between
non-regular continued fractions and the values of the corresponding binary
quadratic form at any point on the plane (Theorem 2.1 and Corollary 3.4).
The result of this paper is based on recent results of the first author in
geometric theory of continued fractions for arbitrary broken lines, see [6, 7,
9, 10].

Organization of the paper. We start in Section 1 with necessary def-
initions and background. We discuss reduced forms, LLS sequences, and
formulate the classical Perron Identity. In Section 2 we formulate and prove
the Generalized Perron Identity for finite broken lines. Finally in Section 3
we prove the Generalized Perron Identity for infinite broken lines, and dis-
cuss the relation with the classical the Perron Identity.

1. Basic notions and definitions
In this section we give necessary notions and definitions. We start in

Subsection 1.1 with classical definitions of Markov minima and the Markov
spectrum. Further in Subsection 1.2 we discuss reduced forms of quadratic
binary forms with positive discriminant. In Subsection 1.3 we discuss the
classical Perron Identity. Finally in Subsection 1.4 we introduce LLS se-
quences for broken lines, which is the central notion in the formulation of
the main results.

1.1. Markov minima and the Markov spectrum. Let f be a binary
quadratic form with positive discriminant. Recall that in this case f is
decomposable into two real factors, namely

f(x, y) = (ax− by)(cx− dy),
for some real numbers a, b, c, and d. The discriminant of this form is

∆(f) = (ad− bc)2.

The Markov minimum of the form f is the following number:
m(f) = inf

Z2\{(0,0)}
|f |.

The set of all possible values of ∆(f)/m(f) is called Markov Spectrum.
(Note that ∆(f)/m(f) is invariant under multiplication of the form f by
a non-zero scalar.) The spectrum points of the open interval (−∞, 3) cor-
respond to special forms with integer coefficients, we refer an interested
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reader to an excellent book [1] by T. Cusick and M. Flahive on the Markov
spectrum and related subjects.

1.2. Reduced forms, and LLS-sequences. It is clear that m(f) is in-
variant under the action of the group of SL(2,Z). Therefore in order to
study the Markov spectrum one can restrict to so called reduced forms
which are simple to describe. There are several ways to pick reduced forms,
although the algorithmic part is rather similar to all of them, it is a subject
of a Gauss reduction theory (see, e.g., [8, 11, 12, 13]).

We consider the following family of reduced forms. For every α ≥ 1 and
1 > β ≥ 0 set

fα,β = (y − αx)(y + βx).
Every form is multiple to some reduced form in an appropriate basis of

the integer lattice Z2. However such a representation is not unique. The fol-
lowing notion provides a complete invariant distinguishing different classes
of reduced forms.

Definition 1.1. Let α ≥ 1, 1 > β ≥ 0 and let

α = [a0; a1 : . . . ] and β = [0; a−1 : a−2 : . . . ]

be the regular continued fractions for α and β. Then the sequence

( . . . , a−2, a−1, a0, a1, a2, . . . )

is called the LLS sequence of the form fα,β.

This sequence can be either finite or infinite from one or both sides. The
name for the LLS sequence (Lattice Length-Sine sequence) is due its lattice
trigonometric properties, e.g., see in [6] and [7].

Proposition 1.2. Two reduced forms are equivalent (i.e., multiple to each
other after an SL(2,Z)-change of coordinates) if and only if they have the
same LLS sequence up to shifts of the sequence by k-elements for some
integer k and a reversing of the order of a sequence.

Remark 1.3. This statement follows directly from geometric properties of
continued fractions. As we do not use this statement in the proof of the
results of this paper we skip the proof here. We refer an interested reader
to [10].

Due to Proposition 1.2 we can extend the notion of LLS-sequences to
any binary quadratic form with positive discriminant.

Definition 1.4. Let f be a binary quadratic form with positive discrim-
inant. The LLS sequence for f is the LLS sequence for any reduced form
fα,β equivalent to f . We denote it by LLS(f).
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1.3. Classical Perron Identity. We are coming to one of the most mys-
terious statements in the theory of Markov minima. It is known as the
Perron Identity.

Let f be a binary quadratic form with positive discriminant ∆(f). Let
also

LLS(f) = ( . . . a−2, a−1, a0, a1, a2, . . . ).
Then we have the following result by A. Markov in [14]:

m(f)√
∆(f)

= inf
i∈Z

( 1
ai + [0; ai+1 : ai+2 : . . . ] + [0; ai−1 : ai−2 : . . . ]

)
.

This result is based on the following observation. Let α ≥ 1, 1 > β ≥ 0
and let

α = [a0; a1 : . . . ] and β = [0; a−1 : a−2 : . . . ]
be the regular continued fractions for α and β. Then

fα,β(0, 1)
α+ β

= 1
a0 + [0; a1 : a2 : . . . ] + [0; a−1 : a−2 : . . . ] .

Our goal is to investigate the lattice geometry behind this expression.
It will lead us to a more general rule relating continued fractions whose
elements are arbitrary non zero real numbers, and the values of the corre-
sponding binary form at any point on the plane (see Theorem 2.1, Corol-
lary 3.4 and Remark 3.5).

1.4. LLS sequences for broken lines. We start with the following gen-
eral definition. Here and below we denote the origin (0, 0) by O.
Definition 1.5. Consider a quadratic binary form f with positive discrim-
inant. A broken line A0 . . . An is an f -broken line if the following conditions
hold:

• A0, An 6= O belong to the two distinct loci of linear factors of f ;
• all edges of the broken line are of positive length;
• for every k = 1, . . . , n the line Ak−1Ak does not pass through the
origin.

Recall the definition of oriented Euclidean area for parallelograms.
Definition 1.6. Consider three points A, B, C in the plane. Then the
determinant for the matrix of vectors AB and AC is called the the ori-
ented Euclidean area for the parallelogram spanned by AB and AC and
denoted by

det(AB,AC).
Definition 1.7. Let A = A0A1 . . . An be a broken line with vertices A0
An distinct from the origin O. Then the sign function of the determinant
det(OA0, OAn) is called the signature of A with respect to the origin and
denoted by sign(A).
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We conclude this section with the following important definition.

Definition 1.8. Given an f -broken line A = A0 . . . An define
a2k = det(OAk, OAk+1), k = 0, . . . , n− 1;

a2k−1 = det(AkAk−1, AkAk+1)
a2k−2a2k

, k = 1, . . . , n− 1.

The sequence (a0, . . . , a2n−2) is called the LLS sequence for the broken line
and denoted by LLS(A).

The expression [a0; . . . : a2n−2] is said to be the continued fraction for
the broken line A0 . . . An. Note that the values ai 6= 0 may be negative.

The LLS sequence encodes the integer angles and integer lengths of the
broken line (see [10] for further details).

Remark 1.9. Note that the vertices of f -broken lines are not necessarily
lattice points, and the elements of the LLS sequences for them can be
arbitrary numbers (not necessarily integers). In some sense the definition
of LLS sequences for broken lines (Definition 1.8) generalizes the definition
of LLS sequences for forms (Definition 1.1). See Remark 3.5 for further
discussions.

2. Generalized Perron Identity for finite broken lines
Now we are in position to formulate and prove the main result of this

paper.

Theorem 2.1 (Generalized Perron Identity: case of finite broken lines).
Consider a binary quadratic form with positive discriminant f . Let A =
A0 . . . An+m be an f -broken line (here n and m are arbitrary positive inte-
gers), and let

LLS(A) = (a0, a1, . . . , a2n+2m−2).
Then

(2.1) f(An) = sign(A) ·
√

∆(f)
a2n−1 + [0; a2n−2 : . . . : a0] + [0; a2n : . . . : a2n+2m−2] .

Let us first consider the following example.

Example 2.2. Consider the following binary quadratic form

f(x, y) = (x+ y)(x− 2y).

Let A = A0 . . . A7 be the broken line with vertices

A0 = (2,−2), A1 = (4,−1), A2 = (3,−2), A3 = (2, 0),
A4 = (3, 1), A5 = (4, 0), A6 = (3,−1), A7 = (4, 2),
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f=0

f=0

A0

A1

A2

A3

A4

A5

A6

A7

O

Figure 2.1. The kernel of f and the f -broken line A.

see Figure 2.1. Let us check Theorem 2.1 for the broken line A at point
A4 = (3, 1). We leave the computations of LLS-sequences to a reader as an
exercise, the result is as follows:

LLS(A) =
(

6,− 1
30 ,−5,− 3

20 , 4,
3
8 , 2,−

1
4 ,−4, 1

8 ,−4,− 1
20 , 10

)
(here we denote the elements of LLS(A) by a0, . . . , a12). Finally we have
∆(f) = 9 and sign(A) = 1.

According to Theorem 2.1 we expect the following.

f(A4) = sign(A) ·
√

∆(f)
a7 + [0; a6 : . . . : a0] + [0; a8 : . . . : a12]

= 1 · 3
−1

4 +
[
0; 2 : 3

8 : 4 : − 3
20 : −5 : − 1

30 : 6
]

+
[
0;−4 : 1

8 : −4 : − 1
20 : 10

]
= 4.

Indeed, direct computation shows that

f(A4) = (3 + 1)(3− 2 · 1) = 4.

We start the proof with three lemmas.

Lemma 2.3. Consider a binary quadratic form with positive discriminant
f . Let P 6= O and Q 6= O annulate distinct linear factors of f . Then for
every point A it holds

f(A) = sign(POQ) · det(OP,OA) · det(OA,OQ)
det(OP,OQ) ·

√
∆(f).
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f=0

f=0

Q

P

O A

Figure 2.2. The kernel of f and the f -broken line PAQ.

Example 2.4. Consider the following binary quadratic form
f(x, y) = (x+ y)(x− 2y).

Let PAQ be an f -broken line, with P = (2,−2), A = (3, 0), and Q =
(2, 1), see Figure 2.2. Direct calculations show that

det(OP,OA) = 6, det(OA,OQ) = 3, det(OP,OQ) = 6,
sign(POQ) = 1, f(A) = 9, ∆(f) = 9.

Therefore, we have

sign(POQ) · det(OP,OA) · det(OA,OQ)
det(OP,OQ) ·

√
∆(f) = 1 · 6 · 3

6 ·
√

9 = 9

= f(A).

Proof of Lemma 2.3. The statement is straightforward for the form
fα(x, y) = αxy.

Assume that P = (p, 0), Q = (0, q), and A = (x, y). Then we have

fα(A) = αxy = py · qx
pq

· α = det(OP,OA) · det(OA,OQ)
det(OP,OQ) ·

√
∆(f).

For P = (0, p) and Q = (q, 0) we have

fα(A) = αxy = (−px) · (−qx)
−pq

· α

= −det(OP,OA) · det(OA,OQ)
det(OP,OQ) ·

√
∆(f).

This conclude the proof for the case of fα.
The general case follows from the invariance of the expressions of the

equality of the lemma under the group of linear area preserving transfor-
mations (i.e., whose determinants equal 1) of the plane. �

Now we prove a particular case of Theorem 2.1.
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Lemma 2.5. Let f be a binary quadratic form with positive discriminant.
Consider an oriented f -broken line B = B0B1B2 with LLS(B) = (b0, b1, b2).
Then

f(B1) = sign(B) ·
√

∆(f)
b1 + [0; b0] + [0; b2] .

Proof. Set Bi = (xi, yi) for i = 0, 1, 2. Then Definition 1.8 implies
b0 = det(OB0, OB1) = x0y1 − x1y0,

b2 = det(OB1, OB2) = x1y2 − y1x2,

b1 = det(B1B0, B1B2)
b0b2

= x0y2 − x2y0 − x0y1 + x1y0 − x1y2 + y1x2
b0b2

.

After a substitution and simplification we get
1

b1 + [0; b0] + [0; b2] = (x0y1 − x1y0)(x1y2 − y1x2)
x0y2 − x2y0

= det(OB0, OB1) · det(OB1, OB2)
det(OB1, OB2) .

Finally recall that
sign(B) = sign(B0B1B2).

Now Lemma 2.5 follows directly from Lemma 2.3. �

For the proof of general case we need the following important result.

Lemma 2.6 ([10, Corollary 11.11, p. 144]). Consider a broken line
A0 . . . An that has the LLS sequence (a0, . . . , a2n−2), with A0 = (1, 0),
A1 = (1, a0), and An = (x, y). Let

α = [a0; a1 : . . . : a2n−2]
be the corresponding continued fraction for this broken line. Then

y

x
= α.

For the case of an infinite value for α = [a0; a1 : . . . : a2n−2],
x

y
= 0.

For a proof of Lemma 2.6 we refer to [10]. As a consequence of Lemma 2.6
we have the following statement.

Corollary 2.7. Consider two broken lines A0 . . . An and B0 . . . Bm that
have the LLS sequences (a0, . . . , a2n−2), and (b0, . . . , b2m−2) respectively.
Suppose that the following hold:

• A0 = B0;
• the points An, Bm, and O are in a line;
• the points A0 = B0, A1, and B1 are in a line.
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f1=0

f2=0

B

CA0

An−1
An

An+1

An+m

O

Figure 2.3. The original f -broken line A and the resulting
f -broken line BAnC.

Then
[a0; a1 : . . . : a2n−2] = [b0; b1 : . . . : b2m−2].

Proof. In coordinates of the basis

e1 = OA0, e2 = A0A1
|A0A1||OA0|

the coincidence of continued fractions follows from Lemma 2.6. �

Proof of Theorem 2.1. Let f be a binary quadratic form with positive dis-
criminant. Denote the linear factors of f by f1 and f2. Consider an f -broken
line A = A0 . . . An+m. Without loss of generality we assume that A0 and
An+m annulate f1 and f2 respectively.

Let us first prove the statement of the theorem for the cases when
f(An) 6= 0, AnAn+1 is not parallel to one of the lines fi = 0, and An−1An
is not parallel to one of the lines fi = 0.

Denote by B the intersection of the line AnAn−1 with the line f1 = 0.
Denote by C the intersection of the line AnAn+1 with the line f2 = 0.
(See Figure 2.3.) Then the continued fraction for the broken line BAnC is
[b0 : a2n−1 : b2] for some real numbers b0 and b2.

By Corollary 2.7 we have

[b0] = [a2n−2; . . . : a0];
[b2] = [a2n; . . . : a2n+2m−2].

By construction
sign(BAnC) = sign(A).
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Therefore by Lemma 2.5 we have

f(An) = sign(BAnC) ·
√

∆(f)
a2n−1 + [0; b0] + [0; b2]

= sign(A) ·
√

∆(f)
a2n−1 + [0; a2n−2 : . . . : a0] + [0; a2n : . . . : a2n+2m−2] .

This concludes the proof of Theorem 2.1 for generic case.
Finally let us study the case when f(An) = 0, AnAn+1 parallel to one of

the lines fi = 0, or An−1An parallel to one of the lines fi = 0.
Denote by Ωf,k the space of all broken lines A0 . . . Ak such that f1(A0) =

0 and f2(Ak) = 0. We endow Ωf,k with the induced topology of the Eu-
clidean linear subspace of R2k+2 of codimension 2. In this topology the set
of all f -broken lines is a dense open subset in Ωf,k.

Consider an f -broken line A0 ∈ Ωf,n+m. From the above there exists a
neighbourhood of A0 whose elements are all f -broken lines (denote it by U).
From Definition 1.8 the elements ai smoothly depend on a variation of A0
in U . Hence both the right hand side and the left hand side of Equation 2.1
smoothly depend on a variation of A0 in U . As we have already proved,
these expressions coincide in the general case (i.e., when f(An) 6= 0, AnAn+1
is not parallel to one of the lines fi = 0, and An−1An is not parallel to one
of the lines fi = 0) which is an everywhere dense subset in U . Together
with smoothness this implies that Equation 2.1 holds for all points of U .
Therefore, Equation 2.1 holds for all f -broken lines. �

3. Generalized Perron identity for asymptotic infinite broken
lines

In this section we extend the Generalized Perron Identity (of Theo-
rem 2.1) to the case of certain infinite broken lines and discuss the relation
to the classical Perron Identity.

We start with the following definition.

Definition 3.1. Consider a binary quadratic form f with positive discrim-
inant. An infinite in both sides broken line . . . A−2A−1A0A1A2 . . . is an
asymptotic f -broken line if the following conditions hold (here we assume
that Ak = (xk, yk) for every integer k):

• the two side infinite sequence
( yn

xn

)
converges to different slopes of

the linear factors in the kernel of f as n increases and decreases
respectively;
• all edges of the broken line are of positive length;
• for every admissible k the line Ak−1Ak does not pass through the
origin.
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Remark 3.2. Here and below one can consider one side infinite broken
lines. All the proofs are similar, so we leave this case as an exercise.

The signature of an asymptotic f -broken line is defined as a determinant
for two vectors in the kernel of f , the first with the starting limit direction
and the second with the end limit direction.

Finally we have a definition of LLS-sequences similar to Definition 1.8.

Definition 3.3. Given an asymptotic f -broken line

A = . . . A−2A−1A0A1A2 . . .

define
a2k = det(OAk, OAk+1), k ∈ Z;

a2k−1 = det(AkAk−1, AkAk+1)
a2k−2a2k

, k ∈ Z.

The sequence ( . . . , a−2, a−1, a0, a1, a2 . . . ) is called the LLS sequence for
the broken line and denoted by LLS(A).

Let us extend the Generalized Perron Identity (of Theorem 2.1) to the
case of asymptotic f -broken line.

Corollary 3.4 (Generalized Perron Identity: case of infinite broken lines).
Consider a binary quadratic form with positive discriminant f . Let

A = . . . A−2A−1A0A1A2 . . .

be an asymptotic f -broken line, and let

LLS(A) = ( . . . a−2, a−1, a0, a1, a2, . . . ).

Assume also that both continued fractions

[0; a−1 : a−2 : . . . ] and [0; a1 : a2 : . . . ]

converge. Then

(3.1) f(A0) = sign(A) ·
√

∆(f)
a0 + [0; a−1 : a−2 : . . . ] + [0; a1 : a2 : . . . ] .

Proof. Without loss of generality we consider the form

f = λfα,β = λ(y − αx)(y + βx),

for some nonzero λ and arbitrary α 6= β.
Let A = . . . A−2A−1A0A1A2 . . . be an asymptotic f -broken line, where

Ak = (xk, yk) for all integer k. Also we assume that xk 6= 0 for all k
(otherwise, switch to another coordinate system, where the last condition
holds).



142 Oleg Karpenkov, Matty van-Son

Set
An = A−n . . . A−2A−1A0A1A2 . . . An;

αn = y−n
x−n

; βn = yn
xn
.

First of all, by definition LLS(An) coincides with LLS(A) for all admissible
entries.

Secondly, we immediately have that
lim
n→∞

λfαn,βn(A0) = λfα,β(A0).

Thirdly, the sequence of signatures stabilizes as n tends to infinity. In
other words

lim
n→∞

sign(An) = sign(A).
Fourthly,

lim
n→∞

∆(λfαn,βn) = ∆(λfα,β).
Finally since both continued fractions

[0; a−1 : a−2 : . . . ], and [0; a1 : a2 : . . . ]
converge and by the above four observations we have
f(A0) = lim

n→∞
λfαn,βn(A0)

= lim
n→∞

sign(An) ·
√

∆(λfαn,βn)
a0 + [0; a−1 : a−2 : . . . : a2−2n] + [0; a1 : a2 : . . . : a2n−2] .

= sign(A) ·
√

∆(f)
a0 + [0; a−1 : a−2 : . . . ] + [0; a1 : a2 : . . . ] .

The second equality holds as it holds for the elements in the limits for every
positive integer n by Theorem 2.1.

This concludes the proof of the corollary. �

We conclude this paper with the following important remark.

Remark 3.5 (Lattice geometry of the Perron Identity). Let f be a binary
quadratic form with positive discriminant. Consider an angle in the com-
plement to the kernel of f . The sail of this angle is the boundary of the
convex hull of all integer points inside the angle except the origin. Note
that each form f has four angles in the complement, and, therefore, it has
four sails.

It is important that the sail of any angle in the complement to the set
f = 0 is an asymptotic f -broken line, so the Corollary 3.4 holds for each of
four sails of f . From the general theory of geometric continued fractions,
the Markov minimum is an accumulation point of the values at vertices of
all sails.
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For every vertex Vi of a sail there exists a reduced form fαi,βi
with αi ≥ 1

and 1 ≥ βi > 1 such that Vi corresponds to (0, 1). In particular we have

f(Vi) = fαi,βi
(0, 1).

The point (0, 1) is a vertex of the sail for fαi,βi
. Then from the general

theory of continued fractions (see Part 1 of [10]) the sequence LLS(fα,β)
coincides with the LLS sequence for the sail containing (0, 1).

Hence the expressions in the Perron Identity (0.1) for which the minimum
is computed, i.e., √

∆(f)
ai + [0; ai+1 : ai+2 : . . . ] + [0; ai−1 : ai−2 : . . . ]

for i = . . . ,−2,−1, 0, 1, 2, . . . correspond to the formula of Corollary 3.4
for vertices Vi of all four sails. We consider the vertex Vi, with the sail
containing it, as an f -broken line.
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