
submitted to acta physica slovaca 603– 725

QUANTUM WALKS∗

Daniel Reitzner
Department of Mathematics, Technische Universität München, 85748 Garching, Germany

Daniel Nagaj, Vladimı́r Bužek
Research Center for Quantum Information, Institute of Physics, Slovak Academy of Sciences,

Dúbravská cesta 9, 845 11 Bratislava

Received 16 July 2012, accepted 20 July 2012

This tutorial article showcases the many varieties and uses of quantum walks. Discrete time
quantum walks are introduced as counterparts of classical random walks. The emphasis is
on the connections and differences between the two types of processes (with rather different
underlying dynamics) for producing random distributions. We discuss algorithmic applica-
tions for graph-searching and compare the two approaches. Next, we look at quantization
of Markov chains and show how it can lead to speedups for sampling schemes. Finally, we
turn to continuous time quantum walks and their applications, which provide interesting (even
exponential) speedups over classical approaches.

. . . I walk the line.
Johnny Cash

DOI: 10.2478/v10155-011-0006-6

PACS: 03.67.-a, 03.65.-w, 05.40.Fb

KEYWORDS: Quantum Walks, Random Walks, Quantum Algorithms, Markov Chains

Contents

1 Introduction 606

2 Classical Random Walks 607
2.1 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608
2.2 Properties of Random Walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609
2.3 Classical Random Walk Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 614

2.3.1 Graph Searching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
2.3.2 Solving Satisfiability Problems . . . . . . . . . . . . . . . . . . . . . . . 618
2.3.3 Markov Chain Monte Carlo Algorithms . . . . . . . . . . . . . . . . . . 619
2.3.4 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622
∗Small post-processing corrections were made at pages 653, 700, 707, and 711.

603

ar
X

iv
:1

20
7.

72
83

v2
  [

qu
an

t-
ph

] 
 1

5 
M

ay
 2

01
3



604 Quantum Walks

3 Quantum Walks: Using Coins 623
3.1 Drawing an Analogy from the Classical Case . . . . . . . . . . . . . . . . . . . 623
3.2 Dispersion of the Hadamard Quantum Walk on Line . . . . . . . . . . . . . . . . 625
3.3 Coined Quantum Walks on General Graphs . . . . . . . . . . . . . . . . . . . . 631

3.3.1 Scattering Quantum Walks (SQW) . . . . . . . . . . . . . . . . . . . . . 633
3.4 More on Coins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635

3.4.1 Two-dimensional Coins . . . . . . . . . . . . . . . . . . . . . . . . . . 635
3.4.2 General Coins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637

3.5 Characteristics of Quantum Walks . . . . . . . . . . . . . . . . . . . . . . . . . 639
3.5.1 Limiting Distribution and Mixing Time . . . . . . . . . . . . . . . . . . 639
3.5.2 Hitting Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641
3.5.3 Absorbing Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642
3.5.4 Quantum-to-classical Transition and Decoherence . . . . . . . . . . . . 644

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647

4 Quantum Walks and Searches 648
4.1 Grover Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648

4.1.1 Oracles and Searches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648
4.1.2 Grover’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650

4.2 Searches on Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653
4.3 Symmetry Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654
4.4 Search on a Complete Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656

4.4.1 Oracle Controlled Evolution . . . . . . . . . . . . . . . . . . . . . . . . 659
4.5 Other Examples of Searches on Graphs . . . . . . . . . . . . . . . . . . . . . . 661
4.6 Abstract Search Algorithm and Spatial Search . . . . . . . . . . . . . . . . . . . 665
4.7 Subset Finding and Related Problems . . . . . . . . . . . . . . . . . . . . . . . 667

4.7.1 Algorithm for k-subset Finding . . . . . . . . . . . . . . . . . . . . . . 668
4.7.2 Algorithm for Finding k-cliques in Graphs . . . . . . . . . . . . . . . . 671

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673

5 Quantizing Markov Chains 674
5.1 Walks on Two Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674
5.2 The Spectrum of the Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676
5.3 Speeding up Searching for Marked Vertices . . . . . . . . . . . . . . . . . . . . 678
5.4 Walks and Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680

5.4.1 Speeding up Mixing Using Quantum Walks . . . . . . . . . . . . . . . . 681
5.4.2 Markov Chain Monte Carlo (MCMC) Methods . . . . . . . . . . . . . . 682
5.4.3 Quantizing MCMC Methods for Approximating Partition Functions . . . 685
5.4.4 Quantum Metropolis Sampling . . . . . . . . . . . . . . . . . . . . . . . 689

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691



CONTENTS 605

6 Continuous Time Quantum Walks 692
6.1 Quantizing Continuous Random Walks . . . . . . . . . . . . . . . . . . . . . . . 692

6.1.1 Walking in 1D and Mixing . . . . . . . . . . . . . . . . . . . . . . . . . 693
6.1.2 Symmetries and Continuous-time Quantum Walks . . . . . . . . . . . . 697

6.2 Spatial Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700
6.2.1 Complete Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701
6.2.2 Searching on the Hypercube and on Finite-dimensional Lattices . . . . . 702

6.3 NAND Trees and Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703
6.4 Quantum Walks and Universal Quantum Computation . . . . . . . . . . . . . . . 706
6.5 Connecting Continuous Time and Discrete Time Quantum Walks . . . . . . . . . 708
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711

Acknowledgements 711

Appendices 712

A Limiting Distribution of Classical Random Walks 712

B Evolution of Hadamard Walk in Detail 715
B.1 Method of Stationary Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715
B.2 Hadamard Walk Evolution Approximation . . . . . . . . . . . . . . . . . . . . . 715

C Catalan Numbers 717

D Grover’s Fixed-point Search 719

References 721



606 Quantum Walks

1 Introduction

For a physicist, a quantum walk means the dynamics of an excitation in a quantum-mechanical
spin system described by the tight-binding (or other similar model), combined with a measure-
ment in a position basis. This procedure produces a random location, with a prescription for
computing the probability of finding the excitation at a given place given by the rules of quantum
mechanics.

For a computer scientist or mathematician, a quantum walk is an analogy of a classical ran-
dom walk, where instead of transforming probabilities by a stochastic matrix, we transform
probability amplitudes by unitary transformations, which brings interesting interference effects
into play.

However, there’s more to quantum walks, and the physics and computer science worlds have
been both enriched by them. Motivated by classical random walks and algorithms based on
them, we are compelled to look for quantum algorithms based not on classical Markov Chains
but on quantum walks instead. Sometimes, this “quantization” is straightforward, but more often
we can utilize the additional features of unitary transformations of amplitudes compared to the
transfer-matrix-like evolution of probabilities for algorithmic purposes. This approach is amaz-
ingly fruitful, as it continues to produce successful quantum algorithms since its invention. On
the other hand, quantum walks have motivated some interesting results in physics and brought
forth several interesting experiments involving the dynamics of excitations or the behavior of
photons in waveguides.

Our article starts with a review of classical random-walk based methods. The second step
is the search for an analogy in the quantum world, with unitary steps transforming amplitudes,
arriving at a new model of discrete-time quantum walks. These return back to classical random
processes when noise is added to the quantum dynamics, resulting in a loss of coherence. On
the other hand, when superpositions come into play, discrete-time quantum walks have strong
applications in graph searching and other problems. Next, we will look at how general Markov
chains can be quantized, and utilized in physically motivated sampling algorithms. Finally, we
will investigate our original motivation – analyzing the dynamics of an excitation in a spin sys-
tem, and realize that this is also a quantum walk, in continuous-time. We will investigate its
basic properties, natural and powerful algorithms (e.g. graph search and traversal), and compu-
tational power (universality for quantum computation). Finally, we will conclude with a view of
the analogy and relationship to discrete-time quantum walks.

The paper is writen as a tutorial with the aim of clarifying basic notions and methods for
newcomers to the topic. We also include a rich variety of references suitable for more enthusiastic
readers and experts in the field. We know that such a reference list can never be truly complete,
just as this work can not contain all the things we had on our minds. We had to choose to
stop writing, or the work would have remained unpublished forever. As it stands, we believe it
contains all the basic information for the start of your journey with quantum walks.

Let’s walk!



Classical Random Walks 607

2 Classical Random Walks

To amuse students, or to catch their attention, it is quite usual to start statistical mechanics uni-
versity courses with the drunkard’s walk example. We are told the story of a drunken sailor who
gets so drunk that the probability for him to move forward on his way home is equal to the prob-
ability to move backward to the tavern where he likes to spend most of his time when he is not
at sea. Looking at him at some point between the tavern and his home and letting him make a
number of drunken steps, we ask where will we find him with the highest probability?

This seemingly trivial problem is very important. In fact, it can be retold in many various
ways. For example the Galton’s board [1] device, also known as the quincunx (see Fig. 2.1), has
the same properties as the drunkard’s walk. Balls are dropped from the top orifice and as they
move downward, they bounce and scatter off the pins. Finally, they gather and rest in the boxes
on the bottom. The number of balls in a box some distance from the horizontal position of the
orifice can be mapped (is proportional) to the probability for the drunken sailor to be found at a
particular distance from the tavern (after a specific number of steps corresponding to the vertical
dimension of the quincunx). This is due to the fact, that the ball on its way downward scatters
from the pins with approximately the same probability to the left as to the right — it moves in
the same manner as the sailor on his way from the tavern. Another retelling of the sailor’s story
is the magnetization of an ideal paramagnetic gas1 of spin-1/2 particles. Tossing a coin is yet
another example of drunkard’s walk.

Fig. 2.1. A possible realization of the drunkard’s walk – the quincunx (Galton’s board). The number of
marbles in a bin at the bottom correspond to the probability of the sailor to be at that position after taking
19 random steps (the number of pins a falling marble encounters on its way down).

1It is an ensamble of magnetic particles (in this case without any external field), that do not interact — they do not
feel each other.



608 Quantum Walks

This simple walk on a line is not just an example of some simple problems. It serves as a
toy model and starting point for more involved variations. These modifications of the drunkard’s
walk spread across many branches of science and their position is justified by the results they
provide. The roots of random walks, however, lie in the areas of mathematics, economy and
physics. Probably the earliest (1900) attempt to describe random walks originates in the doctoral
thesis of Bachelier [2], who considered the evolution of market prices as a succession of random
changes. His thesis, however, was not very rigorous and random walks had to wait to be defined
properly from a mathematical viewpoint. This was done by Wiener [3] in 1923. In physics it was
Einstein [4], who in his theoretical paper on Brownian motion from 1905 put the first theoretical
description of a random walk in natural sciences with explanation based on the kinetic theory,
where gases (and liquids) are considered to be composed of many small colliding particles — it
was aimed to explain thermodynamical phenomena as statistical consequences of such movement
of particles. Einstein speculated, that if (as he believed) the kinetic theory was right, then the
seemingly random Brownian motion [5] of large particles would be the result of the action of
myriads of small solvent particles. Based on kinetic theory, he was able to describe the properties
of the motion of the solute particles — i.e. connect the osmotic pressure of these particles with
their density — and show the connection with the diffusive process. Assuming the densities of
solvent and solution are known, an experiment based on the barometric formula stating how the
pressure changes with altitude provides us with the kinetic energy of solute particles at a given
temperature. Hence, the Avogadro number can be estimated. This, indeed, has been done [6] and
strengthened the position of the kinetic theory at that time.

2.1 Markov Chains

Random walks have been formulated in many different ways. Generally, we say that a random
walk is a succession of moves, generated in a stochastic (random) manner, inside a given state
space Ω that generally has a more complex structure than a previously mentioned liear chain
(drunkard’s walk). If the stochastic moves are correlated in time, we talk about non-Markovian
walks (walks with memory), however, for our purposes we will always assume the walks to
be Markovian – the random moves of the walker are uncorrelated in time. Note, though, that
the stochastic generator may be position dependent. The sequences of such moves result in the
so-called Markov Chains.

Taking only one instance (path) of a random walk is, naturally, not enough to devise the
general properties of the phenomenon of random walks. That is why we consider the evolution
of distributions on state space Ω. These distributions are the averages over many instances of a
random walk of a single walker (or an ensemble of walkers). In such case, for a Markovian walk
in a countable space2 Ω, we define a distribution

p =


p1

p2

p3

...


2The topic of uncountable spaces is not important for the scope of this work.



Classical Random Walks 609

over indexed states, with pk corresponding to the probability of finding the walker at the position
with index k. For p to define a probability, it is necessary that∑

k

pk = 1.

In this framework, the stochastic generator that describes the single-step evolution of a distribu-
tion function is given as a stochastic matrix3 M , giving the one-step evolution of a distribution p
into p′ as

p′ = Mp.

Having the matrix M and an initial state p(0), the distribution after m steps is described by the
formula

p(m) = Mmp(0). (2.1)

The allowed transitions (steps) of the random walker from position i to position j are reflected
within M by the condition Mji 6= 0. For now, we also assume (although it is not necessary)
a weak form of symmetry in the transitions by requiring that Mij is also not zero. Forbidden
transitions correspond to the condition Mji = Mij = 0. The allowed transitions reflected in
the non-zero elements of M induce a graph structure G = (V,E) on Ω. Here V = Ω is a
set of vertices (corresponding to states) and E = {(j, i) : j, i ∈ Ω,Mji 6= 0} is a set of
ordered pairs of vertices (oriented edges, corresponding to transitions) – the allowed connections
between vertices. Conversely, we may say that the graph structure defines allowed transitions.
For simplicity, from now on we will use the notation ij instead of (i, j) for the oriented edges.

The graph structure is not the only thing reflected in M . The coefficients of M also define
the transitional probabilities to different states and in this manner reproduce the behaviour of
the stochastic generator, usually called a coin. For an unbiased coin, which treats all directions
equally, the coefficients of M are defined as

Mji =

{
1
d(i) for (i, j) ∈ E,

0 otherwise,
(2.2)

with d(i) being the degree of the vertex i. If this is not true, we say that the coin is biased,
preferring some directions above others.

2.2 Properties of Random Walks

When studying properties of random walks we search for specific properties that (potentially)
help us solve various posed problems. Sometimes we want to know where the walker is after
some time, in other cases we may want to know how much time does the walker take to arrive
at some position or what is the probability of the walker to get there in given time. Another
question asks how much time we need to give the walker so that finding him in any position has

3A stochastic matrix is a real matrix with columns summing to 1, which preserves the probability measure, i.e. all its
elements are positive and smaller than one.



610 Quantum Walks

approximately the same probability. All these questions are not only interesting, but also useful
for the construction (and understanding) of randomized algorithms.

If we are concerned with an unbiased random walk in one dimension (the so called drunkard’s
walk introduced in the previous Chapter), according to the central limit theorem, the distribution
very quickly converges to a Gaussian one. The standard deviation of the position of the walker
becomes proportional to

√
m, wherem is the number of steps taken. Such an evolution describes

a diffusive process.
All the routes to get from position 0 to position x (positive or negative) after performing m

steps are composed of n+ = (m + x)/2 steps upward and n− = (m − x)/2 steps downward.
This is under supposition of what we shall call modularity – after an even (odd) number of steps,
the probability to find the walker on odd (even) positions is always zero, constraining m + x
to be even (this is consequence of bipartite character of the graph). The number of these paths
characterized by specific n± is

N(x,m) =

(
m

n+

)
=

m!

n+!n−!
.

The number of all possible paths is N(m) = 2m and, hence, the probability to find the walker at
position x is Prw(x,m) = N(x,m)/N(m). Using Stirling’s approximation

n! ∼
√

2πn
(n

e

)n
,

we can express the probability of finding the walker at x after m steps as

Prw(x,m) =
m!

2m n+!n−!

'
√

2

mπ

[(
1 +

x

m

)(
1− x

m

)]−m2 (
1 +

x

m

)− x−1
2
(

1− x

m

) x−1
2

'
√

2

mπ

[
1− x2

m2

]−m2
,

where we assumed m � x, making the last two terms in the second line approximately one. In
the limit of large m and small x, this approximation can be further transformed into the formula4

Prw(x,m) ' 2√
2πm

exp

(
− x2

2m

)
.

The function Prw is not yet a probability distribution as it is normalized to 2, but we have to
recall the modularity of the walk telling us, that after even number of steps, the walker cannot be
on odd position and after odd number of steps, the walker cannot be on even position; this leads
us to a probability distribution having form

prw(x,m) =
1 + (−1)m−x√

2πm
exp

(
− x2

2m

)
. (2.3)

4Employ limx→∞
(
1− 1

x

)x
= e.



Classical Random Walks 611

Finally, we observe

〈x2〉 ≡
∞∑

x=−∞
x2prw(x,m) ' 1

2

∫ ∞
−∞

x2Prw(x,m)dx = m,
√
〈x2〉 =

√
m, (2.4)

where we approximated the modular probability distribution by a smooth one, Prw/2.
The standard deviation of a walker is thus proportional to

√
m, and this fact may be deduced

even without the knowledge of the limiting distribution (see e.g. Ref. [7]). The position of the
walker x is in fact a sum of m independent variables (steps up and down) y1, . . . , ym:

x =

m∑
j=1

yj .

The square of the standard deviation then reads

σ2(m) = 〈|x− 〈x〉|2〉 = 〈x2〉 − 〈x〉2 =

〈 m∑
j=1

yj

m∑
l=1

yl

〉
−
〈 m∑
j=1

yj
〉2
.

As the yj’s are independent, the sums and averages can be exchanged, giving us

σ2(m) =

m∑
j=1

m∑
l=1

(
〈yjyl〉 − 〈yj〉〈yl〉

)
.

For j 6= l, the independence of the random variables yj is reflected in 〈yjyl〉 = 〈yj〉〈yl〉, so the
square of the standard deviation simplifies to

σ2(m) =

m∑
j=1

(
〈y2
j 〉 − 〈yj〉2

)
=

m∑
j=1

σ2
j = mσ2,

where σj are standard deviations of the random variables yj . In this case, they are are all the
same and equal to σj ≡ σ = 1. Thus we finally arrive at σ(m) =

√
m by a different route.

There are also other simple observations we can make. Let us list them here, with the aim of
later comparing them to the properties of the distributions arising from quantum walks.

Reaching an absorbing boundary. Let us look at the probability with which the walker returns
into its starting position. After leaving this position, the walker makes a move forward. Now
there is probability p10 for him to get back to the original position by taking all the possible
routes into consideration. Under closer inspection, we find that this probability consists of the
probability for him to make one step backward, which is 1/2 and the probability for him to get
back to the initial position only after moving further away from it first. This latter probability
equals 1

2p
2
10, since he moves forward with probability 1/2 and then has to move two steps back

with equal probabilities p10 (we suppose, that no matter how far from the initial position the
walker is, he always has equal probabilities to move forward and backward). To sum up, we see
that

p10 =
1

2
+

1

2
p2

10.



612 Quantum Walks

The only solution to this quadratic equation is p10 = 1. Let us interpret this result: the probability
for the walker to return to his initial position is equal to one, i.e. he always gets back. In other
words, if we employ an absorbing boundary at position 0 and start at position 1, the walker will
eventually hit the boundary.

This result can be extended to the statement that the probability of reaching vertex i from any
other vertex j is one. As the walk is translationally symmetric, the probability to get from any x
to x± 1 at any time is always the same, p10 = 1. Thus, the probability to get from j to i is

pji = p
|j−i|
10 = 1. (2.5)

This is quite different from quantum walks, where the probability to hit some boundary is not
one, as shown in Sec. 3.5.3.

Exercise 1 What is the probability p10 in general case, when the probability to move right is p
and the probability to move left is 1− p in each step?

Limiting distribution. Now let us step away from the example of a walk on a linear chain and
look at the larger picture, considering general graphs. For these, two quantities describing the
properties of random walks are widely used in the literature — the hitting time and the mixing
time. But first, let us have a closer look at walks with unbiased coins on finite graphs. It is
interesting to find, that all such graphs (if connected and non-bipartite) converge to its stationary
distribution π = (d(1), d(2), . . . , d(N))/2|E|, where d(j) stands for the degree of vertex j. It is
easy to see that this is a stationary distribution. For any vertex j we have

(Mπ)(j) =
∑

i: ji∈E
Mjiπ(i) =

∑
i: ji∈E

1

d(i)

d(i)

2|E|
=
d(j)

2m
= π(j).

This distribution is clearly uniform for regular graphs. In Appendix A we also provide a proof
that for connected and non-bipartite graphs, this distribution is unique and also is the limiting
distribution. With this notion we are ready to proceed to define the quantities of hitting and
mixing time.

Hitting time. It is the average time (number of steps) that the walker needs to reach a given
position j, when it starts from a particular vertex (c stands for classical)

hc(j) =

∞∑
m=0

mp(j,m). (2.6)

This quantity also makes sense for infinite graphs. We will later see (in Sec. 3.5.2) that for
quantum walks this quantity is defined differently, due to the fact that measurement destroys the
quantum characteristics of the walk.

Example 1 We have seen, that when the walker starts at position 1 she will eventually reach
position 0. Let us evaluate now the hitting time between these two positions. As the number of



Classical Random Walks 613

paths of length 2k which do not get to position 0 is determined by the Catalan number Ck (see
Appendix C), the probability for the walker to hit vertex 0 after 2k + 1 steps is

p2k+1 ≥
Ck

22k+1
,

where the inequality sign comes from the fact that we counted all 22k paths, even those crossing
and/or hitting 0. When we employ Eq. (2.6) and Eq. (C.5) we find, that

hc(1→ 0) ≥
∞∑
k=0

(2k + 1)Ck
22k+1

≥
√
π

e2

∞∑
k=0

1√
2k + 1

,

which diverges and so the hitting time is infinite, although the probability of eventually reaching
vertex 0 is

p10 =
1

2

∞∑
n=0

Cn
22n

=
1

2
c(1/4) = 1,

where c(x) is the generating function for Catalan numbers.

Exercise 2 Consider now, that the probability to jump from position 1 to 0 is p > 0. Starting at
position 1 we wait for one step and look whether the walker hit the boundary. If not we again set
the walker to position 1 and repeat procedure again and again until we hit the boundary. Show
that in such experiment the hitting time is

hc(1→ 0) =
1

p
. (2.7)

In this case the hitting time is finite. We could as well let the walker go for some time T in
which case the probability of hitting the boundary within this time would be some other p but
the hitting time would be expressed in the same way as in Eq. (2.7). This definition leads to
the emergence of tuples (T, p) with the hitting time given by Eq. (2.6) being just a special case
basically when p < 1 for T → ∞. Such definition seems to coincide more with the notion of
absorbing boundary — the probability of absorption is the smallest p for which (∞, p) describes
correct analouge of the hitting time given by Eq. (2.7). See also definition of hitting time in the
quantum case in Sec. 3.5.2.

Mixing time. The second important quantity is the classical mixing timeMc
ε. As we have seen

each unbiased random walk (on connected non-bipartite graphs) reaches a stationary distribu-
tion, which we denote π. The mixing time is then the time (number of steps) after which the
probability distribution remains ε-close to the stationary distribution π, i.e.

Mc
ε = min{T : ∀t ≥ T, |p(·, t)− π(·)|tvd ≤ ε}, (2.8)

where p(·, t) is the distribution in time t and | · |tvd is (total variational) distance of distributions,

|p(·, t)− π(·)|tvd ≡
∑
j

|p(j, t)− π(j)| . (2.9)



614 Quantum Walks

Again, we will later see in Sec. 3.5.1 that the mixing time is defined differently for quantum
walks, as they are unitary and converge to a stationary distribution only in a time-averaged sense.

In classical case mixing time depends on the gap between the first two eigenvalues λ1 = 1
(for the stationary distribution π) and λ2. The use is illustrated by the next theorem.

Theorem 1 (Spectral gap and mixing time)

λ2

(1− λ2) log 2ε
≤Mc

ε.

For closer details see e.g. Ref. [8].

2.3 Classical Random Walk Algorithms

Random walks are are a powerful computational tool, used in solving optimization problems
(e.g. finding spanning trees, shortest paths or minimal-cuts through graphs), geometrical tasks
(e.g. finding convex hulls of a set of points) or approximate counting (e.g. sampling-based
volume estimation) [9]. In the previous Sections we had an opportunity to get acquainted with
several interesting properties of random walks. These are often exploited when constructing new
algorithms. For example, small mixing times can lead to more efficient and accurate sampling,
while short hitting times can lead to fast search algorithms.

At present, there is a wide range of algorithms that use these properties of random walks to
their advantage. These random-walk based algorithms range from searches on graphs, through
solving specific mathematical problems such as satisfiability, to physically motivated simulated
annealing that searches for “optimal” states (ground states, or states that represent minima of
complex fitness functions). A large group of algorithms, that (not historically, though) can be
considered to be based on random walks are Markov Chain Monte Carlo methods for sampling
from low-temperature probability distributions and using them for approximate counting or op-
timization.

A huge research effort is devoted today to this vast area of expertise. We will briefly introduce
a few of these interesting algorithms in the following pages. Even though the connection to
random walks is often not emphasized in the literature, all these algorithms can be viewed from
the vantage point of random walks.

2.3.1 Graph Searching

Random walks can be used to search for a marked item (or M items) on a graph of size N .
Knowing the structure of the graph can sometimes allow us to find efficient deterministic solu-
tions. However, sometimes a random walk approach can become useful. One such example is a
search on a complete graph with loops. This task is just a rephrasing of a blind search without
structure when any element might be the targeted one. One can easily show that on average
(even if one remembers vertices that are not targets) one needs O(N/M) queries to the oracle5.
Later we will see that in the quantum case, a clever utilization of an oracle in quantum walks can
produce a quadratic speedup due to faster mixing.

5In this case the oracle just gives the answer whether the vertex we picked is marked. We will deal with oracles a bit
later in Sec. 4.1.1.



Classical Random Walks 615

Fig. 2.2. Two graphical representations of a 4-dimensional hypercube with vertices labeled by 4-bit
strings, connected when these strings. Connections exist only between vertices whose binary labels differ
by a single digit. Vertices with the same number of zeros in their label create a layer of the hypercube. There
are n + 1 = 5 layers in the 4-cube — layers 0 and 4 are denoted by black circles, layer 1 by red circles,
layer 2 by green circles and layer 3 by blue circles. A quantum walker can traverse from the ENTRANCE

vertex to the EXIT vertex in O(n) steps (scaling linearly with the number of layers). A classical random
walk is exponentially slower. Note though, that a different efficient classical algorithm (using memory to
help the traversal) exists for this problem.

Two interesting examples of graph-search are hypercube traversal (Fig. 2.2) and glued trees
traversal (Fig. 2.3), in both of which the goal is to find a vertex directly “opposite” to the starting
one. We are given a description of the graph (with the promised structure) as an oracle that
tells us the “names” of the neighbors of a given vertex. The goal is to find the “name” of the
desired opposite vertex. In these examples, employing a quantum walk results in tantalizing
exponentially faster hitting times than when using classical random walks. Yet, as we will see
in the following examples, this does not mean that there are no deterministic algorithms that can
do it as fast as the quantum walk one. To see an actual exponential speedup by a quantum walk
over any possible classical algorithm, we will have to wait until Section 6.1.2.

Example 2 (Traversing a hypercube) An n-dimensional hypercube is a graph with vertices
that are binary strings of length n (see Fig. 2.2). For every pair of vertices a and b we can
define Hamming distance, which is the number of positions in which the two binary representa-
tions of a and b differ. Clearly this is the smallest number of steps one has to make in order to
get from the vertex a of the hypercube to the vertex b as two vertices are connected by an edge
if and only if the two strings corresponding to the vertices differ only by a single bit (thus have
Hamming distance 1). In the hypercube, we can further distinguish a layered structure. Let us
label two opposite vertices of the hypercube ENTRANCE and EXIT. We say, that vertex a is in
the layer k, if its Hamming distance from the ENTRANCE vertex is k. We can see, that any k-th
level vertex has neighbours only in levels k − 1 or k + 1. Also note, that ENTRANCE vertex has
Hamming distance 0 and EXIT vertex has Hamming distance n.

Starting at the ENTRANCE vertex, our aim is to get to the EXIT as fast as possible. As between



616 Quantum Walks

Fig. 2.3. A graph made from two glued trees graph can be efficiently traversed by a quantum walk (or by a
clever classical algorithm). However, this graph is not (efficiently) penetrable by a classical random walk.
The efficiency of the quantum walk algorithm comes from the graph symmetry – the walk on this graph is
equivalent to a walk on a line of “column” states.

ENTRANCE and EXIT vertices there is rougly 2n other vertices, usual random walk approach
would find EXIT only in time exponential in n — the hitting time is O(2n) and as a result mixing
time is even longer.

We can however radically shorten the time needed when we employ the walker with memory
helping the walker to advance through the hypercube and increase her Hamming distance from
the ENTRANCE in each step — see algorithm in Fig. 2.4. Let us label vertices the walker visits as
ak, with index k denoting the step (and layer as well). From the ENTRANCE vertex, denoted as
a0, the walker moves to random neighbour a1, remembering the vertex it came from in memory

Set k = 1, the initial position a1 to a random neighbor of the
ENTRANCE vertex and S0 = {a0} then for n− 1 times repeat:

1. set k := k + 1

2. randomly choose ak to be neighbor of ak−1 such that
ak 6∈ Sk−2

3. set Sk−1 to be the set of all neighbors of ak that have a
neighbor also in Sk−2

The resulting vertex is EXIT.

Fig. 2.4. Algorithm for traversing the n-hypercube. Starting at position ENTRANCE the walker uses
structural oracle to navigate through the graph. She has to remember only O(n) vertices in each step which
help her propagate thorugh the graph increasing the layer in each step.



Classical Random Walks 617

S0 = {a0}. The memory will contain all the vertices that are from lower layer, than actual
vertex. Clearly, for S0 this is true.

On each step k + 1 the walker chooses new neighbour ak+1 of actual vertex ak from the
next (k+ 1)-th layer by excluding the vertices from memory Sk−1 from the selection process, as
these are from layer k − 1. New memory Sk is constructed as a set of all neighbouring vertices
of ak+1 that are also neighbours of some of the vertices in Sk−1.

To see that it works as intended, let us say, that ak+1 was obtained from ak by flipping bit at
position q. From definition of Sk−1 we know, that ak 6∈ Sk−1 and so all vertices contained in
this set differ from ak+1 in two bits, q and some r 6= q. Now, to get from ak+1 to lower level, we
would have to go either to ak, which is a neighbour of Sk−1, or we would flip the bit on position
r taking it to one-bit-flip (q) from some vertex from Sk−1.

It is easy to see now, that Sk, as a memory, is a set of all neighbours of vertex ak+1 that are at
level k. In this manner the walker in each step increases its distance from the ENTRANCE vertex
and decreases its distance from the EXIT vertex, thus needing n steps to traverse the graph with
O(n) searches in neighbourhood every step. Totally the efficiency of the algorithm is polynomial
in n with memory of O(n).

Example 3 (Traversing glued trees) Another example, where a usual random walker without
memory fails is in traversing a graph made from two glued binary n-leveled trees, depicted
in Fig. 2.3. As in the previous example, the random walker gets stuck in exponentially many
vertices, that comprise the “body” of the graph and she will not be able to reach EXIT vertex
efficiently. However, with memory the walker can exploit the difference between the central
vertices and the rest and proceed through the graph as follows (see also Fig. 2.5). Starting from
the ENTRANCE vertex, by simply randomly choosing neighbours other than the previous one, it
reaches one of central “glued” vertices in time n. These vertices are easily recognised since they

Set a1 =ENTRANCE and for n− 1 times repeat:

1. set k := k + 1

2. randomly choose ak to be neighbor of ak−1 such that
ak 6= ak−2

Set k = 0 and repeat until ak+n =EXIT:

1. set k := k + 1

2. randomly choose ak+n to be neighbor of ak+n−1 such
that ak+n 6= ak+n−2

3. if vertex ak has only two neighbors return to ak/2+n (by
setting ak+n := ak/2+n and k := k/2)

Fig. 2.5. Algorithm for traversing glued trees. The walker can easily navigate with the help of structural
oracle from the ENTRANCE vertex to the glued vertices. There she knows for certain her position as these
vertices differ from the rest in the number of neighbors being only two. After she passes glued vertices, she
can navigate in O(n2) steps to the EXIT vertex, as everytime she encounters glued vertex she knows, that
halfway between previous encounter of the glued vertex she did a wrong choice of direction. This requires
memory of size O(n).



618 Quantum Walks

have only two neighbours. Traversing further through the graph, the walker either reaches the
EXIT vertex or finds itself back in the central region. This region is reached after 2k steps after
being there for the first time and in this case it is easy to backtrack the last k steps and choose
the remaining neighbour. Performing this walk with memory (polynomial in n) for O(n2) steps
will certainly give us the walker ending in the EXIT vertex whereas in the quantum case we
need to perform O(poly(n)) steps. Thus, there is no great speedup coming from a quantum
walk. However, this example is just the first step to an actual exponential speedup, discussed in
Section 6.1.2.

2.3.2 Solving Satisfiability Problems

A prime example of locally constrained problems is Satisfiability. Its easiest variant, 2-SAT is to
determine whether one can find an n-bit string x1x2 · · ·xn that satisfies a boolean formula6 with
exactly 2 literals (bits or their negations) per clause. A 2-SAT instance with m clauses on n bits
has the following general form of the boolean function:

φ = (a1 ∨ b1) ∧ (a2 ∨ b2) ∧ · · · ∧ (am ∨ bm), (2.10)

where ai, bi ∈ {x1, x2, . . . , xn,¬x1,¬x2, . . .¬xn}.
There exists a deterministic algorithm for solving 2-SAT, but we also know a beautiful

random-walk approach to the same problem. The algorithm (first analyzed by Papadimitriou)
is this:

1. start with x1x2 · · ·xn = 11 · · · 1.

2. while φ contains an unsatisfied clause (and #steps < 2n2) do
pick an unsatisfied clause C arbitrarily
pick one of the two literals in C uniformly at random and flip its value
if φ is now satisfied then output “yes” and stop

3. output “no”

This algorithm performs a random walk on the space of strings. One can move from string s1

to string s2 if they differ by a single bit value xt, and bit t belongs to a clause that is unsatisfied for
string s1. Why does this algorithm work? Assume there is a solution to the 2-SAT instance. Call
d(s) the Hamming distance of string s from the correct solution. In each step of the algorithm,
d(sk+1) = d(sk) ± 1, because we flip a single bit. However, we claim that the probability of
the Hamming distance to the correct solution decreases in each step is ≥ 1

2 . Here’s the reason
for this. We know that when we choose the clause C, it is unsatisfied, so both its bits cannot
have the correct value. Imagine both of the bits in the chosen clause C were wrong. We then
surely decrease d. If one of the bits inC was wrong, we have a 50% chance of choosing correctly.
Together, this means the chance of decreasing d in each step are≥ 1

2 . Our random walk algorithm
then performs no worse than a random walk on a line graph with n + 1 vertices {0, 1, . . . , n},
corresponding to Hamming distances of strings from the solution. When we hit 0, we have the
solution! The expected number of steps it takes to hit the endpoint on a line of length n + 1 is

6in conjunctive normal form



Classical Random Walks 619

n2. Therefore, using Markov’s inequality we can show that running the algorithm for 2n2 steps
results in finding the satisfying assignment (if it exists) with probability ≥ 1

2 .
Go to 3-SAT. Basic algorithm and simple analysis gives probability of success 3−n/2, which

translates to runtime (1.78)n. If you think about taking 3n steps, the probability of success
increases a lot – see Luca Trevisan’s notes, Schöning’s algorithm (1999). Taking 3k steps (when
starting k-away from the solution), we can calculate the probability of success to be at least 1

2k
√
k

.
When we sum over all starting points and take 3n steps, we arrive at an algorithm with runtime
(1.33)n.

This can be further improved, small changes – GSAT, WALKSAT – restarts, greedy choices
of which clause to flip, etc.

2.3.3 Markov Chain Monte Carlo Algorithms

Previously mentioned algorithms are based on a Markov chains. These algorithms are designed
for finding a solution within many instances. On the other hand there is a large class of physical
problems that do not require the knowledge of one particular instance of the state of the system.
In these problems we are interested in statistical properties7 of various, often physical, systems,
such as knowing averages of various quantities describing the system under consideration. For
such problems an efficient method of Monte Carlo has been devised. We can view random walks
as a special approach within this method, that employs Markovianity in the search within the
phase space of the problem. The system in these simulations undergoes Markov evolution with
specific properties creating a chain of states that are sampled from desired probability distribu-
tion.

If we want to estimate a time average of some quantity of a system in equilibrium we either
have the option to study the actual time evolution, or we can use ergodic hypothesis and esti-
mate this time-average by estimating an average over an ensemble of such systems, where the
actual distribution is known but, due to computational restrictions it is difficult to use it directly
in (analytical) computation of averages. In simulations, when the sampling process has to be
discretized, to find average of some state x quantity Q, we can use formula

〈Q〉 '
N∑
j=1

Q(xj)p[H(x)],

where p[H(x)] is the probability (depending only on the energy) of being in the near vicinity
of state xj . These N states are sampled uniformly from the phase space. This is, however,
not useful, when only states from a small part of phase space make a major contribution to the
average. This makes the sum to converge very slowly.

In order to overcome this drawback, a technique, called importance sampling is employed,
when the states are not sampled from uniform distribution, but from a distribution that is close
to the desired p[H(x)]. Quite surprisingly, this is not so difficult to achieve, as we will see soon,
and when we are finally sampling states xj from the desired distribution, we can estimate the

7As we will see in the following section, such statistical properties can be, on the other hand, useful in finding optima
of various functions.



620 Quantum Walks

average as

〈Q〉 ' 1

N

N∑
j=1

Q(xj)|pdf(xj=x)=p[H(x)]

with N being the normalization for the average.
As said before, random walks come into the play in the form of Markov processes where a

walk in the phase space according to preferred distribution is performed. Employing the notation
defined in Sec. 2.1 we will show, how to construct such walk in discrete space and time. In
general, the change of a distribution p in a step is described by “continuity” equation

∆pj(m) = −
∑
j′

Mj′,jpj(m) +
∑
j′

Mj,j′pj′ , (2.11)

where M is the stochastic transition matrix. This equation just states, that the part of probability
that leaves state j (first term) and the part of probability that “flows” into the state j correspond
to the change of the probability in the state at time m, pj(m). This condition in the case of a
system in equilibrium, when pj(m) ≡ pj reads∑

j′

Mj′,jpj =
∑
j′

Mj,j′pj′

stating that whatever probability flows out of the state j must be replenished. This condition is
called global balance and is still quite complex for simple utilisation. However, the necessary
condition called detailed balance

Mj′,j

Mj,j′
=
pj′

pj

is suitable for computational purposes.
Indeed, if we take, for example, the choice of Metropolis (and Hastings) [10, 11],

Mj′,j = min

{
1,
pj′

pj

}
, (2.12)

we have a way how to effectively sample the phase space under given distribution — being in
state j we randomly choose state j′ and conditioned on transition rate from Eq. (2.12), which is
easily computable if pj is known, we replace the state j by j′. See also Fig. 2.6.

Example 4 (Sampling from the Gibbs canonical distribution) This is a special case of the Me-
tropolis-Hastings algorithm. The Gibbs distribution is given as

pj =
1

Z
exp[−H(j)/kBT ],

where Z is partition function,H is energy of the system in state j, kB is Boltzmann constant and
T is temperature. In this case

Mj′,j = min

{
1, exp

[
−H(j′)−H(j)

kBT

]}
. (2.13)



Classical Random Walks 621

Initialize x0 = x, k = 0, 〈Q〉 = 0 and for N steps repeat:

1. choose random state xk′

2. evaluate Mk′,k according to Eq. (2.13)

3. generate random number q

4. if q ≤Mk′,k set xk+1 := xk′ otherwise xk+1 := xk

5. set k := k + 1 and if k > N −N ′ evaluate 〈Q〉 := 〈Q〉+
Q(xk)/N ′

Fig. 2.6. Monte Carlo algorithm with Metropolis acceptance criterion using Gibbs distribution for esti-
mating the average of Q - this is done only in last N ′ steps to allow relaxation of the system. Inputs of
the algorithm are the initial state x and temperature. The choice of x′ in every step is usually according to
some distribution that places x′ close to x.

This tells us, that if the energy in the test state j′ is lower than actual energy, then accept the state
j′ as new state, otherwise accept it only with probability

exp

[
−H(j′)−H(j)

kBT

]
.

Note that these results are in principle applicable also to a continuous phase space, with
proper modifications to the above equations. Also Eq. (2.11) can be rewritten to a continuous
time form by exchanging the difference in probabilities by a time derivative, and instead of the
stochastic matrix M , using a transition matrix containing the rates of changes (see Sec. 6).

Preparing and sampling from the Gibbs canonical distribution is interesting, as it is the basis
of MCMC methods (based on telescoping sums) for estimating partition functions, allowing one
in turn to approximately count the number of ground states of a system. When applied to the
Potts model on a particular graph, it becomes a tool for combinatorial problems whose goal is
counting (e.g. estimating the number of perfect matchings in a graph). In Section 5.4.2, we will
investigate and look at MCMC algorithms and their quantum counterparts in detail.

2.3.4 Simulated Annealing

Simulated annealing [12,13] is a physically motivated method that allows us to search for ground
states of simulated systems in the same way as in experiments slowly cooled material tends to
get to its ground state (see also Fig. 2.7). In a more abstract way we can say, that we perform a
search for (global) minima8 of some fitness function F that represents energy in these models.

If we look at the annealing as a succession of system states that relaxes under slowly de-
creased temperature, we can easily devise its computational analog. The succession of system
states is the crucial part, where on one hand we tend to choose a state that is close to the pre-
vious one. This, in fact, defines us a graph the system (walker) walks on, even more, when the
system is described by discrete variables such as spins — a step in such case may be described
as a spin-flip on some position. On the other hand for the walk we need to have the transitional

8Note that search for maxima of function F is equivalent to the search for minima of function−F .



622 Quantum Walks

Initialize x0 randomly and set T to high enough value. Then while
T > Tmin repeat:

1. do MC algorithm (with N interations) from Fig. 2.6 with
input parameters of x0 and given T

2. set T := µT and x0 := xN

Output x0 as (sub)minimum

Fig. 2.7. Simulated annealing algorithm for finding (sub)optimal value of x. Value of 0 � µ < 1 should
be chosen so that the decrease of the temperature would not be fast and the temperature T should be initially
high enough; Tmin should be chosen close enough to zero to prevent jumps to other local minima of the
energy function. Also during the runnig of the algorithm one can look at averages of interesting observables.

probabilities defined. The sampling of these states is then simply governed by the Metropolis
algorithm and its utilization for sampling from Gibbs distribution, which is suitable for the task,
as in the limit of zero temperature it becomes a distribution on the ground states of F only. So,
in the end of the day Eq. (2.13) is used with fitness function F in the role of the energyH.

The complete algorithm of simulated annealing starts with the initialization of the system
(on random) with the temperature being high9. Then the system is let to evolve by the above-
mentioned procedure. When we are sure that the system is in equilibrium in this cycle we
decrease the temperature a little. Then, again we let the system evolve for another cycle and
decrease temperature further, e.g. by following rule (kT )−1 =

√
#cycles or just by setting

T := µT for 0 � µ < 1. This process is repeated until acceptably small temperature Tmin is
achieved, when the system should be close to its ground state. All the parameters of the anneal-
ing have to be chosen carefully so that the cooling would be slow enough to allow the system to
get to the state with lowest energy, yet not as slow as not to allow reasonable runnign time of the
simulation.

2.4 Summary

In this section we have briefly described random walks, their properties and some applications. In
the discrete case the evolution is governed by stochastic matrices while the system is described
by a probability distribution on given state space. Theoretically studied properties of random
walks were successfully applied in various scientific fields. Most prominent but not exclusive are
their algorithmic application for probabilistic computations — Markov Chain Monte Carlo. We
have also studied few basic properties of the drukard’s walk that will be later used to show the
difference between classical random and quantum walks. Such quantities (mixing time, limiting
distribution, etc.) serve on the other hand as a merit of efficiency with which the walks can be
used in more practical applications.

9What “high” means is out of the scope of this paper and a lot of attention is devoted to setting all the parameters of
the annealing right.



Quantum Walks: Using Coins 623

3 Quantum Walks: Using Coins

Correctly employed, the non-classical features of quantum mechanics can offer us advantages
over the classical world in the areas of cryptography, algorithms and quantum simulations. In the
classical world, random walks have often been found very practical. It is then quite natural to ask
whether there are quantum counterparts to random walks exist and whether it would be possible
to utilize them in any way to our profit. As many simple questions, these two also require more
than just simple answers. In the following sections we will attempt to construct answers for these
questions in small steps. Our starting point will be one of the simplest translations of random
walks to the quantum domain — looking at discrete-time quantum walks taking place both in
discrete space and discrete time. Their evolution will be described by an iterative application of
a chosen unitary operator, advancing the walk by one step.

The first notions of a discrete-time quantum walk can be traced to Ref. [14]. The authors
considered the spatial evolution of a system controlled by its internal spin-1/2 state, defined by
the unitary U = exp(−iSzPδ/~). The operators P and Sz correspond to the momentum and
the z-component of the spin of the particle. The initial state |ψ(x0)〉(c+|↑〉 + c−|↓〉) under the
action of U evolves into the state

|Ψ〉 = c−|ψ(x0 − δ)〉|↓〉+ c+|ψ(x0 + δ)〉|↑〉, (3.1)

where |ψ(x)〉 corresponds to the wave function of the particle centered around position x. The
evolution described by (3.1) will accompany us throughout this whole section as a key ingredient
of discrete-time quantum walks — see e.g. (3.3). However, we will diverge from [14] on an
important point – the way we measure the system. In the original paper, the authors studied
repeated applications of the unitary U alongside with the measurement of the spin system and its
repeated preparation. As we will see, this course of actions leads to “classical” random-walk like
evolution (that is why the paper is called Quantum random walks). The authors have shown that
using a well-chosen evolution [similar to (3.1) up to the choice of basis] one can steer the system
in a desired direction. Together with a choice of a the initial state that has width much larger than
δ, one can move this state spatially further than just the distance δ. This is explained as a result of
interference and can be used for example to drastically reduce (or amplify) the average number
of photons in a cavity, produced by the detection of a single atom after it interacts resonantly
with the cavity field.

In quantum walks, the measurement is performed only once, at the end of the evolution. A
repetitive measurement process (as the one in [14]) destroys quantum superposition and corre-
lations that emerge during the evolution. Thus, we will use the definitions of quantum walks
found in later references [15, 16], where we perform the measurement only at the end of the
experiment. Similarly, continuous-time quantum walks (see Chapter 6), introduced by Farhi
and Gutmann in [78] involve a unitary (continuous-time) evolution according to the Schrödinger
equation for some time, followed by a single measurement.

3.1 Drawing an Analogy from the Classical Case

Let us consider the walk on a linear chain again and attempt to quantize it. We will start with an
unsuccessful attempt and then learn from the mistake and find a meaningful way to do it.



624 Quantum Walks

In the classical case, a random walk on a linear chain is defined over the set of integers Z. For
a quantum walk, we shall consider a Hilbert space defined over Z, i.e. H = `2({|x〉 : x ∈ Z}),
with the states |x〉 forming an orthonormal basis. Instead of being using a stochastic matrix, let us
now try to describe the evolution by a unitary matrix. This simple “quantization” looks as a direct
translation of random walks into the quantum world. However, it is easy to see that this model
does not work as intended. Just as for the drunkard’s walk, we require translational invariance
of the unitary evolution. Thus if we start in the state |x− 1〉, in the next step it will turn into
α|x− 2〉 + β|x〉 for some (complex) α and β. Similarly, the state |x+ 1〉 will be mapped to
the state α|x〉 + β|x+ 2〉 with the same α and β. Note that the two initially orthogonal states
|x− 1〉 and |x+ 1〉 should remain orthogonal under any unitary evolution. However, this is now
possible only if one of the coefficients α or β is zero. We can agree that such an evolution is even
simpler than an evolution of the random walker (and quite boring).

The first attempt gave us a hint that using only the position space will not be enough for
something interesting. Let us then try again and add another degree of freedom – a coin space,
describing the direction10 of the walker. This additional space will be a set Ξ = {↑, ↓} so that
the state of a particle is described by a tuple (x, c) ∈ Z×Ξ. Because of this addition, we expand
the Hilbert space to a tensor product H = HP ⊗HC, where HP = `2(Z) determines a position
of the walker and HC = `2(Ξ) is the introduced coin space11 (in this example, the coin could
correspond to the spin degree of freedom of a spin- 1

2 particle). Therefore, H is spanned by the
orthonormal basis12 {|x〉 ⊗ |c〉 : x ∈ Z, c ∈ Ξ}. How will an initial state |ψ0〉 ∈ H evolve? We
choose to describe a single evolution step by a unitary evolution operator

U = S (I⊗ C). (3.2)

It is a composition of I ⊗ C acting nontrivially only on the coin space, and S, which involves
the whole Hilbert space H. The operator S describes spatial translation of the walker, while C
correspond to coin throwing. Let us look at them in detail.

Translation operator S. This operator acts on the Hilbert space H as a conditional position
shift operator with coin being control qubit. It changes the position of the particle one position
up if the coin points up and moves the particle one position down, if the coin points down. It can
be written in the form

S =
∑
x∈Z

(|x+ 1〉 〈x| ⊗ |↑〉 〈↑|+ |x− 1〉 〈x| ⊗ |↓〉 〈↓|) . (3.3)

We see that the structure of the graph (in this case the line) is reflected in this operator by the
allowed transitions in position space only to the nearest neighbours.

Coin operator I ⊗ C. This unitary operator acts nontrivially only on the coin space HC and
corresponds to a “flip” of the coin. For the quantum walk on line, C is a 2× 2 unitary matrix. A

10Note that now we are diverging from a classical memory-less random walk, where a walker had “no idea” where it
came from, or where it would be going in the next step.

11Discrete-time quantum walks using coins are also called coined quantum walks. Sometimes we will refer to them in
this way.

12When using the states |x〉 ⊗ |c〉 we will often omit the tensor product symbol ⊗ to shorten the notation.



Quantum Walks: Using Coins 625

usual choice for C is the Hadamard coin13

C ≡ H =
1√
2

[
1 1
1 −1

]
, (3.4)

viewed in a different notation as

H : |↑〉 7→ 1√
2

(|↑〉+ |↓〉) , H : |↓〉 7→ 1√
2

(|↑〉 − |↓〉) .

Observe that this coin can be called unbiased, since the states |↑〉 and |↓〉 of the coin are evenly
distributed into their equal superpositions, up to a phase factor. We shall return to the coin later in
Sec. 3.4. In the next Section, we will investigate the evolution of the walker under the influence
of the Hadamard coin.

Let us recall that a single step of a coined quantum walk is described by the operator U in
(3.2). The state after n steps will thus be described by a vector fromH as

|ψn〉 = Un|ψ0〉. (3.5)

3.2 Dispersion of the Hadamard Quantum Walk on Line

In this section we will investigate the quantum walk in 1D using the Hadamard coin (3.4) and
compare it to the classical random walk. First, let us argue why we even talk about a connection
of the Hadamard walk to the drunkard’s walk (for more on the topic see Refs. [17–20] and
Section 3.5.4). Suppose the state of the system is |x〉|c〉 with x ∈ Z and c being one of the basis
states |↑〉 and |↓〉. Then a single step of the quantum walk gives us

U |x〉|c〉 = S(I⊗H)|x〉|c〉 = S(|x〉 ⊗H|c〉) =
1√
2
S [|x〉 ⊗ (|↑〉 ± |↓〉)] =

=
1√
2

(S|x〉|↑〉 ± S|x〉|↓〉) =
1√
2
|x+ 1〉|↑〉 ± 1√

2
|x− 1〉|↓〉.

From this result we may observe that starting in the state |ψ0〉 = |x〉|↑〉 and performing a mea-
surement on the position state space14 right after an application of U , the probability of finding
(x + 1) equals the probability of measuring (x − 1). Therefore, if we perform a position mea-
surement after each15 application of U , we end up with a classical random walk where we shift
the position to either side with equal probability 1

2 .
However, as we described at the beginning of Chapte 3, we do not want to measure the system

after each step. What will happen if we leave the system evolve for some time and measure the
position of the particle then? Let us look at three applications of U . After some algebraic
manipulation we arrive at

U3|0〉|↑〉 =
1√
8

[
|3〉|↑〉+ |1〉

(
|↓〉+ 2|↑〉

)
− |−1〉|↑〉+ |−3〉|↓〉

]
. (3.6)

13Quantum walk on line using the Hadamard coin is often called the Hadamard walk.
14Note that we can choose to measure the coin register instead and also end up with |x+ 1〉 or |x− 1〉 in the position

register with equal probability. Tis is because the two registers become entangled after the application of U .
15We could imagine performing the measurement only after a certain number of steps or probabilistically, giving us a

continuum of behaviors between quantum and classical. We explore this in Section 3.5.4.



626 Quantum Walks

Fig. 3.1. Comparison of probability distributions after 100 steps for the Hadamard walk on even positions
(black line) starting in state |0〉|↑〉 and the drunkard’s walk (starting on position 0). Spreading of quantum
walk (determined by the variance) is quadratically faster than that of random walk. Hadamard walk can be
in region [−100/

√
2; 100/

√
2] approximated by function P 100 (dashed line) given by Eq. (3.14) suitable

also for evaluation of moments. Outside the region (grey areas), the probability drops exponentially fast.
Distribution of the classical walker is depicted by dotted line.

This already shows that the amplitudes are not symmetric and start to show interference effects.
Let us look at the system after m steps. In the final measurement, we do not care about the state
of the coin. Thus to get the probability for the particle being on the position x after m steps, we
trace the coin register out, and look at

pm(x) = |(〈x| ⊗ 〈↑|)Um|ψ0〉|2 + |(〈x| ⊗ 〈↓|)Um|ψ0〉|2 . (3.7)

Looking at three steps of evolution of the Hadamard walk in (3.6), we can read out the values of
these probabilities after n = 3 steps (when starting from |0〉|↑〉):

p3(−1) = p3(3) = p3(−3) =
1

8
, p3(1) =

5

8

and zero otherwise. Notice the asymmetry between p3(1) and p3(−1). We do not observe asym-
metrical behavior for classical random walks with an unbiased coin. This is the first difference
between quantum and classical random walks that we have seen. The situation is even more in-
teresting for longer evolution times, as depicted in Fig. 3.1 where the system is shown after 100
steps. We see that the distribution for the Hadamard quantum walk starting from |0〉|↑〉 is indeed
asymmetrical. What is more interesting, the probability spreads faster than for a classical walk.

We will follow [16,21] to show that the spreading in the case of the quantum walk on a line is
linear with timem (the number of steps), meaning that the standard deviation grows as σ ∼ m as



Quantum Walks: Using Coins 627

opposed to the classical case where σ ∼
√
m as shown in (2.4). Moreover, we can see in Fig. 3.1

that the distribution for the quantum walk gets “close” to uniform16 in the interval
[
− m√

2
, m√

2

]
.

The method we will use for the analysis is based on switching17 to the Fourier basis in the
position space, where

|k̃〉 =

∞∑
x=−∞

eikx|x〉, k ∈ [−π;π].

A converse transformation gives us

|y〉 =
1

2π

∫ π

−π
e−iky|k̃〉dk,

with the special case

|0〉 =
1

2π

∫ π

−π
|k̃〉dk. (3.8)

The Fourier basis is useful since the states |k̃〉⊗|↑〉 and |k̃〉⊗|↓〉 are eigenvectors of the translation
operator S corresponding to the eigenvalues e∓ik respectively.

For the Hadamard walk defined in the previous section, with the Hadamard operator used as
the coin operator (3.4), and choosing the initial state |ψc0〉 = |0〉 ⊗ |c〉 (where c can be either the
spin up, or spin down state) and expressing it in the Fourier basis, we find

|ψcm〉 = Um|ψc0〉 = Um(|0〉 ⊗ |c〉) =
1

2π

∫ π

−π
|k̃〉 ⊗Mm

k |c〉dk, (3.9)

where Mk denotes the 2× 2 matrix

Mk =
1√
2

[
e−ik e−ik

eik −eik

]
It turns out that all we really need to know to analyze the evolution is the eigenspectrum of
the operator Mk. Introducing new variables ωk ∈ [−π/2;π/2] and setting sin k =

√
2 sinωk,

we find that the eigenvalues of Mk are λ− = e−iωk and λ+ = −eiωk . The corresponding
eigenvectors are

|φ−〉 =
1

N−

[
1√

2ei(k−ωk) − 1

]
and |φ+〉 =

1

N+

[
1

−
√

2ei(k+ωk) − 1

]
with the normalization factors given by

N2
± = 2(1 + cos2 k ± cos k

√
1 + cos2 k).

16When considering decoherence in quantum walks as in [18], the distribution of the quantum walker may get even
closer to a uniform distribution (see also Section 3.5.4).

17There are also other ways how to deduce the asymptotic behaviour of the quantum walk on line, especially employing
the knowledge from the theory of path integrals. Note here, that the Fourier basis used is not normalizable, however,
under careful manipulation is very useful.



628 Quantum Walks

We can expand the expression Mm
k |c〉 in (3.9) in the eigenbasis of the operator Mk as

Mm
k |c〉 =

(
λm− 〈φ−|c〉

)
|φ−〉+

(
λm+ 〈φ+|c〉

)
|φ+〉.

Inserting it into (3.9) we arrive at

|ψcm〉 =
∑
x

|x〉 ⊗ [Amc (x)|↑〉+Bmc (x)|↓〉] . (3.10)

Exercise 3 Prove the following equalities

Am↑ (x) =
1 + (−1)m+x

2
[αm(x) + βm(x)] ,

Am↓ (x) =
1 + (−1)m+x

2
[βm(x)− γm(x)] ,

Bm↑ (x) =
1 + (−1)m+x

2
[βm(x) + γm(x)] ,

Bm↓ (x) =
1 + (−1)m+x

2
[αm(x)− βm(x)] ,

where

αm(x) =

∫ π

−π

dk

2π
ei(kx−mωk), (3.11a)

βm(x) =

∫ π

−π

dk

2π

cos k√
1 + cos2 k

ei(kx−mωk), (3.11b)

γm(x) =

∫ π

−π

dk

2π

sin k√
1 + cos2 k

ei(kx−mωk). (3.11c)

Exercise 4 Prove that all am(x), bm(x) and cm(x) are real and that

am(x) = (−1)xam(x), bm(x) = −(−1)xbm(x), cm(x) = −(−1)xcm(x).

At this point we may observe the modularity property of the walk (previously mentioned in
Section 2.2): after an even (odd) number of steps, the walker cannot be on odd (even) positions.

The results we obtained so far are valid only for states initialized with a computational basis
state of the coin – spin up or down. If we would like the initial state to be completely general,
having form

|ψ0〉 = |0〉 ⊗
[√

q|↑〉+
√

1− q eiσ|↓〉
]

(3.12)

parametrized by real parameters q and σ, the state afterm steps will be a superposition of evolved
states whose initial coins were set to be either spin-up or spin-down, i.e.

|ψm〉 = Um|ψ0〉 =
∑
x |x〉 ⊗

{[√
qAm↑ (x) +

√
1− qeiσAm↓ (x)

]
|↑〉

+
[√

qBm↑ (x) +
√

1− qeiσBm↓ (x)
]
|↓〉
}
.



Quantum Walks: Using Coins 629

The probability to find the walker at position x after m steps is then expressed as

pm(x) =
∣∣∣√qAm↑ (x) +

√
1− qeiσAm↓ (x)

∣∣∣2 +
∣∣∣√qBm↑ (x) +

√
1− qeiσBm↓ (x)

∣∣∣2 .
Exercise 5 Show that

pm(±x) = [αm(x)]
2

+ 2 [βm(x)]
2

+ [γm(x)]
2 ± (4q − 2)βm(x) [αm(x)± γm(x)]

±4
√

1− q cosσβm(x) [αm(x)∓ γm(x)] . (3.13)

The integrals in (3.11) can be approximated by employing the method of stationary phase (see
Appendix B) and we find that the functions am(x), bm(x) and cm(x) are mostly concentrated
within the interval

[
− m√

2
; m√

2

]
and they quickly decrease beyond the bounding values of this

interval. This also holds for the probability pm(x), which oscillates around the function

Pm(x) =
2m

π(m− x)
√
m2 − 2x2

, (3.14)

where we dropped the vanishing part coming from modularity. For details of deriving (3.14), see
Appendix B.2.

The functionPm(x) allows us to approximately evaluate the averages of position x-dependent
functions fm(x) in the m-th step of the walk as

〈fm(x)〉 ' 1

2

∫ m√
2

− m√
2

fm(x)Pm(x) dx. (3.15)

The factor 1
2 comes from modularity (indeed it is easy to check that using (3.15), we correctly

obtain 〈1〉 = 1. For more interesting x-dependent functions we obtain the approximations

〈x〉 ' m

√
2− 1√

2
,

〈|x|〉 ' m

2
,

〈x2〉 ' m2

√
2− 1√

2
.

The results shows also that the dispersion grows as
√
〈x2〉 ∼ m for large m, increasing linearly

with time. This is quadratically faster than the classical random walk (2.4), whose dispersion
grows with the number of steps as

√
m.

We can use (3.13) to find several other properties of the evolution. When tuning the parameter
σ in the initial coin state (3.12), we can find many possibilities that result in a symmetrical
probability distribution pm(x) = pm(−x). For example, we can choose cosσ = 0, which gives
a symmetrical final distribution for q = 1

2 , i.e. when the initial state is

|ψ0〉 = |0〉 ⊗ 1√
2

[|↑〉 ± i|↓〉]. (3.16)



630 Quantum Walks

Similarly, we can choose cosσ = ±1, in which case q = (2 ∓
√

2)/4, corresponding to
√
q =

sin π
8 or
√
q = cos π8 , again results in a symmetrical distribution.

Instead of looking at symmetrical evolutions, we can just as well try to find the most asym-
metrical one. Let us look at the first moment of the probability distribution,

〈x〉 =

∞∑
x=−∞

xpm(x)

∞∑
x=1

4xαm(x)βm(x)
[
(2q − 1) + 2

√
q(1− q) cosσ

]
.

From Appendix B.2 we know that αm(x)βm(x) is positive for our range of positions. This tells
us that the maximal right asymmetry can be obtained for cosσ = 1 and q = (2 +

√
2)/4, while

the maximal left asymmetry can be obtained for cosσ = −1 and q = (2 −
√

2)/4. All these
results are in correspondence with the results of [27].

Exercise 6 Looking at the mean position is not a good general indicator showing the asymmetry
of a distribution. We were able to use it above, as the evolution began in the position zero. In
general, the asymmetry of a distribution is given by its skewness

Skew(x) =

〈(
x− 〈x〉
〈x2〉

)3
〉
.

Using the approximations (B.3) given in Appendix B.2, compute the skewness for the Hadamard
walk and find the most asymmetric one [Hint: it should be the initial state choice we already
found above].

Example 5 We can illustrate the result about fast spreading of the quantum Hadamard walk also
by considering the (Shannon) entropy defined on distributions as

S(m) = −
∞∑

x=−∞
pm(x) ln pm(x), (3.17)

on the probabilities pm(x) for the quantum walk defined by (3.7). This quantity gives us yet
another characterization of how the probability of the walker’s position is distributed and we
shall study its dependence on the number m of steps taken in a given walk. Let us look at what
the entropy looks like for certain cases. First, if only one position x0 was possible (and predicted
with certainty) for the particle at a particular moment, then p(x) = δx,x0 and the sum in (3.17)
would be zero. Second, we can imagine the distribution function evolving so that after m steps it
would be uniformly distributed (maximally mixed) between all possible locations in the interval
[−m,m], taking modularity into account (excluding unreachable points for both random and
quantum walks). For such an evolution we may write

pm(x) =

{
1+(−1)m+x

m+1 if −m ≤ x ≤ m,
0 otherwise.

The entropy for such a distribution computed from (3.17) gives us

Smax(m) = ln(m+ 1).



Quantum Walks: Using Coins 631

Fig. 3.2. Shannon entropy [Eq. (3.17)] vs. number of steps taken for probability distributions of different
walks, provided the walker starts at position 0 (state |0〉|c〉). The dot-dashed line is an upper boundary
for entropy reachable by any walk, the dashed line is the entropy of the drunkard’s walk distribution. The
shaded area represents the region for entropy values of quantum walks. Its upper boundary is given by
symmetric and lower boundary by maximally asymmetric coined quantum walks (see Sec. 3.4 for further
information on symmetry of the distribution). The dotted line is the Shannon entropy for the probability
distribution coming from the state (3.10), the Hadamard walk evolution of the initial state |0〉|↑〉.

This is, in fact, an upper bound on the entropy that is achievable by any walk on a given graph
(see the dot-dashed line in Fig. 3.2). Third, in the classical drunkard’s walk, the probability dis-
tribution approaches a normal distribution given by (2.3), and its entropy can be easily evaluated
as

Sc(m) =
1

2

(
1 + ln

πm

2

)
.

Finally, in the quantum case, we can observe from Fig. 3.2 that the entropy is larger than in the
classical case given by the dashed line. Even though this entropy depends on the initial coin
state, it still tells us that coined quantum walks spread faster than classical random walks also
with respect to the Shannon entropy.

3.3 Coined Quantum Walks on General Graphs

Equations (3.2)-(3.4) describe quantum walks on a line using the unitary update U composed
from a coin-diffusing operation and a subsequent translation. The generalization to more general
graph structures requires just a slight modification to these equations and only slightly more
explanation. We can view the coin degree of freedom Ξ in the 1D walk, given by the two states ↑
and ↓, as a coloring of a directed version of the graph. For each x, the “color” ↓ was assigned to
the directed edges of the graph pointing from x to x− 1, while the “color” ↑ was assigned to the
directed edges of the graph pointing from x to x+ 1. Therefore, even though the graph (line) on
which we walked is not directed, each edge can be interpreted as a set of two oppositely directed
edges.



632 Quantum Walks

Let us present a simple extrapolation of the 1D formalism which allows us to define quantum
walks on d-regular (undirected) graphs G = (N , E), where N is the set of vertices and E ⊆
N × N is the set of edges defining the graph. First, we interpret each edge as two oppositely
directed edges and then, as described in [15], we assign a “color” number from 1 to d to each of
these directed edges in such a way that all the directed edges of one color form a permutation of
the vertices. In other words, each vertex has exactly one outgoing and one incident edge with a
given color. Such a coloring is always possible using d colors. Thus, in addition to the position
space of verticesHP, we expand the Hilbert space with the coin subspaceHC with dimension d
asH = HP ⊗HC.

The motion of the walker will be described by the translation operator S, generalized to

S =
∑
x∈N

d∑
c=1

|x⊕ c〉〈x| ⊗ |c〉〈c|,

where x⊕ c is the vertex accessible from x by the edge with color c.
The coin-diffusion C(d) now involves a d-dimensional coin space. Furthermore, we can

imagine that the coin-flipping operation can be position-dependent

C ′ =
∑
x∈N
|x〉〈x| ⊗ C(d)

x , (3.18)

with a different d × d matrix C(d)
x for different vertices x. The evolution of a general graph

quantum walk is then governed by the two-step unitary U = SC ′. Compare this C ′ to the
position-independent (translationally-invariant) coin operator I⊗C from Section 3.1 and observe
that we recover it if we choose C(d)

x ≡ C.
This generalization is often used in the literature, however, there is another (isomorphic)

approach called Scattering Quantum Walks, first introduced by Hillery et al. [21], with the proof
of the isomorphism provided in Ref. [22]. We describe this approach in the following Section.
The basic similarities of the two approaches are easier seen after realizing the following points:

I The condition that all edges with some color a form a permutation of the vertices meansthat
for every vertex x and for every color a there is exactly one vertex x− from which you can
get to x by the edge with color a and exactly one vertex18 x+ which is accessible from
x by the edge with color a. This also means that every state |x〉 ⊗ |c〉 uniquely describes
some edge from the directed graph.

I The coin Cx “determines” how is the amplitude of particle that came from edge with
color a distributed to other edges, while S still has the “trivial” role of nudging the walker
forward.

These facts can be translated as essentially describing scattering process, where

I The incident direction of a particle corresponds to the edge color.

18Vertices x+ and x− need not be the same; e.g. in a regular graph with an odd number of vertices and no loops, all
(for all vertices and colors) x+ and x− cannot coincide. If they did, the edges with the same color would connect pairs
of vertices and all these pairs would be disjoint, but if the number of vertices is odd, one cannot create this structure.



Quantum Walks: Using Coins 633

I A scattering process on a given vertex x corresponds to the action of the coin Cx. Note
that the translation operator S is superfluous in this picture.

Up to this point, we have described the need for a separate coin in discrete-time quantum walks.
Having a coin such as in (3.18) is viable only for d-regular graphs, even though we can generalize
it and make it position-dependent. If the underlying graph structure is not regular, a simple
description of the coin begins to be difficult and the irregularity of the graph structure becomes
problematic as well. There are several approaches to alleviate this problem. One of them is
to introduce a position dependent coin with a variable dimension [15, 23]. However, it means
the Hilbert space cannot be factorized into the coin space and the position space anymore. The
possible irregularity of the graph structure is in this case embedded in the evolution process
effectively acting as an oracle [24]. The action of the position-dependent coin, however, has to
be in correspondence with the graph structure as well. It is then not such great a leap to start
thinking of also embedding the coin operator into the oracle. This second approach is in fact the
scattering model of quantum walks we are about to define.

3.3.1 Scattering Quantum Walks (SQW)

Scattering quantum walks (SQW) describe a particle moving around a graph, scattering off its
vertices. The state of the particle lives (is located on) the edges of a graph G = (N , E), defined
by a setN = {1, 2, . . . , N} of vertices and a set of edges E ⊆ N ×N . The Hilbert spaceH for
such a walk on G is then defined as

H = `2({|m, l〉 : m, l ∈ N ,ml ∈ E}), (3.19)

where ml is a short-hand notation for the edge connecting vertices m and l. This definition gives
us a Hilbert space which is a span of all the edge states, which form its orthonormal basis. The
state |m, l〉 can then be interpreted as a particle going from vertex m to vertex l.

Exercise 7 Show that the dimension of the Hilbert space for a scattering quantum walk is the
same as for a corresponding coined quantum walk.

Let us look at the structure of the Hilbert space for a SQW. First, we have the subspaces Ak
spanned by all the edge-states originating in the vertex k,

Ak = `2({|k,m〉 : m ∈ N , km ∈ E}).

Second, we have Ωk, the subspaces spanned by all the edge-states that end in the vertex k,

Ωk = `2({|m, k〉 : m ∈ N ,mk ∈ E}). (3.20)

These subspaces don’t overlap, as Ak ∩ Al = ∅ and Ωk ∩ Ωl = ∅ for k 6= l. Moreover,
|Ωk| = |Ak| for all k, as the graph G is not oriented19. The dynamics of the quantum walk
are described by local unitary evolutions scattering the walker “on vertex” k — describing the
transition from the walker entering vertex k to the walker leaving it. Using our notation for
the incoming and outgoing subspaces, the local unitary evolutions act as U (k) : Ωk → Ak, as
depicted in Figure 3.3.

19Note that we could describe a SQW coming from an oriented graph as in e.g. [25,26], but not without complications.
We thus decide to talk only about QW coming from undirected graphs here.



634 Quantum Walks

a) b) c)

Fig. 3.3. a) The subspace Ωk of walker states entering vertex k. b) The subspace Ak of walker states
exiting vertex k. c) The action of the local unitary U (k) : Ωk → Ak can be viewed as scattering on vertex
k.

Example 6 The simplest example of a local unitary evolution U (k) for a 1D graph transforms
a “right-moving” state |k − 1, k〉 (moving from k − 1 to k) into the uniform superposition
1√
2
|k, k − 1〉 + 1√

2
|k, k + 1〉, while a “left-moving” state |k + 1, k〉 similarly changes into

1√
2
|k, k − 1〉 − 1√

2
|k, k + 1〉, with the minus sign required for unitarity. This transformation

corresponds to the Hadamard coin (3.4) in DTQW.

We will see more local “coins” in the following Section 3.4, and then a general approach for
finding such transformations coming from classical Markov Chains in Section 5.

The overall unitary U describing one step of the SQW acting on the system is then the com-
bined action of the local unitary evolutions:

U = Γ
⊕
k∈N

U (k),

where Γ is just a permutation on the basis elements so that their order would be restored. This
can be done as⋂

k∈N

Ωk =
⋂
k∈N

Ak

gives the whole computational basis set. In other words, as all U (k) act unitarily on disjoint
subsets of the Hilbert space, the overall operation U they define is also unitary and the restriction
of U to Ωk is just U (k). When the initial state of the system is |ψ0〉, the state after m steps is
given by |ψm〉 = Um|ψ0〉 and the probability of finding the particle (walker) in the state |k, l〉 is
then |〈k, l|ψm〉|2.

Let us compare discrete-time quantum walks to SQW. The action of the coin in discrete-
time quantum walks is an analogue of the local unitary evolutions in SQW, transforming a single
“incoming” state into several “outgoing” states from a particular vertex. In addition, the discrete-
time quantum walk then requires the action of the translation operator, while in the SQW for-
malism this is already taken care of by switching the description of the vertex k into the second
register as

U (k) |j, k〉 =

d∑
l=1

U
(k)
j,k |k, l〉 . (3.21)



Quantum Walks: Using Coins 635

Fig. 3.4. Correspondence between coined quantum walk (top, for better readability shown without direct
product symbol) and scattering quantum walk on a line. For example (thick arrows), state |0〉 ⊗ |↑〉 rep-
resents the walker in coined quantum walk positioned on vertex 0 with coin pointing “up” stating that this
was the direction the walker used to get to the vertex. This state corresponds in the scattering quantum walk
formalism to the walker going from vertex −1 to vertex 0.

We conclude with a correspondence between the states (see Fig. 3.4) of a coined discrete-time
QW and a scattering QW, given by

|x〉 ⊗ |c〉 ↔ |x	 c, x〉.

It means the state “at” vertex x with a coin in the state |c〉 is nothing but a SQW state going
“from” the vertex x 	 c “into” the vertex x. Moreover, when we talk only about the position of
the walker at vertex x in coined quantum walks, it means that we are not interested in the coin
state (where is the walker entering x from). In the language of scattering quantum walks this
translates to talking about the particle entering vertex x, i.e. when the state of the walker is from
subspace Ωx.

3.4 More on Coins

We have seen that for both coined quantum walks and scattering quantum walks, the dynamics
of evolution depends on a set of local unitary operators — position-dependent coins. There are
many choices for them, but some turn out to be much more convenient than others for various
uses. First, we will discuss the quantum walk properties arising from using different coins (or
initial coin states). Second, we will investigate the usual choices of coins utilized in algorithmic
applications.

3.4.1 Two-dimensional Coins

In Sec. 3.1, we had the oportunity to notice the need for an additional coin degree of freedom, in
order to obtain a non-trivial evolution. We have looked at the quantum walk with the Hadamard
coin operator (3.4), resulting in an asymmetrical distribution (see Fig. 3.1). If instead of the
Hadamard coin we used the balanced coin operator

C =
1√
2

[
1 i
i 1

]
, (3.22)



636 Quantum Walks

Fig. 3.5. Comparison of Hadamard walks after 100 steps, each starting at position 0 and differing only
in the initial state of the coin. If the initial coin state is |↑〉 (gray shading), the probability distribution is
asymmetric. More asymmetry (solid line) is obtained by setting the initial coin state in (3.12) as a particular
superposition with cosσ = 1 and q = cos2 π/8. On the other hand, symmetrical distributions can be
obtained by choosing cosσ = 0 and q = 1/2 (dashed line). These are not, however, unique choices, and
other are possible.

with the coin initial state prepared in the superposition (|↑〉+ |↓〉)/
√

2, we would obtain a sym-
metrical quantum walk. However, in Sec. 3.2 we also saw that the choice of the initial coin state
in the Hadamard walk on the line determines the final distribution of the walker (see Fig. 3.5) –
from a right-skewed distribution through a symmetrical distribution to a left-skewed distribution,
even though the Hadamard coin itself is unbiased. Under the unitary evolution, the information
about the choice of the initial state is thus transferred to the final state (before the measurement).

Is the choice of initial coin state general enough, or do different coin operator choices result
in qualitatively different behavior? The authors of [27] considered this question using similar
techniques as in Sec. 3.2, where we switched into the Fourier basis. They found out that the full
range of quantum walk behavior (possible with an unbiased coin) on the line can be achieved
within the Hadamard walk, combined with choosing the initial coin state.

In these cases the shape of distributions is determined by two factors — by interference,
as is the case for the symmetric Hadamard walk where the initial state is real-valued, or by a
combination of probabilities from two mirror-image orthogonal components. Two examples of
the latter case are the symmetric Hadamard walk with the initial state (3.16) and the balanced
coin walk (3.22).

Although the choice of an unbiased20 coin operator was shown to have only little importance
on the line, its impact is significant in other cases. When considering the Hadamard walk on a

20All unbiased coins are equivalent, according to [27]. For biased coins, we do not expect to be able to reproduce a
symmetric evolution.



Quantum Walks: Using Coins 637

cycle, the (limiting21) distribution depends on the parity of the number of nodes. On the other
hand, it can be shown [27] that the limiting distribution can be also modified by choosing a
different coin and leaving the number of nodes constant.

3.4.2 General Coins

Moving away from 1D, we now turn our attention to walks on general graphs with d-dimensional
vertices, where the coin is described by a d× d unitary matrix. Not only is the coin space larger,
the choice of the coin operator starts to make a difference. For a coined quantum walk on a
two-dimensional lattice, a variety of interesting coins were discovered numerically in [27]. Each
of those (combined with the choice of initial state) affects the characteristics of the walk. The
difference between them is mainly in the extent to which the coin can affect them. For further
details, see also Ref. [28].

We will now investigate several types of coins commonly used for walks on d-regular22

graphs. First, a generalization of the Hadamard coin, then a family of unbiased coins related
to the Fourier transform, and finally some symmetric coins.

In two-dimensional coin space, we have looked at the Hadamard coin (which is capable
of reproducing all possible behaviors coming from unbiased coins). On l-dimensional lattices
(d = 2l), the Hadamard coin can be generalized to CWH = H ⊗ H ⊗ . . . ⊗ H . Also called
Walsh-Hadamard operator, it can be rewritten as

CWH =
1√
2l

2l−1∑
k=0

2l−1∑
m=0

(−1)k̄�m̄|k〉 〈m| , (3.23)

where k̄� m̄ is the parity of the bitwise dot product of l-bit binary strings representing k and m,

k̄ � m̄ =

( l−1∑
j=0

kjmj

)
mod 2.

For some applications, we would like the coin operator to be unbiased, i.e. producing equal
splitting of the probability of the walker into target vertices. One example of such a coin is the
discrete-Fourier-transform (DFT) coin

CDFT =
1√
d

d−1∑
µ=0

d−1∑
ν=0

exp
2πiµν

d
|ν〉〈µ|,

which as a matrix has the form

CDFT =
1√
d


1 1 1 1 . . .
1 eiω e2iω e3iω . . .
1 e2iω e4iω e6iω . . .
1 e3iω e6iω e9iω . . .
...

...
...

...
. . .

 .
21Will be defined in Eq. (3.27).
22Note that for general d-regular graphs which are not symmetric, choosing the coin operator involves taking the

directional information into account. For graphs that are not regular, finding a proper coin is even more problematic.



638 Quantum Walks

Although unbiased (all elements of the matrix have same magnitude), this coin is asymmetric —
different directions of the walker are treated differently, acquiring various phases (all elements
of the matrix do not have the same amplitude). Note that for d = 2 (corresponding to each
vertex having two neighbors), the Fourier transform is the Hadamard transform, so we have
CDFT |d=2 = H .

Symmetry of the coin is also often a desirable property. In general, such coins are written as

C =


−r t t . . .
t −r t . . .
t t −r . . .
...

...
...

. . .

 .
The coefficients t and r need to be chosen so that C is unitary, obeying the conditions

|r|2 + (d− 1) |t|2 = 1,

−r∗t− t∗r + (d− 2) |t|2 = 0.

A specific choice of parameters, biased for all d 6= 4, treating the “return” direction differently
from all others, is

t =
2

d
, r = 1− t = 1− 2

d
. (3.24)

The coin CG with these coefficients is the asymmetrical coin farthest from the identity [29]. It
was used by Grover in [30] in his celebrated quantum algorithm for unstructured search23 (see
Sec. 4.1). The role of CG is a reflection about the average state |s〉 = 1√

d

∑d−1
j=0 |j〉. We can see

it by observing that

CG = −I +
2

d

d−1∑
m,n=0

|m〉 〈n| = −I + 2 |s〉 〈s| , (3.25)

acting on an input state |ψ〉 as CG |ψ〉 = − |ψ〉 + 2〈s|ψ〉 |ψ〉 = 〈s|ψ〉 |ψ〉 − (|ψ〉 − 〈s|ψ〉 |ψ〉),
which is the aforementioned reflection of |ψ〉 about the average state |s〉. Besides the algorithm
for unstructured search, Grover’s coin is used in many other search and walk-based algorithms,
such as [23]. For further reference, note that when the Hilbert space dimension is a power of 2
(i.e. d = 2l for some l), we can express CG as

CG = −CWHR0C
†
WH = −I + 2|s〉〈s|

where R0 = I− 2 |0〉 〈0| is the reflection about the state |0〉⊗l and CWH is the Walsh-Hadamard
transformation defined by (3.23). The coin we just defined is the same unitary as used in Sec. 4.1
but you can find its use in many other places as it plays a vital role in (quantum-walk) searches
of all kinds.

23Grover’s search is the optimal quantum algorithm for the unstructured search problem: given a quantum oracle
Rw = I− 2 |w〉 〈w| acting as −I on the target state |w〉 and as an identity on all other states, the goal is to prepare the
marked state |w〉 with the smallest amount of calls to the oracle Rw . For details, see Sec. 4.1.



Quantum Walks: Using Coins 639

If we are restricted to lattice of dimension D one obtaines a unique feature — where other
graphs have for each coin state c only one direction, lattices have two. So when in Grover coin
Eq. (3.25) a large part of the walker was returned to the previous position, on lattices we can
modify this coin to move the walker further. When we employ the language of coins, this means,
that each coin state is given as |c,±〉 where c determines the direction and the sign determines
whether we go “up” or “down”. Grover coin as defined previously would for example change
the state |c,+〉 to

CG|c,+〉 = −r|c,−〉+ t|c,+〉+ t
∑
e 6=c

(|e,+〉+ |e,−〉)

with t and r being given by Eq. (3.24) with d = 2D. The flip-flop coin Cff that repulses the
walker from previous state does not change the direction of the walker to head back, but keeps it
the same. That means, that on the state |c,+〉 it acts as follows:

Cff |c,+〉 = −r|c,+〉+ t|c,−〉+ t
∑
e 6=c

(|e,+〉+ |e,−〉) (3.26)

Such coin was used in Ref. [43] to speed-up the search on lattices. See also Sec. 4.6.

3.5 Characteristics of Quantum Walks

The properties of quantum walks given in previous sections suggest that quantum walks could
be useful in devising efficient algorithms. From the algorithmic point of view, the properties
we have seen so far are quite vague and so to get a more direct feeling about the usefulness
of quantum walks, we now turn to some more elaborate properties. We will present them here
for discrete-time quantum walks and compare them with their classical analogues introduced in
Sec 2.2. Furthermore, based on Sec. 3.3.1, the readers should be able to translate these concepts
also to the language of scattering quantum walks.

3.5.1 Limiting Distribution and Mixing Time

The mixing time is a quantity that shall give us qualitatively the same information as the afore-
mentioned Shannon entropy given by (3.17), yet taken from a different perspective. In the clas-
sical case for connected, non-bipartite graphs, the distribution of random walk always converges
(see p. 612 in Sec. 2.2) to the stationary distribution independent of the initial state. Hence, it is
possible to define a mixing time which tells us the minimal time after which the distribution is
ε-close to the stationary one as in (2.8). In the quantum case, such a definition is not straightfor-
ward, because in general the m→∞ limits of Um|ψ0〉 and pm(x) do not exist. Nevertheless, if
we average the distribution over time, in the limit of infinite upper bound on time it does converge
to a probability distribution which can be evaluated.

Generalising (3.7), the distribution of the walker position x after m steps, given the initial
state is |ψ0〉, is given by

pm(x) =
∑
c∈Ξ

|(〈x| ⊗ 〈c|)Um|ψ0〉|2 .



640 Quantum Walks

Formally, then, the time-averaged distribution p̄T (x) for the walker starting in state |ψ0〉 is de-
fined as the average over all distributions up to time T

p̄T (x) =
1

T

T−1∑
t=0

pm(x)

The interpretation of this quantity is simple. We start the walk in the state |ψ0〉 and let it evolve
for time m uniformly chosen from the set {0, 1, . . . , T − 1}. Then the probability of finding the
quantum walker at position x is given by p̄T (x). The limiting distribution (for T →∞) then is

π(x) ≡ p̄∞(x) = lim
T→∞

p̄T (x). (3.27)

For finding the limiting distribution we refer the reader to [15]. Here we present only a small
portion of their results.

Theorem 2 For an initial state |ψ0〉 =
∑
j aj |φj〉, the limiting distribution is

π(x) =
∑

i,j: λi=λj

∑
c

aia
∗
j (〈x| ⊗ 〈c|)|φi〉〈φj |(|x〉 ⊗ |c〉), (3.28)

where c is the coin state.

If all the eigenvalues are distinct, (3.28) simplifies to

π(x) =
∑
j

|aj |2pj ,

where pj =
∑
c |(〈x| ⊗ 〈c|)|φj〉|2 is the probability to measure the initial state in the eigenstate

|φj〉. We may notice that unlike in the classical case, where the limiting distribution did not
depend on the initial state, this does not hold anymore in the general quantum case. One of the
examples where one still gets a limiting distribution independent of the initial state is for a walk
on the Cayley graph of an Abelian group such that all of the eigenvalues are distinct.

Example 7 For the Hadamard walk on a cycle with N nodes (vertices), the limiting distribution
depends on the parity of the number of nodesN . The distribution is uniform only ifN is odd [15].

We are ready to define the mixing time for a discrete-time quantum walk. It is the smallest
time after which the time averaged distribution is ε-close to the limiting distribution:

Mq
ε = min{T : ∀m ≥ T, |π − p̄m|tvd ≤ ε}, (3.29)

where | · |tvd is the total variational distance of distributions π and p̄m defined by (2.9). The
quantum mixing time, defined in (3.29), tells us the same thing as mixing timeMc

ε in the clas-
sical case defined in (2.8). The difference is that while in the classical case we use the actual
distribution to determineMc

ε, in the quantum case we use only the time averaged distribution.
We point out yet another difference between classical and quantum walks which concerns

eigenvalues. In the classical case, the difference between the two largest eigenvalues governs the
mixing time. In the quantum case where the eigenvalues of the quantum walk unitary step all
have amplitude one, we find a different relationship between the elements of the spectrum and
the mixing time.



Quantum Walks: Using Coins 641

Theorem 3 For any initial state |ψ0〉 =
∑
j aj |φj〉 the total variation distance between the

average probability distribution and the limiting distribution satisfies

∣∣π − p̄T ∣∣
tvd
≤ 2

∑
i,j: λi 6=λj

|ai|2

T |λi − λj |
.

3.5.2 Hitting Time

Another important quantity is the hitting time. In the classical case, it is the time when we can
first observe the particle at a given position (2.6). For a quantum walk, the measurement is
destructive, not allowing us to meaningfully define the hitting time in the same manner. In [31],
two ways of defining a hitting time were proposed. One of them is called the one-shot hitting
time connected with some probability p and time T . We say, that a quantum walk has a (T, p)

one-shot hitting time between positions |k〉 and |j〉, if
∣∣〈j|UT |k〉∣∣2 ≥ p irrespective24 of the coin

degree. This quantity tells us that when p is a “reasonable” number (0 < p ≤ 1), we need only
poly(T, p) number of steps to reach the vertex j from k. In fact, the usual definition (2.6) is
not possible, the an additional parameter T needs to be specified. However, one can use these
two values to devise a similar quantity given by (2.7), corresponding to the average number of
steps needed when repeating the experiment (each time running it for T steps) until the desired
position j is hit.

In the second case, we perform a measurement with two projectors Π0 = Π(j) = |j〉 〈j| ⊗ I
and Π1 = I − Π0 after each step, determining whether vertex j is “hit”. If Π0 is measured, the
process is stopped, otherwise another step is applied. The action of this operation on a general
state ρ can be written as Φq(ρ) = ΠqUρU

†Πq for q = 0, 1. This definition allows us to express
the probability of reaching the vertex j in the m-th step and no sooner, provided the initial state
is ρ0, as

pm(j) = tr[(Φ0Φm−1
1 )(ρ0)]. (3.30)

Exercise 8 The expression (3.30) might not be intuitive for everybody. The process of the mea-
surement, instead of using trace-decreasing operations Φq , can be also defined as follows. In
each step, a projective measurement given by operators Π0 and Π1 is performed. If we find the
walker at position j, the process is stopped. Otherwise, the state ρ changes to

ρ′ =
Π1UρU

†Π1

tr[Π1UρU†]
.

The resulting (normalized) state is then again evolved and a measurement is performed. Show,
that this process hits the vertex j in the m-th step and no sooner with probability given by (3.30).

We could readily use the expression for the m-th step probability of reaching j (3.30)) and
plug it into the classical definition (2.6). However, the usual choice (in order to correspond to the
first definition above) is slightly different. The concurrent hitting time for a given probability p

24In the end state, usually any coin state is accepted, while in the initial state the choice of the coin usually respects
the topology and symmetry of the graph.



642 Quantum Walks

is the time T for which the process stops with probability higher than p at a time m ≤ T . This
can be written as

hq
c(j) = min

{
T :

T∑
m=1

pm(j) ≥ p

}
. (3.31)

Example 8 Using the quantities defined above, it was shown [31] that a quantum walk on a
hypercube has an exponentially faster hitting time (when traversing from one end to another –
see Fig. 2.2) than the corresponding classical random walk, even though the mixing time might
be exponentially large in the number of layers. As was pointed out in [33], however, this does
not mean that every classical process is exponentially slower – there is a classical algorithm
capable of traversing the m-hypercube in time polynomial in m, which is of the same efficiency
as that for the quantum walk – see Exercise 2 in Sec. 2.3.1. For a graph-traversing quantum walk
algorithm provably exponentially faster than a classical one, see Sec. 2.3.1 and 6.1.2.

3.5.3 Absorbing Boundary

We now turn our attention to the Hadamard quantum walk on a line with an absorbing boundary
and compare the results with the classical ones from Sec. 2.2. In the classical case, we looked at
whether a walker starting at position 1 eventually reaches position 0, and found it is so. Following
[16], we now want to compute the probability with which the quantum walker starting in the state
|ψ0〉 = |1〉 ⊗ |↑〉 hits an absorbing boundary at position 0 (after an arbitrary number of steps).
Comparing with (3.31) for the concurrent hitting time, we can also say that we are looking for
the smallest p (which we denote p10) for which the hitting time is infinite25.

The absorbing boundary is a repeated projective measurement with Π0 = |0〉 〈0| ⊗ I and
Π1 = I − Π0, telling us whether the walker reached 0 in a given step or not. To find the overall
probability of this eventually happening, we will not employ the Fourier transform technique
we used before, because we now only look at a semi-infinite line comprised of non-negative
positions for the walker. Instead, we shall use the technique of counting paths.

Exercise 9 Show that this type of measurement process does not allow the walker to tunnel
through the position 0. i.e. if she starts at positive position that she cannot pass to negative
positions.

Let us start with a short analysis of the problem. The walker starts at position 1 and we want to
know, what the amplitude is for him to be at position 0 afterm steps – let us denote this amplitude
a10(m). It can be written as the sum of amplitudes corresponding to all possible classical paths
(not going through 0). Each classical path is described by an m-tuple (q1, q2, . . . , qm) with
qj ∈ {↑, ↓} standing for the direction the walker went in the j-th step. The amplitude for each
path is ±2−m/2, as the Hadamard coin (3.4) has only the coefficients ±1/

√
2. We notice that

the coefficient can be negative only in the case we go left in two consecutive steps (let us call
this event a doublet). In each such case, the amplitude acquires a minus sign. If the path has

25This means there is no number of steps that would guarantee the walker has reached position 0 with probability
greater than p10



Quantum Walks: Using Coins 643

even number of doublets, the final amplitude for the path is positive and when the path has odd
number of doublets, the final amplitude for the path is negative.

We denote the set of all paths of length m with even number of doublets as A+
m and the set

of all paths of length m with odd number of doublets as A−m. The amplitude a10(m) can now be
written as

a10(m) =
∑
p∈A+

m

1

2m/2
−
∑
p∈A−m

1

2m/2
=

1

2m/2
(|A+

m| − |A−m|),

where |A| denotes the cardinality of set A. The probability for the walker to hit the boundary at
all is now expressed as

p10 =

∞∑
m=1

|a10(m)|2 =

∞∑
m=1

1

2m
(|A+

m| − |A−m|)2. (3.32)

In order to find the coefficients |A+
m| − |A−m|, we construct the so called generating function26

for these27 coefficients,

f(x) =

∞∑
m=1

(|A+
m| − |A−m|)xm.

If the walker were at position 2 and then got back to 1 by some path (not going to 0), the
generating function would be the same. Now if the walker is at position 1, then moves right to
position 2 and then back to 1 by some path, we find that the generating function for this process
is xf(x). By joining k such paths together we can obtain the generating function for all the paths
that get to position 1 after leaving it exactly k-times, obtaining [xf(x)]k.

There are two ways to get from position 1 to position 0. First, we could go left one step.
Second, we could leave 1, move around and return to 1, all this k-times, and then finally take
a step left to 0.When we enter 1 for the k-th time and then go left once more, the amplitude
acquires an additional minus sign. Overall, we can write this in the following way,

f(x) = x− x
∞∑
k=1

[xf(x)]k = x− x2f(x)

1− xf(x)
.

26 This is a different concept from the generating functions for the moments of distributions. Although this topic is
very interesting from the mathematical point of view, for our purposes we only focus on a few points. For any sequence
of numbers {aj}∞j=0 we can construct the power series at x = 0,

g(x) =

∞∑
j=0

ajx
j .

All we will need is that when we have two generating functions f(x) and g(x), and know the coefficients {aj}∞j=0

of g(x), then if we can find a functional relation between f(x) and g(x), we can also find a relation between their
coefficients {aj}∞j=0 and {bj}∞j=0.

27 In this Section we will always consider coefficients of the type |A+
m| − |A−m| for various conditions, and thus we

will use the notion of a generating function in a slightly abusive form just by saying it corresponds to some process
instead of always explaining that it corresponds to the coefficients of the type |A+

m| − |A−m| for a given process.



644 Quantum Walks

Solving this quadratic equation for f(x) yields

f(x) =
1 + 2x2 −

√
1 + 4x4

2x
.

By a simple comparison with (C.2), we find that the generating function f(x) is connected with
the generating function c(x) for the Catalan numbers (see Appendix C) as

f(x) = x− x3c
(
−x4

)
= x+

∞∑
k=0

(−1)k+1Ckx
4k+3,

where Ck are the Catalan numbers,

Ck =
1

1 + k

(
2k

k

)
.

In other words, we have

|A+
m| − |A−m| =


1 for m = 1,
(−1)k+1Ck for m = 4k + 3,
0 otherwise.

This results in the expression for the probability of eventually hitting the boundary (3.32):

p10 =
1

2
+

1

8

∞∑
k=0

C2
k

24k
=

1

2
+

1

8

(
16

π
− 4

)
=

2

π
,

using (3.33) and (C.4), obtained for example by employing Stirling’s formula.
We found that p10 = 2/π which is different from the random walk case for which the proba-

bility is 1 (see p. 611), meaning the classical random walker will eventually come to the position
0. We see again that interference of amplitudes instead of adding up probabilities plays a crucial
role in quantum theory, leading to a different behavior of systems when compared to the classical
case.

Exercise 10 Show that

M∑
k=0

C2
k

24k
= (16M3 + 36M2 + 24M + 5)

C2
M

24M
− 4, (3.33)

using induction and (C.6) from Appendix C.

3.5.4 Quantum-to-classical Transition and Decoherence

The definition of discrete-time quantum walks is based mostly on an analogy with classical ran-
dom walks. So fare, we have done no real attempt to make a canonical quantization of random
walks – this will be done later in Chapter 5. However, we might think about the opposite pro-
cesses. Consider now a quantum walk whose evolution is not unitary anymore, but some amount



Quantum Walks: Using Coins 645

Fig. 3.6. Probability distributions for quantum walks on a line with additional decoherence, after 100 steps
of evolution. A pure quantum walk with p = 1.0 (dashed line), a pure classical random walk p = 0.0 (solid
line) and a non-unitary walk with p = 0.96 leading to a distribution with a maximal Shannon entropy.

of decoherence comes into play. Imagine the state unitarily evolves for one step, and then with
some small probability (1 − p) a projective measurement with projectors Πx gets performed,
transforming the state ρ into

E(ρ) = pUρU† + (1− p)
∑
x

ΠxUρU
†Πx. (3.34)

The projectors Πx can be either tied to different coin states (Π↑, Π↓) or work in the position
basis of the (coined) walker (when Πx = |x〉〈x|), or even in both of these (for a SQW, x would
correspond to different directed edges). This prescription thus states on top of performing a
quantum walk, occasionally we measure either the state of the coin, the position of the walker,
or the edge state for a SQW, depending on the choice of projectors Πx.

Let us look on the quantum walk on a line in the SQW model (see Sec. 3.3.1), concentrating
on the Shannon entropy of the walks given by (3.17). Consider N to be the set of all edge-states
and (1 − p) the probability of performing a measurement after a step of the walk. It is clear,
that p = 1 gives an unperturbed unitary evolution. On the other hand, for p = 0 the evolution
is devoid of interference, as it results in a diagonal density matrix. In each step, no matter what
the state of the coin might be, the walker moves to the right or left with equal probabilities.
The measurements performed after every step thus give us a classically describable evolution,
as any superposition that occurs in the coin evolution is broken by the measurement. Such a
walk is governed by the same rules as the drunkard’s walk. Therefore, in the extreme case of
maximal decoherence, a quantum walk becomes classical. This is a conclusion that can be simply
extrapolated into any type of graph and a quantum walk on it, with the high-decoherence limit
resulting in a classical walk with a transition rule derivable from the corresponding coin operator.

The situation for general (intermediate) values of p now deserves our attention and is re-
viewed in [17]. In short, from Fig. 3.6 we see that by varying p, we smoothly get from a two-
peaked pure quantum-walk distribution to the normal distribution. However, as the computation



646 Quantum Walks

Fig. 3.7. Shannon entropy of a probability distribution coming from a quantum walk, depending on
the unitarity rate p, for various numbers of steps taken. Dashed horizontal lines correspond to the maximal
achievable entropy of a (uniform) distribution restricted to the position interval [−x/

√
2;x/

√
2] after taking

x steps. The thin dot-dashed line denotes the maximal achievable entropy for a given p. Obviously, as a
quantum walk without decoherence does not revert to classical side, the maximum of the entropy for p = 1
goes to infinity.

of Shannon entropy in Fig. 3.7 suggests, an intermediate point in p gives us an almost uniform
distribution, something far from both the purely quantum and purely classical behavior. The
point in which Shannon entropy is maximal depends not only on the value of p, but also on the
number of steps taken. Before reaching this point, the distribution spreads ballistically, while
at larger times, the spreading slows down as the distribution approaches a normal distribution
and the spreading becomes diffusive. Thus on long timescales, any amount of decoherence leads
to the destruction of quantum interference effects. Note that in the limit p → 1, the point of
maximal entropy diverges in the number of steps and so the evolution remains (as is expected)
ballistic all the time.

We encourage the reader to consult [17] for a deep review, considering also different types of
measurement (showing that it makes a difference whether we measure the coin, position or both),
different types of graphs (such as a hypercube or a cycle) and different types of decoherence as
well. We conclude that although discrete time quantum walks are not quantized versions of
classical random walks, they approach the behavior of classical random walks when undergoing
decoherence at an increasing rate. One should keep in mind one additional thing. Even if the
decoherence is maximal in both the position and the coin registers (p = 0 and we measure in
every step), the usual unbiased random walk given by (2.2) is recovered only in special cases.
The walker always remembers the direction it came from and so it treats all directions equally (as
a random walk does) only if the coin is unbiased. Otherwise, the walk obtained by decoherence
corresponds to a random walk with memory [20].

Exercise 11 We could also think about what happens to quantum walks under a different type of
decoherence. In [20], every step of a SQW evolution is affected by a random phase-shift on every



Quantum Walks: Using Coins 647

edge-state. Thus, after evolving the state ρ by the step unitaryU , another unitary Φ(φ̂) = diag eiφ̂

is applied (with a random vector of phase-shifts φ̂). The “random” effectively means that such a
mapping is described by

E(ρ) =

∫
π(φ̂)Φ(φ̂)UρU†[Φ(φ̂)]† dφ̂ ,

where π is the distribution of phases, which we assume to be symmetric and φ̂-components un-
correlated, meaning that the choices of components are independent, i.e. π(φ̂) =

∏
x∈N π0(φx).

Under this assumption, show that the state after one step of evolution with random phase flips is
again described by (3.34) with p dependent on the parameters of noise, still being from interval
[0; 1], with p = 1 standing for no noise and p = 0 for maximal noise described by the choice of
phase-shifts sampled uniformly from whole interval [−π;π].

3.6 Summary

In this section we have presented the simplest and most naı̈ve transition from classical random
walks to processes we call quantum walks. The definition of these discrete time quantum walks
was made on analogy with their classical counterparts rather than by quantization. Nevertheless,
there is a closer correspondence between them, as the classical random walk can be obtained
from the quantum walk by adding decoherence – classical random walks are indeed the classical
limits of discrete time coined quantum walks (possibly with memory).

On the other hand, quantum walks display a variety of differences from classical random
walk, as their spreading is ballistic and not diffusive as is the case for classical random walks.
This difference is the result of interference effects and leads to faster mixing times. This in
turn can be used to obtain efficient algorithms. The most prominent algorithmic application
of discrete-time quantum walks is for searches on graphs, where a quadratic speedup can be
obtained if the “database” we search is unstructured (Grover’s search on a complete graph), but
also in many other cases. Although their immediate application doesn’t seem apparent, they can
in turn be used as subroutines in more complicated tasks such as k-subset finding, where they
provide a provable speedup over the best possible classical algorithm.

The aim of this section was also to showcase the methods for analysis useful not only in this
area – Fourier transforms (applicable on all Cayley graphs) and counting paths. We looked at the
most common graphs: a line, a cycle, a hypercube. They were used to get the reader acquainted
with the most usual properties studied in these types of problems – hitting time, mixing time,
reaching an absorbing boundary or finding the (limiting) distribution. We then compared the
obtained quantities to their classical counterparts for random walks. The only problem arising
when defining these quantities is the different approach to measurement – whereas in the classical
case a measurement does not change the state of the system, in the quantum case measurement
destroys the state and leads to the collapse of the wave function. Furthermore, occasional mea-
surement can be used to model decoherence that destroys the superpositions, the key ingredient
of quantum walks.



648 Quantum Walks

4 Quantum Walks and Searches

In the previous Section we defined discrete-time quantum walks and explored some of their basic
properties. Now it is time to show their applications in computational problems. As the title of
the section suggests, a large part of the research in this area concerns applying quantum walks
for searching. The mixing properties of quantum walks are behind this — fast mixing leads to a
natural suggestion that these walks could perform searches faster than classical algorithms. This
approach has led to several important quantum walk search algorithms with provable speedups
over their classical counterparts.

The first quantum walk algorithm performing a search for a target vertex was given in Ref.
[23] for a hypercube. Soon after that, several new algorithms for searching on various graphs
emerged, utilizing the symmetric properties of the underlying graphs to analytically describe
the unitary evolutions. The common theme resembles the algorithm for unstructured database
search by Grover [30]. In fact, the problems of searches on graphs go beyond the framework of
amplitude amplification method [37] which solves the problem by showing that its evolution is
restricted to a two-dimensional subspace of the Hilbert space. On one hand one can use results
of Ref. [43] that approximate the evolution as a restriction to a two-dimensional Hilbert space
or one can find higher-dimensional restrictions and describe the evolution within this subspace.
This method is described in Sec. 4.3 and is applicable for highly symmetrical problems.

Research in the area of quantum walk searches progressed also with Ambainis’ algorithm
for element distinctness, utilizing quantum walks on a graph with a more involved structure [38]
(the vertices of this graph are sets of vertices of the original graph). This specific algorithm was
later generalized to the problem of subset (e.g. triangle) finding [39, 40]. Although a general
lower bound is still not known in the general case, this approach is the best known up to date.
Moreover, it can be modified for the task of solving several other problems such as verification
of matrix products [41] or testing the commutativity of a black-box group [42].

4.1 Grover Search

We begin this Section with Grover’s search [30], the algorithm whose power will be used through-
out the whole section for comparison and as a point of reference.

In 1997, Lov K. Grover introduced [30] a quantum search algorithm for a marked (target)
element from an unstructured database. The algorithm is provably quadratically faster than any
classical algorithm for the given problem, also in the generalized case soon described in [47].
There exists also a fixed point “version” of Grover’s search — see Ref. [53,54] and Appendix D.
This quadratic speedup comes in the number of oracle calls, where one oracle call gives us only
the information whether the questioned-about element is the target one or not. The oracle model
is key for Grover’s search which serves as a base for the comparison of different algorithms.
Therefore, we will now provide a short introduction to oracles and after that we shall analyze
Grover’s search.

4.1.1 Oracles and Searches

In the previous Sections, we had a few opportunities to notice oracles but left them unexplained.
Here we provide some basic information on this topic that concerns Grover’s search and further



Quantum Walks and Searches 649

applications.
Within a classical computation, the use of the so-called oracles (also called black-boxes), is

quite abundant. The oracle is a device that performs a specialized task and the number of its calls
is used for comparison of efficiencies of algorithms (their query complexity). The algorithmic
efficiency is then expressed in the number of calls of such oracle. In the quantum case we can
follow a similar path, where we compare different algorithms with respect to the number of
oracle calls, where the oracle can now be quantum (i.e. a unitary operation such as a reflection
about a vector characteristic for the black box but unknown to us).

A very common task in both classical and quantum setting is a search for a marked/desired
element. Here the oracle serves as a device telling us whether the element we are examining is
the one we are searching for (and nothing more). This task may be justified in the following way.
If we consider a database (structured or non-structured), there are certain kinds of queries for
which the database may be viewed as unstructured. For example a phone book (yellow pages)
is a database designed so that if you know a name, it is easy to find the corresponding phone
number. However, having only the a phone number, it is a tedious task to find the corresponding
name, since the phone numbers in the phone book are positioned practically in a random fashion.

Following the previous discussion, we may also construct an oracle that tells us an answer for
a query – given an index of an element from a database, the oracle tells us whether the element
accommodates the given query or not. Sticking to the yellow pages analogy, the oracle tells us
whether the k-th record (name) corresponds to the number we are looking for. The analogy is
suitable also to show that such oracle doesn’t have to be something magical – it is a relatively
easy task to find the k-th name in a phone book – a well structured database from this point of
view.

Let us now define an oracle in a more abstract fashion, denoting the set of all possible choices
of queried elements asN and the subset of this set that accommodates a given query as K ⊂ N .
The oracle28 then is a function fK(x) defined for all x ∈ N such that

fK(x) =

{
1, if x ∈ K,
0, if x ∈ N \ K.

(4.1)

The oracle function fK is determined by the setK (target or special set) and it is not necessary to
state this fact in the function definition, yet it will be helpful on occasions. For practical purposes,
if K contains only one element k, we will write it as fK(x) ≡ fk(x).

In a quantum world, we can define a unitary quantum oracle based upon a classical one fK,
following the constructions in [47]. Given the function fK, we can consider a unitary controlled
operator CVK defined for a bipartite (two-register) system,

CVK : |x〉 ⊗ |m〉 7→ |x〉 ⊗ |m⊕ fK(x)〉. (4.2)

We can think of the first register as providing a query (asking about the element x), while the
second subsystem is a qubit to whose value we add (in binary) the result of the oracle function
fK evaluated on a state of the first subsystem. This second register is needed for reversibility, as
we would like the quantum oracle to be unitary. Such a quantum oracle, no matter what its actual

28In general, oracle may be any function. For our purposes it will be enough to restrict ourselves to boolean functions.



650 Quantum Walks

implementation is, is widely used to demonstrate the difference in query complexity between
classical and quantum algorithms.

Observe that the quantum oracle we just defined is a unitary operation, and thus can also act
on superpositions. However, if we query it classically (i.e. if input states are of the form |x〉⊗ |0〉
with x ∈ N ) and measure the result on the second register afterwards, we always get the result
of fK(x). Thus, in this classical-like usage, this quantum oracle does not give us any extra power
for finding an element from K. On the other hand, as we will show soon, quantum properties
such as interference help us enhance the efficiency of search algorithms – the only way to achieve
a speedup is to use a quantum oracle with quantum inputs.

Finally, there is one interesting feature of the quantum oracle from (4.2). When we intialize
the second register to

|m〉 =
1√
2

(|0〉 − |1〉) ≡ |−〉,

we find that

CVK|x〉 ⊗ |−〉 = (−1)fK(x)|x〉 ⊗ |−〉.

Surprisingly, when the second register is intialized as |−〉, after the application of CVK it does
not change and thus is not needed in further mathematical considerations. Therefore, we may
just as well use

RK : |x〉 7→ (−1)fK(x)|x〉

as our quantum oracle operation. The operator RK can be further written as

RK = I− 2
∑
j∈K
|j〉〈j|, (4.3)

flipping the sign of the basis states from K and preserving the rest – it is a conditional phase-flip.
As the searches we will study are restricted to graph structures it is also necessary for similar

tasks to consider “graph” oracles that will be later used. Besides mentioned oracle that marks
some vertices we may consider also oracles that give us information about graph structure. We
will find use of such oracles later as well. The walk on graph can be viewd also as a query
problem, where walker, being on position j queries the neighbor oracle to tell him possible
neighbors of j. Another type of oracle might be called edge oracle as it gives just information
whether some edge jk exists — the information is provided in a similar way as in the case of
vertex-marking oracle from Eg. (4.2) with the difference of taking two vertices on input.

4.1.2 Grover’s Algorithm

Let us now present the optimal quantum algorithm for unstructured search. Having sets N and
K as defined in the previous section, with N = |N | and k = |K|, our goal is to find a state
from the marked set K. We initialize our system in the equal superposition of all states of the
computational basis

|ψ0〉 = |s〉 =
1√
N

∑
j∈N
|j〉. (4.4)



Quantum Walks and Searches 651

Fig. 4.1. The Grover algorithm performs a rotation of the state vector |ψ〉 by angle θ by first reflecting the
vector around |n〉 and then around |ψ0〉.

We define the unitary step operator

U = CGRK, (4.5)

where

CG = −I + 2|s〉 〈s| = −Rs (4.6)

is an inversion about the average introduced29 in Sec. 3.4, and the operator30 RK is defined in
4.3. Defining the states

|t〉 =
1√
k

∑
j∈K
|j〉, |n〉 =

1√
N − k

∑
j∈N\K

|j〉,

simplifies the analysis greatly, as the application of U (4.5) on a state from the subspace spanned
by these two vectors leaves the state in this subspace. In particular, it performs a rotation (see
also Fig. 4.1)

U |n〉 = cos θ|n〉+ sin θ|t〉,
U |t〉 = − sin θ|n〉+ cos θ|t〉,

where

cos θ =
N − 2k

N
. (4.7)

Moreover, the uniform superposition initial state |ψ0〉 from (4.4) is also a superposition of the |t〉
and |n〉 vectors:

|ψ0〉 = |s〉 = sin
θ

2
|t〉+ cos

θ

2
|n〉.

29There, we also show how to implement it using the Walsh-Hadamard operation and a reflection about the all-zero
state |0 · · · 0〉.

30Note, that R{k} ≡ Rk , which also justifies Eq. (4.6).



652 Quantum Walks

Initialize state of the system according to Eq. (4.4) and for m̃
steps [given by Eq. (4.9)] repeat:

1. apply the oracle RK to the state

2. perform inversion about average CG on the system

Measure the system in computational basis; if element from K is
not found repeat the algorithm

Fig. 4.2. Grover algorithm which searches for oracle-selected elements.

As a consequence, repeated application of U rotates the initial state towards the state |t〉 as

|ψm〉 ≡ Um|ψ0〉 = sin(2m+ 1)
θ

2
|t〉+ cos(2m+ 1)

θ

2
|n〉. (4.8)

Thus, if we pick the number of applications of U to satisfy (2m̃ + 1)θ/2 = π/2, we get
U m̃|ψ0〉 = |t〉 and a subsequent measurement of the system gives us an element from K. For
k � N , this happens for

m̃ ' π

4

√
N

k
. (4.9)

This number of steps is quadratically smaller than the corresponding number of steps we would
need when using any classical algorithm where it is O(N/k).

Note that it is important for this algorithm (see Fig. 4.2) to start in the equal superposition and
to know the number of searched elements k in advance. Any deviation from the initial state (4.4)
decreases the probability of successfully identifying the target elements. As a rule of thumb we
can say that in order to obtain high enough probabilities, one has to start in a highly superposed
initial state (in computational basis). On the other hand, there exist ways to modify the algorithm
if the number of searched-for elements is unknown, e.g. by running the algorithm with expecting
large k and progressively dividing the expected k after each unsuccessful run.

The Grover algorithm is a special instance of a more general class of amplitude amplification
method introduced in Ref. [37]. The algorithm presented there amplifies amplitude a of target
state obtainable by quantum algorithm A. In the classical approach one would measure the
system after applying algorithm A and obtain target state with probability |a|2. So to find the
target state one would have to repeat algorithm A for roughly |a|−2 times. Approach of the
amplitude amplification method repeats the algorithm A (adding some intermediate steps) for
only O(|a|−1) times with measurement process only at the very end to obtain the target with
constant probability close to 1.

Exercise 12 A nice conclusion drawn from the previous result, often exploited in experiments
verifying the functionality of Grover’s search, is obtained by setting k = N

4 (meaning that one
fourth of the elements from the set N are target elements). Show that in this case a single
application of the unitary U (4.5) is needed to reach a target state, as opposed to two oracle
queries one needs to make (on average) in the classical case. In particular, this means we can
find a single marked element in a list of four by a single application of U (meaning using only a
single call to the oracle).



Quantum Walks and Searches 653

1. Initialize state of the system according to Eq. (4.13)

2. for m̃ steps [given by Eq. (4.17)] apply U

3. measure the position (edge) of the walker; if the resulting
edge does not have any target end vertex from K, restart
the algorithm

Fig. 4.3. Searches on graphs usually start in highly superposed initial state in the position basis. After m̃
iteration the walker is with high probability located at an edge connected to (at least) one target vertex. This
algorithm is given for particular case of a search on the complete graph.

Example 9 Considering different types of oracles defined at the end of Sec. 4.1.1 one can notice
that the edge oracle can be used together with Grover’s search to construct neighbor oracle.
If the degree of the graph is much smaller than the number of vertices the time expense of
such construction is O(

√
N) as Grover’s search has to look through N vertices of the graph to

determine which of them are neighbors of given vertex.

4.2 Searches on Graphs

One of the first attempts to perform a search with quantum walks used a discrete time quantum
walk on a hypercube, with a single type of coin (the Grover coin) for all vertices except the
marked one, which had it perturbed to minus identity (effectively acting as minus the Grover coin
due to the symmetry of the graph). This work by Shenvi, Kempe and Whaley [23] showed the
possibility of quantum speedups in quantum walks on graphs, compared to classical search. The
analysis of the hypercube search problem is similar to the one we used for Grover’s search [30]
in the previous Section, yet the dimension of the subspace into which the evolution is restricted
to is larger than the two dimensions of amplitude amplification method of Ref. [43]. In this way,
the approach was unique at the time.

Sarching for marked elements on a graph is the focus of many other works. Ambainis, Kempe
and Rivosh [43] , also considered a search on a complete graph with loops, where they found an-
other incarnation of Grover’s search. More importantly, they studied searches on regular lattices
and found an algorithm with a quadratic speedup over classical search. However, before that
result, in the field of continuous quantum walks (which will be introduced in Sec. 6) Childs
and Goldstone in Ref. [44] investigated searching on finite-dimensional lattices, with the special
case of a complete graph with loops. The dialogue between continuous and discrete-time quan-
tum walks inspired the quadratically faster (than classical) continuous-time quantum walk search
algorithm on regular lattices by Childs and Goldstone [80].

We will now look at scattering quantum walks, following the definitions in Sec. 3.3.1. We
will combine this formalism with searches on graphs, looking at the general algorithm given in
Fig. 4.3 and compare it to Grover’s search (see Fig. 4.2). In particular we will follow [45], study-
ing scattering quantum walk search on the (symmetric) complete graph. We will call the vertices
corresponding to the desired elements from set K targets, while the rest of the (unmarked) ver-
tices will be called normal. Our goal again is to to find at least one element from set K by
identifying some target vertex.



654 Quantum Walks

Considering a vertex l, let Γ(l) be the set of vertices connected to l by an edge, and if k ∈
Γ(l), let Γ(l; k) be the set of vertices connected to l by an edge but excluding k. The local
unbiased unitary evolutions (coins) corresponding to both the normal and target vertices act as
follows

U (l)|k, l〉 = −r(l)|l, k〉+ t(l)
∑

m∈Γ(l;k)

|l,m〉, (4.10a)

where r(l) and t(l) are reflection and transmission coefficients to be chosen in such way that U (l)

is unitary. For normal (unmarked) vertices, our choice is the Grover coin (3.24) with

t(l) =
2

|Γ(l)|
, r(l) = 1− t(l). (4.10b)

The targed vertices are marked by a special coin, where we choose

r(l) = −eiφ, t(l) = 0, (4.10c)

with a general phase-shift eiφ (meaning a walker going into a target vertex is reflected completely,
gaining some phase shift in the process). Here |Γ(l)| = d(l) is the degree of vertex l, i.e. the
number of vertices in the set Γ(l). For both of these choices, the operator U (l) is unitary, and,
as we shall see in next section, these choices also guarantee that the quantum walk has the same
symmetry group as the graph.

4.3 Symmetry Considerations

Symmetry plays quite an important role in being able to determine the basic evolution properties
of quantum walks. In this Section, we present a general framework of utilizing symmetries,
following [45]. Suppose we have a graph G = (V,E) with vertices of two types31 — previously
called targets and normal vertices. Let A be the group of automorphisms of the graph that also
preserve vertex types. An automorphism a of G is a mapping a : V → V such that for any two
vertices v1, v2 ∈ V , there is an edge connecting a(v1) and a(v2) if and only if there is an edge
connecting v1 and v2. Each automorphism a induces a unitary mapping Ua on the Hilbert space
of the graph G, such that Ua|v1, v2〉 = |a(v1), a(v2)〉. Suppose now that H can be decomposed
into m subspaces,

H =

m⊕
j=1

Hj ,

where each Hj is the span of some subset Bj of the canonical basis elements and is invariant
under Ua for all a ∈ A. We shall also assume that eachHj does not contain any smaller invariant
subspaces. This can always be done — in the worst case, the subsets Bj are exactly single edge
states, while in other cases the subspaces are larger and help us to obtain a considerable reduction
of the dimensionality of the problem.

31The number of types of vertices can be arbitrary, but for our purposes two suffices. If the number would be higher,
the automorphisms that we define would map vertices of each type onto vertices of the same type.



Quantum Walks and Searches 655

Next, in each invariant subspace we form a vector

|wj〉 =
1√
dj

∑
|v1,v2〉∈Bj

|v1, v2〉 (4.11)

that is the sum of all of the canonical basis elements in the subspace, with dj the dimension of
Hj . This vector satisfies Ua|wj〉 = |wj〉 for all a ∈ A. Moreover, it is the only vector inHj that
satisfies this condition. With the help of the vectors |ψj〉, we define the space S = `2({|wj〉 :
j = 1, 2, . . . ,m}), and note that S = {|ψ〉 ∈ H : Ua|ψ〉 = |ψ〉,∀a ∈ A}. The space S has
dimension equal to the number of invariant subspaces Bj .

Now suppose that the quantum walk operator U commutes with the automorphisms, i.e.
[U,Ua] = 0 for all a ∈ A. This implies that if Ua|ψ〉 = |ψ〉, then UaU |ψ〉 = U |ψ〉. Thus if
|ψ〉 ∈ S, then U |ψ〉 ∈ S, meaning the subspace S is closed under the action of the step operator
U . Correspondingly, if the initial state of the walk is in S, then we only need to consider states in
S to describe the state of the walk at any time. It is useful when the automorphism group is large
because S then can have a much smaller dimension thanH, simplifying the analysis greatly.

Now let us demonstrate that the unitary operator U defined by the local unitary operators in
(4.10a) does, in fact, commute with all of the automorphisms of a graph that leave the target
vertices fixed. It should be clear that this holds, as the construction of the evolution unitary
is based on the structure of the graph. Nevertheless, let us see it directly. If these operators
commute when applied to all of the elements of the canonical basis, then they commute. As
before, let Γ(v) be the set of vertices in V that are connected to the vertex v, and if v′ ∈ Γ(v)
then Γ(v; v′) = Γ(v)\{v′}. Finally, let |Γ(v)| be the number of elements in Γ(v). Then we have

UaU |v1, v2〉 = −r(v2)|a(v2), a(v1)〉+ t(v2)
∑

v∈Γ(v2;v1)

|a(v2), a(v)〉,

while also knowing that

UUa|v1, v2〉 = −r[a(v2)]|a(v2), a(v1)〉+ t[a(v2)]
∑

v∈Γ(a(v2);a(v1))

|a(v2), v〉.

First, note that the reflection and transmission amplitudes in this equation are the same as those
in the previous equation, i.e. r(v2) = r[a(v2)] and t(v2) = t[a(v2)]. This is a consequence of
|Γ(v2; v1)| = |Γ(a(v2); a(v1))| – the key properties of the local unitaries are conserved as the
vertices of some type are mapped to the vertices of the same type, thus also the degree of the
vertices is conserved. Second, we also know that Γ(a(v2); a(v1)) = {a(v) : v ∈ Γ(v2; v1)},
so that the sums in the two equations are identical. Therefore, UaU |v1, v2〉 = UUa|v1, v2〉,
implying [U,Ua] = 0.

Symmetries of a graph thus allow us to analyze the evolution under a quantum walk in a
reduced subspace, if the initial state belongs to S. This is the case for the uniform superposition,
which is the reason we use it as our starting point in quantum walk searches. In the next Section,
we showcase how this works for the complete graph, where the symmetries dictate that the
dimensionality of S is only 4.



656 Quantum Walks

Fig. 4.4. An example of a complete graph with N = 7 vertices out of which k = 2 are targets (white ones).
A solution for the scattering-quantum-walk search on such graph leads to a reduction in dimensionality of
the problem to only four dimensions.

4.4 Search on a Complete Graph

Let us now consider a specific search problem where we will show basic manipulations and
methods used to solve these problems. We consider a complete graph withN vertices comprising
the set N (see Fig. 4.4). This is a specific graph with each vertex connected to all of the other
vertices by an edge. The graph has thus N(N − 1)/2 edges which define the Hilbert space of
dimension dimH = N(N − 1) for a scattering quantum walk, according to (3.19). Let k be
the number of special vertices. Recalling what was said in Sec. 4.3, the elements of the set K of
these target vertices can be labeled as j = 1, 2, . . . , k and corresponding local unitary evolutions
will be defined by (4.10a) and (4.10c). We label the normal vertices j = k + 1, k + 2, . . . , N ,
and define their local unitary evolutions by (4.10a) and (4.10b). The transmission and reflection
coefficients for all normal vertices j are the same, with |Γ(j)| = N − 1.

There are four types of edge states here: those directed from normal vertices to special ver-
tices, from special vertices to normal vertices, connecting normal vertices and connecting special
vertices. Because of the symmetry of the complete graph, these four types also define the basis
vectors of the subspace S according to (4.11):

|w1〉 =
1√

k(N − k)

N∑
a=k+1

k∑
b=1

|a, b〉,

|w2〉 =
1√

k(N − k)

k∑
a=1

N∑
b=k+1

|a, b〉,

|w3〉 =
1√

(N − k)(N − k − 1)

N∑
a=k+1

N∑
b=k+1
b 6=a

|a, b〉,

|w4〉 =
1√

k(k − 1)

k∑
a=1

k∑
b=1
b 6=a

|a, b〉.



Quantum Walks and Searches 657

These are equal superpositions of all edge states directed from normal to special, from special
to normal, connecting only normal and connecting only special vertices. The unitary evolution
of a uniform superposition of edge states, as shown in Sec. 4.3, happens within the subspace S
spanned by the four vectors |wk〉, k = 1, 2, 3, 4, and is given by a 4× 4 matrix

U
∣∣
S =


0 q s 0

eiφ 0 0 0
0 s −q 0
0 0 0 eiφ

 , (4.12)

where

q = −r + t(k − 1) = −1 +
2k

N − 1
,

s =
√

1− q2 = t
√
k(N − k − 1).

Note that the subspace spanned by the vectors |wk〉, k = 1, 2, 3 is decoupled from the subspace
spanned by the vector |w4〉. Indeed, the vector |w4〉 (a superposition of edge states from target
to target vertices) is invariant under the step unitary, up to a phase factor.

In analogy with Grover’s search [see (4.4)], we now take the equal superposition of all edge
states for our initial state:

|ψ0〉 =
1√

N(N − 1)

∑
|j,l〉∈H

|j, l〉. (4.13)

This is on one hand a necessity in order for the search to be efficient, but on the other hand it is a
state where no prior information about any target vertex is used, as we do not expect to know it
beforehand. We can write |ψ0〉 as a superposition of the states |wk〉 (thus it belongs to S) as

|ψ0〉 =

√
k(N − k)

N(N − 1)
(|w1〉+ |w2〉) +

+

√
(N − k)(N − k − 1)

N(N − 1)
|w3〉+

√
k(k − 1)

N(N − 1)
|w4〉.

We shall analyze what happens for two choices of the phase-shift on the target vertices: φ = 0
and φ = π. First, we start with a bad choice. For φ = 0 (target vertices do not scatter, just reflect
without a phase shift), we find that the initial state can be written as a superposition of eigenstates
of U with an eigenvalue equal to unity, in particular,

|ũ0〉 =
1√

3 + q


√

1 + q√
1 + q√
1− q
0

 ,
|ũ′0〉 = (0, 0, 0, 1)T ,



658 Quantum Walks

and the initial state can be expressed in terms of them as

|ψ0〉 =

√
(N − v)(N + v − 1)

N(N − 1)
|ũ0〉+

√
v(v − 1)

N(N − 1)
|ũ′0〉.

This, however, means that the initial state is an eigenstate of the step unitary U as well. In this
case, the quantum walk gives us no advantage over a classical search, as the measurement in any
time gives us only a random edge state.

Second, we pick the value of φ = π, and see that the behavior of the quantum walk is quite
different. The state of the walk after m steps is derived by employing the decomposition formula

|ψm〉 =
∑
λ

(λm〈µλ|ψ0〉) |µλ〉, (4.14)

where |µλ〉 are the orthogonal eigenvectors corresponding to the eigenvalue λ of the unitary
operator U . In the limit N � k ≥ 1 we find that

Um|ψ0〉 '
1√
2


sin(2m+ 1) θ2
− sin(2m− 1) θ2√

2 cosmθ
0

 , (4.15)

where

tan θ =

√
k(2N − k − 2)

N − k − 1
. (4.16)

We find that the probability amplitudes for edge states not connected to special vertices (the third
component in the vector) are approximately equal to zero when θm = π/2. If we measure
the walker after such a choice of steps, with probability close to unity we will find an edge
connected to one of the target vertices. Therefore, the number of steps needed to find one of the
target vertices with reasonable probability is of the order O(

√
N/k) for large N , in particular

m̃ ' π

2
√

2

√
N

k
. (4.17)

This is a quadratic speedup over any classical algorithm that needs at least O(N/k) steps to do
the task when searching an unstructured database.

It should be noted that for the case k = 1, the vector |w4〉 is not defined and the dimension
of the problem is reduced to three. In this special case, the analysis becomes even simpler and
the quadratic speedup result remains valid.

To put the problem into perspective, let us compare it with the results of [23], studying
search on a hypercube. They present an algorithm for finding a single target vertex with success
probability of approximately 1/2, which is in contrast with our finding an edge with a special
state with probability close to unity. In our case, the probability is (almost) equally split between
two possible sets of edge states, those leaving the special vertex and those entering the special



Quantum Walks and Searches 659

vertex (states |w1〉 and |w2〉). If we would reformulate our search in the coined quantum walk
language, we would find that our results correspond to either finding the particle on the special
vertex (with an arbitrary coin state, i.e. our state |w1〉) or finding it on one of the neighboring
vertices with the coin pointing to the special one (our state |w2〉).

In [43], a quantum walk that performs an exact Grover search is discussed. The graph the
quantum walk is performed on is a complete graph that has loops added to each vertex. The
coins for normal vertices are chosen to be of the Grover type. However, the coins for the special
vertices are “minus” the Grover coins (adding a phase shift of π). This leads to almost the
same evolution as in the case of Grover’s search; the only difference is that one step of Grover’s
algorithm corresponds to two steps of the quantum walk.

Finally, let us summarize the situation as it presently stands. Quantum-walk searches have
two figures of merit, the number of steps necessary to find a special vertex and the probability
of finding it after a specific number of steps. On a complete graph without loops [the result we
obtained in (4.15)) one needs

√
2-times as many steps as in the Grover search for the correspond-

ing problem (a search within N elements), and after this many number of steps the probability
of finding the special vertex is equal to unity. On a complete graph with loops [43], twice as
many steps as in the corresponding Grover search are required, and the probability of finding the
special vertex is again equal to unity. A rigorous comparison of these properties on a hypercube
can be found in Ref. [46], where adding loops to the graph again results in the increase if the
necessary number of walk steps by a factor of

√
2. The result holds also for the complete graph

and explains the differences stated.

Exercise 13 Find the evolution of an equal superposition initial state for a quantum scattering
walk on a complete graph with loops using the Grover coin on normal vertices and minus the
Grover coin on target vertices.

4.4.1 Oracle Controlled Evolution

In this Section we will make a small detour from the particular results obtained in previous
pages. We stated that quantum walk search is faster than the classical one, yet we have not really
supported the statement. In order to be able to make such a comparison more rigorously we will
use oracles defined in Sec. 4.1.1 and the number of their calls as a mean of comparison. Oracles
are the bearers of information about searched-for targets and they provide a way to quantify the
resources needed to perform a search. It is the number of times we call an oracle that tells us
how efficient the search is. Let us have a closer look on how oracles fit into the problems of
quantum-walk searches.

In particular, the oracle CVf we will use is given by (4.2) from Sec. 4.1.1. On one hand,
when marking target elements, it can be used to count the resources used in a search algorithm
such as Grover’s search. On the other hand, we have devised and discussed quantum walks
with position-dependent coins (scattering quantum walks) in the previous Sections. If we want
to compare the necessary resources, we need to connect the quantum oracle concept with the
notion of a coin for a quantum walk. Just as in scattering quantum walks the state of the walker
is given by two vertices (an edge connecting them), we will use the oracle in two steps. In the
first step, the information about one of the vertices contained in the state of the walker will be
extracted to one ancillary system. This information will be then used as the input to the oracle.



660 Quantum Walks

Fig. 4.5. A logical circuit (network) that implements a single step of a scattering quantum walk search,
making use of the quantum oracle C. The first input corresponds to a quantum walker originally prepared
in the state |ψ0〉. The second input represents a vertex state, while the third input represents an ancillary
qubit.

The oracle will tell us whether the vertex is a target or not, adding this information to the second
ancillary system. Finally, this information will be used to determine what type of coin will be
used on a given vertex.

In particular, if l is a vertex of the graph, f(l) = 0 corresponds to a normal vertex and
f(l) = 1 corresponds to a target vertex, i.e. the type of vertex we are trying to find. If l is a
normal vertex, the local unitary operator corresponding to it will be denoted by U (l)

0 , and if it is
a target vertex the local unitary will be denoted by U (l)

1 .
Our quantum circuit will act on a tensor product of the Hilbert spaceH for the quantum walk

(3.19), the Hilbert space for vertices,Hv , and a qubit Hilbert space,H2. The vertex space is

Hv = `2({|l〉 : l ∈ V }). (4.18)

We now define an operator CU acting on in the following way on the edge register and the two
ancillary ones as

CU(|k, l〉 ⊗ |l〉 ⊗ |c〉) =
(
U (l)
c |k, l〉

)
⊗ |l〉 ⊗ |c〉. (4.19)

This equation does not completely specify the actions of CU . In particular, it does not specify its
action on states of the form |k, l〉 ⊗ |l′〉 ⊗ |c〉, where l 6= l′, but we will only need to consider
its action on states of the form given in the previous equation as it can always be expanded to a
unitary operator on the whole Hilbert space.

The quantum circuit that implements one step of our quantum walk search is given in Fig. 4.5.
The first input stands for a state of the quantum walker (i.e. any superposition of edge states),
the second for a vertex state, and the third for an ancillary qubit. The input state is |ψinit〉 =
|ψ0〉 ⊗ |0〉 ⊗ |0〉 where |ψ0〉 is a general state in the Hilbert spaceH of edge states,

|ψ0〉 =
∑
ml∈E

aml|m, l〉,
∑
ml∈E

|aml|2 = 1.

The state |0〉 in the second slot (input) in Fig. 4.5 is one of the vertex states, which, besides
labeling a particular vertex, will also serve as a reference “zero” state. First, we apply the op-
erator CW2 which maps the state |m, l〉 ⊗ |0〉 in H ⊗Hv to |m, l〉 ⊗ |l〉. Such a unitary can be



Quantum Walks and Searches 661

implemented, e.g. as presented in [47] or [48]. After this operator is applied, we get

|ψ0〉 7→
∑
ml∈E

aml|m, l〉 ⊗ |l〉 ⊗ |0〉 ≡ |ψ1〉.

Next, we apply the quantum oracle (4.2) to the vertex state and the qubit, yielding

|ψ1〉 7→
∑
ml∈E

aml|m, l〉 ⊗ |l〉 ⊗ |f(l)〉 ≡ |ψ2〉.

Now we can apply the CU operator (which coin gets applied is controlled by the last two regis-
ters) from (4.19)to the state, producing

|ψ2〉 7→
∑
ml∈E

aml

(
U

(l)
f(l)|m, l〉

)
⊗ |l〉 ⊗ |f(l)〉 ≡ |ψ3〉.

Both of the ancillary systems acted as controls, and they need to be reset before we can make
another quantum walk step. This erasure is the task of the remaining two gates in the circuit.
Since the local unitary operator U (l)

f(l) acts only on the edge space and maps Ωl to Al as given in
Sec. 3.3.1, the state |ψ3〉 can be rewritten as

|ψ3〉 =
∑
lm∈E

blm|l,m〉 ⊗ |l〉 ⊗ |f(l)〉.

A second application of the quantum oracle on the last two register resets the last qubit state to
|0〉. However, to reset the vertex state in the second register, we cannot use the CW2 operation
as before, since the information contained in the edge state about the vertex state has moved
from the second to the first position. Therefore, we need the operator CW1, which would map
|l,m〉 ⊗ |l〉 inH⊗Hv to |l,m〉 ⊗ |0〉, giving

|ψ3〉 7→
∑
lm∈E

blm|l,m〉 ⊗ |0〉 ⊗ |0〉.

This CW1 operation can be constructed in the same manner as operation CW2 in [47], using now
the first of the edge states as a control.

We have thus performed one step of the walk and reseted the ancillas, so that the circuit
can be applied again to perform additional steps of the walk. The oracle in these problems is
a resource – giving us additional information every time we call it. The number of necessary
oracle calls then tells us how efficient our algorithm is. Here we see that at most 2m oracle calls
are needed in a quantum walk search algorithm that requires m walk steps.

4.5 Other Examples of Searches on Graphs

The complete graph search example from Sec. 4.4 is just one of many possibilities. In [45],
the reader can find a number of possibilities for the choice of graph suitable for quantum walk
search (with at most quadratic speedups). On one hand these examples are artificial, however one
should bear in mind the results of Sec. 4.4.1, that the oracle determining the selected elements



662 Quantum Walks

a) b)

Fig. 4.6. Two types of graphs suitable for quantum-walk searches: a) A bipartite graph consisting of two
sets of vertices where each vertex from one set is connected to all of the vertices from the other set, while
there are no connections within a set. There may also be a different number of target vertices in each set. b)
An M -partite complete graph consisting of M sets of vertices, where each set contains N vertices. There
exists an edge for every pair of vertices not belonging to the same set, while there is no edge connecting
any two vertices within the same set. Here we look for one special vertex in one of the sets.

is independent of the choice of the graph we make. Hence, whatever choice of graph with a
proper number of vertices we make, we can always use the same oracle to perform the search.
It is however crucial to make a good graph choice, as the efficiency of the walk algorithm is
dependent on this choice. Indeed, taking a circular graph clearly cannot give us any means to
speed up classical search, as the “information” about the target has to “travel” at least along half
of the vertices (the amplitude needs to rise significantly at the target vertex). On the other side of
the spectrum of graph choices is the complete graph which makes the search quadratically faster
than in the classical case.

One interesting example of a graph to search on is the complete bipartite graph depicted in
Fig. 4.6a. It is a graph with vertices belonging to two sets. Each vertex belongs to a particular
set, is connected to all the vertices belonging to the other set, but not with any vertices within the
same set. Another graph of interest is the complete M -partite graph (Fig. 4.6b). This graph is
composed of M sets, each containing N vertices. Here the vertices from one set are connected
to all the vertices from any other set, but again, vertices within a set are not connected. Clearly,
taking M = 2 we recover the complete bipartite graph and taking N = 1 we recover the
complete graph. In all of these cases, a quadratic speedup (in the number of oracle calls) over
the best classical search algorithm is possible.

Until now, we had the opportunity to study quantum-walk searches where target vertices were
marked by an additional phase-shift, utilizing the oracle from (4.2) – the oracle tells us which
vertices are special, while the choice of the graph is ours. There are, however, also examples
where the goal of the search is to find a distinctive topological feature of the graph. In those



Quantum Walks and Searches 663

Fig. 4.7. A star graph having two arm vertices connected; these vertices are purely transmissive. Other
arm vertices are purely reflective and the central vertex is Grover-like. The evolution, when starting from
equal superposition, gives us again a speedup in locating the extra edge with high probability and the state
can be localised almost entirely on the grey triangle.

cases, we may also employ an oracle, albeit in a different form – giving us the information about
the neighbors that the walker can visit. This also means, that the structure of the graph is now a
part of the oracle and not our choice anymore.

Let us now take a look at the graph depicted in Fig. 4.7 (see also Ref. [49]) – a star graph with
N spikes, where two of the spike vertices (say 1 and 2) are connected. The Hilbert space is again
defined as a span of all edge states of the graph. We choose the central node labeled 0 to have a
Grover-like coin, obeying (3.25) with t = 2/(N + 1). The local unitary evolution for the outside
vertices is the same as before (without a phase-shift), except for the two connected vertices 1 and
2, which obviously have two outgoing edges. There we set the local unitary evolution U0 to

U0|0, 1〉 = r0|1, 0〉+ t0|1, 2〉, U0|0, 2〉 = r0|2, 0〉+ t0|2, 1〉,
U0|2, 1〉 = t0|1, 0〉 − r0|1, 2〉, U0|1, 2〉 = t0|2, 0〉 − r0|2, 1〉,

with t0 =
√

1− r2
0 and r0 chosen from the interval [−1; 1], with r0 = −1 corresponding to

Grover’s search (“marked” edges get a −1 phase), r0 = 1 giving a repetitive application of
Grover’s coin without any phase-flips and r0 = 0 for purely transmitting vertices. The quantum
walk evolution is based on an oracle that determines the neighbors of the vertex we enter as an
input. We further suppose that the (name of the) central vertex is known to us beforehand.

To classically find the extra edge, we would have to sift through the outlying vertices to find
one that has two neighbors. Note that looking at a typical vertex with only 1-neighbor, we only
get the knowledge that we missed. Thus, this is unstructured search, which classically requires
O(N) calls to the oracle giving out the neighbors of a given vertex. Again, as we will see, we can
obtain a quadratic improvement but now without using any phase-flips. The results of Sec. 4.3
once again give us a way to find an invariant subspace, which is now five-dimensional, spanned



664 Quantum Walks

by the vectors

|w1〉 =
1√
2

(|0, 1〉+ |0, 2〉),

|w2〉 =
1√
2

(|1, 0〉+ |2, 0〉),

|w3〉 =
1√
N − 2

N∑
j=3

|0, j〉,

|w4〉 =
1√
N − 2

N∑
j=3

|j, 0〉,

|w5〉 =
1√
2

(|1, 2〉+ |2, 1〉).

Note, that it is desirable to end in |w5〉 or at least in the states |w1〉 or |w2〉. Meanwhile, the
probability of ending in the states |w3〉 and |w4〉 should be as small as possible, as these states
correspond to edges not connected to either of the vertices 1 or 2.

The choice of initial state,

|ψ0〉 =
1√
2N

N∑
j=1

(|0, j〉 − |j, 0〉), (4.20)

will lead us to the evolution described by the state after m steps,

|ψm〉 = Um|ψ0〉 '
(−1)m∆√

2


sinm∆

√
t

sinm∆
√
t

∆−1 cosm∆
√
t

−∆−1 cosm∆
√
t

− t0
1−r0 sinm∆

√
t

 ,
where

∆ =

√
2(1− r0)

3− r0
.

We chose the initial state (4.20) in such a way that the contributions from different eigenvectors
do not cancel in the components for states |w3〉 and |w4〉 (which would happen if the intitial state
was the equal superposition), but rather add up.

The different choices of r0 result in various behavior of the walk. For r0 = 0 (when the ver-
tices 1 and 2 are purely transmitting), we get a quantum walk algorithm taking m̃ = π∆−1

√
N/8

steps, ending up with the walker equally distributed on the triangle 012, with equal probability
of 1/3 on every edge of this triangle.

When increasing r0, the probability to find the walker in the state |w5〉, i.e. on the edge 1–
2, rises. It might seem that taking r0 → 1 will give us the walker positioned entirely on the
extra edge. However, the parameter ∆ depends on r0 as well. Taking r0 → 1 gives ∆ → 0,



Quantum Walks and Searches 665

increasing the required number of steps m̃ necessary to assure us the maximum probability of
success. Evidently, r0 = 1 causes the extra edge to become “invisible”, making the vertices 1
and 2 no different from others – in this case, the evolution is trivial (up to a global phase).

On the other hand, taking r0 = −1 is a good choice, as it results in ∆ = 1. In this case, the
extra edge is again not “visible”, but the vertices 1 and 2 get a phase-shift π leading to Grover’s
search on a star graph with k = 2 target vertices. Note that for every step of Grover’s algorithm
we need two steps of the walk on the star graph, so the number of steps needed m̃ = π

√
N/8

corresponds to Grover’s result in [30].
Let us go back to the most natural r0 = 0 case. There is no active phase-shift occurring

anywhere in the graph, yet for the Grover search a phase-flip is a very important element. Where
is then the place where something like that occurs in this case? The graph in Fig. 4.7 is not
bipartite. The part of the walker leaving the central vertex (outgoing edges) and the part entering
it (incoming edges) have a way to interfere via the extra edge. Notice that in the initial state (4.20)
has the incoming and outcoming parts initialized with opposite signs. Therefore, the directly
reflected amplitude and the amplitude transmitted “around” the triangle can have different signs,
combining as if a part that was reflected from one of the special vertices gained a π phase-shift.
Thus, in this case a phase-shift action of a unitary was replaced by an interference effect of
phase-shifted (otherwise) non-interfering parts of the walker.

Example 10 Search on the star graph with an extra edge can be also used as a lower bound for
a triangle-finding algorithm — see Sec. 4.7.2. In the triangle problem for a graph G with N
vertices, we are supposed to find out whether it contains a triangle. The graph is given to us
via an oracle OG |x, y〉 |z〉 = |x, y〉 |z ⊕ E(x, y)〉 that holds the information whether vertices x
and y have an edge between them. A clever quantum algorithm for this was given by Magniez
et al. [40], taking O(N

13
10 ) queries of the edge oracle. . . . However, we do not know whether

this is an optimal algorithm. The best lower bound for this problem comes from the star graph.
Finding the extra edge between a pair of spike vertices certifies the existence of the triangle. Any
quantum algorithm for this unstructured problem has to take O(

√
N(N − 1) queries of oracle

OG, as there are N(N − 1) possible edges between the N spike vertices in the star graph. Thus,
the best algorithm for the triangle problem can not take fewer thanO(N) edge oracleOG queries.
Note that if we have an oracle giving us a list of neighbors instead, we can find the special vertex
in
√
N queries using Grover’s search with unit cost of asking for its neighbors, as was done

above in this Section.

4.6 Abstract Search Algorithm and Spatial Search

All the kinds of search algorithms introduced previously were analyzed in the same way. First the
unitary U is spectrally decomposed and then Eq. (4.14) is used to find the evolution of the initial
state. This approach is quite universal, however sometimes such analysis is overcomplicated and
some other approaches can be used. One such approach was presented in Ref. [43] — abstract
search algorithm. It is not as universal, yet it is still quite broad to help solve many search
problems easier than by determining the whole evolution. This approach to searches view them
from a different perspective than the generalized approach of amplitude amplification [37].

Suppose you have evolution driven by unitary U = V R, where R is controlled phase-flip on
a single target element |t〉 given by Eq. (4.3) and V is real unitary operation with a unique (real)



666 Quantum Walks

eigenvector |ψ0〉 with eigenvalue 1.
As V is real unitary matrix, its non-±1 eigenvalues λ±j come in pairs of complex conjugate

numbers e±iθj . The eigenvector with eigenvalue 1 is |ψ0〉; let the complex eigenvalues λ±j have
eigenvectors |φ±j 〉. One can show that |φ+

j 〉∗ = |φ−j 〉. Finally, let the eigenstates of eigenvalue
−1 be |ρk〉. Setting a±j = 〈φ±j |t〉 one can also see that the global phase of states |φ±j 〉 can be set
so that (a+

j )∗ = a−j ≡ aj . From this it follows that the expansion of state |t〉 in the basis of V ,
which we will need, is

|t〉 = a|ψ0〉+
∑
j

aj(|φ+
j 〉+ |φ−j 〉) +

∑
k

ak|ρk〉. (4.21)

This expansion is used to analyze the operator U . Taking θmin, the smallest phase of the eigen-
values of V one can find [43] that the most important eigenvalues of U are e±iα, where32

α = Θ

a
∑

j

a2
j

1− cos θj
+
A2

4

−1/2
 ,

where the sum goes only over the complex eigenvalues indices and

A =

√∑
k

a2
k

is the contribution from −1 eigenvalue expansion coefficients. When θmin is small, which is
ususal, then also α is small. Let us set also states

|α±〉 =
1√
2

(|α〉 ± |−α〉),

where |±α〉 are eigenvectors of U corresponding to eigenvalues e±iα. If α < θmin/2, then the
initial state |ψ0〉 is close to the state |α−〉, in particular

|〈ψ0|α−〉| ≥ 1−Θ

α4
∑
j

a2
j

a2

1

(1− cos θj)2

−Θ

(
A2α4

a2

)
, (4.22a)

while the target state |t〉 falls out to be close to the state |α+〉,

|〈t|α+〉|2 = Θ

min


∑

j

a2
j cot2 θj

4

−1/2

, 1


 . (4.22b)

This means, that one can use this general procedure to find the approximate evolution of the
system: if we apply m-times operator U on the initial state, keeping in mind approximations of

32Symbol Θ(g) means that the function f is bounded both above and below by g asymptotically, i.e. there exist
positive numbers a and b such that ag(x) ≤ f(x) ≤ bg(x).



Quantum Walks and Searches 667

Eqs. (4.22), we find

Um|ψ0〉 ' Um|α−〉 = Um
1√
2

(|α〉 − |−α〉) =
1√
2

(
eimα|α〉 − e−imα|−α〉

)
.

When we take mα = π/2 we find that

Um|ψ0〉 '
i√
2

(|α〉+ |−α〉) = i|α+〉.

So the method tells us, that if we start in state |ψ0〉 and apply operation U for bπ/2αc-times,
Eq. (4.22b) will tell us, how close we are to the state |t〉.

Example 11 Let us consider a lattice with dimension d ≥ 3 with N vertices arranged as
d
√
N × . . . × d

√
N with periodic boundary conditions. Then we can use flip-flop grover coin

from Eq. (3.26) in quantum walk search given by algorithm in Fig. 4.3 to find one marked vertex
in (optimal) timeO(

√
N) starting from initial state of the equal superposition on all sites — such

initial state can be constructed from localized state with time expense ofO( d
√
N). Eqs. (4.22) tell

us that initial state is almost |α−〉 and the probability of success is constant, i.e. few repetitions
of the algorithm suffice to find targeted vertex.

Interestingly continuous-time quantum walks for a long time did not succeed to find an ef-
ficient continuous-time alternative to this discrete-time algorithm. Only after introducing spin
degree of freedom into the walk researches suceeded to get the same limits.

Example 12 Spatial search on two-dimensional lattice of
√
N ×

√
N vertices with periodic

boundary can be analyzed with the abstract search algorithm as well, yet the results are not as
optimistic as in higher dimensions. For such quantum walk there is a T = O(

√
N logN) such

that after T steps the probability to determine the target vertex is p = O(1/ logN) [43]. By using
the method of amplitude amplification (see Sec. 4.1.2) one can obtain constant probability of
success with the running time of the algorithm of O(

√
N logN). Deeper analysis of the abstract

search algorithm and introduction of properly chosen ancillary system and allowed Tulsi [50] to
boost the probability of succes to constant thus reducing the running time of the algorithm even
more to O(

√
N logN) steps.

4.7 Subset Finding and Related Problems

Probably the most ingenious algorithm showing the usefulness of discrete-time quantum walks is
their application to various subset finding problems. This range of algorithms is based on Grover-
like evolution on specially constructed graphs allowing for better efficiency of these algorithms.
The history begins in 2003 when Ambainis [38] gave an algorithm for element k-distinctness.
It determines whether a given set contains k elements with the same assigned value provided
by an oracle, and finds such a set if there is one. Building on this work, Magniez, Santha and
Szegedy [40] then provided a triangle-finding algorithm, deciding whether a given graph contains
a triangle. This approach was generalized in [39], where an algorithm for subset-finding was
provided. A better efficiency was then provided in the updated version of [40], where the authors
performed a deeper algebraic analysis of the algorithm. Here we present the algorithm in its most
up-to-date and efficient form.



668 Quantum Walks

Fig. 4.8. The algorithm for subset finding performs a walk on a bipartite graph whose vertices are identified
with subsets of N having either q elements (on the left), or q + 1 elements (on the right). The vertices
are connected only if the sets they correspond to differ in exactly one element. The evolution on the graph
is given by the Grover coin on most vertices, combined with phase-flips on vertices (q-subsets) containing
k-subsets with elements having with property P .

4.7.1 Algorithm for k-subset Finding

Let us discuss the algorithm for the following problem, introduced in [38]. Consider a set N
with N elements combined with values from a finite set R assigned by a function f : N → R.
The problem is to determine, whether a k-subset with a given property P ⊂ (N ×R)k exists in
the setN . For example, in the collision problem, we are given a list of vertices and their assigned
colors, and we’re asked to find two vertices (k = 2) of the same color (if they exist). Another
example is the triangle problem: given a list of edges in a graph, determine whether we can find
a set of 3 edges (here k = 3) that form a triangle (if such a set exists).

The information hidden in the function f is given to us in the form of a classical or quantum
oracle. Evaluating whether a k-subset has a given property P (such as: do these three edges form
a triangle) should be simple once we know the values of f on the vertices of the k-subset. This
allows us to determine the efficiency of a given algorithm using query complexity – counting the
number of oracle calls required to find the desired k-subset with a given property.

The aim of the algorithm is to output a subset K = {x1, x2, . . . , xk} ⊂ N such that the
l-tuple ((x1, f(x1)), (x2, f(x2)), . . . , (xl, f(xl))) ∈ P if it exists, when we are given the set
N of elements, a description of an easily computable property P and the oracle computing the
function f on vertices. If there is none such l-tuple, the algorithm should say so. In the classical
case, it we have to query the oracle O(N) times to determine the solution to the problem, as the
very last element we query could be the one that completes a k-tuple with the property P .

The k-subset finding quantum algorithm is a quantum walk on a specially constructed bipar-
tite graph, depicted in Fig. 4.8. The vertices on the left of this graph correspond to all the possible
q-element subsets Sj of N , while the vertices on the right label all the possible (q + 1)-element
subsets Tj of N . Two vertices are connected only if the corresponding sets differ in exactly one
element. In the following, we will not make any further distiction between the vertex and its



Quantum Walks and Searches 669

corresponding set, i.e. S will be both the set and the vertex it determines.
The size of the parameter q shall be determined later to provide the best efficiency. The

simplest choice would be q = k, but that does not give much benefit over straightfoward Grover’s
search over k-tuples, looking whether they have the property P . It will be much better to think
of rather large subsets q = Nµ with µ < 1.

The Hilbert space the algorithm runs in will be spanned by the orthonormal basis

|S〉 ⊗ |r〉 ⊗ |j〉 ≡ |S, r, j〉, where |S| = q, and j 6∈ S,
|T 〉 ⊗ |r〉 ⊗ |j〉 ≡ |T , r, j〉, where |T | = q + 1, and j ∈ T ,

whose second (data) register r stores information about S or T obtained from the oracle. This
part of the system is just an ancillary subspace of suitable dimension. We will also use the no-
tation f(S) = {f(j) : j ∈ S} for simplicity. The third register holding |j〉 functions somewhat
like a coin – the state |j〉 unambiguously points to some neighbor of a subset, so we can use it
for moving between sets of the type S and T . For the vertex S from the first set it is the element
that shall be added to get to vertex T from the second set (that is why j /∈ S). On the other hand,
for vertex T from the second set, the element j ∈ T can be removed to get to S.

The graph structure and the Hilbert space we introduced are very useful, as they require only
a single query of the oracle when using the translation operator S between the vertices:

S|S, f(S), j〉 = |S ∪ {j}〉 |f(x1), . . . , f(xq), f(j)〉 |j〉 = |S ∪ {j}, f(S ∪ {j}), j〉,
S|T , f(T ), j〉 = |T \ {j}, f(T \ {j}), j〉.

This operation changes only the element j, so its addition to the set S requires a single call of the
oracle f to determine f(j). On the deletion of the element j, a single call of the oracle is also
needed to clean up the register previously holding f(j).

The translation operation handles states that have the oracle information stored in the data
register. Before starting the quantum walk, this register needs to be initialized, which takes q
calls to the oracle.

The overall evolution is specified as[
(SCG)2τ1P

]τ2
,

where CG is the standard Grover coin from (3.25), with d = N−q for the first set (the number of
elements we can possibly add to the chosen set S) and d = q + 1 for the second set (the number
of elements we can remove from the chosen set T ). In particular,

CG|S, f(S), j〉 = −|S, f(S), j〉+
2

N − q
∑

l∈N\S

|S, f(S), l〉,

CG|T , f(T ), j〉 = −|T , f(T ), j〉+
2

q + 1

∑
l∈T

|T , f(T ), l〉.

This operation only affects the coin state (last register), thus it does not require a query to the
oracle. After flipping the coin (chosing which element to add/remove), we apply the translation
operator S. When this happens 2τ1 times, we use the conditional phase-flip operator P :

P |S, f(S), j〉 =

{
−|S, f(S), j〉 if some subset of S has the property P ,
|S, f(S), j〉 otherwise.



670 Quantum Walks

1. prepare initial state |ψ〉 = |ψ0〉 according to Eq. (4.23)

2. for τ2 steps repeat:

(a) for 2τ1 times apply SCG on the state |ψ〉
(b) aplly operation P on state |ψ〉

3. measurement should with high probability return S such
that colliding elements are in the set

Fig. 4.9. Algorithm for distinctness problem repeats Grover-like evolution for time τ1 without applying
phase-flip P . The phase-flip is applied only afterwards and then the process is repeated for τ2 times.

The construction that will be presented in a moment is such that P doesn’t need to be specified
for the states from the second set, we may still assume it acts as identity there. Finally, the
algorithm consists of repeating the “walk 2τ1 times, do a conditional phase flip” combination τ2
times (see also Fig. 4.9).

The initial state is chosen as an equal superposition of all subsets of size q, with their data
registers initialized, and the third register (the walker) uniformly spread through the available
positions not the corresponding set S from the first register,

|ψ0〉 =
1√
c

∑
S∈N
|S|=q

∑
j∈N\S

|S, f(S), j〉, (4.23)

with the normalization constant c =
(
N
q

)
(N − q). The choice of this state on one hand makes no

assumptions about the target vertex we shall end in. To assure we end up in a state of the type
|S, f(S), j〉, the operation SCG is repeated an even number of times.

Up to now, we decided what the initial state will be and how the evolution proceeds. It is
time to specify τ1 and τ2. A quite lengthy derivation in [39] shows a choice of these parameters
leading to an evolution that transforms the initial state |ψ0〉 to a state with S containing a set with
property P with high probability, if such a set it exists. It is

τ1 =

⌊
π

2

√
q

k

⌉
, τ2 =

⌊
π

4

(
N

q

)k/2⌉
, (4.24)

where bxe means the closest integer to x. These required repetition numbers are approximations
under the assumptions N, q � k ≥ 1. Putting the things together and setting q = Nµ, one finds
(see also Tab. 4.1) that the efficiency of the algorithm is

O(q + 2τ1τ2) = O
(
Nµ +N

1
2 [(1−k)µ+k]

)
. (4.25)

This efficiency is smallest (with respect to the choice of µ) when both terms have the same
exponents, i.e. for µ = k/(k + 1). The efficiency of this quantum algorithm then is O(N

k
k+1 )

of oracle calls. Again, we stress that here the process of determining whether the set S contains



Quantum Walks and Searches 671

a subset with the property P is considered to be “fast”, i.e. it requires no resources33.

Finally, we can compare the query complexity O
(
N

k
k+1

)
of the quantum subset-finding

algorithm to the best classical one, where O(N) queries are required both on average and in the
worst case if there exists a collision of two elements. If there is no collision, one has to query the
oracle N times in order to find, that there is no collision.

Example 13 When we set k = 1 in (4.25), we get an algorithm with query complexity O
(
Nµ+

N
1
2

)
. We are free to choose µ from the interval [0; 1/2] where the efficiency remains the same

as in Grover’s search. In fact, by setting µ = 0 we make the vertices singleton sets and the
algorithm becomes Grover’s search by a quantum walk on a complete graph as in Sec. 4.4.

4.7.2 Algorithm for Finding k-cliques in Graphs

The following is an extension of the above results, also presented in [38, 39], dealing with a
problem of finding complete subgraphs (cliques) of size k in a graph34 G with N vertices. The
oracle in this problem is a device that takes two vertices j, m of the graph G as input and answers
whether the pair jm is an edge of G.

Again, the quantum walk algorithm will work with subsets of G’s vertices containing q,
resp. q+ 1 vertices. There are, however, a few necessary changes to what we saw in the previous
Section. First, the costs of initialization and application of S increase. When initializing the
system, we need to know the information (stored in the ancillary data register) about the edges
between the vertices contained in the subset, which now requires O(q2) queries to the oracle.
Also, when performing a translation with the operator S, the addition (or removal) of a vertex
j requires O(q) queries to the oracle for the potential edges connected to the vertex j. This
does not change the exponent µ, but raises the query complexity to O

(
N

2k
k+1
)

oracle calls (see
Tab. 4.1).

This is not the best that one can do, and the efficiency can be improved further by an ingenious
approach from [38, 39]. Instead of searching for k-cliques, the crucial idea is to look for only
(k−1)-cliques. In particular, we search for subsets with (k−1) elements that fulfill the property
that these elements form a (k−1)-clique (this changes τ2, see Tab. 4.1). At the same time, we also
want all these vertices to be connected to one other vertex. This is a “redefinition” of the property
P which now has an impact on the complexity of performing the operation P . Effectively, P
works as an oracle that takes some S on input (and either lets it be or gives it a −1 phase) and
we will thus call it oracle2 as opposed to the oracle giving us information about edges of graph
G which, for the time being, we shall call oracle1.

The oracle2 can be implemented by an algorithm that performs a search for a vertex that is
fully connected to some (k − 1)-clique within S. Whether some vertex j has this property shall
be provided to us by another oracle3. If we had it at hand, then searching for the special vertex
could be done by a Grover search on O(N) vertices (elements), having to query oracle3 O(

√
N)

times.
33It doesn’t require calling the oracle, only some extra computational resources, such as for the collision problem we

need to sort the list f(x1), . . . , f(xq) and see if any two of the values match.
34Not to be confused with the bipartite graph from Fig. 4.8 which just shows a process of construction of the walk

performing the search for the clique.



672 Quantum Walks

k-subset k-clique recursive k-clique
initialization q q2 q2

S 1 q q
CG 0 0 0
P 0 0

√
N ×N k−1

k

τ1 ∼ √q ∼ √q ∼ √q

τ2 ∼
(
N
q

) k
2 ∼

(
N
q

) k
2 ∼

(
N
q

) k−1
2

query complexity q + 2τ1τ2 q2 + 2qτ1τ2 q + τ2

(
2qτ1 +

√
N × q k−1

k

)
optimal µ k

k+1
2k
k+1

5k−2
2k+4 = 1.3 for k = 3

2(k−1)
k for k > 3

Tab. 4.1. Summary of the query complexity for quantum walk algorithms for k-subset finding, k-clique
finding and recursive k-clique finding. The algorithms involve a walk on subsets of size q = Nµ. The
bottom part of the table shows the summary complexity and the best choice for the exponent µ, resulting in
query complexity Nµ.

We are able to construct (at least in principle) this oracle3, having some vertex j and a subset
S as input. We know how to search for a (k− 1)-clique within the set S, having q elements. The
search for this (k − 1) clique connected to j is application of a standard (k − 1)-subset finding
procedure within S, where the oracle1 sets the property P for this sub-search. Checking whether
some (k − 1)-element subset of S connected to j is a clique requires no additional queries to
oracle1, as this information is already stored in the ancillary data register state corresponding to
S. The oracle3 thus needs to call oracle1 O

(
q
k−1
k

)
times. Knowing the complexity of oracle3, we

can determine the complexity of calling oracle2, i.e. of the operation P – it is O
(√
N × q k−1

k

)
.

Putting it all together, the combined algorithm for k-subset finding requires

O
(
q + τ2

(
2qτ1 +

√
N × q

k−1
k

))
calls to the35 oracle1.

Let us look at the result for various k. For k = 2 (we look for an edge) the optimal efficiency
is that of Grover’s search on theN(N−1) possible edges, i.e.O(N) calls to the oracle. However,
for k > 2, the presented algorithm is more efficient than direct Grover’s search for k-cliques
which requires O(Nk/2) calls to the oracle. First, a brute force querying of all the edges and
then performing a search on the received information has query complexity Ω(N2), besting
direct Grover’s search for k > 4. However, the presented algorithm does even better. For k = 3
(triangle finding) the recursive algorithm given above can find a triangle with O(N1.3) calls to
the oracle (although the lower bound for this problem is so far only O(N) - see Example 10).
For k > 3, its complexity goes as O

(
N

2(k−1)
k

)
, but again, it is not known whether this is the

optimum.

35From this point on oracle1 is again called only “the oracle”.



Quantum Walks and Searches 673

Note that all these algorithms were presented under the assumption that there is exactly one
solutions or none at all. If there would be more solutions, we could use the approach given
in [38], which preserves the efficiencies and speedups over the classical case. There is a number
of discrete quantum walk algorithms that are more efficient than the best possible classical ones
and are based on the algorithm of k-subset finding. Two of the examples are the verification of
matrix products [41] and testing the commutativity of a black-box group [42].

4.8 Summary

In this Chapter, we explored the potential of discrete time quantum walks, focusing on search
algorithms. We have seen they offer enough potential for devising new and more efficient algo-
rithms for several problems — searches on hypercube [23], complete graph [45], lattices [43] or
for anomalies in symmetry [49], collision problem [38], finding triangles in graphs [40], verify-
ing matrix products [41] or testing the commutativity of a black-box group [42].

Viewed in a slightly abstract manner, quantum walks can be used in many oracle problems
spanning from unstructured search to searching for graph substructures. Separating the oracle
(which holds information about a set of elements) and the graph underlying the quantum walk
allows one to make good choices resulting in clever algorithms as the one for k-subset finding.
The simpler oracle algorithms can be subsequently employed as subroutines in more elaborate
algorithms. We have looked at k-subset finding, where the search is performed on subsets of the
set of elements rather then on elements themselves. This algorithm was used as a subroutine in
the algorithm that finds k-cliques in a graph.



674 Quantum Walks

5 Quantizing Markov Chains

In this Chapter, we will look at how to obtain discrete quantum walks from any Markov Chain,
which will result in a quantum speedup for many classical algorithms. It is hard to quantize
Markov chains that are not regular. In particular, we would have to define a different “coin”
at each vertex, which presents encoding difficulties. That’s why Szegedy [51] took a different
approach, using the state of the quantum walk itself as the basis for diffusion instead of an
external coin register. Taking this route again results in a quantum walk that has some kind of
“memory”, as the unitarity of each transformation implies dependence on where we came from,
in contrast to classical random walks.

We start with the definition of quantum walks on systems with two registers, analyze their
spectra and prove some speedup results for hitting times. We then turn our attention to sam-
pling (Monte-Carlo Markov Chain) algorithms. Finally, we take a look at quantum Metropolis
sampling [56, 57].

5.1 Walks on Two Registers

Let us recall a discrete-time quantum walk on a regular degree-d graph which uses the Grover
coin CG. The state of the system is contained in two registers (vertex, coin), with Hilbert space
of dimension Nd. When we start walking at vertex |x〉 with the coin in the state |c〉, a step of the
walk results in

|x〉 |c〉coin
diffuse−→ |x〉

d∑
c̃=1

(CG)cc̃ |c̃〉coin
shift−→

d∑
c̃=1

(CG)cc̃ |x⊕ c̃〉 |c̃〉coin , (5.1)

a superposition over the neighbors of |x〉 in the vertex register, with corresponding states of the
coin in the coin register. In Section 3.3.1, we viewed it as a scattering quantum walk in a system
with two registers containing a target vertex and a source vertex. The Hilbert space for such a
walk has dimension CN ⊗ CN . When a scattering walk starts in the state that “moves” from
vertex |x⊕ c〉 towards the vertex |x〉, one step brings it to

|x〉 |x⊕ c〉 diffuse−→ |x〉
d∑
c̃=1

(CG)cc̃ |x⊕ c̃〉
swap registers−→

d∑
c̃=1

(CG)cc̃ |x⊕ c̃〉 |x〉 , (5.2)

a superposition of states originating in |x〉 and “going” towards the neighbors of |x〉. Note that
the diffusion in (5.1) and (5.2) is governed by the same d × d diffusion matrix CG. It turns out
we can express the unitary operator for the Grover diffusion step as a reflection operator on the
whole two-register Hilbert space. Let us define the state

|αx〉 = |x〉
d∑
c̃=1

1√
d
|x⊕ c̃〉 . (5.3)



Quantizing Markov Chains 675

The reflection of the state |x〉 |x⊕ c〉 about |αx〉 is

(2 |αx〉 〈αx| − I) |x〉 |x⊕ c〉 =
2√
d
|αx〉 − |x〉 |x⊕ c〉 (5.4)

= |x〉

(2

d
− 1

)
|x⊕ c〉+

2

d

∑
c̃6=c

|x⊕ c̃〉

 (5.5)

= |x〉
d∑
c̃=1

(CG)cc̃ |x⊕ c̃〉 , (5.6)

recalling the definition of the Grover coin CG from (3.25), where we analyzed coins for discrete-
time walks. Not restricting ourselves to a specific vertex x, we now define the projector

ΠG =
∑
x

|αx〉 〈αx| . (5.7)

A generalization of the above computation shows that the reflection 2ΠG − I is exactly the
diffusion step on the whole two-register space of our scattering quantum walk. The scattering
quantum walk with the Grover coin on a d-regular graph can thus conveniently be written as

WG = S(2ΠG − I), (5.8)

where S =
∑
x,y |x, y〉 〈y, x| is an operator swapping the two registers. Such two-register scat-

tering quantum walks (SQW) on regular graphs have a connection to classical walks whose next
step chooses uniformly at random among the neighbors of each vertex. It remains a problem
to concisely describe quantum walks that correspond to asymmetric classical walks, or to walks
with a general stochastic36 transition matrix Px,y .

In the case the diffusion is different at different vertices, we will again utilize a system with
two-registers (vertex,vertex), related to scattering quantum walks. Using Szegedy’s generaliza-
tion [51], instead of reflecting about the uniform states |αx〉, we now define a state

|φx〉 = |x〉 ⊗

∑
y∈X

√
Px,y |y〉

 (5.9)

for every vertex x. We then choose the unitary for the diffusion to be a reflection about the
subspace spanned by all the states |φx〉, i.e.

R1 = 2

(∑
x∈X
|φx〉 〈φx|

)
− I. (5.10)

As for the SQW, the diffusion step is followed by S, a swap of the registers. Applying this twice,
we get Szegedy’s quantization of a Markov chain with a transition matrix P . The (composed)
step of the walk is then

W = SR1SR1 = R2R1, (5.11)
36each row sums to 1



676 Quantum Walks

a product of two reflections, with R2 given by

|ψy〉 =

(∑
x∈X

√
Px,y |x〉

)
⊗ |y〉 , (5.12)

R2 = 2

∑
y∈Y
|ψy〉 〈ψy|

− I. (5.13)

We measure the position of the walker in a two-register state |ψ〉 by measuring only the first
register. The probability of finding the walker at vertex x is thus

p(x) = 〈ψ| (|x〉 〈x| ⊗ I) |ψ〉 . (5.14)

Note that for a symmetric Markov chain (with Px,y = Py,x), the only state invariant under
both of these reflections (and thus under W = R2R1) is

|ψ〉 =
1√
N

∑
x∈X
|φx〉 =

1√
N

∑
y∈Y
|ψy〉 =

1√
N

∑
x∈X

∑
y∈Y

√
Px,y |x〉 |y〉 , (5.15)

a state with probability p(x) = 1√
N

for each x (because
∑
y∈Y Px,y = 1). This quantum state

corresponds to the uniform-superposition stationary state of the classical Markov chain, and
obeys the detailed balance equations

Px,y p(x) = Py,x p(y). (5.16)

5.2 The Spectrum of the Walk

We have written the quantum walk (5.11) as a product of two reflections. Let us investigate the
“mixing” properties of this type of walk and how we can connect them to the mixing properties
of the original Markov Chain.

In many classical algorithms, Markov Chains are used for their fast mixing towards their
stationary states. Do quantum walks bring anything new to the table? In what sense do unitary
walks mix? We have discussed mixing previously in Section 3.5.1, where we defined mixing
towards a limiting distribution in a time-averaged sense. We now want to look at how fast (and
how close) we are getting towards the state that encodes the stationary distribution. For this,
we will need to understand the spectrum of the quantum walk unitary operator. Let us start by
investigating the action of two reflections. It will be helpful to recall Jordan’s lemma.

Lemma 1 (Jordan ’75) For any two Hermitian projectors Π1 and Π2, there exists an orthog-
onal decomposition of the Hilbert space into one dimensional and two dimensional subspaces
that are invariant under both Π1 and Π2. Moreover, inside each two-dimensional subspace, Π1

and Π2 are rank-one projectors.

The two reflectionsR1 andR2 reflect around the subspaces defined by the projectors Π1 and Π2.
Jordan’s lemma implies that we can rewrite the Hilbert space as an orthogonal sum of 1D and
2D subspaces invariant under Π1 and Π2. Consequently, these subspaces are also invariant under



Quantizing Markov Chains 677

the reflections R1 and R2. Moreover, within each 2D subspace, two reflections compose into a
rotation.

Szegedy proved a spectral theorem for the quantum walk W = R2R1. We now present a
slightly different version, including the 1D and 2D invariant space decomposition intuition from
Jordan’s lemma.

Theorem 4 Consider two Hermitian projectors Π1, Π2 and the identity operator I. The unitary
operator (2Π2 − I)(2Π1 − I) has eigenvalues e±i2θj , 0 < θj <

π
2 in the two-dimensional

subspaces Si invariant under Π1 and Π2, and it has eigenvalues ±1 in the one-dimensional
subspaces invariant under Π1 and Π2.

The following proof comes from [70]. The 1D invariant subspaces are spanned by the com-
mon eigenvectors of Π1 and Π2, making the product of two reflections either I or −I. What
is more interesting, in each 2D subspace invariant under the two projectors, a product of two
reflections is a rotation by 2θj , the angle between the axes of the two bases of the 2D subspace
related to Π1 and Π2. We can find the Hilbert space decomposition and the angles θj with the
help of the Hermitian discriminant matrix with entries

Dx,y =
√
Px,yPy,x (5.17)

of the Markov chain. In the case of a symmetric chain, it is equal to the matrix P itself. Let the
eigenvectors of D be |λj〉 with eigenvalues λj . Define an isometry from Cn to Cn ⊗ Cn by

T =
∑
x

|ψx〉 〈x| =
∑
x,y

√
Px,y |x〉 |y〉 〈x| . (5.18)

We claim that each two-dimensional invariant subspaces can be constructed as span{|λ̃j〉, S|λ̃j〉},
where the vectors |λ̃j〉 = T |λj〉 come from the eigenvectors of D with the help of the isometry
T . To see that this is indeed so, we first observe that

TT † =
∑
x,y

|ψx〉 〈x|y〉 〈ψy| =
∑
x

|ψx〉 〈ψx| = Π1, (5.19)

T †T =
∑
x,y

|x〉 〈ψx|ψy〉 〈y| =
∑

x,y,w,z

√
Px,wPy,z |x〉 〈x|y〉〈w|z〉 〈y|

=
∑
x,w

Px,w |x〉 〈x| =
∑
x

|x〉 〈x| = I, (5.20)

T †ST =
∑
x,y

|x〉 〈ψx|S |ψy〉 〈y| =
∑

x,y,z,w

√
Px,z

√
Py,w 〈x| 〈x| 〈z|S |y〉 |w〉 〈y|

=
∑
x,y

√
Px,yPy,x |x〉 〈y| = D, (5.21)



678 Quantum Walks

and then check that each subspace span{|λ̃j〉, S|λ̃j〉} is indeed invariant:

R1|λ̃j〉 = (2Π1 − I)T |λj〉 = T |λj〉 = |λ̃j〉, (5.22)

R1S|λ̃j〉 = (2Π1 − I)ST |λj〉 = (2TT † − I)ST |λj〉
= (2TD − ST ) |λj〉 = 2λj |λ̃j〉 − S|λ̃j〉, (5.23)

R2|λ̃j〉 = (SR1S)|λ̃j〉 = 2λjS|λ̃j〉 − |λ̃j〉, (5.24)

R2S|λ̃j〉 = SR1SS|λ̃j〉 = SR1|λ̃j〉 = S|λ̃j〉. (5.25)

This in turn helps us relate the eigenvalues of W = R2R1 to the eigenvalues of D. Jordan’s
lemma implies the action of W is a rotation in each 2D subspace, so its eigenvalues are e±iθj ,
where θj is the angle between the +1 eigenvectors of Π1 and Π2 in this subpspace. Let us
calculate these θj . First, recall that Π1|λ̃j〉 = |λ̃j〉 and Π2 = SΠ1S, which means that T †Π2T =
T †STT †ST = D2. Thus

cos θj =
〈λ̃j |Π2Π1|λ̃j〉√

〈λ̃j |Π2|λ̃j〉〈λ̃j |Π1|λ̃j〉
=
√
〈λj |T †Π2T |λj〉 =

√
〈λj |D2|λj〉 = λj . (5.26)

The eigenvalues of W are thus ±1 in the 1D invariant subspaces and

e±i2θj = e±i2 arccosλj = (2λ2
j − 1)± i2λj

√
1− λ2

j , (5.27)

in the 2D invariant subspaces (this is a form seen in Szegedy’s papers).

5.3 Speeding up Searching for Marked Vertices

With an understanding of the spectrum of the quantum walk unitary, we now turn our attention
to possible square root speedups over its classical counterpart. While the number of necessary
classical Markov Chain steps depends on the gap δ of the classical chain as f(ε, δ). Szegedy has
shown that the quantum walk will need to only take f(

√
ε,
√
δ) steps. The speedups thus appear

in shorter hitting times when searching, and in the later sections we will see them in shorter
required times to get within distance ε of the stationary distribution.

Let us look at a rather generic search algorithm based on a Markov chain P (with spectral
gap δ) on set X , with a marked subset M . The goal is to find one of the vertices of the subset
M . We will see that a quantum version of this algorithm has a “square-root speedup” over its
classical counterpart. This section also follows [70].

First, we start with a classical algorithm, and modify the Markov chain so that it stays in a
marked vertex x ∈M once we hit it. For this, we choose the transition matrix to be

P ′x,y =


0 x ∈M,x 6= y,

1 x ∈M,x = y,

Px,y x /∈M.

(5.28)

It has block form

P ′ =

[
PM 0
B I

]
, (5.29)



Quantizing Markov Chains 679

where PM corresponds to the rows/columns of the original P that are not marked (in M ). We
will now show that when the fraction of marked vertices is |M |N ≤ ε and the second largest
eigenvalue of P is lower than (1 − δ), the classical hitting time is lower bounded by O

(
1
δε

)
.

The decision problem (is there a marked vertex at all) complexity will also have the same lower
bound.

First, let us analyze the classical chain. When we take t steps of the walk, we get

(P ′)t =

[
P tM 0

B +BPM +BP 2
M + · · ·+BP tM I

]
=

[
P tM 0

B
P tM−I
PM−I I

]
. (5.30)

We start in the uniform distribution over unmarked vertices (by choosing a random unmarked
vertex as the starting point). Denoting |o〉 = 1√

N−|M |

∑
x/∈M |x〉 ,we can express the probability

of not reaching a marked vertex after t steps as

p−t = 〈o|P tM |o〉 ≤
∥∥P tM∥∥ = ‖PM‖t , (5.31)

using the operator norm (largest eigenvalue) of the matrix. When ‖PM‖ ≤ 1−∆,

p+
t = 1− p−t ≥ 1− ‖PM‖t ≥ 1− (1−∆)t. (5.32)

It is then enough to take t = O
(

1
∆

)
to ensure an Ω(1) success probability.

Finally, we can relate ‖PM‖ to the second largest eigenvalue (1−δ) of the original transition
matrix P , and the fraction |M |N ≤ ε of marked vertices. The original matrix P is symmetric, so
its principal eigenvector with eigenvalue 1 is |s〉 = 1√

N

∑
x |x〉. Let |w〉 ∈ CN be the principal

eigenvector of the matrix PM (which has sizeN−M ), padded with zeros on the marked vertices.
Using the Cauchy-Schwartz inequality, we can upper bound the overlap

|〈s|w〉|2 = | 〈s|Πx/∈M |w〉 |2 ≤ ‖Πx/∈M |s〉‖ · ‖|w〉‖
2

=
N − |M |

N
= 1− ε. (5.33)

Next, using the eigenvectors |λ〉 of P , we can express

|w〉 = 〈s|w〉 |s〉+
∑
λ 6=1

〈λ|w〉 |λ〉 , (5.34)

‖PM‖2 = ‖P |w〉‖2 = |〈s|w〉|2 +
∑
λ 6=1

|〈λ|w〉|2λ2 (5.35)

≤ |〈s|w〉|2 + (1− δ)2
∑
λ6=1

|〈λ|w〉|2 (5.36)

= |〈s|w〉|2[1− (1− δ)2] + (1− δ)2
∑
allλ

|〈λ|w〉|2 (5.37)

≤ (1− ε)(2δ − δ2) + (1− δ)2 (5.38)
≤ 1− 2εδ, (5.39)

because the first eigenvalue of P is 1 and all the other eigenvalues are upper bounded by (1− δ).
Therefore, ‖PM‖ ≤

√
1− 2δε ≤ 1 − δε. Together with (5.32), this means we need to take



680 Quantum Walks

O
(

1
δε

)
steps of the walk to get a constant success probability for this classical random walk

search algorithm.
Let us now look at a quantum walk algorithm for the same task. If we start in a uniform

superposition and measure whether we get a marked vertex, success is unlikely and we end up in
a uniform superposition over unmarked vertices. However, we can now perform phase estimation
of the unitary quantum walk W instead. We have seen how we can relate its eigenvalues to the
discriminant matrix, which in this case is

D =

[
PM 0
0 I

]
. (5.40)

If there are no marked vertices, |o〉 (5.31) is the principal eigenvector of the quantum walk W
with eigenvalue one, and phase estimation [71] of W returns 0. On the other hand, if marked
vertices exist, |o〉 lives in the “busy” subspace of the quantum walk (corresponding to eigenvalues
e±i2θj , where λMj = cos θj are the eigenvalues of PM ). Phase estimation ofW would thus return
a phase greater than

φ0 = 2 minj |θj | ≥ 2 minj arccosλMj ≥ 2 minj
√

1− λMj = 2
√

1− ‖A‖ ≥ 2
√
δε. (5.41)

Phase estimation of a unitaryW with precision φ0 takesO
(
φ−1

0

)
evaluations ofW , so a quantum

walk algorighm deciding between no marked vertices and a fraction of εmarked vertices will take
O
(

1√
δε

)
steps, a quadratic speedup over its classical counterpart described above. This is the

result of Szegedy’s δε-paper [51].
Note that we did not claim the classical algorithm was optimal for a particular search problem

– we only compared classical and quantum versions of these generic approaches. Furthermore,
we have analyzed a quantum walk algorithm that only decides whether marked vertices exist, and
does not output one. However, by adding an additional layer of “marking” vertices, we could
obtain a marked-vertex-identifying algorithm with at most logarithmic overhead. On the other
hand, sampling from the set of marked vertices (or according to some probability distribution) is
a different and interesting problem, and we will look at it in the following Sections.

5.4 Walks and Sampling

We have seen that quantization of classical Markov chains has been crucial in the design of
efficient quantum algorithms for a wide range of search problems [52] that outperform their
classical counterparts. We now extend the scope of use of quantum walks (quantized Markov
chains) beyond search problems. They can be employed to speed up sampling from probability
distributions. This results in a variety of quantum algorithms, including quantum simulated
annealing, fully polynomial-time quantum approximation schemes for partition functions, and
the quantum Metropolis algorithm.

Sampling from the stationary distributions of Markov Chains is a strong classical algorithmic
tool, useful for counting (#P) problems, as described in Section 5.4.2. Classically, Aldous has
shown [65] that the mixing time (the number of steps guaranteeing closeness to the stationary
distribution) for a Markov Chain is related to its spectral gap δ and the minimum of the distri-
bution π∗ as O(δ−1 log 1/π∗). The question is whether we can do better using quantum walks.
Richter [72], introducing decoherence into quantum walks generated a classically converging



Quantizing Markov Chains 681

Markov Chain, and proved that on a periodic lattice Zdn, the mixing time gets a square root
speedup (with respect to the spectral gap) to O(

√
δ−1 log 1/π∗). Another interesting application

of quantization of classical MC’s is simulated annealing which involves Markov Chains whose
stationary distributions correspond to Gibbs distributions at particular temperatures. Bringing
quantum mechanics to the picture, Somma et al. [60] proposed a quantum simulation of classical
annealing, using quantized Markov chains, and relying on the quantum Zeno effect and phase
estimation. They sequentially prepare coherent state encodings of the stationary distribution of
the MC’s, using a simulation of projective measurements. This results in a quantum algorithm
with an O(

√
δ−1) dependence on the spectral gap (again a square root speedup), with some

additional factors. We discuss these two approaches to sampling in Section 5.4.1, describe the
Monte-Carlo Markov Chain (MCMC) method in detail in 5.4.2, look at a general approach to its
quantization [69] in 5.4.3 and showcase some of its applications and speedups. We then turn our
attention to the quantum Metropolis algorithm [56] in Section 5.4.4.

5.4.1 Speeding up Mixing Using Quantum Walks

We have seen that sampling from stationary distributions of Markov Chains has very useful
applications. How could one speed up the preparation of these states using quantum walks?
Unitarity prohibits us from talking about mixing in the classical sense. However, according to
Richter [72] we can use a quantum walk to get a random process by combining

1. time evolution according to the transition rule U (discrete with U t or continuous with
U(t)), and

2. a measurement in the computational basis, evaluated at a time chosen randomly according
to a measurement rule, given by a probability distribution ωT (e.g. the uniform distribution
µ̄T = 1

T χ[0,T ], the delta-function distribution δT (t) = δ(t− T ), or other).

Thus, we can view quantum walks as the pair 〈U, ωT 〉. Repeating the unitary evolution and
random-time measurement many times gives us an algorithm which probabilistically outputs37 a
vertex – the probability distribution for this output vertex converges to a stationary distribution
just as its classical Markov Chain counterpart did. Let us ask how fast this happens.

The Aldous theorem for a classical reversible, ergodic Markov Chains with stationary distri-
bution π and spectral gap δ states that the mixing time obeys

1

δ
≤ τmix ≤

1

δ
log

1

π∗
, (5.42)

where π∗ = minx π(x). Could we speed up this dependence on the spectral gap in a square root
fashion by using quantum walks? Richter [72] showed that on a periodic lattice Zdn, the mixing
time for the quantum decohering walk gains a square root speedup (with respect to the spectral
gap), as it converges with mixing time O(

√
δ−1 log 1/π∗). It remains open whether this speedup

can be achieved in general, for (m)any quantized Markov Chains.
Classical simulated annealing [12, 13] imitates the process where a metal is heated to a high

temperature and then slowly cooled down. This is supposed to allow thermal excitations to jump
37For each sample, we pick some simple initial state (or the previously measured vertex), let the quantum walk run for

some time, and measure. With this measurement, the superposition randomly collapses to a vertex, producing a sample.



682 Quantum Walks

out of local minima, letting the system end up in a low-energy state at the end of the process.
The thermalization is modeled by a Markov Chain, whose stationary distribution corresponds
to the Gibbs distribution at a given temperature. Again, we recall the Aldous theorem which
says the mixing time for a MC scales with the spectral gap δ as O(δ−1). Could we speed this
process up using quantized Markov Chains? In [60], Somma et al. use a sequence of quantized
(two-register) Markov chains, but instead of preparing probability distributions πi, they look
at coherent states |πi〉 =

∑
x

√
πi(x) |x〉 encoding them. When we have access to the state

|πi〉, could we use it to prepare the next state |πi+1〉? As we lower the temperature slowly, the
states are close. Thus, it is likely that a projection onto |πi+1〉 would succeed. This projective
measurement is simulated by phase estimating the walk operatorWi+1 for the next quantum MC,
as |πi+1〉 is its eigenvector with eigenvalue 1. The quantum Zeno effect [71] and large overlaps
〈πi|πi+1〉 are responsible for the high success probability of each step, and consequently, the
overall procedure. The resulting algorithm [60] requires O(

√
δ−1) implementations of a step of

a quantum MC (with some additional factors).

5.4.2 Markov Chain Monte Carlo (MCMC) Methods

Sampling from stationary distributions of a sequence of Markov chains, combined with simulated
annealing (progressive lowering of a temperature parameter) lies at the heart of many important
classical approximation algorithms. These methods are in general called Markov Chain Monte
Carlo (MCMC). Some out of the many examples include the approximation algorithms for the
volume of convex bodies [61], the permanent of a non-negative matrix [62], and the partition
function of statistical physics models such as the Ising model [63] and the Potts model [64]. Each
of these algorithms is a fully polynomial randomized approximation scheme (FPRAS), outputting
a random number Ẑ within a factor of (1 ± ε) of the real value Z, with probability greater than
3
4 , i.e.

Pr
[
(1− ε)Z ≤ Ẑ ≤ (1 + ε)Z

]
≥ 3

4
, (5.43)

in a number of steps38 polynomial in 1/ε and the problem size.
The classical algorithms can be outlined as follows. Consider a physical system with state

space Ω and an energy function E : Ω → R, assigning each state σ ∈ Ω an energy E(σ). Our
task is to estimate the Gibbs partition function

Z(T ) =
∑
σ∈Ω

e−
E(σ)
kT (5.44)

at a low final temperature TF . The value of Z at zero temperature is interesting, as it is equal
to the number of the system configurations with zero energy39. This could be a solution to a
counting problem, such as providing us the number of graphs with a particular property.

38Note that these FPRAS can not be used to solve counting problems when Z is exponentially large (in the problem
size). The precision ε would then have to be exponentially small, and the number of required algorithmic steps would
grow exponentially.

39This relationship is used e.g. in the algoritm [62] for approximating the permanent of a non-negative matrix – one
can find the value of the permanent by counting the number of perfect matchings of a particular bipartite graph, which in
turn is equal to the zero-temperature partition function of a certain spin system.



Quantizing Markov Chains 683

The partition function Z(T ) encodes the thermodynamical properties of the system in equi-
librium at temperature T , where the probability of finding the system in state σ is given by the
Boltzmann distribution

π(σ) =
1

Z(T )
e−

E(σ)
kT . (5.45)

It is hard to estimate Z(T ) directly – using a single Markov Chain (whose stationary distribution
is a low temperature Gibbs state) and letting it thermalize could take a very long time. The
schemes we want to speed up thus attempt to reach the low-temperature thermal states in several
stages. Consider a sequence of decreasing temperatures T0 ≥ T1 ≥ · · · ≥ T`, where T0 is a
very high starting temperature and T` = TF is the desired final temperature. The final partition
function Z(TF ) can then be expressed as a telescoping product

Z(TF ) = Z0
Z1

Z0
· · · Z`−1

Z`−2

Z`
Z`−1

= Z0 (α0α1 · · ·α`−2α`−1)︸ ︷︷ ︸
α

, (5.46)

where Zi = Z(Ti) stands for the Gibbs partition function at temperature Ti and αi = Zi+1/Zi
is the ratio of successive Z’s. To start, it is easy to calculate the partition function Z0 = Z(T0) at
high temperature (its value is the volume of the state space). Next, for each i, we can estimate the
ratio αi by sampling from a distribution that is sufficiently close to the Boltzmann distribution
πi (5.45) at temperature Ti. This is possible by using a rapidly-mixing Markov chain Pi whose
stationary distribution is equal to the Boltzmann distribution πi.

To be efficient, these classical schemes require that

1. we use a cooling schedule such that the resulting ratios αi = Z(Ti+1)/Z(Ti) are lower
bounded by a constant c−1 (to simplify the presentation, we use c = 2 from now on),

2. the spectral gaps of the Markov chains Pi are bounded from below by δ.

The time complexity of such FPRAS, i.e., the number of times we have to invoke an update step
for a Markov chain from {P1, . . . , P`−1}, is

Õ

(
`2

δ · ε2

)
, (5.47)

where Õ means up to logarithmic factors.
We will now follow the presentation in [64, Section 2.1] and describe the classical approx-

imation schemes in more detail, starting with the partition function as a telescoping product
(5.46). At T0 =∞, the partition function Z0 is equal to

Z0 = |Ω|, (5.48)

the size of the state space. On the other hand, for each i = 0, . . . , `−1, we can estimate the ratio

αi =
Zi+1

Zi
(5.49)



684 Quantum Walks

in (5.46) by sampling from the Boltzmann distribution πi as follows. Let Xi ∼ πi denote a
random state chosen according to the Boltzmann distribution πi, i.e.,

Pr(Xi = σ) = πi(σ) . (5.50)

Define a new random variable Yi by

Yi = e−(βi+1−βi)E(Xi), (5.51)

where βi = (kTi)
−1 is the inverse temperature (k is the Boltzmann constant). This Yi is an

unbiased estimator for αi since

E (Yi) =
∑
σ∈Ω

πi(σ) e−(βi+1−βi)E(σ) =
∑
σ∈Ω

e−βiE(σ)

Zi
e−(βi+1−βi)E(σ) (5.52)

=
∑
σ∈Ω

e−βi+1 E(σ)

Zi
=
Zi+1

Zi
= αi. (5.53)

Assume now that we have an algorithm for generating states Xi according to πi. We draw
m := 64`/ε2 samples of Xi and take the mean Y i of their corresponding estimators Yi. Then,
assuming 1

2 ≤ αi ≤ 1, the mean Y i satisfies

Var
(
Y i
)(

E
(
Y i
))2 =

ε2

64`

Var (Yi)

(E (Yi))
2 ≤

ε2

16`
. (5.54)

We can now compose such estimates of αi. Define a new random variable Y by

Y = Y `−1Y `−2 · · ·Y 0 (5.55)

Since all Y i are independent, we have

E
(
Y
)

= E (Y`−1)E (Y`−2) · · ·E (Y0) = α`−1α`−2 · · ·α0 = α, (5.56)

Moreover, Y has the property

Var
(
Y
)(

E
(
Y
))2 =

E
(
Y

2

`−1

)
· · ·E

(
Y

2

0

)
−E

(
Y `−1

)2 · · ·E (Y 0

)2
E
(
Y

2

`−1

)2

· · ·E
(
Y 0

)2
=

(
1 +

Var
(
Y `−1

)(
E
(
Y `−1

))2
)
· · ·

(
1 +

Var
(
Y 0

)(
E
(
Y 0

))2
)
− 1

≤
(
eε

2/16`
)`
− 1 ≤ ε2/8 , (5.57)

where we used 1 + x ≤ ex (true for all x) and ex − 1 ≤ 2x (true for all x ∈ [0, 1]) in the last
two steps, respectively. Chebyshev’s inequality now implies that the value of Y is in the interval
[(1− ε)α, (1 + ε)α] with probability at least 7

8 .



Quantizing Markov Chains 685

Of course, we are not able to obtain perfect samples Xi from πi. Assume now that we have
X ′i that are from a distribution with a variation distance from πi smaller than d := ε2/(512`2).
Let Y

′
be defined as Y as above, but instead of Xi we use X ′i . Then, with probability at least

7
8 , we have Y = Y

′
. To derive this, observe that the algorithm can be thought to first take

a sample from a product probability distribution π on the (m`)-fold direct product of Ω. We
denote the probability distribution in the case of imperfect samples by π′. The total variation
distance between π and π′ is then bounded from above by

d ·m · ` =
ε2

512`2
· 64`

ε2
· ` =

1

8
. (5.58)

Therefore, Y
′

is in the interval [(1− ε)E (Y ) , (1 + ε)E (Y )] with probability at least 3
4 .

We obtain the samples X ′i by applying rapidly mixing Markov chains Pi whose limiting
distributions are equal to πi. Constructing such Markov chains is a hard task, but it has been
done for the Ising model [63] and the Potts model [64], resulting in FPRAS for the partition
functions for these models.

Thus, using a sequence of rapidly-mixing Markov Chains, it is possible to prepare low-
temperature Gibbs states. Not only that, sampling from these states and estimating the vari-
able (5.51) allows us to estimate partition functions by a telescoping product (5.46), because of
(5.53). Note that for each sample from a state close to the thermal state for a given MC, we
need to prepare it using a sequence of MC’s. The run is then discarded. Could we somehow
“reuse” the mixing we have done so far using quantum mechanics? It turns out it is possible, and
that estimating the ratios αi using (5.51) is possible by phase estimation of a certain quantum
walk operator. The method described in the next section, developed by Wocjan et al. in [68, 69]
is related to the one used by Somma [60], and brings an additional square root speedup in the
approximation precision parameter.

5.4.3 Quantizing MCMC Methods for Approximating Partition Functions

In Section 5.4.2, we have seen how classical MCMC methods work and that they require Õ
(
`2

δ·ε2

)
steps (5.47), where δ is the lower bound on the spectral gap of the MC’s involved and ε is the
desired approximation precision for the FPRAS. Let us now turn to the quantum world and put
quantum walks to use, following [69]. We will see that the resulting quantized algorithm gets a
square root speedup in both the parameter δ and ε. Let us summarize the result:

Theorem 5 Consider a classical FPRAS for approximating the Gibbs partition function of a
physical system at temperature TF , satisfying the above conditions. Then, there exists a fully
polynomial quantum approximation scheme that uses

Õ

(
`2√
δ · ε

)
(5.59)

applications of a controlled version of a quantum walk operator from {W (P1), . . . ,W (P`−1)}.

The reduction in complexity (in comparison to the classical FPRAS (5.47)) for the quantum
algorithm we will now look at is twofold. First, the factor 1/δ is reduced to 1/

√
δ by using



686 Quantum Walks

Fig. 5.1. Structure of the quantum algorithm.

quantum walks instead of classical Markov chains (for preparing the distributions to sample
from), and utilizing the quadratic relation between spectral and phase gaps. This relation is
the basis of success for many quantum search algorithms based on quantum walks [52]. Thus,
instead of letting a Markov chain Pi mix towards its stationary distribution πi, we choose to
approximately prepare the state

|πi〉 =
∑
σ∈Ω

√
πi(σ) |σ〉 (5.60)

a coherent encoding of the Boltzmann distribution. The preparation method [68] is based on
Grover’s π

3 -fixed-point search [53, 54], described in Appendix D, efficiently driving the state
|π0〉 towards the desired state |πi〉 through a sequence of intermediate states.

Second, we speed up the way to determine the ratios αi. Instead of using classical samples
from the stationary distribution πi of a Markov chain Pi, we approximate αi by phase-estimating
a certain unitary (related to quantum walks) on the state |πi〉. This results in the reduction of the
factor 1/ε2 to 1/ε.

The structure of the algorithm is depicted in Fig. 5.1. It consists of successive approximate
preparations of |πi〉 followed by a quantum circuit outputting a good approximation to αi (with
high probability). We will now show how to quantize the the classical algorithm, assuming that
we can take perfect samples Xi from πi. The interested reader is invited to look into [69] for
the full quantum algorithm which deals with the fact that samples from πi can be taken only
approximately, as the states we can prepare are only approximations (but good ones) to |πi〉.
However, the errors can be handled and collected in such a way, that the result of Theorem 5
holds, giving a fully quantum FPRAS with a double (in δ and ε) square root speedup over the
classical method.

To estimate the ratios αi in (5.46), the classical algorithm generates random states Xi from
πi and computes the mean Y i of the random variables Yi. The process of generating a random
state Xi from πi is equivalent to preparing the mixed state ρi =

∑
σ∈Ω πi(σ)|σ〉〈σ|. Instead of

this, we choose to prepare the pure states

|πi〉 =
∑
σ∈Ω

√
πi(σ)|σ〉 . (5.61)

We call these states quantum samples since they coherently encode the probability distributions
πi. Let us for now assume that we can prepare these exactly and efficiently.

The random variable Yi can be viewed as the outcome of the measurement of the observable

Ai =
∑
σ∈Ω

yi(σ)|σ〉〈σ| (5.62)



Quantizing Markov Chains 687

where yi(σ) = e−(βi+1−βi)E(σ), for the state ρi. This interpretation implies that to estimate αi
classically, we need to estimate the expected value Tr(Aiρi) by repeating the above measurement
many times and outputting the mean of the outcomes. However, we can quantize this process.
We add an ancilla qubit to our quantum system in which the quantum samples |πi〉 live. For each
i = 0, . . . , `− 1, we define the unitary

Vi =
∑
σ∈Ω

|σ〉 〈σ| ⊗
( √

yi(σ)
√

1− yi(σ)

−
√

1− yi(σ)
√
yi(σ)

)
. (5.63)

This Vi can be efficiently implemented, as it is a rotation on the extra qubit controlled by the state
of the first tensor component. Let us label

|ψi〉 = Vi
(
|πi〉 ⊗ |0〉

)
. (5.64)

Consider now the expected value of the projector

P = I⊗ |0〉 〈0| (5.65)

in the state |ψi〉. We find

〈ψi|P |ψi〉 = 〈πi|Ai|πi〉 = αi . (5.66)

We now show how to speed up the process of estimating αi with a method that generalizes
quantum counting [55]. Assuming efficient preparation of |πi〉 implies that we can also efficiently
implement the reflections

Ri = 2|πi〉〈πi| − I . (5.67)

Thus, we arrive at the existence of a quantum FPRAS for estimating the partition function, as-
suming efficient and perfect preparation of |πi〉, summed in Theorem 6:

Theorem 6 There is a fully polynomial quantum approximation schemeA for the partition func-
tion Z. Its output Q satisfies

Pr
[
(1− ε)Z ≤ Q ≤ (1 + ε)Z

]
≥ 3

4
. (5.68)

For each i = 0, . . . , `−1, the schemeA usesO (log `) perfectly prepared quantum samples |πi〉,
and applies the controlled-Ri operator O

(
`
ε log `

)
times, where Ri is as in (5.67).

The proof of Theorem 6 builds on the following three technical results.

Lemma 2 (Quantum ratio estimation) Let εpe ∈ (0, 1). For each i = 0, . . . , `− 1 there exists
a quantum approximation scheme A′i for αi. Its output Q′i satisfies Pr

[
(1 − εpe)αi ≤ Q′i ≤

(1 + εpe)αi
]
≥ 7

8 . The scheme A′i requires one copy of the quantum sample |πi〉 and invokes the
controlled-Ri operator O

(
ε−1
pe

)
times, where Ri is as in (5.67).

We can boost the success probability of the above quantum approximation scheme for the
ratio αi by applying the powering lemma from [66], which we state here for completeness:



688 Quantum Walks

Lemma 3 (Powering lemma for approximation schemes) Let B′ be a (classical or quantum)
approximation scheme whose estimate W ′ is within ±εpeq to some value q with probability
1
2 +Ω(1). Then, there is an approximation scheme B whose estimateW satisfies Pr

[
(1−εpe)q ≤

W ≤ (1 + εpe)q
]
≥ 1− δboost . It invokes the scheme B′ as a subroutine O

(
log δ−1

boost

)
times.

Lemma 3 ensures we can get precise estimates of αi, which we can than compose into an
approximation for the partition function (5.46).

Lemma 4 (Composing ratio estimates) Let ε > 0. Assume we have approximation schemes
A0,A1, . . . ,A`−1 such that their estimates Q0, Q1, . . . , Q`−1 satisfy Pr

[
|Qi − αi| ≤ εαi

2`

]
≥

1− 1
4` . Then, there is a simple approximation schemeA for the product α = α0α1 · · ·α`−1. The

result Q = Q0Q1 · · ·Q`−1 satisfies

Pr
[
(1− ε)α ≤ Q ≤ (1 + ε)α

]
≥ 3

4
. (5.69)

We are now finally ready to prove Theorem 6. For each i = 0, . . . , ` − 1, we can apply
Lemma 2 with the state |ψi〉 (5.64) and the projector P (5.65). This gives us a quantum approxi-
mation scheme for αi. Note that to prepare |ψi〉, it suffices to prepare |πi〉 once. Also, to realize a
controlled reflection around |ψi〉, it suffices to invoke the controlled reflection around |πi〉 once.

We now use the reflection 2|ψi〉〈ψi|−I and set εpe = ε/(2`) in Lemma 2. With these settings,
we can apply Lemma 3 to the resulting approximation scheme for αi with δboost = 1/(4`). This
gives us approximation schemesAi outputting Qi with high precision and probability of success
that can be used in Lemma 4. The composite result Q = Q0 · · ·Q`−1 is thus an approximation
for α = α0 · · ·α`−1 with the property Pr

[
(1− ε)α ≤ Q ≤ (1 + ε)α

]
≥ 3

4 .
Finally, we obtain the estimate for Z by multiplying Q with Z0. Let us summarize the costs

from Lemmas 2-4. For each i = 0, . . . , ` − 1, this scheme uses log δ−1
boost = O(log `) copies of

the state |πi〉, and invokes
(
log δ−1

boost

)
ε−1
pe = O

(
`
ε log `

)
reflections around |πi〉.

Finally, this is where quantum walks come into play. So far, we have assumed that we can
prepare the quantum samples |πi〉 and implement the controlled reflections Ri = 2|πi〉〈πi| − I
about these states perfectly and efficiently. These assumptions can be released and accomplished
approximately with the help of quantum walk operators. The errors arising from these approxi-
mate procedures do not significantly decrease the success probability of the algorithm.

Using the fact that the consecutive states |πi〉 and |πi+1〉 are close, we can utilize Grover’s
π
3 fixed-point search [53] to drive the starting state |π0〉 towards the desired state |πi〉 through
multiple intermediate steps40. Moreover, to be able to perform this kind of Grover search, we
have to be able to apply selective phase shifts of the form Si = ω|πi〉〈πi| + (I − |πi〉〈πi|) for
ω = eiπ/3 and ω = e−iπ/3. There is an efficient way to apply these phase shifts approximately,
based on quantum walks and phase estimation [68].

The important condition for this method to work, the overlap of two consecutive quantum
samples |πi〉 and |πi+1〉 has to be large. This is satisfied when αi = Zi+1/Zi is bounded from
below by 1

2 , since

|〈πi|πi+1〉|2 =

∣∣∣∣∣∑
σ∈Ω

√
e−βiE(σ) e−βi+1E(σ)√

Zi Zi+1

∣∣∣∣∣
2

≥

∣∣∣∣∣
∑
σ∈Ω e−βi+1E(σ)√
2Zi+1

√
Zi+1

∣∣∣∣∣
2

=
1

2
. (5.70)

40Compare this to the projections of |πi〉 onto |πi+1〉 and the quantum Zeno effect in [73] discussed in Section 5.4.1.



Quantizing Markov Chains 689

We can then use additional ancilla qubits and the phase estimation of a quantum walk operator
to implement the selective phases required for Grover’s fixed-point search, with O

(
√̀
δ

log2 `
)

applications of a quantum walk operator. Second, the reflections Ri = 2|πi〉〈πi| − I can to
done approximately and effectively, again using phase estimation of a controlled-quantum walk
operator. Altogether, with proper choices for the precision for the phase estimations required
in the state preparation and reflections, the resulting cost of this scheme (the number of times
we have to invoke the controlled quantum walk operators) is Õ

(
`2

ε
√
δ

)
. It remains open how to

quantize FPRAS which are based on sequences of MC’s which do not obey the condition (5.70),
or use adaptive steps (not knowing the range into which αi will fall in advance).

5.4.4 Quantum Metropolis Sampling

The preparation of ground states and (sampling from) Gibbs states is generally a hard task, as
finding them is related to optimization problems. However, for classical systems (Hamiltonians),
the Metropolis algorithm, described in Section 2.3.3, is widely used and often efficient. When we
want to use it to prepare Gibbs (thermal) states of a system, the strategy is to perform a random
walk on the states of a system, changing a few local parameters in each step. There is a simple
rule for accepting or rejecting the change, depending on the difference in energies of the two
states and on the system temperature, which we slowly cool down.

The big question is whether we could we use a quantum computer and quantum walks to
prepare Gibbs states of quantum systems, especially those plagued by the sign problem (and thus
unfit for Quantum Monte Carlo methods). We would thus like to prepare a sample from the
eigenstates of a quantum system (according to their energies). However, the energy eigenbasis
is now not equal to the computational basis – and making a Markov Chain jumping between the
(unknown) energy eigenstates, according to a Metropolis rule, is a hard task. The most serious
obstacle to quantizing the Metropolis algorithm is the necessity of rejecting a state change, when
the energy of the proposed new state is much larger than the energy of the original state. Is a
return from the undesired quantum state to the original (but uknown) one possible and could we
do it coherently? Recently, Temme et al. [56] have discovered a way of doing exactly that, using
a property of two reflections that is essential to quantum walks, but also found uses in quantum
complexity theory [58, 59]. Later, Yung et al. [57] made the algorithm even more quantum,
providing a square root speedup in the dependence of the convergence time on δ, the gap of the
associated classical Markov Chain.

Let us now briefly sketch the principle of the Quantum Metropolis algorithm due to Temme
et al. [56]. For simplicity, let us assume we would like to prepare the Gibbs state of a system of n
2-level particles, i.e. Ising spins. We would like to set up a rapidly mixing Markov chain, which
samples from the configurations x with the corresponding probabilities

π(x) =
e−βEx

Z
. (5.71)

We start from a random state and run the Markov chain for many steps. In each step, we start
with some state x with energyEx, flip a few (a local change) randomly selected spins, and obtain
a state y. We accept this move if the energy decreases. On the other hand, if the energy Ey of the
new state is higher, we accept the move only with probability e−β(Ey−Ex). This Markov chain



690 Quantum Walks

obeys detailed balance, because the following is true when Ey > Ex:

π(x) = π(y)e−β(Ex−Ey). (5.72)

Each step of the quantum version of the Metropolis algorithm now takes as input an energy eigen-
state |ψi〉 and applies a random local unitary C to it, producing

∑
k x

i
k |ψk〉, some superposition

of energy eigenstates. To be able to decide whether we want to take a step or not, let us also add
two extra energy-labeling registers in the state |Ei〉 |0〉. Without touching the register with |Ei〉,
we can use phase estimation on the first and third register to produce the label Ek, giving∑

k

xik |ψk〉 |Ei〉 |Ek〉 . (5.73)

We would now like to accept the states with energies Ek > Ei with probability e−β(Ek−Ei).
However, a direct measurement of the energy register would collapse the superposition, and this
would disallow us to return back to the state |ψi〉. We can work around this obstacle by adding
another ancilla register denoting the acceptance of the move, using a unitary F on the energy
registers and the acceptance ancilla to locally transform (5.73) into∑

k

xik

√
f ik |ψk〉 |Ei〉 |Ek〉︸ ︷︷ ︸
|ψ+
i 〉

|1〉+
∑
k

xik

√
1− f ik |ψk〉 |Ei〉 |Ek〉︸ ︷︷ ︸

|ψ−i 〉

|0〉 , (5.74)

where f ik = min
(
1, e−β(Ek−Ei)

)
corresponds to the Metropolis rule (2.12) for the Gibbs distri-

bution41. If we now perform a projective measurementQ on the acceptance register and obtain 1,
we get exactly what we wanted, as the amplitudes xik

√
f ik correspond to the classical Metropolis

rule transition probabilities |xik|2f ik. However, if we measure 0 in the acceptance register, we
project into a state that we did not want. Nevertheless, there is a way of undoing this, similar
to the procedure used in QMA amplification [58, 59]. The projective measurement of the accep-
tance register gave us the state |ψ−i 〉 |0〉. The key observation is that this projective measurement
left the state within the 2D subspace spanned by |ψ+

i 〉 |1〉 and |ψ−i 〉 |0〉, which has a different
basis as well:

|ϕ+〉 = |ψ+
i 〉 |1〉+ |ψ−i 〉 |0〉 . (5.75)

|ϕ−〉 =
|ψ+
i 〉 |1〉 − |ϕ+〉 〈ϕ+|ψ+

i 〉 |1〉√
1− |〈ϕ+|ψ+

i 〉 |1〉 |2
(5.76)

If we could devise a projective measurement according to the projector P = |ϕ+〉 〈ϕ+|, we
could get back into business (obtain the state |ψ+

i 〉 |1〉) in the following way. Because the 2D
subspace we are in is invariant under the projectors P and Q, performing alternating projective
measurements P andQ (as in the Marriott-Watrous scheme) gives a rotation in this 2D subspace.
More than that, it will eventually result in the +1 eigenstate of Q, which is our desired state
|ψ+
i 〉 |1〉.

The last necessary ingredient is the projective measurement according to P . It can be per-
formed as follows. We uncompute the unitary F , uncompute the energy label Ek, undo the local

41Note that the Metropolis algorithm is general, not restricted to use the Gibbs distribution.



Quantizing Markov Chains 691

mixing unitary C and uncompute the energy label Ei. We can now project onto |0〉 |0〉 |0〉 on the
ancilla registers, and again compute Ei, apply C, compute Ek and apply F . Observe that on the
state |ϕ+〉 this projection acts as an identity, while the state |ϕ−〉 is in its kernel. The required
number of steps for applying this rejection (and state repair) procedure is worked out thoroughly
in [56], resulting in a quantum algorithm for preparing the Gibbs states of quantum systems. The
required number of steps of the algorithm again depends on the inverse of the spectral gap δ
of the Markov Chains involved. We believe natural systems thermalize easily, but it is unlikely
that MC’s whose Hamiltonians correspond to hard computational problems have gaps that scale
favorably (as inverse polynomials) with the system size.

The quantum Metropolis algorithm receives a square root speedup (exchanging δ for
√
δ)

in Yung et al.’s work [57], where the authors use quantized (two-register) MC’s and quantum
simulated annealing instead of the random walk described in this Section which is classical at
heart, although running on quantum states and combined with a quantum evaluation and recovery
procedure.

5.5 Summary

In this Chapter, we have seen how to implement a quantum walk corresponding to a particular
(classical) Markov Chain given by its transition matrix. Instead of appending a coin to the po-
sition of a walker, we did it with a system with two-registers both having ranges on the vertices
(positions) of the underlying graph. A step of the quantum walk is then made by using one of
the registers to govern the diffusion (according to (5.10)) in the other one. We then swap the
registers and continue.

The unitary quantum walk we obtain has nice spectral properties, relating the spectra of
the Quantum MC to the original spectra of the underlying MC’s as seen in Section 5.2. This
underlies the quadratic speedups for many algorithms, including phase estimation. Taking it
further, Quantum MC’s form the basis of sampling algorithms, culminating with the quantum
Metropolis algorithm [56].



692 Quantum Walks

6 Continuous Time Quantum Walks

In this Chapter we will look at a different approach to quantum walks, with a system undergoing
continuous-time evolution according to the Schrödinger equation, governed by a fixed “hopping”
Hamiltonian related to an underlying graph. This is a more natural description related to the
dynamics of a single excitation in condensed-matter systems in physical systems. We start with
a review of the development of continuous-time quantum walks, discuss their behavior, and
present several algorithms (one with an exponential speedup) utilizing graph symmetries. We
then show how continuous-time quantum walks (CTQW) can be used as a universal model for
quantum computation, and wrap up with the comparison (and connection) of continuous-time to
discrete-time quantum walks.

6.1 Quantizing Continuous Random Walks

So far, we have investigated classical and quantum walks on graphs in discrete time. They are
described by a particular update rule – a transition matrix (classical Markov Chains), a unitary
coin-toss and shift matrices (usual discrete-time quantum walks), or a product of two reflections
(quantized Markov chains). Where classical walks involve the evolution of probabilities, quan-
tum discrete-time walks involve the evolution of amplitudes (of quantum states) and require an
extra coin register to ensure unitary evolution. They describe discrete quantum diffusion pro-
cesses (retaining at least some degree of coherence) on graphs. We will now look for a quantum
process described by a continuous-time equation similar to the diffusion equation, and call what
we find a continuous-time quantum walk. In contrast to discrete-time quantum walks, there will
be no need for the extra register (“coin” or spin degree of freedom), but using one can be helpful,
as shown by the algorithm for spatial search in Section 6.2.

Let us consider a graph G = (V,E) where V is the set of its vertices and E the set of its
edges. Our goal si to model a continuous-time diffusion process on this graph. We start with a
classical process, where in each small time-step, vertex j leaks probability to its neighbors (there
are deg(j) of them), while collecting some probability back from them. We can describe this
process by the diffusion equation

d
dt
pj(t) =

∑
k∈V

Lj,kpk(t), (6.1)

where L is the Laplacian of G, given by

Lj,k =


−deg(j) j = k,

1 (j, k) ∈ E,
0 otherwise.

(6.2)

This matrix respects the graph structure, and is a representation of the discrete Laplace operator
∇2. For example, on a cycle of length 5, the Laplacian is

L◦5 =


−2 1 0 0 1

1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
1 0 0 1 −2

 . (6.3)



Continuous Time Quantum Walks 693

We will now define a quantum process involving the evolution of amplitudes (instead of
probabilities), described by an equation similar to (6.1). The matrix L is Hermitian, so we can
also think of it as a Hamiltonian in the Schrödinger equation as

i
d
dt
|ψ(t)〉 = L |ψ(t)〉 . (6.4)

The essential difference from (6.1) is the appearance of the imaginary i (inducing unitary evo-
lution), and the interpretation of |ψ(t)〉 as the amplitudes of the system’s wavefunction. We
will soon see this has interesting consequences, just as using unitary update rules gave discrete
quantum walks their rich structure.

This formulation (using the Laplacian matrix) was used by Farhi and Gutmann in the first
paper on continuous-time quantum walks [78], where they investigated the transition/reflection
properties of binary trees. We could also choose a different matrix for our Hamiltonian. One
example also containing the information about the graph is the adjacency matrix42 of G

Aj,k =

{
1 (j, k) ∈ E,
0 (j, k) /∈ E.

(6.5)

It is often suitable to use as the Hamiltonian, but the analogy with the classical diffusion is now
lost. It is not always clear how to use A as a generator of a continuous time classical random
walk, where one may need to use its “lazy” version generated by I−A.

6.1.1 Walking in 1D and Mixing

The discrete quantum walk in 1D behaves quite differently than the classical drunken-sailor walk.
The continuous version of the 1D walk resembles the quantum walk we have seen in Section 3.2.
How fast the probability is spreading is proportional to t instead of the classical

√
t. We will now

show this, and then discuss the sense in which we can talk about mixing for continuous-time
quantum walks.

The system we will investigate is a cycle of length N (periodic boundary conditions). The
behavior of the continuous-time quantum walk on a cycle is similar for both basic choices of the
Hamiltonian — the Laplacian or the adjacency matrix, as they are related by L = A − 2I. For
simplicity, let us then choose

HN = −AN , (6.6)

the negative of the adjacency matrix of the cycle, acting on the N basis states |x〉 as

HN |x〉 = − |x− 1〉 − |x+ 1〉 , for 2 ≤ x ≤ N − 1, (6.7)
HN |1〉 = − |N〉 − |2〉 ,
HN |N〉 = − |N − 1〉 − |1〉 .

One obvious eigenvector of HN is the uniform superposition over all states |x〉.

42also with size |V | × |V |



694 Quantum Walks

Exercise 14 Show that all of the eigenvectors of HN are plane waves, i.e.

|φk〉 =
1√
N

N∑
x=1

eipkx |x〉 , (6.8)

with the corresponding eigenvalues (energies)

Ek = −
(
e−ipk + eipk

)
= −2 cos pk. (6.9)

Show also that the periodic boundary conditions constrain the momenta to values

pk =
2πk

N
, (6.10)

for 0 ≤ k ≤ N − 1, or alternatively, −bN2 c ≤ k ≤ d
N
2 e.

Let us start in a state concentrated at vertex x and let it evolve for time t according to the
Schrödinger equation with Hamiltonian HN . Using an expansion in terms of the eigenvectors,
the amplitude at vertex y at time t is

〈y| e−iHN t |x〉 = 〈y| e−iHN t
(
N−1∑
k=0

|φk〉 〈φk|

)
|x〉 (6.11)

=

N−1∑
k=0

e−i(−2 cos pk)t〈y|φk〉〈φk|x〉 (6.12)

=
1

N

N−1∑
k=0

ei2t cos pkeipk(y−x). (6.13)

For large N , we can approximate the sum by an integral, and obtain [82] the Bessel function of
the first kind of order (y − x) as

〈y| e−iHLt |x〉 ≈ i(y−x)Jy−x(2t), (6.14)

py−x(t) ≈ |Jy−x(2t)|2 (6.15)

We can now look at the asymptotics of the Bessel function [77]. For 2t large, but still obeying
2t� y−x, we have Jy−x(2t) ≈ ty−x

(y−x)! , which is exponentially small. However, for 2t ≈ y−x,

the values of the Bessel function start to rise, and Jy−x(y − x) is on the order of (y − x)−
1
3 .

Furthermore, for 2t > y − x the function Jy−x(2t) becomes qualitatively a cosine wave with
amplitude decreasing as 1√

2t
. For illustration, we plot the probabilities arising from the transition

amplitudes for a fixed large time t, and for a fixed large distance y − x in Figure 6.1.
There is a significant probability of transition x → y for times of order 2t ≈ y − x, which

corresponds to the wavefront moving with a constant speed of the walker43 equal to 2. Just as for
the discrete quantum walk, the average distance of the walker for the continuous quantum walk
on a line rises linearly with time. Contrast this to the classical drunkards’ walk, in which the

43Note that the speed of spreading for the discrete quantum walk in 1D is proven to be 1√
2

.



Continuous Time Quantum Walks 695

Fig. 6.1. Plotting the probabilities of being at vertex y when starting at x = 0 for a continuous-time quantum
walk on an infinite line, approximated with the help of Bessel functions as py−x(t) ≈ |Jx(2t)|2. Note that
at time t = 1000, the wavefront of the walk is at position y − x = 2000 = 2t, agreeing with the speed of
spreading equal to 2 distance points per unit of time, coming from the largest eigenvalue of H , which is 2.

average distance rises as a square root of the number of steps (or equivalently, time). The simi-
larities between continuous and discrete quantum walks are discussed in more detail in Section
6.5. We refer the reader to Figure 6.8, where we compare the probabilities of finding the walker
at a given vertex for both types of quantum walks in 1D.

The evolution according to the Schrödinger equation – and thus also the continuous quantum
walk – is unitary. There is no mixing towards a stationary distribution – a wavefunction does
not change with time only if we start in an eigenstate. However, for finite graphs we can again
talk about its mixing in a time-averaged sense, just as we did for discrete-time quantum walks
in Section 3.5.1, and follow Aharonov et al. [15]. The probability of being at vertex y at time t
when starting from vertex x is

pt(x→ y) =
∣∣〈y| e−iHt |x〉∣∣2 , (6.16)

and this probability does not converge. However, when we pick a random time t between 0 and
some large T , we can talk about a time-averaged distribution

p̄T (x→ y) =
1

T

∫ T

0

∣∣〈y| e−iHt |x〉∣∣2 dt. (6.17)

In the T →∞ limit, this gives rise (and converges) to the limiting distribution

π(x→ y) = lim
T→∞

p̄T (x→ y). (6.18)

This limiting distribution can be computed using the expansion to energy eigenstates |φk〉, simi-



696 Quantum Walks

larly to what we did in (6.13) as

π(x→ y) = lim
T→∞

∫ T

0

∣∣〈y| e−iHt |x〉∣∣2 dt (6.19)

= lim
T→∞

∫ T

0

∑
k,m

〈y|φk〉 〈φk| e−iHt |x〉 〈x|φm〉 〈φm| e−iHty |y〉 dt (6.20)

=
∑
k,m

〈y|φk〉〈φk|x〉〈x|φm〉〈φm|y〉 lim
T→∞

1

T

∫ ∞
0

e−i(Em−Ek)t dt︸ ︷︷ ︸
δEk−Em

(6.21)

=
∑

Ek=Em

〈y|φk〉〈φk|x〉〈x|φm〉〈φm|y〉. (6.22)

How fast does the time-averaged distribution converge to the limiting one? When computing

∆T (x→ y) = p̄T (x→ y)− π(x→ y), (6.23)

the terms that do not subtract out come from the finite-T integral in (6.22), and only from those
terms where we sum over nonequal pairs of energies, i.e.

p̄T (x→ y)− π(x→ y) =
∑

Ek 6=Em

〈y|φk〉〈φk|x〉〈x|φm〉〈φm|y〉
e−i(Em−Ek)T − 1

−i(Em − Ek)T
. (6.24)

Thus for the continuous-time quantum walk starting at vertex x, the total probability distribution
distance

‖p̄T (x)− π(x)‖ =
∑
y

|p̄T (x→ y)− π(x→ y)| (6.25)

from the limiting distribution will converge towards 0 with growing T as a function of the gaps
in the energy spectrum. The mixing time44 Mq

ε is then a time beyond which the total probability
distribution distance from the limiting distribution is smaller than a precision parameter ε, i.e.

∀T ≥Mq
ε : ‖p̄T (x)− π(x)‖ ≤ ε. (6.26)

Note that it is not governed only by the energy gap between the ground state and in the first
excited state, as for classical Markov chains, but grows because of small gaps anywhere in the
spectrum.

Continuing with our example — the CTQW on a cycle of length N , we can compute the
limiting distribution plugging (6.8) and (6.9) into (6.22).

Exercise 15 For a cycle with odd length N , with an initial state concentrated on a single vertex
x, show that the limiting distribution is

π(x→ y) =
1 + δy,x
N

− 1

N2
, (6.27)

44This is analogous to (3.29), where we defined the mixing time for discrete-time quantum walks.



Continuous Time Quantum Walks 697

while for even-length cycles, we get

π(x→ y) =
1 + δy,x + δy,x+N/2

N
− 2

N2
. (6.28)

Both of these are not uniform, having small corrections of the order N−2 at each vertex, which
make up for the different amplitude at the initial vertex (or the vertex directly opposite x for the
even-cycle case). Analyzing the inverses of differences of the non-equal eigenvalues in (6.24), it
can be shown that the mixing time for the CTQW on a cycle scales as

Mq,cycle
ε ≤ ε−1N logN. (6.29)

This (superlinear scaling in N ) can be connected to the linear spreading of the maximum of the
wavefront as seen in Fig.6.1. This behavior is interesting for uses in the computational models
related to the Feynman computer, e.g. in [89].

The scaling of the mixing times for CTQW has been also investigated for necklace graphs,
which are cyclic graphs made by connecting many copies of a certain subgraph (pearl) [90], and
also utilized in a quantum-walk based model of quantum computation [88].

6.1.2 Symmetries and Continuous-time Quantum Walks

When the graphs we walk on have symmetries, analyzing the dynamics simplifies a lot. The
coherent evolution of superpositions also often gives interesting results, when constructive inter-
ference at specific times can significantly raise the probability of being at specific vertices.

For example, let us look at the continuous-time quantum walk on the hypercube (see also Sec-
tion 2.3.1 and Figure 2.2). The adjacency matrix of an n-dimensional hypercube is conveniently
written in terms of the Pauli matrices as

A =

n∑
j=1

σ(j)
x . (6.30)

Schrödinger time evolution of the initial state |00 · · · 0〉 with the Hamiltonian H = −A is sur-
prisingly simple, as all the σ(j)

x matrices commute. The evolution is thus an independent rotation
on each qubit:

e−iHt |00 · · · 0〉 =

k⊗
j=1

(
eitσ

(j)
x |0〉j

)
=

k⊗
j=1

(
cos t |0〉j + i sin t |1〉1

)
. (6.31)

At times t = (2k+1)π
2 , all the qubits are rotated into the state |1〉, so the continuous-time quantum

walk starting in the state |00 · · · 0〉 traverses the hypercube completely in constant time. However,
it is important to remember that it is not only the time that counts as ‘cost’ of a continuous-time
quantum walk algorithm. Rather, it is the dimensionless parameter ‖H‖ t.

Exercise 16 Show that the norm (largest eigenvalue) of the Hamiltonian A is linear in n.



698 Quantum Walks

Fig. 6.2. Two binary trees with 4 layers make up the graph G4 when glued together. The line on the right
depicts the equivalent quantum walk on a line of the column states |ψn〉, with weight

√
2 on each link.

When we rescaleA→ 1
‖A‖A to give it norm 1, the time required for traversal becomes πn2 , linear

in n, as we have seen in Section 2.3.1 for the discrete quantum walk on a hypercube. Compare
this to the classical random walk on a hypercube, where the walk rapidly mixes towards the
uniform distribution, where the probability of finding the string 11 · · · 1 is 2−n.

What was the symmetry that comes into play in this example? Due to the permutational
symmetry of the hypercube (and a Hamiltonian that preserves it), one can also view the evolution
as a quantum walk on a line of states (the n+ 1 symmetric superpositions with Hamming weight
k = 0, . . . , n), with transition coefficients

√
(n− k)(k + 1).

The next example of symmetries simplifying the evolution comes from Childs et al. [79].
Imagine we walk on a graph Gn that is made from two glued binary threes of depth n (with
2n−1 leaves each) as in Figure 6.2. This is reminiscent of (but much simpler than) the graph45

encountered by the WALKSAT algorithm for 3-SAT (Section 2.3.2), with each node having 2
ways to go towards the center, but only 1 way to go towards the endpoints. However, what does
a continuous-time quantum walk see here? When we choose the Hamiltonian to be the negative
of the adjacency matrix

Htt = −Atree1 −Atree2 , (6.32)

its action turns out to be very simple if we view it in terms of the “column” states

|ψk〉 =
1
√
nk

nk∑
j=1

|x(k)
j 〉. (6.33)

Each |ψk〉 is a uniform superposition of the nk states located at the vertices of the k-th column of
the graph. In this basis {|ψk〉}2n−1

k=1 , the Hamiltonian is the adjacency matrix of a quantum walk

45The actual graph there is much more complicated, and we don’t yet know how to naturally quantize the WALKSAT
algorithm besides the general “Groverizing” approach.



Continuous Time Quantum Walks 699

Fig. 6.3. Two binary trees with 4 layers, glued by a randomly chosen cycle of length 2n+1 with vertices
alternating between the two trees. Every vertex (besides the endpoints) in the graph now has three neighbors.
The line on the right depicts the equivalent quantum walk on a line of the column states |ψn〉 with modified
weights.

on a line of length 2n− 1 with weights
√

2, as

Htt |ψk〉 = −
√

2 |ψk+1〉 −
√

2 |ψk−1〉 , 2 ≤ k ≤ 2n− 2, (6.34)

Htt |ψ1〉 = −
√

2 |ψ2〉 , (6.35)

Htt |ψ2n−1〉 = −
√

2 |ψ2n−2〉 . (6.36)

We have already seen how this walk behaves46 in Section 6.1.1, because the extra weight
√

2
only multiplies the whole Hamiltonian. Thus the time it takes for the “walker” to move from the
left endpoint to the right endpoint (with constant probability) scales as O

(
2n−1
2
√

2

)
, only linearly

with the tree depth n.
Compare this to a classical random walk without memory, which will (highly probably) get

stuck in the center region of the graph. Note though, that there exists a classical recursive O(n2)
algorithm for traversing this type of graph (see Section 2.3.1). It crucially depends on the possi-
bility of identifying the center column vertices by their degree.

Soon afterwards, Childs et al. [33] modified the previous construction, gluing the two trees
by a cycle of length 2n+1 alternating between the leaves of the two trees as in Figure 6.3, en-
suring the degree of the central vertices is also 3. This gave them one of the few examples with
a provable exponential separation in query complexity between the best possible classical algo-
rithm and a simple quantum-walk algorithm for an oracle problem. Let us thus investigate the
unitary evolution governed by the Hamiltonian

Htt2 = −Atree1 −Acycle −Atree2 , (6.37)

whereAtree is the adjacency matrix of a tree andAcycle the adjacency matrix of the central cycle.
Because of symmetry, we can again choose a basis of 2n “column” states |ψn〉 (6.33), with

nk =

{
2k−1 1 ≤ k ≤ n,
22n−k n+ 1 ≤ k ≤ 2n.

(6.38)

46Recall that we started the walk from the center of a finite line (or any point on a cycle) in Section 6.1.1. Nevertheless,
if one starts the walk from an endpoint, the probability to be in another vertex again starts to spread linearly with time.



700 Quantum Walks

The action of (6.37) on |ψn〉 differs from (6.35) only in the middle, where accounting for the
cycle connections we obtain

Htt2 |ψn〉 = −
√

2 |ψn−1〉 − 2 |ψn+1〉 , (6.39)

Htt2 |ψn+1〉 = −2 |ψn〉 −
√

2 |ψn+2〉 . (6.40)

Therefore, the evolution with Htt2 (in the symmetric subspace) is the same as the continuous-
time quantum walk on a line depicted in Figure 6.3, with weights

√
2, . . . ,

√
2, 2,
√

2, . . . ,
√

2.
When we let the state |ψ1〉 evolve, it now starts to be reasonable to expect that after time O(n),
there will be a significant probability of measuring the state located at the root of the tree on the
right, i.e. for e−iHttt |ψ1〉 to have a large overlap with |ψ2n〉. As shown in [33], we can solve
for eigenvectors and eigenvalues of this walk similarly to what we did on a line, and then show a
mixing result to prove the probability of reaching EXIT in O(n) time is substantial.

The quantum walk on two-trees glued by a cycle solves a Hamiltonian oracle problem – to
find the vertex named EXIT. We can turn it into an oracle problem in the usual quantum circuit
model. For this, we consider a black-box oracle returning the names of neighbors of a given
vertex. We can then efficiently simulate [32] the quantum walk with the Hamiltonian (6.37),
because the Hamiltonian is sparse.

Unlike the two simply glued trees traversal problem in Figure (6.2), the oracle problem with
two trees glued by a cycle as in Figure (6.3) is difficult classically [33]. Here is a sketch of the
proof. First, we can think of the vertices having random names of length 3n. Only 22n out of
those 23n strings thus correspond to graph vertices, so that it is hard to guess a name of a vertex
actually belonging to the graph. This restricts any classical algorithm to explore only a connected
part of the graph around the ENTRANCE (as the oracle can supply the names of the neighbors
of a given vertex). However, whichever way we explore the graph, we can embed the part we
have seen into the glued trees + cycle at random. For a number of queries that is exponential
in n but much less than the number of vertices of one of the trees, the probability of finding the
EXIT (or even reaching the same vertex we already have been in by a different path) will remain
exponentially small.

Recently, another quantum algorithm for traversing randomly glued trees has been found [87]
in the adiabatic quantum algorithm (AQC) model. It is inspired by the quantum walk-based one
presented above. However, the AQC algorithm differs from the usual approaches [75] in that it
utilizes two lowest energy levels (instead of only the ground state), and does not care that the
eigenvalue gap between these two levels is exponentially small.

6.2 Spatial Search

We have seen how to perform searches for marked vertices on graphs using coined quantum
walks in Section 2.3.1. The goal was to concentrate the amplitude of the evolved state on a
specially marked vertex (which had different coin-flipping or scattering properties). We can
perform the same feat with continuous-time quantum walks. In fact, the development of the
corresponding algorithms was often almost parallel, with continuous quantum walks leading the
way [44] (finite-dimensional lattices) and later catching up [80] to the competing discrete-time
method [43].

Search algorithms based on continuous-time quantum walks are based on the following com-
mon idea. We start with a uniform superposition |s〉 over all vertices and let it evolve with the



Continuous Time Quantum Walks 701

Hamiltonian

Hsearch = −γAgraph −
∑
w∈W

|w〉 〈w| , (6.41)

whereA is the adjacency matrix (or sometimes, the Laplacian) of the graph,W is a set of marked
vertices and γ is a tunable parameter. Often, the ground state of (6.41) and its first excited state
will both have large overlap with the uniform superposition |s〉 and some marked state |w〉.
When we let the state |s〉 evolve, due to quantum tunneling, the state |s〉 will then transform into
a state with a large overlap with the state |w〉, on the timescale of 1

E1−E0
. Let us look at a few

examples of how this happens, starting with the unstructured search problem, and a quantum
walk algorithm that is an analog analogue of Grover’s algorithm [76].

6.2.1 Complete Graph

An unstructured search of N items is equivalent to a spatial search on a complete graph with N
vertices (where we can freely jump from any vertex to any other vertex) as in Figure 4.4. For
simplicity, let us now think only of a single marked vertex. In Section 4.4, we have seen how
this problem is solved by a scattering quantum walk. Let us now look at it in a Hamiltonian
formulation, with the marked state specified by an oracle Hamiltonian

Hw = − |w〉 〈w| , (6.42)

where the special vertex |w〉 (the “winner”) gets a decrease in energy compared to the other
vertices. Our goal is to prepare the state |w〉 (if there is such a state). We will follow Farhi et
al. [76], who worked this out soon after Grover’s algorithm appeared. The approach is to add
an instance-independent Hamiltonian – the rescaled adjacency matrix of the full graph. We will
rescale the adjacency matrixA, so that its norm isO(1) (corresponding to γ = 1

N in (6.41)). The
reason for this is the time-energy tradeoff, as increasing the norm of the Hamiltonian obviously
decreases the required runtime. Together with the oracle Hamiltonian, we will thus use

H = − 1

N
A+Hw = − |s〉 〈s| − |w〉 〈w| , (6.43)

where |s〉 = 1√
N

∑N
j=1 |j〉 is the uniform superposition of computational basis states.

The algorithm is rather simple. We start in the uniform superposition |s〉 over all vertices,
and let the system evolve (according to the Schrödinger equation) for time O

(√
N
)

. Let us
look at why it works. The Hamiltonian (6.43) never takes the evolution of |s〉 outside of the
two-dimensional Hilbert space spanned by |w〉 and |s〉. We can thus rewrite the Hamiltonian in
(and restricted to) the basis {|w〉 , |w⊥〉}, where

|w⊥〉 =
|s〉 − δ |w〉√

1− δ2
, (6.44)

with δ = 1√
N

(this generalizes to
√
M/N if there are M marked states). In the new basis, the

Hamiltonian reads

H = −
(
|w〉+

√
1− δ2|w⊥〉

)(
〈w|+

√
1− δ2〈w⊥|

)
− |w〉 〈w|

= −
[

δ2 + 1 δ
√

1− δ2

δ
√

1− δ2 1− δ2

]
= −I + δ

(
δσz +

√
1− δ2σx

)
. (6.45)



702 Quantum Walks

Using eiα~̂n·~σ = (cosα)I + i(sinα)~̂n · ~σ, the time evolution of |s〉 = δ |w〉 +
√

1− δ2|w⊥〉, up
to an insignificant phase is

e−iHt |s〉 =

[
cos(δt)− iδ sin(δt) −i

√
1− δ2 sin(δt)

−i
√

1− δ2 sin(δt) cos(δt) + iδ sin(δt)

] [
δ√

1− δ2

]
=

[
δ cos(δt)− i sin(δt)√

1− δ2 cos(δt)

]
= cos(δt) |s〉 − i sin(δt) |w〉 . (6.46)

Therefore, it is enough to wait time T = π
2δ = π

2

√
N to obtain the marked state |w〉 with

probability 1.
In fact, this algorithm is optimal, and the reader can find the instructive proof – an alternative

to the BBBV proof [74] in the Hamiltonian oracle model – in the paper47 by Farhi et al. [76], who
were quick to realize they got the Grover search algorithm in continuous time soon after Grover
published his original paper [30]. The proof is based on analyzing the evolution of a known
state towards a marked state |w〉 with the oracle Hamiltonian − |w〉 〈w| plus an arbitrary driver
Hamiltonian (without knowledge of the solution). For this algorithm (which doesn’t know w) to
work for all N possible choices of w, the evolution of an initial state must substantially differ for
all of those. That in turn lower bounds the required evolution time T by T ≥ O

( √
N
‖H‖

)
.

6.2.2 Searching on the Hypercube and on Finite-dimensional Lattices

The next example where continuous-time quantum search provides a fast algorithm is search on
the hypercube (cf. Section 3.5.2 for the discrete-time approach). Following Childs et al., [44,80],
we will investigate the Hamiltonian

H = −γAhc − |w〉 〈w| , (6.47)

where Ahc =
∑n
j=1 σ

(j)
x is the adjacency matrix of a n-dimensional hypercube (described by

n-qubit states). The spectrum of this Hamiltonian was analyzed by Farhi et al. in [75]. It turns
out that for a specific choice of γ = 2

n + O
(
n−2

)
, the energy gap is 1√

2n

[
1 +O

(
n−1

)]
, and

the ground and the first excited state of (6.47) are 1√
2

(|w〉 ± |s〉) up to terms of order O
(
n−1

)
.

Thus, evolving the state |s〉 for time of order
√

2n, the probability of finding |w〉 is of order 1.
This is again a quadratic speedup over a classical algorithm, just as the one using discrete-time
quantum walk search [31].

Let us now move to a d-dimensional lattice. Childs et al. [44] investigate the Hamiltonian
(6.41) and find a critical point in γ, where the gap is small, but the ground and the excited
states again have large overlap with |w〉 and |s〉. Altogether, their algorithm has running time
O
(√

2n log 2n
)

in dimensions d ≥ 4. There it gives a quadratic speedup (up to a log-factor for
d = 4) over the best classical algorithm. However, the continuous quantum walk search does not
work for d < 4.

The discrete-time lattice search algorithm [23] has runtime
√

2n all the way down to d = 2.
Can continuous quantum walks work there too? It turns out yes, but it requires augmentation.
Childs et al. [80] showed that adding an extra degree of freedom (spin) of the walking particle and

47An Analog Analogue of a Digital quantum computation



Continuous Time Quantum Walks 703

Fig. 6.4. A game tree for a game with two players alternating moves, starting at the root of the tree. If Alice
(who chooses her move first) ends up at a leaf labeled 1, she wins. Given a leaf labeling, we fill the vertices
using the NAND operation (as in the marked rectangles). For this particular game, Alice does not have a
winning strategy, assuming best possible play from Bob.

replacing the Laplacian (or the adjacency matrix) with the massless Dirac Hamiltonian helps. The
dynamics is now governed by the Dirac equation (for a massless particle). The energy spectrum
near E = 0 now has linear (instead of quadratic) dispersion (dependence on the momentum).
This is the underlying reason for the gap at the critical point being large enough to give a speedup
for the continuous-time quantum walk algorithm. The result is then an algorithm with running
time O

(√
2n log 2n

)
in dimensions d = 2 and d = 3, matching the discrete-time walk, at the

cost of a larger Hilbert space.

6.3 NAND Trees and Games

Let us have a look at another application of continuous-time quantum walks. In the early days
of quantum computing, the paper Quantum Computation and Decision Trees [78] investigated a
system whose Hamiltonian is the adjacency matrix of a binary tree, and looked at the transmis-
sion and spreading of wavepackets (and their possible concentration on searched-for vertices).
Here, we will see how the transmission-reflection properties of a graph (under time-evolution
with an adjacency-matrix Hamiltonian) are affected by a certain graph property. The result of
this analysis is a continuous quantum walk-based algorithm [83] for evaluating NAND trees of
depth n = log2N , whose query complexity O

(
N0.5

)
beats the best possible classical algorithm

which requires O
(
N0.753

)
oracle queries. This quantum algorithm developed in the Hamilto-

nian oracle model has been quickly translated into the more common discrete-query-model [84],
and then generalized to arbitrary trees and optimized by Ambainis et al. [85].

Alice (who starts) and Bob (going second) are playing a simple game for two alternating
players, making one of two possible moves. This game can be described by a binary tree of
depth n, with the N = 2n leaves labeled by the results of the game as in Figure 6.4. Does Alice
(the first player to move) have a winning strategy, ensuring she ends up at a leaf labeled 1? We
can figure it out by working our way down the tree from the leaves to the root. If Alice reaches
a leaf labeled 1, she wins, if she gets to a leaf with a 0, she loses. When Bob chooses his move
on the layer n − 1, he will surely choose a win for himself by sending Alice to a 0-labeled leaf



704 Quantum Walks

Fig. 6.5. A graph for the quantum walk of the NAND-tree algorithm, corresponding to the game in Figure
6.4. Its centerpart is a balanced binary tree. Above it we have an extra row of vertices, connected to the
tree by edges encoding a particular game (there is an extra edge only for those tree vertices that originally
carried a “1” label). Finally, the tree is connected to a

√
N -long line (runway).

(if one like that exists). Thus, if there is a 0-leaf above his position, he has a winning strategy,
and we can label that graph vertex 1. On the other hand, if both leaves above Bob’s vertex are
1, he can not win (with best play from the opponent), and so we will label it 0 as in the marked
rectangles in Figure 6.4. This works at any level of the tree, so we can work our way down to
the root using the NAND function on the bits on the children of each node x = ¬(c1 ∧ c2).
The problem of determining the existence of a winning strategy for Alice in this game is thus
equivalent to evaluating a binary NAND tree with a set of game results fixed on the leaves.

The provably optimal [86] classical algorithm for this problem uses randomized recursive
branch evaluation. To evaluate a given vertex, we randomly pick one of its children and continue
with the recursive evaluation. If we conclude with a 0, the value at the original vertex is certainly
1 (because of the property of the NAND). Only if the evaluation produces a 1, we need to do
more work and evaluate the other branch as well. For a game with a balanced48 binary tree,
this recursive procedure requires O(N0.753) calls to the oracle encoding the game results at the
leaves.

The basis of the quantum algorithm of Farhi et al. [83] is a continuous-time quantum walk
on a graph, whose main part is a balanced tree with extra leaves at the vertices with game results
equal to 1. This tree is rooted above the middle of a long line of vertices49 as in Figure 6.5.
On the runway (the long line), the eigenvectors of an adjacency-matrix Hamiltonian have to
be combinations of plane waves. When we look at eigenvectors with energies close to 0 (and
momenta close to π/2), we find that the graph possesses interesting scattering properties. We
look for eigenvectors

|ψ〉 ∝
∑
x≤0

e−ipx |x〉+R
∑
x≤0

eipx |x〉+ T
∑
x>0

e−ipx |x〉+ |ϕtree〉 , (6.48)

which are a combination of a right-moving wave with a reflected and transmitted part, plus
something inside the tree. For NAND-trees evaluating to 1 (with a winning strategy for Alice, the

48In a balanced tree, the lengths of the subtrees from a node do not differ by more than 1.
49As shown in [85], this long line can be shortened to just one vertex on each side, with additional weight

√
N .



Continuous Time Quantum Walks 705

Fig. 6.6. a) Defining the ratios of amplitudes at the vertex x and its children ci and parent p for a NAND
tree. b) Evaluating the ratio X from known ratios Ci using (6.53). When at least one of the Ci’s is large
and positive, we get a small X , just as (at least) a single 0 for a child implies a 1 on a NAND tree.

starting player), Farhi et al. claim that the close-to-zero-energy eigenvectors have little support
on the root of the tree. The eigenvalue equation at the vertex x = 0 right below the tree root then
reads

〈x = 0|H |ψ〉 = eip +Re−ip + Teip =
(
e−ip + eip

)
+ T

(
eip − e−ip

)
. (6.49)

Continuity dictates 1 + R = T . Assuming E |0〉 ≈ 0 then implies T = 1, perfect transmission
for close to E=0 wavepackets. Small overlap on the root of the tree thus implies support on the
exit runway of the graph. On the other hand, if the NAND-tree evaluates to 0, the close-to-zero-
energy eigenvectors do have significant support on the root of the tree, which in turn implies
no support on the exit line for these states. Viewed as a scattering problem, we can think of
putting a close-to-zero-energy wavepacket on the input line of the graph, let it evolve, and then
measure the system to determine whether the wavepacket has reflected from the tree (NAND=0),
or passed through it (NAND=1). Let us sketch why this is the case, utilizing a the recursive
evaluation of the tree.

When we look for the eigenstates of the adjacency matrix of the tree, we would like to have
H |E〉 = E |E〉. At vertex x, it means that

〈x|H |E〉 = E〈x|E〉 (6.50)

〈x|H |E〉 = 〈p|E〉+
∑
i

〈ci|E〉, (6.51)

where ci are the children of x and p is the parent vertex of x. The values of 〈ci|E〉 and 〈x|E〉
thus determine 〈p|E〉 as

〈p|E〉 = E〈x|E〉 −
∑
c

〈c|E〉, (6.52)

which is especially simple for E = 0. Denoting the ratios of amplitudes Ci = 〈ci|E〉
〈x|E〉 and

X = 〈x|E〉
〈p|E〉 as in Figure 6.6a) translates (6.52) to

X =
1

E − C1 − C2
. (6.53)

We will now think about eigenstates with small E > 0. We now want to show the following
correspondence between the ratios X , the overlaps 〈x|E〉 and the NAND value of the subtree



706 Quantum Walks

rooted at vertex x:

small X ←→ negligible overlap 〈x|E〉 ←→ NAND=1 at vertex x
large X ←→ reasonable overlap 〈x|E〉 ←→ NAND=0 at x, NAND=1 at p.

Let us start at a vertex x which is a leaf. It has no children (whose Ci’s are thus zero), making
its X large and positive. Using (6.53), we can work out the ratios down the tree as in Figure
6.6b). When both Ci’s are small and not positive, X is going to be large and positive. On the
other hand, if at least one of the Ci’s is large, X is going to be small and negative. In this sense,
(6.53) evaluates the NAND operation, as described by the mapping above. What does it mean
for the case when x is the root of the tree, and p, its parent is already part of the runway? Small
X implies that the overlap 〈x|E〉 is tiny, while the whole tree has NAND=1. On the other hand,
a large ratio X would imply NAND=0 for the whole tree, and 〈x|E〉 not entirely small.

This was a sketch of the actual proof of Farhi et al. [83], who show that for eigenstates of H
with |E| < ε

16
√
N

, the overlap at the root in the NAND=1 case is no larger than ε. This happens
because a “small” overlap on some far-out vertices can not grow much more than by doubling
when we go down the tree from the leaves two levels at a time using (6.53).

The peculiar scattering properties of the NAND tree (arising from the small overlap of small
E states on the root of the NAND=1 trees) shown by Farhi et al. are retained for non-regular
NAND trees, as shown by Ambainis et al. [85]. One extra ingredient in their approach is that
they shorten the runway to just 3 vertices, and add extra weight to the connections. Furthermore,
evaluating whether the NAND=0 or 1 for the tree is done by phase-estimation of the quantum
walk on this graph.

6.4 Quantum Walks and Universal Quantum Computation

We have investigated continuous-time quantum walks with Hamiltonians that are adjacency ma-
trices of graphs, i.e. they contain only 0’s and 1’s (or possibly, with some weights at the edges).
The time-evolution of simple initial states can be used for searching (on regular lattices), to tra-
verse graphs in interesting (e.g. for glued trees) ways, or to investigate graph properties (such as
evaluating NAND trees). Thanks to Childs et al. [91,92], there is one more surprising application
– universal quantum computation. It comes in two varieties.

First, there is a way to translate an arbitrary unitary transformation on n-qubits into the evolu-
tion of a continuous-time quantum walk on a non-weighted graph with maximum vertex degree
3 [91]. This idea has also been later translated to the discrete quantum walk model by Lovett
et al. [93]. Although this first model is universal for quantum computation, we can not hope
to construct the graph physically, as the number of vertices is exponential in n. However, this
implies that simulating a quantum walk (the evolution of a single excitation) on a sparse, easily
computable and describable, unweighted graph is as difficult as general quantum computation.
Thus, it is one more example of a problem that can be asked purely classically, in terms of 0/1
matrices, but which has a deep relationship to quantum computation (cf. for example [94]).

Second, a novel idea recently appeared in [92]. Instead of using a single walker (a wavepacket
with a certain momentum) and a “wire” for each of the 2n computational basis states, Childs et
al. decided to use multiple walkers – one walker per qubit. The state of a qubit is encoded by



Continuous Time Quantum Walks 707

Fig. 6.7. A graph corresponding to a 2-qubit circuit has 4 wires. It starts with momentum separator widgets
(depicted in detail on the right), and then 3 gate widgets. First, the CNOT gate between the two qubits, then
the T gate (6.55) on the second qubit, and finally a U gate (6.56) on the second qubit.

an excitation moving in real time on a dual-rail50. Single-qubit gates are performed just as in
the first model, while they found a way to implement a 2-qubit gate (C-PHASE) by scattering
of excitations on two neighboring wires via a gadget graph connecting the two wires (utilizing
an extra ancillary wavepacket with a different momentum). The overall size of the graph is no
longer exponential, now it is only poly(n,L) (a rather large polynomial at the moment), with
n the number of qubits used and L the number of gates in the circuit. The analysis of the
underlying scattering process is beyond the scope of this article, so we choose to explain only
the first, simpler (but exponential in space) construction.

Let us now sketch the first idea. How can we achieve arbitrary unitary transformations just
from letting a continuous quantum walk run on a non-weighted graph? For an n-qubit unitary,
we will need 2n quantum wires (corresponding to the 2n basis states) of poly(n) length, as in
Figure 6.7. These wires will be connected by gate widgets, according to what quantum circuit
we want to apply. If we worked with infinitely long wires, the eigenvectors of this Hamiltonian
would be plane waves |k̃〉 characterized by their momenta k, with

〈x|k̃〉 = eikx, (6.54)

at location x and normalized to 〈k̃′|k̃〉 = 2πδ(k − k′), corresponding to eigenvalues 2 cos k, as
we have seen for the walk on a line in Section 6.1.1. The graph here consists of incoming and
outgoing lines (not infinite), plus the the graph widgets on which the plane waves can scatter. On
the lines, the eigenvectors ofH can only be linear combinations of the plane waves traveling right
or left (with momenta ±k), possibly also with imaginary momenta, giving bound states. Given
an incoming plane wave with particular momentum, scattering theory allows us to compute the
transition (and reflection) coefficients for the wave on the incoming/outgoing lines. The graph
widgets in [91] are constructed in such a way that the reflection coefficients for a plane wave with
momentum k = −π4 are exactly zero, while the transmission amplitudes correspond to desired
unitary transformations.

50A dual rail construction has two wires per qubit. An excitation on the first line corresponds to the state |0〉, while an
excitation on the second wire corresponds to |1〉. The state on a dual-rail graph can also be in a coherent superposition
of |0〉 and |1〉 – encoding a qubit.



708 Quantum Walks

Universal computation requires interaction of qubits. This part is simple, as a CNOT gate
between qubits l and m will be implemented by a crossing of the wires · · · 1l · · · 0m· · · and
· · · 1l · · · 1m· · · as in Figure 6.7. However, besides the CNOT operation, we also need a universal
set of single-qubit gates. A single qubit gate on the m-th qubit can be implemented by adding a
graph widget to the · · · 0m· · · and · · · 1m· · · wires. Having two types of gates at hand is sufficient
for single-qubit universality. First, we need the π

8 gate51

T =

[
1 0
0 ei

π
4

]
, (6.55)

which can be implemented by the widget in Figure 6.7 (repeated for all values of qubits not
involved in the T gate). Second, we can utilize a basis-changing gate

U = − 1√
2

[
i 1
1 i

]
, (6.56)

implemented as in Figure 6.7. While (T,U) is is not the usual universal gate set (x and z
rotations, or phase gate and Hadamard), observe that we can implement the Hadamard gate52 H
using T and U as H = iT 2UT 2, and the phase gate simply as T 2.

Finally, because the single qubit gate widgets require a plane wave with specific momentum
to work, we need to use a momentum separator/filter. This is a graph widget with transmission
coefficients close to zero for momenta away from k = −π4 and 3π

4 , while it lets the selected ones
through completely. Its second part separates wavepackets with these two momenta in time, as
the effective path length of the widget is different for them. The computation then consists of
initializing the system with wave packets on corresponding input lines (e.g. only on the 00 · · · 0
line, and letting the system evolve with the graph adjacency matrix Hamiltonian. After time
linear in the number of gate applications, we measure the amplitude of the desired output line53.

6.5 Connecting Continuous Time and Discrete Time Quantum Walks

It is now time to look at the similarities and differences for the two approaches to quantum walks.
Coined or two-register discrete-time quantum walks are directly implementable using quantum
circuits. On the other hand, continuos-time quantum walks are more natural in their interpretation
as the dynamics of an excitation in a physical system, are generally easier to analyze, but require
small degree of the vertices. Both methods have brought forth successful algorithms (discrete:
graph search, element distinctness, continuous: glued trees traversal, NAND tree evaluation),
many of which have been soon translated from one model to the other. We can see a clear
analogy for the search algorithm on a 2D lattice, where the continuous-time quantum walk [80]
needs a “coin” – an extra spin degree of freedom – to work as fast as the discrete quantum walk
algorithm. Meanwhile, a successful translation of the glued-trees traversal walk to a discrete-time
quantum walk utilizing a 3-headed coin [27] should be possible, but we don’t have a rigorous
analysis showing it. Worse than that, until recently we didn’t know how to formulate a CTQW
algorithm for the element-distinctness algorithm discussed in Section 4.7.

51Up to an overall phase, it is equivalent to multiplying the 0-amplitude by ei
π
8 and the 1-amplitude by e−i

π
8 .

52The Hadamard gate switches between the x and z-bases as H |x±〉 = |z±〉.
53Note that for BQP universality it is enough to be able to initialize the system in the state |0〉⊗n, apply a quantum

circuit and make a projective measurement onto the state |0〉⊗n afterwards.



Continuous Time Quantum Walks 709

Fig. 6.8. Comparison of probabilities of finding the walker at a given spot for continuous and discrete
quantum walks (balanced coin (3.22), initial state |x = 100〉⊗ (|←〉+ |→〉) /

√
2) on a line, starting at the

center (x = 100). Note that the discrete quantum walk has nonzero probabilities only at odd sites. The
speed of spreading is linear in both cases: 2 for the continuous and 1/

√
2 for the discrete quantum walk.

Does there exist a simple correspondence between the two models, arriving at CTQW’s as
a short time-step limit of some DTQW? This can’t be possible directly, as DTQW’s are imple-
mented in a larger Hilbert space – including a coin register besides a position register (or on two
position registers in scattering quantum walks or in Szegedy’s formulation of quantized Markov
chains, see Chapter 5). However, the behavior of DTQW’s and CTQW’s is remarkably similar
in several cases, e.g. in 1D (see Figure 6.8). In [95], Andrew Childs has found a way of repro-
ducing the dynamics of any Hamiltonian (thus including a CTQW) as a limit of discrete-time
quantum walks. This in turn has implications for Hamiltonian simulation. Let us shortly sketch
this construction.

Our goal is to take a CTQW with Hamiltonian H , and find a corresponding DTQW (in a
limiting sense). The Hilbert space for the CTQW is spanned by the states |j〉. First, we will find
a particular DTQW in Szegedy’s two-register formulation, implemented in the space spanned by
the vectors |j, k〉. To go between the state space of the CTQW and the DTQW, we will use an
isometry

T :=

N∑
j=1

|ψj〉 〈j| , (6.57)



710 Quantum Walks

defined in the following way. Let |d〉 =
∑N
j=1 dj |j〉 be the largest-eigenvalue eigenvector of the

matrix abs(H) =
∑
j,k |Hjk| |j〉 〈k| (whose elements are the absolute values of the elements of

H). From the Perron-Frobenius theorem, we know that all dj must be nonnegative. We denote
the largest eigenvalue of abs(H) as ‖abs(H)‖. The orthonormal (easily checkable) states |ψj〉
in the isometry (6.57) are then defined as

|ψj〉 :=
1√

‖abs(H)‖

N∑
k=1

√
H∗jk

dk
dj
|j, k〉 . (6.58)

Using the states |ψj〉, we can define this discrete-time quantum walk:

1. Map an initial state |j〉 to a two-register state |ψj〉 using the isometry T .

2. Apply a reflection about the span of the states |ψj〉, swap the registers and add a π
2 phase,

i.e. apply

U = iS
(

2
∑
j

|ψj〉 〈ψj | − I
)

= iS(2TT † − I) (6.59)

3. Repeat step 2 (a given number of times). After that, use the inverse isometry T † to get
back to the original state space.

This DTQW is interesting, because if the rescaled eigenvalues λ of H
‖abs(H)‖ are small, the eigen-

values of the DTQW can be shown to be approximately µ± ≈ ±e±iλ. Furthermore, with addi-
tional rotations at the beginning and end, we obtain an approximation (valid up to O(λ)) of the
evolution according to a CTQW for time τ

e−i
H

abs(H)
τ =

∑
λ

e−iλτ |λ〉 〈λ| ≈ T † (1− iS)√
2

(iU)τ
(1 + iS)√

2
T, (6.60)

in the form of a DTQW with τ reflections and register-swaps.
Still, this is working only when all of the λ’s are small, i.e. when h = ‖H‖

‖abs(H)‖ is small. We
can make h small by taking a lazy walk instead of the original one. A lazy walk makes a step
only with a very small probability ε. The trick is to enlarge the Hilbert space, and instead of T
(6.57), use the isometry Tε with modified states

|ψεj〉 :=
√
ε |ψj〉+

√
1− ε |⊥j〉 , (6.61)

where |⊥j〉’s is a set of orthogonal states, orthogonal also to all of the |ψj〉’s and the states that
come from |ψj〉’s by swapping their registers. The reflection about the span of |ψεj〉will thus have
only a small part that corresponds to the reflection about the span of |ψj〉. It can be shown that
the modified simulation procedure acts the same way as the previous one, but as if we evolved
with εH instead of H .

Altogether, when we want to simulate H for time t up to precision δ, we choose a large
enough number of simulation steps τ = O

(
(‖H‖ t) 3

2 δ−
1
2 , ‖abs(H)‖ t

)
, and use a “lazy” walk



Acknowledgements 711

with ε = ‖abs(H)‖ tτ . For this all to work, we need to be able to analyze the principal eigen-
vector of abs(A). However, it is also possible to use different states |ψj〉 without the knowledge
of the principal eigenvector, but that might in turn result in some increase of the required sim-
ulation resources [95]. Using this translation from CTQW to DTQW (and vice versa!), Childs
has obtained a CTQW version of the element distinctness algorithm with O(N

2
3 ) queries (in the

Hamiltonian query model) and a DTQW version of the randomly glued-tree traversal algorithm,
with a polynomial runtime.

6.6 Summary

Continuous-time quantum walks (CTQW) are a powerful tool for describing the dynamics of an
excitation in a system. The Hamiltonian of the system can be as simple as the adjacency matrix of
a graph. We have seen that the spreading of a wavepacket in this model can be similar to DTQW
and that it can be used in lattice-search algorithms (see Section 6.2). Furthermore, the dynamics
have interesting properties and can be analyzed with usual quantum-mechanical tools – utilizing
symmetries allowed us to see the simple movement of superpositions in the randomly-glued
tree traversal problem (see Section 6.1.2), while investigating the scattering properties of graphs
resulted in the NAND-tree evaluation algorithm (see Section 6.3). In fact, scattering properties
of simple graphs can be used as a universal model of quantum computation (see Section 6.4).
Finally, we have looked at how CTQW can be connected to discrete-time quantum walks in
Section 6.5.

Acknowledgements

We acknowledge support from the projects VEGA QWAEN, LPP-0430-09, APVV-0646-10
COQI, FP7 COQUIT and APVV SK-PT-0008-10. We would also like to thank Yasser Omar
for valuable discussions.



712 Quantum Walks

Appendices

A Limiting Distribution of Classical Random Walks

To show the results of Sec. 2.2, let us consider random walk on graph G = (V,E), |V | = N ,
given by eq. (2.2) where at each position the walker decides unbiasedly, where to go next. Further
suppose, that the graph is connected (for unconnected graphs we would consider its connected
subgraphs) and non-bipartite. The transition matrix M of this random walk can be expressed as
M = AD−1 where

D = diag (d(1), d(2), . . . , d(N))

is the diagonal matrix having degrees of vertices on its diagonal and A is the adjacency matrix

Aij =

{
1, if ij ∈ E,
0, otherwise.

For undirected graphs M is not symmetric in general and may not have spectral decomposition.
On the other hand A is symmetric. Applying a similarity transformation on M ,

D−1/2MD1/2 = D−1/2AD−1/2 ≡ Q,

we see, that M can be spectrally decomposed as well as it has the same eigenvalues as Q. Let
λ1, λ2, . . . , λN be the eigenvalues of Q and vj , j = 1, 2, . . . , N its corresponding eigenvectors.
Then eigenvectors wj , j = 1, 2, . . . , N of M are connected to corresponding eigenvectors of Q
by equality wj = D1/2vj . We can further suppose that the eigenvalues are ordered,

λ1 ≥ λ2 ≥ . . . ≥ λN .

Now we can write

Q =
∑
j

λjvjv
T
j

with vectors vj fulfilling normalization vTj vi = δij and for the purpose of the evaluation of
evolution p(m) = Mmp(0) we write

p(m) = Mmp(0) =
(
D1/2QD−1/2

)m
p(0) = D1/2QmD−1/2p(0)

=
∑
j

λmj D
1/2vjv

T
j D
−1/2p(0). (A.1)

Now that we know, that M can be spectrally decomposed, we can concetrate on its eigen-
values, which are the same also for Q. We will show, that all the eigenvalues lie in the range
−1 ≤ λj ≤ 1 and that π is the unique eigenvector with eigenvalue 1.

Lemma 5 Eigenvalues of matrix M lie in the interval [−1; 1] and the vector π is the unique
eigenvector of M with eigenvalue 1.



Appendices 713

To prove this, let us consider some eigenvector w with eigenvalue λ and choose such j, that
|w(j)|/d(j) is maximal, where w(j) is the j-th component of vector w. In other words we
consider inequality

|w(j)|
d(j)

≥ |w(i)|
D(i)

for all indices i. We also know, that

λw(j) =
∑

i: ij∈E
Mjiw(i) =

∑
i: ij∈E

w(i)

d(i)
.

Now we write

|λ||w(j)| =

∣∣∣∣∣∣
∑

i: ij∈E

w(i)

d(i)

∣∣∣∣∣∣ ≤
∑

i: ij∈E

|w(i)|
d(i)

≤
∑

i: ij∈E

|w(j)|
d(j)

= |w(j)|. (A.2)

This shows, that |λj | ≤ 1 for all eigenvectors vj . Moreover, equality can be obtained only when

|w(j)|
d(j)

=
|w(i)|
D(i)

(A.3)

for all neighbors i of j in the graph. The equality Eq. (A.3) can be easily extended to all vertices,
i.e. to all indices i, as the graph is connected and finite, meaning, that whenever the equality
would not hold, there would be at least one edge in the graph connecting vertices with different
ratios which would be in contradiction with the proof. We see, that eigenvalue λ1 = 1 uniquely
determines the eigenstate, as the one fulfilling condition Eq. (A.3): we can always considerw1(1)
to be positive, in which case we can proceed in a similar manner as in Eq. (A.2), but without the
absoulute values to find, that

w1(j)

d(j)
=
w1(i)

D(i)
.

Taking this ratio to be equal to 1/2|E| we recover π:

π =
1

2|E|
(d(1), d(2), . . . , d(N))T .

This concludes the proof.
As π is a multiple of w1 = D1/2v1 we can also find, that

v1 =
√

2|E|D−1/2π.

We can conclude now, that

1 = λ1 > λ2 ≥ λ3 ≥ . . . ≥ λN ≥ −1.



714 Quantum Walks

Furthermore, from Eq. (A.1) we can observe, that in the limiting case of m → ∞ all the terms
with eigenvalues λj , j = 2, 3, . . . , N tend to zero and so

lim
m→∞

p(m) = D1/2v1v
T
1 D
−1/2p(0) = π

(
2|E|πTD−1p(0)

)
= π.

This shows, that the limiting distribution is indeed π.

Exercise 17 Show that 2|E|πTD−1p = 1 for any probability distribution p.

Exercise 18 In previous proofs we have disregarded the possibility for eigenvalue of M to be
−1. Show, that we could do it, as only bipartite graphs lead to this case. [Hint: Take the
eigenvector with eigenvalue −1 and apply M2 to it]



Appendices 715

B Evolution of Hadamard Walk in Detail

B.1 Method of Stationary Phase

The method of mathematical analysis called the method of stationary phase, taken e.g. from
Ref. [16] and from advanced mathematical textbooks, allows us to estimate our integrals, Eqs. (3.11).
Based on a fact, that in integrals of type

I(m) =

∫ b

a

g(k)eimφ(k)dk

the largest contribution comes from areas, where the oscillations in phase are small and that is
near stationary points of function φ(k). Basically, under reasonable suppositions of smooth g(k)
that does not vanish in the only stationary point a of the order p of interval [a; b] and with t→∞
we can make approximation

I(m) ∼ g(a) exp

{
imφ(a) + sgn [φ(p)(a)]

iπ

2p

}[
p!

m
∣∣φ(p)(a)

∣∣
] 1
p Γ

(
1
p

)
p

,

where φ(p)(a) 6= 0 from assumption and sgn is a sign function.
Especially for the case of p = 2 we get

I(m) ∼
√

π

2m |φ′′(a)|
g(a) exp

{
imφ(a) + sgn [φ′′(a)]

iπ

4

}
. (B.1)

B.2 Hadamard Walk Evolution Approximation

Integrals from Eqs. (3.11) can be transformed to suit Eq. (B.1) first by setting x = λm, when
these integrals obtain form

I(m;λ) =
1

2π

∫ π

−π
g(k)eiφ(k;λ)mdk, (B.2)

where φ(k;λ) = kλ − ωk and g(k) is either an even or an odd function. In this slightly gen-
eralised case, there are no stationary points for λ > 1/

√
2 or λ < −1/

√
2 and I(m;λ) by

getting with λ further from zero decreases exponentially fast. For54 λ ∈ (−1/
√

2; 1/
√

2) we
find stationary points ±kλ ∈ [0;π] of order p = 2, where

cos kλ =
λ√

1− λ2

and

∂2φ

∂k2
(±kλ;λ) = ±(1− λ2)

√
1− 2λ2 (= −ω′′kλ).

54We do not care about boundary points much, as these do not play an important role.



716 Quantum Walks

Under these conditions, and by dividing the integration range [−π;π] in Eq. (B.2) into four
subintervals by points 0 and ±kλ we find

I(m;λ) =
2g(kλ)√
2πm

∣∣ω′′kλ ∣∣
cos

[
mφ(kλ;λ) +

π

4

]
, for g even,

i sin
[
mφ(kλ;λ) +

π

4

]
, for g odd.

Finally, for Eqs. (3.11), we obtain

αm(λm) ∼ 2√
2πm

∣∣ω′′kλ ∣∣ cos
[
mφ(kλ;λ) +

π

4

]
, (B.3a)

βm(λm) ∼ 2λ√
2πm

∣∣ω′′kλ ∣∣ cos
[
mφ(kλ;λ) +

π

4

]
, (B.3b)

γm(λm) ∼ − 2
√

1− 2λ2√
2πm

∣∣ω′′kλ ∣∣ sin
[
mφ(kλ;λ) +

π

4

]
. (B.3c)

Now the probability of being at position λt after m steps is

Pm(λm) ∼ 2(1 + λ)

πm(1− λ2)
√

1− 2λ2
[1 + λ

√
2 cos θ], (B.4)

where

θ = 2mφ(kλ;λ) +
π

2
+ µ

and

tanµ =

√
1− 2λ2

1 + 2λ
.

Note also following equality for further reference:

sgn [αm(x)βm(x)] = sgn x. (B.5)

Exercise 19 Prove Eq. (B.5) [Hint: use approximated formulas].



Appendices 717

C Catalan Numbers

Catalan numbers Cn [97] comprise a sequence of numbers that occur in combinatorics in many
problems based on recurrence relations. For example, they enumerate the paths of a particle on a
semi-infinite line starting from position 0 and returning to this position after 2n steps, i.e. when
only the non-negative positions are available. In Section 2.2, we utilize Catalan numbers for
computing a hitting time for a classical random walk, and in Section 3.5.3, they help us analyze
a quantum walk on a line with an absorbing boundary.

Considering all the paths returning to origin after 2k steps (k = 1, 2, . . . , n) we can arrive at
recurrence relation

Cn =

n∑
k=1

Ck−1Cn−k =

n−1∑
k=0

CkC(n−1)−k

with C0 = 1. Writing the generating function for Catalan numbers, c(x) =
∑∞
n=0 Cnx

n we can
find, that

c(x) = 1 + xc2(x). (C.1)

Solving the quadratic equation we get

c(x) =
1−
√

1− 4x

2x
=

2

1 +
√

1− 4x
. (C.2)

The other solution of the quadratic equation is not acceptable, as c(x) is a power series at x = 0
and so it cannot have a pole.

On the other hand we know, that power series for
√

1 + y at y = 0 is

√
1 + y = 1− 2

∞∑
n=1

(
2n− 2

n− 1

)
(−1)n

4n
yn

n
.

Setting y = −4x we can obtain also power series for Catalan generating function from Eq. (C.1),

c(x) =
1−
√

1− 4x

2x
=

∞∑
n=0

1

n+ 1

(
2n

n

)
xn.

This shows, that Catalan numbers have form

Cn =
1

n+ 1

(
2n

n

)
. (C.3)

For large n one can use approximation

Cn '
4n

n3/2
√
π
. (C.4)



718 Quantum Walks

Exercise 20 By employing
√

2πnn+1/2e−n ≤ n! ≤ enn+1/2e−n

show that

Cn+1 ≥
2
√
π

e2

4k

(k + 1)3/2
. (C.5)

Exercise 21 Show that

Cn+1 =
2(2n+ 1)

n+ 2
Cn. (C.6)



Appendices 719

D Grover’s Fixed-point Search

Grover’s algorithm [30] for searching for one of M marked items among N elements in its orig-
inal form is not a fixed-point search. If we run it for longer than its optimal time, the probability
of finding a marked element begins to decrease, and after some time, we even get back to our
original initial state. In [96], Gil Brassard wrote “The quantum search algorithm is like baking a
souffle. . . you have to stop at just the right time or else it gets burnt.” When we view the Grover
algorithm as a quantum walk, the same is true — the walker concentrates on a marked vertex at
some special time, but then moves away from it. Could we modify the quantum algorithm (and
the walk) to stay near a solution?

This algorithm can be modified [53, 54] to work as a fixed-point one, producing a solution
with high probability even if we “overshoot” the runtime. However, it loses the square root
speedup (in number of oracle calls). Nevertheless, it can be useful when the number of marked
items is not small55. Let us sketch this modification, based on iterative phase-π/3 search.

First, let us assume we have an algorithm (a unitary transformation U plus a final measure-
ment) which fails to produce a marked state with probability f , when starting in the uniform
superposition state |s〉. We will iteratively intersperse its uses with other (oracle-calling) trans-
formations to increase the probability of finding a solution. The additional ingredients are the
selective phase shifts

Rθs = eiθΠs + (I−Πs), (D.1)

RφM = eiφΠM + (I−ΠM ), (D.2)

for the uniform superposition |s〉 and the marked subspace M . Note that for θ = φ = π these
are the original reflection operators (up to a sign) from Grover’s algorithm. However, let us now
choose θ = φ = π

3 and look at the operation

U1 = UR
π
3
s U
†R

π
3

MU. (D.3)

The original algorithmU fails with probability f (which can be even very close to 1). The unitary
U thus transforms |s〉 as

U |s〉 =
√
f |w′〉+

√
1− f |w〉 , (D.4)

with |w〉 a vector from the marked subspace, and |w′〉 some unmarked vector. Because of unitar-
ity of U , there exists a vector |s′〉 orthogonal to |s〉, which is transformed by U as

U |s′〉 =
√

1− f |w′〉 −
√
f |w〉 , (D.5)

which allows us to express

|w〉 = U
(√

1− f |s〉 −
√
f |s′〉

)
. (D.6)

55When this algorithm is used as a subroutine in Section 5.4.3, the ratio of marked/unmarked items is a constant.



720 Quantum Walks

To compute the failure probability of the new algorithm, let us apply U1 to the initial state |s〉.

U1 |s〉 = UR
π
3
s U
†R

π
3

MU |s〉 = UR
π
3
s U
†R

π
3

M

(√
f |w′〉+

√
1− f |w〉

)
(D.7)

= UR
π
3
s U
†
(√

f |w′〉+ eiπ/3
√

1− f |w〉
)

(D.8)

= UR
π
3
s U
†
(√

f |w′〉+
√

1− f |w〉+
(
eiπ/3 − 1

)√
1− f |w〉

)
(D.9)

= UR
π
3
s U
†
(
U |s〉+ e2iπ/3

√
1− f U

(√
1− f |s〉 −

√
f |s′〉

))
(D.10)

= UR
π
3
s

((
1 + e2iπ/3(1− f)

)
|s〉 − e2iπ/3

√
(1− f)f |s′〉

)
(D.11)

= U
(
eiπ/3

(
1 + e2iπ/3(1− f)

)
|s〉 − e2iπ/3

√
(1− f)f |s′〉

)
(D.12)

=
(
eiπ/3 − 1 + f

)
U |s〉 − e2iπ/3

√
(1− f)f U |s′〉 (D.13)

After the final substitution for U |s〉 and U |s′〉, we collect the coefficients in front of |w′〉 and
obtain the probability of failure for the new algorithm

|〈w′|U1 |s〉|
2

=
∣∣∣√f (eiπ/3 − 1 + f

)
− e2iπ/3(1− f)

√
f
∣∣∣2 (D.14)

= f
∣∣∣(eiπ/3 − 1− e2iπ/3

)
+ f

(
1 + e2iπ/3

)∣∣∣2 (D.15)

= f3
∣∣∣1 + e2iπ/3

∣∣∣2 = f3. (D.16)

The original failure probability was f < 1, so the new failure probability f3 is smaller. This
composite algorithm (D.3) reminds us of an error-correcting scheme.

Let us compute how the failure probability decreases with the number of queries. At each
level of composition, it decreases as f → f3. Assuming the original algorithm U takes c0 = n
oracle calls, the cost of the new approach U1 is c1 = 3n + 1. At the next level, composing
U2 = U1R

π/3
s U†1R

π/3
M U1 uses c2 = 9n+ 3 + 1 oracle calls.

Exercise 22 Show that the number of oracle calls for k-levels of composition becomes qk =
3kn+ 1

2

(
3k − 1

)
.

It turns out that we can even use U0 = I (without any oracle calls) for our starting algorithm.
Alternatively, we could use a single iteration from Grover’s algorithm UG = RπsR

π
M .

Exercise 23 For the strategy U0 with c0 = 0, show that the failure probability at the k-th level
of composition fk = f3k

0 decreases with the number of oracle calls as f(qk) = f2qk+1
0 =(

1− M
N

)2qk+1
.

Thus, the fixed-point quantum algorithm needs need O
(
N
M

)
queries to find a marked item with

reasonable probability. This is obviously inferior to the O
(√

N
M

)
scaling of Grover’s original

algorithm, but can still be useful for ratios M
N that are not too small. Finally, let us compare this

scaling to the classical case, where the failure probability after querying q elements decreases
with the number of oracle calls as f(ck) =

(
N−M
ck

)
/
(
N
ck

)
≈
(
1− M

N

)ck for M, ck � N .



References 721

References

[1] F. Galton: Natural Inheritance (The Macmillan Company, London, 1889).
[2] L. Bachelier: Theorie de la speculation (PhD thesis, Annales Scientifiques de l’Ecole Superieure

III-17, 21, 1900).
[3] N. Wiener: Differential space, J. Math. Phys. 2, 131 (1923).
[4] A. Einstein: Über die von der molekularkinetischen Theorie der wärme geforderte Bewegung von in

ruhenden Flüssigkeiten suspendierten Teilchen, Ann. Physik 17, 549 (1905).
[5] R. Brown: A brief account of microscopical observations made in the months of June, July and

August, 1827, on the particles contained in the pollen of plants; and on the general existence of active
molecules in organic and inorganic bodies, Phil. Mag. 4, 161 (1928).

[6] J. Perrin: Mouvement brownien et réalité moléculaire, Ann. Chim. Phys. 18, 5 (1909).
[7] B.D. Hughes: Random Walks and Random Environments, Clarendon Press (1995)
[8] A. Sinclair: Algorithms for Random Generation and Counting, a Markov Chain Approach, Birkhauser

(1993).
[9] Rajeev Motwani and Prabhakar Raghavan, Randomized algorithms, ACM Comput. Surv. 28, 1 33–37

(March 1996).
[10] N. Metropolis, A.W. Rosenbluth, N.N. Rosenbluth, A.H. Teller, E. Teller: Equation of State Calcula-

tions for Fast Computing Machines, J. Chem. Phys. 21, 1087 (1953).
[11] W.K. Hastings: Monte Carlo Sampling Methods Using Markov Chains and Their Applications,

Biometrika 57, 97 (1970).
[12] S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi: Optimization by Simulated Annealing, Science 220, 671

(1983).
[13] J. Černý: Thermodynamical Approach to the Travelling Salesman Problem, J. Opt. Theory Appl. 45,

41 (1985).
[14] Y. Aharonov, L. Davidovich, N. Zagury: Quantum random walks, Phys. Rev. A 48, 1687 (1993).
[15] D. Aharonov, A. Ambainis, J. Kempe, U. Vazirani: Quantum walks on graphs, in STOC ’01: Pro-

ceedings of the thirty-third annual ACM symposium on Theory of computing, 50–59 (New York, NY,
USA, ACM, 2001).

[16] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Watrous: One-dimensional quantum walks, in
STOC ’01: Proceedings of the thirty-third annual ACM symposium on Theory of computing, 37–49
(New York, NY, USA, ACM, 2001).

[17] V. Kendon: Decoherence in quantum walks — a review, Mathematical Structures in Computer Science
17, 1169 (2007).

[18] V. Kendon, B. Tregenna: Decoherence can be useful in quantum walks, Phys. Rev. A 67, 042315
(2003).

[19] T.A. Brun, H.A. Carteret, A. Ambainis: Quantum random walks with decoherent coins, Phys. Rev. A
67, 032304 (2003).

[20] J. Košı́k, V. Bužek, and M. Hillery: Quantum walks with random phase shifts, Phys. Rev. A 74,
022310 (2006).

[21] M. Hillery, J. Bergou, E. Feldman: Quantum walks based on an interferometric analogy, Phys. Rev. A
68, 032314 (2003).

[22] F.M. Andrade, M.G.E. da Luz: Equivalence between discrete quantum walk models in arbitrary
topologies, Phys. Rev. A 80, 052301 (2009).

[23] N. Shenvi, J. Kempe, K.B. Whaley: Quantum random-walk search algorithm, Phys. Rev. A 67,
052307 (2003).



722 Quantum Walks

[24] V. Kendon: Quantum Walks on General Graphs, Int. J. Quantum Info. 4, 791 (2006).
[25] S. Severini: On the digraph of a unitary matrix, SIAM J. Matrix Anal. Appl. (SIMAX) 25, 295 (2003).
[26] A. Montanaro: Quantum walks on directed graphs, Quantum Information and Computation 7, 93

(2007).
[27] B. Tregenna, W. Flanagan, R. Maile, V. Kendon: Controlling discrete quantum walks: coins and initial

states, New Journal of Physics 5, 83 (2003).
[28] Y. Omar, N. Paunkovic, L. Sheridan, S. Bose: Quantum walk on a line with two entangled particles,

Phys. Rev. A 74, 042304 (2006).
[29] C. Moore, A. Russell: Quantum walks on the hypercube, in RANDOM, 164–178 (2002).
[30] L.K. Grover: Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79,

325 (1997).
[31] J. Kempe: Discrete quantum walks hit exponentially faster, Probability Theory and Related Fields

133, 215 (2005).
[32] A. M. Childs, R. Kothari, Simulating sparse Hamiltonians with star decompositions, In proceedings

of TQC 2010, Lecture Notes in Computer Science 6519, pp. 94-103 (2011).
[33] A.M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, D.A. Spielman, Exponential algorithmic

speedup by quantum walk, Proceedings of the 35th ACM Symposium on Theory of Computing, pp.
59–68 (2003).

[34] E. Bach, S. Coppersmith, M.P. Goldschen, R. Joynt, J. Watrous: One-dimensional quantum walks
with absorbing boundaries, Journal of Computer and System Sciences 69, 562 (2004).

[35] T. Yamasaki, H. Kobayashi, H. Imai: Analysis of absorbing times of quantum walks, Phys. Rev. A 68,
012302 (2003).

[36] L.K. Grover: Quantum Computers Can Search Rapidly by Using Almost Any Transformation,
Phys. Rev. Lett. 80, 4329 (1998).

[37] G. Brassard, P. Høyer, M. Mosca, A. Tapp: Quantum Amplitude Amplification and Estimation,
preprint arXiv:quant-ph/0005055.

[38] A. Ambainis: Quantum walk algorithm for element distinctness, SIAM J. Comp. 37, 210 (2007).
[39] A.M. Childs, J.M. Eisenberg: Quantum algorithms for subset finding, Quantum Information and Com-

putation 5, 593 (2005).
[40] F. Magniez, M. Santha, M. Szegedy: Quantum Algorithms for the Triangle Problem, in SODA ’05:

Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, 1109 (Philadel-
phia, PA, USA, 2005).

[41] H. Buhrman, R. Špalek: Quantum Verification of Matrix Products, in SODA ’06: Proceedings of the
seventeenth annual ACM-SIAM symposium on Discrete algorithm, 880 (New York, NY, USA, 2006).

[42] F. Magniez, A. Nayak: Quantum Complexity of Testing Group Comutativity, Algorithmica 48, 221
(2007).

[43] A. Ambainis, J. Kempe, A. Rivosh: Coins make quantum walks faster, in SODA ’05: Proceedings of
the sixteenth annual ACM-SIAM symposium on Discrete algorithms, 1099 (Philadelphia, PA, USA,
2005).

[44] A. M. Childs, J. Goldstone, Spatial search by quantum walk, Physical Review A 70, 022314 (2004).
[45] D. Reitzner, M. Hillery, E. Feldman, V. Bužek: Quantum Searches on Highly Symmetric Graphs,

Phys. Rev. A 79, 012323 (2009).
[46] V. Potoček, A. Gábris, T. Kiss, I. Jex: Optimized quantum random-walk search algorithms on the

hypercube, Phys. Rev. A, 79, 012325 (2009).



References 723

[47] M. Boyer, G. Brassard, P. Høyer, A. Tapp: Tight bounds on quantum searching, Fortschritte der Physik
46, 493 (1998).

[48] S.L. Braunstein, V. Bužek, M. Hillery: Quantum-information distributors: Quantum network for sym-
metric and asymmetric cloning in arbitrary dimension and continuous limit, Phys. Rev. A 63, 052313
(2001).

[49] E. Feldman, M. Hillery, H.-W. Lee, D. Reitzner, H. Zheng, V. Bužek: Finding structural anomalies in
graphs by means of quantum walks, Phys. Rev. A 82, 040301(R) (2010).

[50] A. Tulsi: Faster quantum-walk algorithm for the two-dimensional spatial search, Phys. Rev. A 78,
012310 (2008).

[51] M. Szegedy, Quantum Speed-up of Markov Chain Based Algorithms, Proc. of 45th Annual IEEE
Symposium on Foundations of Computer Science, pp. 32–41 (2004).

[52] M. Santha, Quantum Walk Based Search Algorithms, Proc. of 5th Theory and Applications of Models
of Computation (TAMC08), Lectures Notes on Computer Science, vol. 4978, pp. 31–46, 2008.

[53] L. K. Grover A Different Kind of Quantum Search, arXiv:quant-ph/0503205.
[54] T. Tulsi, L. K. Grover, and A. Patel, A new algorithm for fixed point quantum search, Quantum Info.

Comput. 6 (6), 483–494 (2006).
[55] G. Brassard, P. Høyer, and A. Tapp, Quantum Counting, Proc. of 25th International Colloquium on

Automata, Languages and Programming, Lecture Notes in Computer Science, vol. 1443, pp. 820–831,
1998. quant-ph/9805082.

[56] K. Temme, T. J. Osborne, K. G. Vollbrecht, D. Poulin, F. Verstraete, Quantum Metropolis sampling,
Nature 471, 87–90, http://arXiv:0911.3635.

[57] M.-H.Yung, A. Aspuru-Guzik, A Quantum-Quantum Metropolis Algorithm, arXiv:1011.1468.
[58] C. Marriott and J.Watrous, Quantum Arthur-Merlin games, Computational Complexity, 14 (2) 122–

152 (2005).
[59] D. Nagaj, P. Wocjan, Y. Zhang, Fast QMA Amplification, QIC Vol. 9 No.11&12 (2009), 1053-1068

[arXiv:0904.1549].
[60] R. Somma, S. Boixo, H. Barnum, E. Knill, Quantum Simulations of Classical Annealing Processes,

arXiv:0804.1571.
[61] L. Lovász and S. Vempala, Simulated Annealing in Convex Bodies and an O∗(n4) Volume Algorithm,

Journal of Computer and System Sciences, vol. 72, issue 2, pp. 392–417, 2006.
[62] M. Jerrum, A. Sinclair, and E. Vigoda, A Polynomial-Time Approximation Algorithm for the Perma-

nent of a Matrix Non-Negative Entries, Journal of the ACM, vol. 51, issue 4, pp. 671–697, 2004.
[63] M. Jerrum and A. Sinclair, Polynomial-Time Approximation Algorithms for the Ising Model, SIAM

Journal on Computing, vol. 22, pp. 1087–1116, 1993.
[64] I. Bezáková, D. Štefankovič, V. Vazirani and E. Vigoda, Accelerating Simulated Annealing for the

Permanent and Combinatorial Counting Problems, SIAM Journal on Computing, vol. 37, No. 5,
pp. 1429–1454, 2008.

[65] D. Aldous, J. London Math. Soc. 253, 564 (1982).
[66] M. Jerrum, L. Valiant and V. Vazirani, Random Generation of Combinatorial Structures from a Uni-

form Distribution, Theoretical Computer Science, vol. 43, issue 2-3, pp. 169–188, 1986.
[67] D. Štefankovič, S. Vempala, and E. Vigoda, Adaptive Simulated Annealing: A Near-Optimal Connec-

tion between Sampling and Counting, Proc. of the 48th Annual IEEE Symposium on Foundations of
Computer Science, pp. 183-193, 2007.

[68] P. Wocjan and A. Abeyesinghe, Speed-up via Quantum Sampling, Physical Review A, vol. 78,
pp. 042336, 2008.



724 Quantum Walks

[69] P. Wocjan et.al., Quantum Algorithm for Approximating Partition Functions, Physical Review A 80,
022340 (2009).

[70] A. Childs, Quantum Algorithms, lecture notes, University of Waterloo,
http://www.math.uwaterloo.ca/ amchilds/teaching/w11/qic823.html (2011).

[71] M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cambridge University
Press, 2000.

[72] P. Richter, Quantum Speed-Up of Classical Mixing Processes, Physical Review A, vol. 76, 042306,
2007.

[73] R. Somma, S. Boixo, and H. Barnum, Quantum Simulated Annealing, arXiv:0712.1008.
[74] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and Weaknesses of Quantum

Computing, SIAM J. Comput. 26, 5 (October 1997), 1510-1523.
[75] E. Farhi, S. Gutmann, Analog Analogue of Digital Quantum Computation, Phys. Rev. A 57, 2403-

2406 (1998).
[76] E. Farhi, J. Goldstone, S. Gutmann, M. Sipser, Quantum computation by adiabatic evolution, quant-

ph/0001106 (2000).
[77] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, Chapter 6.5,

Cambridge University Press (1992).
[78] E. Farhi, S. Gutmann, Quantum Computation and Decision Trees, Phys. Rev. A 58 (2), 915 (1998).
[79] A. M. Childs, E. Farhi, and S. Gutmann, An example of the difference between quantum and classical

random walks, Quantum Information Processing 1, 35–43 (2002).
[80] A. M. Childs, J. Goldstone, Spatial search and the Dirac equation, Physical Review A 70, 042312

(2004).
[81] A. M. Childs, E. Deotto, E. Farhi, J. Goldstone, S. Gutmann, A. J. Landahl, Quantum search by

measurement, Physical Review A 66, 032314 (2002).
[82] A. M. Childs, Quantum Information Processing in Continuous Time, Ph.D. Thesis, Massachusetts

Institute of Technology (2004).
[83] E. Farhi, J. Goldstone, S. Gutmann, A quantum algorithm for the Hamiltonian NAND tree, Theory of

Computing, Vol. 4, no. 1, pp.169-190, 2007; quant-ph/0702144.
[84] A. M. Childs, R. Cleve, S. P. Jordan, D. L. Yonge-Mallo, Discrete-query quantum algorithm for

NAND trees, Theory of Computing , vol. 5, no. 1, pp. 119-123, 2009.
[85] A. Ambainis, A. M. Childs, B. W. Reichardt, R. Špalek, S. Zhang, Every NAND formula of size

N can be evaluated in time N1/2+o(1) on a quantum computer, 48th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’07), 2007.

[86] P. Hoyer, R. Špalek, Lower bounds on Quantum Query Complexity, Bulletin of the EATCS 87, 2005;
quant-ph/0509153.

[87] D. Nagaj, R. D. Somma, M. Kieferová, Quantum Speedup by Quantum Annealing arXiv:1202.6257
(2012).

[88] D. Nagaj, Universal 2-local Hamiltonian Quantum Computing, Physical Review A 85, 032330 (2012).
[89] D. Nagaj, Local Hamiltonians in Quantum Computation, Ph.D. thesis, MIT (2008), arXiv:0808.2117.
[90] M. Kieferová, D. Nagaj, Quantum Walks on Necklaces and Mixing, International Journal of Quantum

Information Vol. 10, Issue 2, 1250025 (2012).
[91] A. M. Childs, Universal computation by quantum walk Physical Review Letters 102, 180501 (2009).
[92] A. M. Childs, D. Gosset, Z. Webb, Universal computation by multi-particle quantum walk

arXiv:1205.3782 (2012).



References 725

[93] N. B. Lovett, S. Cooper, M. Everitt, M. Trevers, V. Kendon, Universal quantum computation using
the discrete-time quantum walk, Physical Review A 81, 042330 (2010).

[94] D. Janzing, P. Wocjan, A PromiseBQP-complete String Rewriting Problem, Quantum Information
and Computation, vol. 10, no. 3&4, pp. 234-257 (2010).

[95] A. Childs, On the Relationship Between Continuous- and Discrete-Time QuantumWalk, Commun.
Math. Phys. 294, 581-603 (2010).

[96] G. Brassard, Searching a quantum phone book, Science 275, 627 (1997).
[97] Catalan number, Wikipedia, http://en.wikipedia.org/wiki/Catalan number (2012).



Dr. Daniel Reitzner received his PhD in General and mathematical
physics from Slovak Academy of Sciences and Comenius University in
2010. He was employed at the Research Center for Quantum Informa-
tion between years 2010 and 2011. Since 2011 he is employed at the
Technical University in Munich. He specializes in quantum walks and
their algorithmic applications as well as in some foundational aspects
of quantum mechanics connected to joint measurability and compatibil-
ity.

Dr. Daniel Nagaj received his PhD in theoretical physics from MIT in
2008. Between 2008 and 2012, he was employed at the Research Cen-
ter for Quantum Information at the Institute of Physics of the Slovak
Academy of Sciences. He mainly studies the computational capabili-
ties of nature (quantum mechanical) - adiaibatic quantum computation,
quantum walks, and Hamiltonian complexity. He is also interested in
numerical methods for condensed-matter physics based on DMRG and
tensor product states.

Prof. Vladimı́r Bužek has graduated at the Moscow State University
(both MSc and PhD). His research interests include quantum optics,
quantum information sciences, foundations of quantum theory, quan-
tum thermodynamics, and quantum measurement theory. He is an au-
thor and co-author of more than 220 research papers and 15 chapters in
monographs and books. These papers have been cited more than 7000

times (H = 42). During his academic career he was a visiting professor at a number of academic
institutions including the Imperial College, London (UK), the National University of Ireland,
Maynooth (Ireland), and the University of Ulm (Germany). He has been serving on various na-
tional and international advisory, scientific, and editorial boards. Prof. Bužek is the president of
the Learned Society of the Slovak Academy of Sciences and a foreign corresponding member
of the Austrian Academy of Sciences. He is a fellow of the Institute of Physics (UK) and of
the Optical Society of America (USA). For his research achievements he was awarded the Ernst
Abbe Medal and the International Commission for Optics Prize, the Humboldt Research Award
(Germany) and the E.T.S Walton Award (Ireland).


	1 Introduction
	2 Classical Random Walks
	2.1 Markov Chains
	2.2 Properties of Random Walks
	2.3 Classical Random Walk Algorithms
	2.3.1 Graph Searching
	2.3.2 Solving Satisfiability Problems
	2.3.3 Markov Chain Monte Carlo Algorithms
	2.3.4 Simulated Annealing

	2.4 Summary

	3 Quantum Walks: Using Coins
	3.1 Drawing an Analogy from the Classical Case
	3.2 Dispersion of the Hadamard Quantum Walk on Line
	3.3 Coined Quantum Walks on General Graphs
	3.3.1 Scattering Quantum Walks (SQW)

	3.4 More on Coins
	3.4.1 Two-dimensional Coins
	3.4.2 General Coins

	3.5 Characteristics of Quantum Walks
	3.5.1 Limiting Distribution and Mixing Time
	3.5.2 Hitting Time
	3.5.3 Absorbing Boundary
	3.5.4 Quantum-to-classical Transition and Decoherence

	3.6 Summary

	4 Quantum Walks and Searches
	4.1 Grover Search
	4.1.1 Oracles and Searches
	4.1.2 Grover's Algorithm

	4.2 Searches on Graphs
	4.3 Symmetry Considerations
	4.4 Search on a Complete Graph
	4.4.1 Oracle Controlled Evolution

	4.5 Other Examples of Searches on Graphs
	4.6 Abstract Search Algorithm and Spatial Search
	4.7 Subset Finding and Related Problems
	4.7.1 Algorithm for k-subset Finding
	4.7.2 Algorithm for Finding k-cliques in Graphs

	4.8 Summary

	5 Quantizing Markov Chains
	5.1 Walks on Two Registers
	5.2 The Spectrum of the Walk
	5.3 Speeding up Searching for Marked Vertices
	5.4 Walks and Sampling
	5.4.1 Speeding up Mixing Using Quantum Walks
	5.4.2 Markov Chain Monte Carlo (MCMC) Methods
	5.4.3 Quantizing MCMC Methods for Approximating Partition Functions
	5.4.4 Quantum Metropolis Sampling

	5.5 Summary

	6 Continuous Time Quantum Walks
	6.1 Quantizing Continuous Random Walks
	6.1.1 Walking in 1D and Mixing
	6.1.2 Symmetries and Continuous-time Quantum Walks

	6.2 Spatial Search
	6.2.1 Complete Graph
	6.2.2 Searching on the Hypercube and on Finite-dimensional Lattices

	6.3 NAND Trees and Games
	6.4 Quantum Walks and Universal Quantum Computation
	6.5 Connecting Continuous Time and Discrete Time Quantum Walks
	6.6 Summary

	Acknowledgements
	Appendices
	A Limiting Distribution of Classical Random Walks
	B Evolution of Hadamard Walk in Detail
	B.1 Method of Stationary Phase
	B.2 Hadamard Walk Evolution Approximation

	C Catalan Numbers
	D Grover's Fixed-point Search
	References

