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Abstract 

In this contribution, we determine the exact solutions of the potential Korteweg-

de Vries equation, a partial differential equation (PDE).  The procedure 

followed involves first transforming this equation into an ordinary differential 

equation (ODE), using Sophus Lie’ symmetry group theoretical methods.  The 

resulting ODE is then resolved through a procedure developed through 

differentiable topological methods, a technique developed by the third author.  

The pure Lie approach leads to un-integrable integrals. 
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1 INTRODUCTION 

The potential Korteweg -de Vries (p-KdV) equation is obtained from the pioneer model 

KdV equation, see [1] and [2].  The papers describe the evolution of waves under the 

competing, but comparable effects of weak nonlinearity and weak dispersion.  In the 

present work, the target is:  

𝒖𝒕  +  𝒖𝒙
𝟐  +  𝒖𝒙𝒙𝒙  = 𝟎.  (1) 
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Tchiera et. al., present some results in [3]. Unfortunately, their approach involves too 

many assumptions, resulting in compromised deductions.  In their study, a parameter 

λ, arises.  They then proceed by determining the solutions for the case of λ >0, and then 

λ= 0; finally concluding with λ<0.  This is a wide spread practise.  The third author 

demonstrated in [4]  that this partitioning of solutions tend to lead to faulty conclusions.  

Here, we do our best to avoid following this trend.  As stated in the Abstract, we first 

transform equation (1) into an ODE using Sophus Lie’s symmetry group theoretical 

methods [5].  This we do in the next section, Section 2.  Lie’s theory, made famous 

through the paper [6], and also [5]. It was revived in the 1950s by likes of Ovsiaanikov.  

Some of his works include [7], [8], [9]. A number of scholars have since followed. 

These include Ibragimov [10], [11],  and Leach [12] amongst others and Mahomed 

[13]. 

The technique we use to determine exact solutions to the ODE is built on differentiable 

topological manifolds.  We follow it as presented [14].  It is precursor is in [15].  We 

lay the foundation of this idea in Section 3.  

Section 4 is dedicated solely to the application of the technique discussed in Section 3. 

 

2 PURE LIE SYMMETRY ANALYSIS 

The process of transforming a PDE, in this case (1), into an ODE through Lie group 

theoretical methods, involves first determining an appropriate symmetry generator, 

leading to what is called the determining equation, which in turn separates into several 

simple linear equations known as monomials.  Solving the monomials lead to defining 

equations, subsequently to the much sought after symmetries, and finally resulting into 

invariants, from which an ODE or more can be determined. 

 

2.1 The infinitesimal generators and prolongations 

The symmetry generator for the p-KDV  equation is given by: 

𝑿 = 𝝉
𝝏

𝝏𝒕
+  𝝃

𝝏

𝝏𝒙
 +  𝜼

𝝏

𝝏𝒖
 . (2) 

The first prolongation is then given by 

𝑿[𝟏] =  𝑿 + 𝜼𝒕 𝝏

𝝏𝒖𝒕
+ 𝜼𝒙 𝝏

𝝏𝒖𝒙
       (3) 

 and the third prolongation is given by 

𝑿[𝟑]  = 𝑿[𝟏] +  𝜼𝒙𝒙𝒙 𝝏

𝝏𝒖𝒙𝒙𝒙
 . (4) 
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 To find the prolongations of the transformations we use the total derivative operator 

given as: 

𝑫𝒙 =  
𝝏

𝝏𝒙
+  𝒖𝒙

𝝏

𝝏𝒖
+  𝒖𝒙𝒙

𝝏

𝝏𝒖𝒙
+ 𝒖𝒙𝒕

𝝏

𝝏𝒖𝒕
+ ⋯   (5) 

 𝑫𝒕 =  
𝝏

𝝏𝒕
+  𝒖𝒕

𝝏

𝝏𝒖
+  𝒖𝒕𝒕

𝝏

𝝏𝒖𝒕
+ 𝒖𝒙𝒕

𝝏

𝝏𝒖𝒙
+ ⋯  (6) 

 The prolongations of the generator which we use are as follows: 

𝜼𝒙 =  𝜼𝒙 + (𝜼𝒖 −  𝝃𝒙)𝒖𝒙 − 𝝉𝒙𝒖𝒕 − 𝝃𝒖𝒖𝒙
𝟐   − 𝝉𝒖𝒖𝒙𝒖𝒕 , (7) 

 𝜼𝒕 =  𝜼𝒕 +  (𝜼𝒖 −  𝝉𝒕)𝒖𝒕 −  𝝃𝒕𝒖𝒙 − 𝝉𝒖𝒖𝒙
𝟐  − 𝝃𝒖𝒖𝒙𝒖𝒕 , (8) 

 𝜼𝒙𝒙𝒙 = 𝜼𝒙𝒙𝒙 + (𝟑𝜼𝒙𝒙𝒖 − 𝝃𝒙𝒙𝒙)𝒖𝒙 + (𝟑𝜼𝒙𝒖𝒖 − 𝟑𝝃𝒙𝒙𝒖)𝒖𝒙
𝟐

 
+  (𝜼𝒖𝒖𝒖 −

𝟑𝝃𝒙𝒖𝒖)𝒖𝒙
𝟑

 
− 𝝃𝒖𝒖𝒖𝒖𝒙

𝟒 + 𝝉𝒙𝒙𝒙𝒖𝒕 − 𝟑𝝉𝒙𝒙𝒖𝒖𝒙𝒖𝒕 − 𝟑 𝝉𝒙𝒖𝒖𝒖𝒙
𝟐𝒖𝒕   −

𝝉𝒖𝒖𝒖𝒖𝒙
𝟑𝒖𝒕   −  𝟑𝝉𝒙𝒙𝒖𝒙𝒕 + (𝟑𝜼𝒙𝒖 − 𝝃𝒙𝒙)𝒖𝒙𝒙 + (𝟑𝜼𝒖𝒖 − 𝟗𝝃𝒙𝒖)𝒖𝒙𝒖𝒙𝒙 −

𝟔𝝃𝒖𝒖𝒖𝒙
𝟐𝒖𝒙𝒙 − 𝟔𝝉𝒙𝒖𝒖𝒙𝒖𝒙𝒕 − 𝟑𝝉𝒖𝒖𝒖𝒙

𝟐𝒖𝒙𝒕 − 𝟑𝝉𝒙𝒖𝒖𝒕𝒖𝒙𝒙 − 𝟑𝝃𝒖𝒖𝒙𝒙
𝟐 −

𝟑𝝉𝒖𝒖𝒙𝒕𝒖𝒙𝒙 − 𝟑𝝉𝒖𝒖𝒖𝒙𝒖𝒙𝒙𝒖𝒕 + (𝜼𝒖 − 𝟑𝝃𝒙)𝒖𝒙𝒙𝒙 − 𝟒𝝃𝒖𝒖𝒙𝒖𝒙𝒙𝒙 −

𝟑𝝉𝒙𝒖𝒙𝒙𝒕 − 𝟑𝝉𝒙𝒖𝒙𝒙𝒕 − 𝟑𝝉𝒖𝒙𝒖𝒙𝒙𝒕 − 𝝉𝒖𝒖𝒕𝒖𝒙𝒙𝒙  . 

(9) 

 

2.2 Solving the determining equation 

The determining equation follows from the invariant condition 

𝑿[𝟑] 𝑭⃒𝑭=𝟎 = 𝟎,  
(10) 

 with 𝐹 = 𝑢𝑡  +  𝑢𝑥
2  +  𝑢𝑥𝑥𝑥 .  Equation (10) in expanded form assumes the form   

𝜼𝒕 + 𝟐𝒖𝒙𝜼𝒙 + 𝜼𝒙𝒙𝒙  =  𝟎.  (11) 

 After substituting (7), (8), and (9) into  (7), (8) and (9) in (11), we obtain the 

determining equation: 

[𝜼𝒕 +  (𝜼𝒖 −  𝝉𝒕)𝒖𝒕 − 𝝃𝒕𝒖𝒙 − 𝝉𝒖𝒖𝒙
𝟐  − 𝝃𝒖𝒖𝒙𝒖𝒕]  + 𝟐[𝜼𝒙 + (𝜼𝒖 −

 𝝃𝒙)𝒖𝒙 − 𝝉𝒙𝒖𝒕 − 𝝃𝒖𝒖𝒙
𝟐   − 𝝉𝒖𝒖𝒙𝒖𝒕] + [𝜼𝒙𝒙𝒙 + (𝟑𝜼𝒙𝒙𝒖 − 𝝃𝒙𝒙𝒙)𝒖𝒙 +

 (𝟑𝜼𝒙𝒖𝒖 − 𝟑𝝃𝒙𝒙𝒖)𝒖𝒙
𝟐

 
+  (𝜼𝒖𝒖𝒖 − 𝟑𝝃𝒙𝒖𝒖)𝒖𝒙

𝟑
 
− 𝝃𝒖𝒖𝒖𝒖𝒙

𝟒 + 𝝉𝒙𝒙𝒙𝒖𝒕 −

𝟑𝝉𝒙𝒙𝒖𝒖𝒙𝒖𝒕 − 𝟑 𝝉𝒙𝒖𝒖𝒖𝒙
𝟐𝒖𝒕   − 𝝉𝒖𝒖𝒖𝒖𝒙

𝟑𝒖𝒕   −  𝟑𝝉𝒙𝒙𝒖𝒙𝒕 + (𝟑𝜼𝒙𝒖 −

𝝃𝒙𝒙)𝒖𝒙𝒙 + (𝟑𝜼𝒖𝒖 − 𝟗𝝃𝒙𝒖)𝒖𝒙𝒖𝒙𝒙 − 𝟔𝝃𝒖𝒖𝒖𝒙
𝟐𝒖𝒙𝒙 − 𝟔𝝉𝒙𝒖𝒖𝒙𝒖𝒙𝒕 −

𝟑𝝉𝒖𝒖𝒖𝒙
𝟐𝒖𝒙𝒕 − 𝟑𝝉𝒙𝒖𝒖𝒕𝒖𝒙𝒙 − 𝟑𝝃𝒖𝒖𝒙𝒙

𝟐 − 𝟑𝝉𝒖𝒖𝒙𝒕𝒖𝒙𝒙 − 𝟑𝝉𝒖𝒖𝒖𝒙𝒖𝒙𝒙𝒖𝒕 +

(𝜼𝒖 − 𝟑𝝃𝒙)𝒖𝒙𝒙𝒙 − 𝟒𝝃𝒖𝒖𝒙𝒖𝒙𝒙𝒙 − 𝟑𝝉𝒙𝒖𝒙𝒙𝒕 − 𝟑𝝉𝒙𝒖𝒙𝒙𝒕 − 𝟑𝝉𝒖𝒙𝒖𝒙𝒙𝒕 −

𝝉𝒖𝒖𝒕𝒖𝒙𝒙𝒙]   = 𝟎 . 

(12) 
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2.2.1 The monomials 

Substituting  𝑢𝑥𝑥𝑥 = −(𝑢𝑡  +  𝑢𝑥
2 ) +  𝑢𝑥𝑥𝑥 into (12) and separating the result it in 

terms of the factors constituted by 𝑢𝑥, 𝑢𝑡 , 𝑢𝑥𝑥 of and 𝑢𝑥𝑥𝑡 leads to monomials: 

𝒖𝒙𝒙𝒕: 𝝉𝒙   = 𝟎 , (13) 

 𝒖𝒙𝒖𝒙𝒙𝒕:  𝝉𝒖  = 𝟎 , (14) 

 𝒖𝒙𝒖𝒕:  𝝃𝒖 = 𝟎 , (15) 

 𝒖𝒙𝒖𝒙𝒙: 𝜼𝒖𝒖 = 𝟎 , (16) 

 𝒖𝒙𝒙: 𝜼𝒙𝒖 − 𝝃𝒙𝒙  = 𝟎 , (17) 

 𝒖𝒕: 𝟑𝝃𝒙 − 𝝉𝒕  = 𝟎 , (18) 

 𝒖𝒙:  𝟐𝜼𝒙 − 𝝃𝒕 + 𝟑𝜼𝒙𝒙𝒖 − 𝝃𝒙𝒙𝒙  = 𝟎,  (19) 

 𝒖𝒙
𝟐: 𝜼𝒖 +  𝝃_𝒙 = 𝟎 , (20) 

 𝒖𝟎: 𝜼𝒕 + 𝜼𝒙𝒙𝒙 = 𝟎.  (21) 

We began with equations (13) and (14), I solving them.  We notice that the two lead to 

𝝉 = 𝒂(𝒕) . (22) 

 From equation (22), we have 

𝝃 = 𝒃(𝒙, 𝒕) . (23) 

Equation (16) gives 

𝜼 = 𝒄(𝒙, 𝒕)𝒖 + 𝒅(𝒙, 𝒕) . (24) 

We substitute (22) into (18) and have  

𝟑𝝃𝒙 − 𝒂′(𝒕) = 𝟎 , (25) 

 𝝃 =
𝟏

𝟑
 𝒂′(𝒕)𝒙 + 𝒆(𝒕) . (26) 

This we follow with the substitution of (25) and (12) into (17) to yield 

𝒄𝒙(𝒙, 𝒕) − 𝟎 = 𝟎,  (27) 

which gives  𝑐(𝑥, 𝑡) = 𝑓(𝑡). 

Using (26) we can rewrite (24) as 

𝜼 = 𝒇(𝒕)𝒖 +  𝒅(𝒙, 𝒕).  (28) 

Substituting (27) into (21) gives 

𝒇′(𝒕)𝒖 + 𝒅𝒕(𝒙, 𝒕) + 𝒅𝒙𝒙𝒙(𝒙, 𝒕) = 𝟎 . (29) 
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We now consider the coefficients of various powers of 𝑢 in equation (29), and set them 

to equal 0.  This gives 

𝒖𝟎: 𝒅𝒕 + 𝒅𝒙𝒙𝒙 = 𝟎 , (30) 

 𝒖𝟏: 𝒇′(𝒕) = 𝟎 . (31) 

To proceed we introduce arbitrary constants 𝐴𝑖, with 𝑖 = 1, 2, 3, … .  

From (31), we have 

𝒇 = 𝑨𝟏 . (32) 

From (27), and using (32), we have 

𝒇 = 𝒄 = 𝑨𝟏.   (33) 

Substituting (26) and (28) into (20),  and applying (33), we get 𝐴1 +  
1

3
𝑎′(𝑡) = 0, so 

that 

 𝒂 =  −𝟑𝑨𝟏𝒕 + 𝑨𝟐 . (34) 

We substitute (26) and (28) in (19), we arrive at: 

𝟐𝒅𝒙 − 
𝟏

𝟑
 𝒂′′𝒙 −  𝒆′ = 𝟎  (35) 

Differentiating (35) with respect to 𝑡: 

𝒂′′ = 𝟎.  (36) 

 

 We substitute (36) into (35): 

𝟐𝒅𝒙 − 𝒆′ = 𝟎.  (37) 

 Now differentiate (37) with respect to 𝑥: 

𝒅𝒙𝒙 = 𝟎 . (38) 

We substitute (38) into (30) to get 

𝒅𝒕 = 𝟎 . (39) 

 This yields 

𝒅 = 𝒉(𝒙).  (40) 

 When we differentiate (40) twice and substitute the result into (38), to get 

𝒅𝒙𝒙 = 𝒉𝒙𝒙  = 𝟎.  (41) 
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From (41) we have 

𝒉 = 𝑨𝟑𝒙 + 𝑨𝟒    (42) 

 Differentiating (42) with respect to 𝑥, and substituting the result into (37),  we get  𝑒′ =

2𝐴3 , which solves into  

𝒆 = 𝑨𝟑𝒕 + 𝑨𝟓  . (43) 

 We have now fully determined the infinitesimals.  That is, the defining equations 

𝝉 =  −𝟑𝒕𝑨𝟏 + 𝑨𝟐 ,   (44) 

𝝃 =  −𝑨𝟏𝒙 + 𝑨𝟑𝒕 + 𝑨𝟓   ,  (45) 

  𝜼 = 𝑨𝟏𝒖 + 𝑨𝟑𝒙 + 𝑨𝟒   . (46) 

 

2.2.2 The Symmetries  

To get  the symmetries, we substitute the defining equations (44), (45) and (46) into the 

generator (2).  The subsequent results are 

𝑿𝟏 = −𝟑𝒕
𝝏

 𝝏𝒕
− 𝒙

𝝏

 𝝏𝒙
+ 𝒖

𝝏

 𝝏𝒖
 , (47) 

𝑿𝟐 =
𝝏

 𝝏𝒕
 , (48) 

 𝑿𝟑 = 𝒕
𝝏

 𝝏𝒙
+ 𝒙

𝝏

 𝝏𝒖
 ,  (49) 

𝑿𝟒 =
𝝏

 𝝏𝒖
,  (50) 

𝑿𝟓 =
𝝏

 𝝏𝒙
 . (51) 

    

2.3.    Invariant Solutions 

The symmetries lead to invariants.  The tool to use is the characteristic equation 

𝒅𝒙

𝝃(𝒕,𝒙,𝒖)
=

𝒅𝒕

𝝉(𝒕,𝒙,𝒖)
=

𝒅𝒖

𝜼(𝒕,𝒙,𝒖)
 . (52) 

  

2.3.1 The case for 𝑿𝟏 

The characteristic equations related to 𝑋1 are 

𝒅𝒙

−𝒙
=

𝒅𝒕

−𝟑𝒕
=

𝒅𝒖

𝒖
 . (53) 
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From (53) we determine our first invariant as follows: 

𝒅𝒙

−𝒙
=

𝒅𝒕

−𝟑𝒕
 , (54) 

  
𝒅𝒙

𝒙
=

𝒅𝒕

𝟑𝒕
 , (55) 

 𝐥𝐧 𝒙 =
𝟏

𝟑
𝐥𝐧 𝒕 + 𝐥𝐧 𝑲𝟏 , (56) 

 𝑲𝟏 =  𝒙𝒕−
𝟏

𝟑  , 
(57) 

 𝒓 =  𝒙𝒕−
𝟏

𝟑 . 
(58) 

  

We now use (53) to determine the second invariant: 

𝒅𝒕

−𝟑𝒕
=

𝒅𝒖

𝒖
 , (59) 

 −
𝟏

𝟑
𝐥𝐧 𝒕 + 𝐥𝐧 𝑲𝟐 = 𝐥𝐧 𝒖 ,  (60) 

 𝑲𝟐 = 𝒖𝒕−
𝟏

𝟑 , 
(61) 

 𝒗 = 𝒖𝒕
𝟏

𝟑 . 
(62) 

  

We use (62) to define 𝑢 in terms of 𝑣: 

𝒖 = 𝒗𝒕−
𝟏

𝟑 . 
(63) 

  

From our first invariant we can define 𝑣 as 

𝒗 = 𝑭(𝒓) . (64) 

 

This allows us to rewrite 𝑢 as 

𝒖 =  𝒕−
𝟏

𝟑𝑭(𝒙𝒕−
𝟏

𝟑) . 
(65) 

  

From (65), we determine 𝑢𝑡 , 𝑢𝑥 and 𝑢𝑥𝑥𝑥: 

𝒖𝒙 =  𝒕−
𝟐

𝟑 𝒗𝒓  , 
(66) 

 𝒖𝒙𝒙 =  𝒕−𝟏 𝒗𝒓𝒓 , (67) 
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𝒖𝒙𝒙𝒙 =  𝒕−
𝟒

𝟑 𝒗𝒓𝒓𝒓 , 
(68) 

  𝒖𝒕  = −
𝟏

𝟑
  𝒕−

𝟒

𝟑 (𝒗 + 𝒗𝒓) . 
(69) 

  

We substitute (66) to (69) into (1), and arrive at: 

−
𝟏

𝟑
  𝒕−

𝟒

𝟑 (𝒗 + 𝒗𝒓) + (𝒕−
𝟐

𝟑 𝒗𝒓)
𝟐

+

  𝒕−
𝟒

𝟑 𝒗𝒓𝒓𝒓 = 𝟎   . 

(70) 

  

From (70) we arrive at the ODE 

−
𝟏

𝟑
  (𝒗 + 𝒗𝒓) + 𝒗𝒓

𝟐 +  𝒗𝒓𝒓𝒓 = 𝟎.    (71) 

  

3. THE DIFFERENTIABLE TOPOLOGICAL MANIFOLDS 

In this section, we lay a foundation and elaborate on the approach used to find the 

solution of ODE Equation (71), which is borrowed from the method variation of 

parameters, that is mostly used to solve second-order non-homogeneous linear ordinary 

differential equations.  

𝓵
𝒅𝟐𝒚

𝒅𝒙𝟐 + 𝓶
𝒅𝒚

𝒅𝒙
+ 𝓷𝒚 = 𝓙(𝒙)  

(72) 

 Where ℓ, 𝓂 and 𝓃 are constants. 

3.1 The variation of parameters method 

We first consider the homogeneous form of (72) 

𝓙(𝒙) = 𝟎,  (73) 

 so that we get 

𝓵
𝒅𝟐𝒚

𝒅𝒙𝟐 + 𝓶
𝒅𝒚

𝒅𝒙
+ 𝓷𝒚 = 𝟎  

(74) 

 The complementary solution to (74)  is given as 

𝒚𝑪 =  𝑪𝟏𝒚𝟏 + 𝑪𝟐𝒚𝟐  (75) 

 Where 𝐶1 and 𝐶2 are the parameters that need to be varied.  At times, we will have to 

let   

𝝇𝒊 =  𝑪𝒊,    𝒘𝒉𝒆𝒓𝒆      𝒊 = 𝟏, 𝟐.  (76) 
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 Then we get this particular solution 

𝒚𝒂 =  𝝇𝟏𝒚𝟏 +  𝝇𝟐𝒚𝟐  (77) 

 We therefore have the general solution given as 

𝒚 =  𝒚𝑪 +  𝒚𝒂,  (78) 

 We will make use of these assumptions going forward. But the assumption that gave 

rise to (74) will be interpreted as describing points within quotient spaces. And the 

second assumption that lead to (76) , relates the space  to the entire differentiable 

topological manifold. 

 

3.2 Differentiable Topological Manifold 

We begin with the Haupsdorff topological space 𝒮 = (𝒳, 𝐽𝒳),  defined as a set 𝒳 with 

a topology 𝐽𝒳. And so, for it to be a differentiable topological manifold or simply a 

differentiable manifold, we need an atlas 𝐷. Thereafter we have 𝐾𝒮 =  (𝒳, 𝐽𝒳 , 𝐷). 

  We then consider points 𝓇 ∈ 𝑈𝓇  and 𝓈 ∈ 𝑈𝓈  such that the sets 𝑈𝓇  and 𝑈𝓈  are 

elements of the same manifold that is considered. We now can  build the sub-topologies 

(𝑈𝓇 , 𝐽𝒳|𝑈𝓇
) and (𝑈𝓈, 𝐽𝒳|𝑈𝓈

).  If a mapping 𝑇𝑎, exists, and maps the space (𝑈𝓇 , 𝐽𝒳|𝑈𝓇
) 

into the Euclidean space (ℝ𝑁, 𝒮ℝ𝑁|𝑇𝓇
(𝑈𝓇).  Also, 𝑇𝓈  maps (𝑈𝓈, 𝐽𝒳|𝑈𝓈

)  into the 

Euclidian space  (ℝ𝑁, 𝒮ℝ𝑁|𝑇𝓈
(𝑈𝓈).  

  If these mapping are homomorphisms, then the set  

𝑲 =  {(𝑼𝓻, 𝑻𝓻), (𝑼𝓼, 𝑻𝓼)} , (79) 

 is called an atlas, where 𝑇𝓇 , 𝑇𝓈 are called coordinates. 

  We now concentrate on one of the cherts mapping equivalence classes 

𝑲 =  {([𝑼𝓻], [𝑻𝓻]), (𝑼𝓼, 𝑻𝓼)} . (80) 

 Similarly, for mapping manifolds in derivatives of 𝑇, we get atlases, 

₭(𝒊) =  {([𝑼𝓻], [𝐓(𝓻)
(𝒊)

]) , (𝑼𝓼, 𝐓(𝓼)
(𝒊)

)} . (81) 

  

3.2.1 Transition mapping 

The mapping from (ℝ𝑁, 𝐽ℝ|T([𝑈𝓇]))  to (ℝ𝑁, 𝐽ℝ|T([𝑈𝓈])), having stepped down from  ℝ𝑁 

to ℝ, is given by 

𝑻𝓻 (𝑻𝓼
−𝟏(𝑻𝓼([𝑼𝓻]))) , (82) 
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 is called a transition mapping, and its inverse 

𝑻𝓼 (𝑻𝓻
−𝟏(𝑻𝓻([𝑼𝓼]))) . (83) 

Our main focus is in the cases where [𝑈𝓇] and [𝑈𝓈] overlap such that we have point 𝑤 

in the neighbourhood of both 𝓇 and 𝑞 such that: 

[𝑻[𝒘]] =  𝑻(𝒘).  (84) 

 The transmission mapping in derivative spaces,  leads to  

𝒅𝒏[𝑻[𝒘]]

𝒅𝒘𝒏 =  
𝒅𝒏𝑻(𝒘)

𝒅𝒘𝒏  , (85) 

 for n = 1, 2, 3, …  

 

3.2.2 Tangent Spaces 

The tangent spaces are useful in finding a function 𝒥, that projects the results into metric 

space. A vector can be represented as a tangent space, as  

𝑷𝑸 = {𝑽𝜰,𝑸⃒𝜰 ∶  ℝ → 𝓧} , 
(86) 

 such that 

𝑽𝜰,𝑸𝓙 = (𝓙  ⃘ 𝜰−𝟏)[𝜰(𝝉𝟎)],  (87) 

 where 𝒥𝜖𝐶∞(𝒳), 𝑉𝛶,𝑄: 𝐶∞(𝑀) → ℝ, 𝛶(𝜏0) = 𝑄.  

Now 𝑃𝑄 is a tangent space which has the basis vectors {𝜕𝒳𝑖}. Thus represented by 

𝓧 =  𝝃𝒊 𝝏

𝝏𝓧𝒊 |𝑸 , (88) 

 where 𝒳 𝜖 𝑃𝓇𝒳 = 𝑃𝓇𝑀. 

 

3.2.3 Cotangent Spaces 

A tangent space is a vector space, and where there exist a vector space there should also 

be a co-vector space, and  hence the cotangent space. It is the set of all maps in the 

tangent space to ℝ.  That is, 

𝝎 ∶ 𝑷𝓻𝓧 → ℝ , (89) 

 where 𝜔 is an element of the cotangent space. A cotangent space is 

𝑷𝑸∗ = {(𝒅𝓙)𝓻|𝓙 ∈ 𝑪∞(𝓧)},  (90) 

 and is a vector space with the dual of 𝑃𝑄.   
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The basis of a cotangent space needs 

(𝒅𝝎𝒋)𝓻 (
𝝏

𝝏𝒙𝒊) |𝑸 =  𝝈𝒊
𝒋
,  (91) 

so that: 

(𝓟𝓠∗) = {
𝝏

𝝏𝒘𝒊}|𝓻 . (92) 

 And thereafter we can write 𝜔, as an element of of  𝑇𝑄∗ as  

𝝎 =  𝝎𝒊(𝒅𝒘𝒊)|𝓻 . (93) 

  

3.3 Quotient Spaces 

The general ordinary differential equation 

𝓙(𝒘, 𝑻, 𝑻′, 𝑻′′, 𝑻𝟑, … )  (94) 

 with 

𝑻: 𝓧 → 𝒀 , (95) 

 a set  

𝒍 = {𝒘𝟎, 𝒘𝟏, 𝒘𝟐, … } ⊂ 𝓧,  (96) 

 such that 

𝒘𝒊 =  𝑸(𝒘𝒋) =  𝒘𝒋 + 𝟐𝝅𝒕𝒂 , (97) 

 with 𝑡𝑎  being an equivalence class, which is an integer. Which leads to a quotient 

space, ℝ/∼, that is a set of all equivalent classes given by 

ℝ/∼=  {[𝒘𝟎], [ 𝒘𝟏], [𝒘𝟐], … }.  (98) 

 Equation (98) generates a differentiable topological Space. In this state, the image of 

topological space is an equivalence class: 

𝒍 =  {[𝑻(𝒘𝟎)], [𝑻(𝒘𝟏)], [𝑻(𝒘𝟐)], … } , (99) 

 which is a homomorphism that extends to the derivative spaces 𝑃, which is equal to: 

{[𝑻(𝒊)(𝒘𝟎)], [𝑻(𝒊)(𝒘𝟏)], [𝑻(𝒊)(𝒘𝟐)], … } 

, 

(100) 

 for 𝑖 = 1, 2, 3, … 
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4  THE SOLUTION THROUGH 𝑿𝟏 

We now apply the method in section 3 to the ODE which was obtained with the use of 

the invariant solutions. We differentiate equation (71) to get:  

𝑣(4) (𝑦) + 2𝑣′(𝑦)𝑣′′(𝑦) +

 
1

3
(−𝑦𝑣′′ (𝑦) − 2𝑣′ (𝑦)) = 0.  

(101) 

 From equation (101), we set 𝑣(4) = 0 and 𝑣′′ = 0, we get: 

−
2

3
𝑣′ (𝑦) = 0.  (102) 

 We then differentiate, setting 𝑣′′ =  
𝑎 sin(𝑖𝜔𝑦+𝜙)

𝑖𝜔
 and  𝜙 = 0, we get  

𝑣′′ =
𝑎 sin(𝑖𝜔𝑦)

𝑖𝜔
.  (103) 

 From equation (103) above, we can determine:  

𝑣(3) = 𝑎 𝑐𝑜𝑠(𝑖ω𝑦),  (104) 

 𝑣(4) = −𝑎𝑖ω 𝑠𝑖𝑛(𝑖ω𝑦),  (105) 

𝑣′ = −
𝑎 𝑐𝑜𝑠(𝑖ω𝑦)

(𝑖ω)2 + 𝑏1,  (106) 

 𝑣 = −
𝑎 𝑠𝑖𝑛(𝑖ω𝑦)

(𝑖ω)3 + 2𝑦𝑏1 + 𝑏2.  (107) 

 Then the equivalence classes, setting sin (𝑖𝜔𝑦) = 0 and cos (𝑖𝜔 𝑦) = 1, are: 

[𝑣(4)] = 0,  (108) 

  [𝑣(3)] = 𝑎,  (109) 

 [𝑣′′] = 0,  (110) 

 [𝑣′] = −
𝑎

(𝑖ω)2 + 𝑏1.  (111) 

 And the finally, we have 

[𝑣] = 2𝑦𝑏1 + 𝑏2.  (112) 

 The equivalence classes are then satisfied.  

We now have 

𝑏1 = −
𝑎

𝜔2 . .(113) 
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 We then integrate the original ODE, and get 

𝑎 𝑐𝑜𝑠(𝑖ω𝑦) + (−
𝑎

ω2 −
𝑎 𝑐𝑜𝑠(𝑖ω𝑦)

(𝑖ω)2 )
2

+

1

3
(

2𝑎𝑦

ω2 − 𝑦 (−
𝑎

ω2 −
𝑎 𝑐𝑜𝑠(𝑖ω𝑦)

(𝑖ω)2 ) +

𝑎 𝑐𝑜𝑠(𝑖ω𝑦)

(𝑖ω)3 − 𝑏2) = 0.  

(114) 

 Setting cos(𝑖𝜔𝑦) = 1, sin (𝑖𝜔𝑦) = 0 and expanding yields 

3𝑎2𝑦

2𝜔4 +
𝑎𝑦2

2𝜔2 −
𝑦𝑏2

3
+ 𝑐1 = 0.  (115) 

 Solving (115) gives 

𝑏2 =  
3(𝑎2𝑦+𝑎𝑦2𝜔2+2𝜔2𝑐1)

2𝑦𝜔4 .  (116) 

 We then integrate for the second time, using the same settings we set in the first 

integration, and solve: 

−
15𝑎2

8𝜔6 −
𝑎𝑦

3𝜔4 +
3𝑎2𝑦2

4𝜔4 +
𝑎

𝜔2 +
𝑎𝑦3

6𝜔2 +

𝑦𝑐1 + 𝑏1 + 𝑐2 = 0,  

(117) 

gives 𝑏1 =
𝑦(3𝑎2𝑦+𝑎𝑦2𝜔2+2𝜔4𝑐1)

4𝜔4 .  

Integrating for the third time, with the same settings made previously, we have:  

2𝑎

3𝜔6 +
𝑎2𝑦3

4𝜔4 +
𝑎𝑦4

24𝜔2 +
𝑦2𝑐1

2
− 𝐵2 +

𝑦𝑐2 + 𝑐3 = 0,  

(118) 

 gives 𝐵2 =
𝑦2(3𝑎2𝑦+𝑎𝑦2𝜔2+2𝜔4𝑐1)

12𝜔4 .  

We can therefore determine 𝑎 as 

𝑎 =
8𝜔6(𝑦2𝑐1+3𝑦𝑐2+3𝑐3)

𝑦4𝜔6−16
 . (119) 

 And we now determine 𝜔.  Collecting the numerator: 

𝜔2 (256 𝑐1 𝑦3 + 768 𝑐2 𝑦2 +

768 𝑐3𝑦) + 𝜔4(−32 𝑐1𝑦5 +

192 𝑐3𝑦3 − 768 𝑐1 𝑦2 − 2304 𝑐2 𝑦 −

2304𝑐3) + 𝜔8 (−𝑐1𝑦9 − 6𝑐2 𝑦8 −

12𝑐3𝑦7  + 48 𝑐1 𝑦6 + 144 𝑐2 𝑦5 +

144 𝑐3 𝑦4) + 𝜔6 (−16 𝑐1 𝑦7 −

48 𝑐2 𝑦6 − 48 𝑐3 𝑦5 − 720 𝑐1
2 𝑦4 −

(120) 
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4320 𝑐1 𝑐2 𝑦3 − 6480 𝑐2
2 𝑦2 −

4320 𝑐1 𝑐3 𝑦2 − 12960 𝑐2 𝑐3 𝑦 −

6480 𝑐3
2) + 768 𝑐1 𝑦 + 1536 𝑐2 =0. 

Tis equation solves into eight solutions. All cannot be displayed her.  We thus present 

only solution. It solves into  

𝜔2  

=  −√𝑓1 −
𝑓2

𝑓3
+

𝑓4

𝑓5
−

1

2
√

𝑓6

𝑓7
−

𝑓8

𝑓9
−

𝑓10

𝑓11
   , 

(121) 

 

where 

𝑓1 = −4
C1y3

𝑔1
− 12 C2

y2

𝑔1
− 12 C3

y

𝑔1
− 180

C1
2

𝑔1
− 1080

C1C2

𝑔1
− 1620

C2
2

y2g1
− 1080

C1C3

y2g1 
  −

3240C2C3

y3𝑔1
 −

1620
C3

2

y4𝑔1
   

(122) 

 𝑔1 = 𝐶1  y5 + 6 C2 y4 + 12 C_3 y^3 − 48 C_1 y^2 − 144 C2 y − 144 C3  (123) 

 𝑓2 =
−32 𝐶1𝑦5−6𝐶3𝑦3+72 𝐶3

𝑦4𝑔1
+

64 (𝑔3)2

𝑦8𝑔1
2  +

32 𝑔4

3𝑔1
2  +

√(1024 𝑔4  − 9216 (𝐶1  𝑦 + 2 𝐶2) (𝐶1  𝑦9 + 6 𝐶2 𝑦8 + 12 𝐶3𝑦7 − 48 𝐶1 𝑦6 − 144 𝐶2 𝑦5 − 144 𝐶3  𝑦4)3 +

12288 (𝐶1  𝑦3 + 3 𝐶2 𝑦2 + 3 𝐶3𝑦)(𝐶1 𝑦7 + 3 𝐶2 𝑦6 + 3 𝐶3  𝑦5 + 45 𝐶1
2 𝑦4 + 270 𝐶1  𝐶2  𝑦3 + 405 𝐶2

2 𝑦2 +

270 𝐶1 𝐶3 𝑦2 + 810 𝐶2 𝐶3 𝑦 + 405 𝐶3
2),  

(124) 

𝑔3 = 𝐶1  𝑦7 + 3 𝐶2  𝑦6 + 3 𝐶3  𝑦5 + 45 𝐶1
2 𝑦4 + 270 𝐶1 𝐶2 𝑦3 + 405 𝐶2

2 𝑦2 + 270 𝐶1  𝐶3  𝑦2 +

810 𝐶2  𝐶3  𝑦 + 405 𝐶3
2  , 

(125) 

 𝑔4 = 𝐶1𝑦5 − 6 𝐶3  𝑦3 + 24 𝐶1 𝑦2 + 72 𝐶2 𝑦 + 72 𝐶3 ,  (126) 

 𝑓3 = 3𝑦4(𝐶1𝑦5 + 6 𝐶2𝑦4 + 12 𝐶3𝑦3 − 48 𝐶1𝑦2 − 144𝐶2  𝑦 − 144 𝐶3)(65536 (𝐶1 𝑦5 − 6 𝐶3 𝑦3 +

24 𝐶1 𝑦2 + 72 𝐶2  𝑦 + 72 𝐶3)3 + 1769472 (𝐶1  𝑦3 + 3 𝐶2  𝑦2 + 3 𝐶3 𝑦)2(𝑔5) + 1769472 (𝐶1𝑦 +

2 𝐶2)(𝐶1𝑦5 − 6 𝐶3𝑦3 + 24 𝐶1𝑦2 + 72 𝐶2𝑦 + 72 𝐶3)𝑔5 + 1179648(𝐶1  𝑦3 + 3 𝐶2  𝑦2 + 3 𝐶3  𝑦)(𝐶1 𝑦5 −

6 𝐶3 𝑦3 + 24 𝐶1 𝑦2 + 72 𝐶2  𝑦 + 72 𝐶3)(𝐶1  𝑦7 + 3 𝐶2  𝑦6 + 3 𝐶3 𝑦5 + 45 𝐶1
2 𝑦4 + 270 𝐶1 𝐶2 𝑦3 +

405 𝐶2
2 𝑦2 + 270 𝐶1 𝐶3  𝑦2 + 810 𝐶2 𝐶3 𝑦 + 405 𝐶3

2) + (65536 (𝐶1 𝑦5 − 6 𝐶3 𝑦3 + 24 𝐶1  𝑦2 +

72 𝐶2 𝑦 + 72 𝐶3)3 + 1769472 (𝐶1𝑦3 + 3 𝐶2  𝑦2 + 3 𝐶3  𝑦)2𝑔5 + 1769472 (𝐶1𝑦 + 2 𝐶2)(𝐶1𝑦5 −

6 𝐶3𝑦3 + 24 𝐶1𝑦2 + 72 𝐶2𝑦 + 72 𝐶3)𝑔5 ,   

(127) 

𝑔5 =  𝐶1  𝑦9 + 6 𝐶2 𝑦8 + 12 𝐶3  𝑦7 − 48 𝐶1  𝑦6 − 144 𝐶2 𝑦5 − 144 𝐶3  𝑦4  ,  (128) 

  𝑓4 =
1

2
√(−

𝑔8{128𝑔7}

𝑔9
−

{32 (𝐶1𝑦5−6 𝐶3𝑦3+24 𝐶1𝑦2+72 𝐶2𝑦+72 𝐶3)}

{3 𝑔6}
− (√2)

3
(1024 (𝐶1𝑦5 − 6 𝐶3𝑦3 +

24 𝐶1𝑦2 + 72 𝐶2𝑦 + 72 𝐶3)2 − 9216(𝑦𝐶1 + 2𝐶2)𝑔5 + 12288(𝑦3𝐶1 + 3𝑦2𝐶2 + 3𝑦𝐶3)(𝑦7𝐶1 +

45𝑦4𝐶1
2 + 3𝑦6𝐶2 + 270𝑦3𝐶1𝐶2 + 405𝑦2𝐶2

2 + 3𝑦5𝐶3 + 270𝑦2𝐶1𝐶3 + 810𝑦𝐶2𝐶3 + 405𝐶3
2),  

(129) 
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𝑔6 = (𝐶1𝑦9 + 6 𝐶2𝑦8 + 12 𝐶3𝑦7 − 48 𝐶1𝑦6 − 144 𝐶2𝑦5 − 144 𝐶3𝑦4),   (130) 

 𝑔7 = (𝐶1𝑦7 + 3 𝐶2𝑦6 + 3 𝐶3𝑦5 + 45 𝐶1
2𝑦4 + 270 𝐶1𝐶2𝑦3 + 405 𝐶2

2𝑦2 + 270 𝐶1𝐶3𝑦2 + 810 𝐶2𝐶3𝑦 +

405 𝐶3
2)2   , 

(131) 

  

𝑓5 = (3𝑦4𝑔1)(65536 𝑘1
3 + 1769472(𝑦3𝐶1 + 3𝑦2𝐶2 + 3𝑦𝐶3)2𝑔5 + 1769472(𝑦𝐶1 +

2𝐶2)(24𝑦2𝐶1 + 𝑦5𝐶1 + 72𝑦𝐶2 + 72𝐶3 − 6𝑦3𝐶3)𝑔6 + 1179648(𝑦3𝐶1 + 3𝑦2𝐶2 +

3𝑦𝐶3)𝑘1𝑘2 − 5308416(𝑦𝐶1 + 2𝐶2)𝑘2 − (65536𝑘11769472(𝑦3𝐶1 + 3𝑦2𝐶2 +

3𝑦𝐶3)2𝑔5 + 1179648(𝑦3𝐶1 + 3𝑦2𝐶2 + 3𝑦𝐶3)𝑘1𝑘2,   

(132) 

 𝑘1 = 24𝑦2𝐶1 + 𝑦5𝐶1 + 72𝑦𝐶2 + 72𝐶3 − 6𝑦3𝐶3   (130) 

 𝑘2 = 𝑦7𝐶1 + 45𝑦4𝐶1
2 + 3𝑦6𝐶2 + 270𝑦3𝐶1𝐶2 + 405𝑦2𝐶2

2 + 3𝑦5𝐶3 +

270𝑦2𝐶1𝐶3 + 810𝑦𝐶2𝐶3 + 405𝐶3
2 ,  

(131) 

 𝑓7 = (3 ∗ 21 3⁄ 𝑦4(𝑔5)) − (
2048(𝑦2𝐶1+3𝑦𝐶2+3𝐶3)

𝑦3(𝑔5)
) +

2048𝑘1𝑘2

𝑦8(𝑔5)2 −
4096(𝑘2)3

𝑦12(𝑔5)3  ,  (132) 

 𝑓8 = (21 3⁄ (1024(𝑘1)2 − 9216(𝑦𝐶1 + 2𝐶2)(𝑔5) + 12288(𝑦3𝐶1 + 3𝑦2𝐶2 +

3𝑦𝐶3)(k2))) , 

(133) 

  

𝑓9 = 3𝑦4(𝑔5)(65536(𝑘1)3 + 1769472(𝑦3𝐶1 + 3𝑦2𝐶2 + 3𝑦𝐶3)2(𝑔5) +

1769472(𝑦𝐶1 + 2𝐶2)(𝑔5𝑘1) + 1179648(𝑦3𝐶1 + 3𝑦2𝐶2 + 3𝑦𝐶3)(𝑘1𝑘2) −

5308416(𝑦𝐶1 + 2𝐶2)(k2)2 + √(−4(1024(𝑘1)2 − 9216(𝑦𝐶1 + 2𝐶2)(𝑔5) +

12288(𝑦3𝐶1 + 3𝑦2𝐶2 + 3𝑦𝐶3)(k2))3 + (65536(𝑘1)3 + 1769472(𝑦3𝐶1 + 3𝑦2𝐶2 +

3𝑦𝐶3)2(𝑔5) + 1769472(𝑦𝐶1 + 2𝐶2)(𝑔5𝑘1) + 1179648(𝑦3𝐶1 + 3𝑦2𝐶2 +

3𝑦𝐶3)(𝑘1𝑘2) − 5308416(𝑦𝐶1 + 2𝐶2)(k2)2)2))1 3⁄  , 

(134) 

 𝑓10 = 65536(𝑘1)3 + 1769472(𝑦3𝐶1 + 3𝑦2𝐶2 + 3𝑦𝐶3)2(𝑔5) + 1769472(𝑦𝐶1 +

2𝐶2)(𝑔5𝑘1) + 1179648(𝑦3𝐶1 + 3𝑦2𝐶2 + 3𝑦𝐶3)(𝑘1𝑘2) − 5308416(𝑦𝐶1 +

2𝐶2)(𝑘2)2 + √(−4(1024(𝑘1)2 − 9216(𝑦𝐶1 + 2𝐶2)(𝑔5) + 12288(𝑦3𝐶1 + 3𝑦2𝐶2 +

3𝑦𝐶3)(𝑘2))
3

+ (65536(𝑘1)3 + 1769472(𝑦3𝐶1 + 3𝑦2𝐶2 + 3𝑦𝐶3)2(𝑔5) +

1179648(𝑦3𝐶1 + 3𝑦2𝐶2 + 3𝑦𝐶3)(𝑘1𝑘2) − 5308416(𝑦𝐶1 + 2𝐶2)2)2))

1

3
   , 

(135) 

  

 = 3 ∗ 21 3⁄ 𝑦4𝑔1 . (136) 

 We can use the above solution of equation (120) to carry out a conclusion and visualize 

the solution. The solution in 𝑣 can be presented as 
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𝑣[𝑦] = −

𝑎Sin[𝑖𝑦𝜔]

𝑖3𝜔3
+ 2𝑦𝑏1 + 𝑏2. 

(140) 

 

A plot is possible when all parameters are known.  We examine the case for which 𝑐1 =

1, 𝑐2 = 1, 𝑐3 = 1 , and is plotted in Figure 1.  This is the solution in 𝑢. 

 

 

Figure 1: 2D Plot of 𝑢. 

 

The solution illustrated in Figure 1, can also be visualized in 3D.  

 

Figure 2: 3D plot of figure 1. 

 

Figure 3 compares favorably with our results, presented in Figure 2. 



An analysis of the potential Korteweg-DeVries equation through regular… 63 

 

 

Figure 3 : Numerical solution for 𝑞 by [9]. Biswas, Kumar, Krishnan, Ahmed, 

Strong, Johnson, and Yildrin have shown Figure 3 corresponds with the results that 

lead to Figure 2. 

 

CONCLUSION 

In the figures illustrated in the previous section, two different methods were used to 

arrive to a solution. Figure 3 is a small portion of Figure 2, therefore the two figures are 

similar. The methods in [16], although successful at arriving at a solution, is tedious. 

This approach, requires setting numerical results, as can be seen by the plot. In this 

paper we have illustrated that the method of differentiable manifolds, as introduced by 

[14],  yields solutions that are not restricted by any boundaries or assumptions. Figure 

1 illustrates that our results compare very well with the numerical results generated by 

a computer. The solutions obtained through coupling Lie symmetries with 

differentiable manifolds are superior than those previously obtained.  Our solutions 

were not reliant on any assumptions or restrictions on parameters. 
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