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Abstract: Hidden Markov models have become a popular time series method for the analysis of
GPS tracked animals. Their advantage for identifying latent behavioural states compared with In-
dependent Mixture models is that they take into account the time series dependency of successive
displacement distances by the tracked animals. However, little is known about how the analysis
results may differ depending on which of these approaches is used. We compared the results and
interpretations obtained from fitting Hidden Markov and Independent Mixture models to simulated
movement data as well as to field data recording the hourly movements of sable antelope and buf-
falo within the Kruger National Park, South Africa. Hidden Markov models consistently yielded
narrower confidence intervals around parameters and smaller standard errors than simpler time in-
dependent mixture models, but for some data the improvement was marginal and the Independent
Mixture model provided an adequate alternative for identifying the latent behavioural states of the
animal. In general, it is expected Hidden Markov models will provide the better balance between
model complexity and extensibility for animal movement modelling from a statistical perspective.
However, in some cases, Independent Mixture models could provide an adequate alternative method
and might be more faithful biologically.

1. Introduction

A vast array of different analysis types have been applied to animal tracking data collected using GPS
devices (McClintock, King, Thomas, Matthiopoulos, McConnell and Morales, 2012). Thus far, no
single method is universally accepted for inferring the behavioural states generating the recorded
GPS locations for terrestrial or marine species. Various techniques for the analysis of these data
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have appeared in the ecological (McClintock et al., 2012; Schick, Loarie, Colchero, Best, Boustany,
Conde, Halpin, Joppa, McClellen and Clark, 2008), rather than statistical literature. Few studies
have compared the model output and interpretations drawn when different methods are applied to
the same dataset. Latent behavioural states influencing movement patterns can be inferred by using
metrics calculated from the successive locations of the animal, such as the distance between locations
and the turning angle. These can be clustered into groups using a variety of different modelling
techniques. These underlying groups can then be interpreted in terms of the associated activity
of the animal at the time of the observation. Some papers review a few methods, highlighting
advantages and disadvantages of each method and then customize or develop their own model, rather
than testing their data with all of the reviewed models (Schick et al., 2008). It is important to have
an understanding of how the decision about which analysis to use can influence the results and
inferences obtained.

Hidden Markov models have become popular as they provide a flexible and practical mod-
elling approach to segment the movement path into latent behavioural states. Independent Mix-
ture models (IMMs) have a very similar framework to Hidden Markov models (HMMs) except that
they do not include the time dependence between successive observations which HMMs do via
the Markov process. HMMs are in fact also known as Dependent Mixture models. Both of these
methods have been used in the literature to model movement metrics in order to segment a move-
ment path into discrete clusters which are inferred to correspond to the various behavioural states
of the animal (Langrock, Hopcraft, Blackwell, Goodall, King, Niu, Patterson, Pedersen, Skarin and
Schick, 2014; Langrock, King, Matthiolpoulos, Thomas, Fortin and Morales, 2012; Owen-Smith,
Goodall and Fatti, 2012; Owen-Smith and Goodall, 2014; Franke, Caelli and Hudson, 2004; Franke,
Caelli, Kuzyk and Hudson, 2006). The latent states are described by the model parameters and then
interpreted in terms of the likely activity of the animal. The interpretation of the behavioural state is
dependent on the time scale of the observations, as changes in behaviour that occur within the time
steps are not visible in the data.

While both of these methods have been shown to provide easily interpretable results for various
large mammals (Langrock et al., 2012; Owen-Smith et al., 2012; Patterson, Basson, Bravington and
Gunn, 2009; Franke et al., 2004; Franke et al., 2006), it is not known how the results would differ if
the two methods were applied to the same movement data. In this paper, we focus on the comparison
of these two approaches used to model the movements of sable antelope (Hippotragus niger) and
African buffalo (Syncerus caffer) in the Kruger National Park, South Africa. In addition, a simula-
tion study was performed to examine the similarities of the output when the model generating the
sequence of states and displacements was known and in the presence of extreme transition proba-
bilities. Bayesian state-space models (Morales, Haydon, Friar, Holsinger and Fryxell, 2004, among
others) may also be used to segment movement paths into discrete clusters assumed to correspond
to behavioural states, However, we found that when fitted to large GPS datasets using noninfor-
mative priors, they gave very similar parameter values to the HMMs, but took much longer to fit
(Goodall, 2014).
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2. Models

2.1. Independent Mixture Models

Mixture models have been used in a wide variety of applications including astronomy, biology,
genetics, medicine, economics and marketing among others (McLachlan and Peel, 2000). They
are suitable for modelling multimodal distributions since their definition allows them to cope with
heterogeneity within the population (Zucchini and MacDonald, 2009). A mixture distribution is a
statistical distribution which can be expressed as a combination of simpler component distributions
(Everitt and Hand, 1981). The mixture models assume that the observations are drawn from a variety
of different categories or states, and that each state has its own distribution (Bolker, 2008; Zucchini
and MacDonald, 2009) with its corresponding proportional contribution. Although these models do
not take into account the time series nature of the data, they have been shown to provide simple
and realistic results and state allocations for the movements of ungulates (Owen-Smith et al., 2012;
Owen-Smith and Goodall, 2014).

The density function of a random variable X with finite mixture distribution can be defined as:
f (x) = ∑

m
i=1 δig(x,θi) where θi is the vector of parameters of the i-th of the m component distribu-

tions whose probability density functions are given by g(x,θi) and δ1,δ2, ..,δm are the proportions of
each component in the model, known as the mixing parameters. Once the model has been fitted to a
dataset and the parameters estimated, a probabilistic clustering of each observation to one of the m
‘states’ is done using the estimated posterior probabilities of the state membership (McLachlan and
Basford, 1988). The observation (x j) is allocated to the state with the maximum estimated posterior
probability where the δi are taken as the prior probabilities for the i states and pi (x j,θi) are the state
dependent distributions with parameters θi. The posterior probabilities, τi are given by:

τi (x j) =
δi pi (x j,θi)

m

∑
k=1

δk pk (x j,θi)

This method is known as the ‘Mixture Likelihood’ clustering method (McLachlan and Peel, 2000).

2.2. Hidden Markov Models

The underlying assumption of both the Mixture and Hidden Markov models is that the observed
data come from a population with underlying groupings. For the HMM, these groups are associated
with one another via a Markov process. The marginal distribution of an HMM is a mixture distri-
bution. The probability distribution of an observation at any time is determined only by the current
state of that Markov chain. A hidden Markov process {Xt} comprises two probabilistic mechanisms,
firstly an unobserved Markov chain {Ct} on m states which Zucchini and MacDonald (2009) call the
‘parameter process’. The ‘state dependent process’ {Xt : t = 1,2, ...} is defined such that the distri-
bution of Xt depends only on the current state Ct and not on the previous sequence of observations
or states, which satisfies the Markov process. This model can be defined simply as (Zucchini and
MacDonald, 2009):

P
(

Ct |CCC(t−1)
)
= P(Ct |Ct−1) , t = 2,3, ...
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P
(

Xt |XXX (t−1),CCC(t)
)
= P(Xt |Ct) , t∈ N

where XXX (t) and CCC(t) represent the history from t = 1,2, ...,T . Such a Hidden Markov model can be
characterised by the distribution of {Ct}, the transition probability matrix of the Markov chain (ΓΓΓ),
and the state dependent distributions defined by pi (x) = P(Xt = x |Ct = i). This equation applies to
discrete and continuous distributions of any parametric family (Ephraim and Merhav, 2002) and it
could comprise distributions of the same or different families. pi (x) is the probability mass function
of Xt if the Markov chain is in state i at time t for the discrete case and the probability density
function in the continuous case.

The Viterbi algorithm is used to find the sequence of states which maximises the probability of
the observation sequence given the model (Tucker and Anand, 2005). The algorithm determines the
sequence of states c1,c2, ...,cT which maximises the conditional probability:
P(CCC (T ) = ccc(T ) |XXX (T ) = xxx(T )) where XXX (T ) and CCC (T ) represent the full sequence of observations
and states (Zucchini and MacDonald, 2009). The Viterbi algorithm is an example of a dynamic
programming algorithm which makes it possible to determine the most likely sequence of states
without maximising over all possible sequences of states, which would not be feasible except for
a very small number of states since mT calculations would be required (Zucchini and MacDonald,
2009; Cappe, Moulines and Ryden, 2005).

3. Methods

All models were fitted using R statistical software (R Core Team, 2016). The displacement between
successive locations were calculated using the adehabitatLT (Calenge, 2006) and rgdal (Bivand,
Keitt and Rowlingson, 2016) packages in R. Two methods of comparison were used in order to
formally compare the results of applying these two different approaches to animal movement data.
Two simulations were done using the log-normal distribution with parameters almost identical to
those obtained from fitting hourly movement models for particular sable antelope and buffalo herds
respectively (Goodall, 2014). The log-normal distribution was used since it provided a good fit to
the data and did not require the use of offsets which had been needed when the movements were
modelled using the Gamma distribution (Owen-Smith et al., 2012; Owen-Smith and Goodall, 2014).
Exponential and Weibull distributions were also considered but did not fit the observed data, and
also required the use of offsets. The displacement distances only were used as an input for the
models, since for cohesive ungulate herds, the turning angle between successive displacements are
less relevant (Owen-Smith et al., 2012). Simulated movement data similar to these species, indicated
that the accuracy of the state allocation did not improve much by including the turning angle in the
analysis, particularly for models with more than two latent states (Goodall, 2014). The Hidden
Markov model was used as the ‘true’ model since the behavioural state of the animal will tend
to persist, which will produce displacement data which are serially correlated. The parameters of
the model were assumed to be known and the “true states” and associated “observed movements”
simulated from the “true” model. Mixture and Hidden Markov models were fitted to the simulated
displacements and the underlying states predicted using the Mixture Likelihood clustering method
(McLachlan and Peel, 2000) or the Viterbi algorithm for the IMMs and HMMs respectively. The
two approaches were compared using two criteria, the state classification accuracy of the model and
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the precision of the parameter estimates comparing the known and estimated states and parameters.
The parameters were compared using 90% confidence intervals and bootstrap standard errors of the
estimated parameters in order to investigate the precision of and uncertainty around the parameter
estimates. This was done for the state dependent distribution parameters for both methods and for
the transition probabilities for the HMM. In order to investigate the difference in the results obtained
for field studies where the true parameters are not known, the magnitude of the standard error and
the width of the confidence interval can be used as an indicator of the precision of the estimate. If the
confidence intervals are very wide, there is greater uncertainty about the precision of the parameters.
This comparison is potentially of more interest to the ecologists since it will provide an idea of the
uncertainty around the parameters and hence the confidence with which inferences can be made
about the movement states of the animal, and the probabilities of shifting from one state to another.

3.1. Simulated Data

Observations and their associated latent states were simulated from a 4-state log-normal HMM.
The four states were interpreted biologically as corresponding to resting, foraging, mixed foraging
plus movement and persistent travelling activity states. If δδδ represents the stationary distribution
parameters, ΓΓΓ the transition probability matrix and 111′ a vector of ones, the likelihood (LT ) of the
stationary true model, is given by:

LT = δΓPδΓPδΓP(x1)ΓPΓPΓP(x2)ΓPΓPΓP(x3) ...ΓPΓPΓP(xT )111′

where PPP(x) = diag(pi (xt)) is the diagonal matrix of state dependent log-normal probability density
functions if the Markov chain is in state i at time t for i = 1,2, ...,4. The parameters for the state-
dependent distributions and the transition probabilities were selected to be almost identical to those
obtained for models fitted to hourly movements of sable antelope and buffalo respectively (Goodall,

2014). The log-normal distribution has a density function given by: f (x) = 1√
2πσx

exp
(
−(ln(x)−µ)2

2σ2

)
.

The log-normal location (µµµ) and scale (σσσ) parameters, as well as the mixing probabilities (δδδ ) and
transition probability matrix (ΓΓΓ) for the sable data were defined as:

δδδ =


0.50
0.26
0.18
0.06

 ;ΓΓΓ =


0.70 0.21 0.08 0.01
0.37 0.41 0.19 0.03
0.25 0.25 0.41 0.09
0.08 0.06 0.32 0.54

 ;µµµ =


−3.71
−1.68
−0.40
0.69

 ;σσσ =


1.13
0.67
0.50
0.32

 .
The simulation creates a “known” sequence of states which can be used to simulate observed dis-
placements including a correlation between successive states via the Markov process. The parame-
ters used to simulate data similar to the buffalo movements were defined as:

δδδ =


0.37
0.23
0.32
0.08

 ;ΓΓΓ =


0.66 0.00 0.32 0.02
0.56 0.44 0.00 0.00
0.00 0.35 0.58 0.08
0.03 0.19 0.20 0.59

 ;µµµ =


−4.06
−1.98
−1.01
0.06

 ;σσσ =


1.11
0.81
0.58
0.48

 .
The distribution curves for simulated states are shown in the right hand plots of Figure 2, based on
the fitted distributions from the HMMs for the field study. The transition probability matrix contains
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some zero values based on the findings from the hourly buffalo HMM fitting for four states. For the
fitted mixture models, the simulation comparison will indicate how well the simpler model is able to
describe the underlying states within the data, even though the fitted model does not take into account
the serial correlation between the observations. The simulation and model fitting were repeated 500
times for both the sable and the buffalo parameters, and the results were used to calculate the 90%
confidence intervals. This will indicate whether this model is a useful approximation to the true
model, under the assumption that in practice the animals behave according to an HMM (Langrock
et al., 2012; Franke et al., 2004; Franke et al., 2006). The more complex HMM analysis takes into
account the correlation and should provide more precise results.

A separate simulation exercise was done to investigate the effect of extreme values within the
transition probability matrix. A sequence of known states and associated displacement distances
were simulated from two-, three- and four-state Hidden Markov models. It is highly unlikely to
have extreme parameters associated with the displacement states, since animals are restricted to how
much they can move within a predefined time period by their maximum travel rate, biology and the
extent of their home range. Therefore, the simulations were specified with “typical” parameters for
the state dependent distributions and with “extreme” values selected for the transition probability
parameters. Different models were simulated with either very high probabilities of remaining within
a state, or very high probabilities of shifting from the current state to one of the other states. 5000
observations were simulated per model and the simulations were repeated ten times. Four scenarios
were considered, ranging from moderately extreme to very extreme parameters. Scenario one had
0.75 as the highest probability of remaining within/transitioning from a state, 0.8, 0.9 and 0.95 were
the highest probabilities for scenarios two, three and four respectively. The transition probability
matrices used for the simulations are shown in Table 1. This meant that 12 different model specifica-
tions were used to simulate from for extreme values of remaining in a state, and 12 specifications for
extreme values of transitioning out of the current state. These simulations were used to investigate
if the IMMs are still able to obtain results similar to the HMM, even in the presence of extreme
transition probabilities.

3.2. Real-world data

Data for this study were collected using GPS collars placed on an adult female sable antelope and
an adult female buffalo moving with conspecifics in cohesive herds in the Punda Maria region of
the Kruger National Park, South Africa. Data from these two collars were also used in (Owen-
Smith, Fryxell and Merrill, 2010; Owen-Smith et al., 2012; Owen-Smith, 2013; Owen-Smith and
Goodall, 2014). Hourly locations used for this comparison were recorded between 17th August 2007
and 9th January 2008 for the sable antelope (n = 3064), and between 21st January 2008 and 29th
June 2009 for the buffalo (n = 11241). During these periods 12.46% and 10.77% of locations were
recorded as missing for the sable and buffalo respectively. Missed locations are due to a failure to
connect to sufficient satellites to obtain a location. Changes in the programmed frequency of location
recordings means that the hourly displacement cannot be calculated when successive observations
are longer than one hour apart and these instances are also included as missing data in the analysis.
Missing data need to be included for the HMM since the models take into account the time series
nature of the input. The HMMs are fitted using a modification of the observed log-likelihood which
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allows for missing observed data (Goodall, 2014). Missing data are irrelevant in the mixture models
since there is no dependency on the time or sequence of the observations.

4. Results

4.1. Simulated Data

Sable herd

2-, 3- 4-, and 5-state IMM and HMMs were fitted to the simulated data, and the “best” model for
each method identified using the AIC and BIC criteria. The AIC and BIC both identified the 4-
state models as the best-fitting models, with the HMM always providing the better fit compared
to the IMM according to these criteria. Table 2 shows the true HMM parameters and the fitted
parameters from the 4-state log-normal IMM and HMM. The fitted parameters are very close to
the true parameters using both methods, and the 90% confidence intervals for the parameters from
both models always include the true parameter value, and were calculated using 500 sequences of
observations. 5000 observations were simulated per “sable” sequence and 10 000 observations per
“buffalo” sequence. These were selected in order to be consistent with the analysis of the case
study data. The confidence intervals are narrower for the HMM. The standard errors for every
parameter are small for both methods, but are smaller for the fitted HMM parameters. The results
suggest that the IMM is a very adequate method for approximating the distributions that describe
the underlying states. However, as expected the HMM is the better method and provides results
with greater certainty when there is serial correlation. The state allocations obtained using the fitted
model from the IMM and HMM methods are shown in Table 3. The diagonal values in the table
are by far the highest for each state, which represents observations correctly allocated to their true
state. The incorrect state allocation is nearly always to the state closest to the correct state. There
does not appear to be any allocation bias towards either the incorrect lower or upper state for either
model, with similar numbers of incorrectly allocated observations going to the states on either side
of the true state. The fitted IMM provides 80.54% state allocation accuracy with the HMM slightly
better at 82.96%. On the basis of this, it seems reasonable to conclude that inferences drawn from
the underlying states using these methods can be used in further ecological analyses. The HMM
performs better than the IMM in terms of state allocation accuracy for all states except the fourth
state, which is associated with the longest movements (92.1% for the IMM and 90.7% for the HMM).
The allocation accuracy is lowest for the second state (65.3% for the IMM and 67.1% for the HMM),
assumed to correspond to the foraging state. The errors in state allocation for the second state are
evenly spread between the first and third states for both the IMMs and the HMMs (Table 3). This
lower allocation accuracy for this state is not necessarily as a result of a poor model, but rather due
to the overlap in displacement distributions for the foraging state with the states on either side of it
which are expected to represent resting and mixed movement behaviours. This overlap will result in
an increased probability of an incorrect state allocation.

It is interesting to note that the improvement in state allocation accuracy from the independent
to dependent model is only 2.42%, which shows that the IMM is performing very well in terms of
predicting the true state despite ignoring the serial correlation within the input data. It seems that
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the improvement in accuracy for the HMM comes from observations incorrectly allocated to the
higher state (longer displacements) by the IMM, which are better classified by the Viterbi algorithm
applied to the fitted HMM (see Table 3). Since the fitted distributions are almost identical for the two
models, these differences are due to the transition probabilities and the Viterbi algorithm which takes
into account the most likely sequence of states rather than just the most likely state for a particular
displacement, whatever the previous state had been.

Buffalo herd

However, the IMMs did not perform as well for the buffalo data. In Table 4, the fitted parameters
with their 90% confidence intervals and standard errors are shown for the IMMs and HMMs fitted
to the data simulated from a true HMM with parameters similar to those obtained from models fitted
to buffalo movement data with certain transitions between states precluded. The standard errors are
once again larger for the IMM parameters and the 90% confidence intervals much wider than for the
fitted HMM parameters. The difference between the models is accentuated in Table 3, which shows
the state allocation of the true and fitted models. 85.3% of the observations are correctly allocated
using the HMM, but this drops to 73.6% for the IMM. The IMM incorrectly allocates many of the
true State 2 observations to the incorrect state, with 499 observations being allocated to State 1 and
974 allocated to State 3. Note that it is transitions from state 1 into state 2 and from state 2 into
states 3 or 4 that are precluded by the simulated HMM model. In this situation, the IMM still does
reasonably but is clearly outperformed by the HMM in terms of state allocation accuracy. The IMM
will have no restriction on which state can be allocated next, based on the prior activity state, leading
to lower state allocation accuracy. Similar differences were found between the IMMs and the HMMs
for a 3-state model.

Extreme Value Simulation

A summary of the results of the simulations are shown in Table 5. For the 2-state models, the HMMs
perform very well with a very high state allocation accuracy. However, the IMMs also perform well,
with 91.4% correct state allocation and over 93.5% of the predicted states were exactly the same
as the predicted HMM states. As the transition probabilities become more extreme, the similarity
between the state prediction of the IMM and the HMM does decrease, although not substantially.
A similar pattern is observed for the 3-state models, in this case, 87.5% of state predictions were
identical between the IMM and the HMM. For the 4-state model, the state allocation accuracy de-
creases, which is mainly due to the overlap between the latent states and the uncertainty associated
with the state predictions. The state allocation accuracy decreases for both the IMM and HMM,
although more substantially for the IMMs. For the 4-state models, slightly over 60% of observations
are allocated to the same state by the IMM and HMMs, when the true model has extreme transition
probabilities.

Simulation Summary

The results for the simulated sable and buffalo data suggest that the additional fitting complexity
for the HMM may be unnecessary in some cases when the only desired outcome from the model
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is the behavioural prediction, rather than investigating the probability of moving from one state to
another. Even though the mixture model ignores this serial dependence within the input data, the
results provide an adequate representation of the underlying simulated groupings within the model.
However, in the situation where certain transitions from one state to another are precluded, the IMM
appears not to perform as well through ignoring the time sequence.

While this particular extreme value simulation provides interesting insight into how well the
IMM is able to cope when the underlying model has very strong probabilities of transitioning from
one state to another or remaining within a state, it is unlikely that such extreme probabilities would
occur within animal movement data. An investigation into the autocorrelation between simulated
displacements, with extreme probabilities of remaining within a state, shows highly significant cor-
relations to over lag 20 and in some cases lag 30. This is not realistic for animal movement displace-
ments, especially at the time scales that we are currently able to record GPS locations at. However,
the results of this simulation indicate that even in the presence of very extreme probabilities of tran-
sitioning from one state to another, the IMM is able to perform reasonably well. For models with
only two or three states, the IMMs perform very well, however for the more complex 4-state model
with very extreme transition probabilities, the performance is not as good.

4.2. Real-world data

Sable herd

The AIC for both IMMs and HMMs supported a four-state model as the best model, and the fitted
model parameters are shown in Table 7. Although the HMM took longer to fit than the IMM, for
datasets of this size and with a basic model specification, the time incurred is not prohibitive in fit-
ting either model. It could become more problematic for very large datasets or models with many
ecological covariates and more latent states. The fitted model parameters for the distributions and the
mixing parameters/stationary distribution parameters are very similar between the two approaches,
as shown in Table 7 with the fitted distributions illustrated in Figure 2. As with the models fitted to
the simulated data, the 90% confidence intervals and the estimated parameter standard errors were
always narrower for the HMMs. This confirms that there is more certainty around the parameter es-
timates for the HMM. The inclusion of the state transition probabilities matrix in the time dependent
HMM improved the precision of the parameter estimates for the state dependent distributions com-
pared to the IMM. The expected displacement distance in an hour for each state using the expected
value for the state based on the fitted log-normal distribution parameters is shown in Table 6, along
with the average displacement of the observations allocated to each state. The results are very sim-
ilar for the two methods, and the interpretations of the latent states from these two methods would
be the same. Figure 1 shows the frequency of state allocation by time of day for the observations
using the two methods, with each bar in the plot representing an hour time interval. The pattern is
almost identical for both methods with clear periods of resting, foraging and moving. This pattern
is consistent with the expected behaviour for this species whose activities will vary through the day
with resting dominating at night and during the heat of the day, foraging around sunrise and sun-
set and active states during the day rather than at night (Owen-Smith et al., 2010; Owen-Smith and
Goodall, 2014). At a global level, the behavioural interpretations obtained from these two methods
appear to be exactly the same and 86.1% of observations were allocated to the same state irrespective
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of the modelling method used (Table 9). The observations not allocated to the same state are most
likely as a result of the transition probabilities influencing the state allocation. These observations
tend to be more likely to be allocated to the less active state for the IMMs and the more active state
for the HMMs (Table 9).

4.3. Buffalo Herd

In contrast to the findings for the sable herd, those comparing the IMMs and HMMs differed for
the buffalo herd (Table 8). Figure 1 shows the state allocation for the buffalo herd by time of day
using the two different methods. State 1, state 2 and state 3 have a very similar pattern in both
plots with clear peaks in resting before sunrise and during the heat of the day, and foraging peaks
mid-morning, late afternoon and into the night. In particular, the state allocation pattern for the most
active state is different. This can be seen from the fitted distributions in Figure 2, where the fourth
state for the HMM has a lower expected value but wider distribution compared to the fourth state
for the IMM. Furthermore, a greater proportion of observations was allocated to the fourth state for
the HMM than for the IMM (Table 9). The interpretation of the fourth state is hence different for
these two methods, with that provided by IMM more narrowly restricted to directed travel generating
displacement distances sometimes exceeding 3km during an hour. Both models were re-run using
different starting values but in all cases the models converged to the results presented here.

It is expected that the HMM will always provide the better statistical model for the analysis of
animal movement, except in the situation of little serial correlation in the movement data. However,
an alternative view is that the HMM will mostly persist in a state for more than one time step. In
reality this might not be the case for the most active relocating state. For buffalo, this travelling state
rarely persists for more than one hour since they do not need to undertake long journeys to water.
By anticipating the persistence, the HMM might not perform as well for this particular state.

5. Discussion

Findings from the independent and the dependent mixture models are mostly similar, which is ex-
pected given the similarities of the model specifications. In the simulation study the HMM performed
better than the IMM in terms of the standard errors and confidence intervals around the estimates.
For the sable simulation, the HMM only showed a slight improvement in state allocation accuracy.
The models for the buffalo showed differences between the two modelling techniques, leading to
different interpretations of the activity states represented.

The zero transition probability between state 1 and state 2 implies that buffalo enter state 2 only
from states 3 or 4, and never by a direct shift from state 1 to state 2. This was initially surprising, but
is actually an outcome of the high probability of persisting in state 1, which overrides the assignment
to the less probable state 2 that the IMM would make based on the displacement distance alone.
Contributing to this is the lower expected value for state 2 assigned by HMM for buffalo compared
to that for state 2 for the sable data. This suggests that state 2 may represent a restless mix of foraging
and stationary behaviour for an individual buffalo within the large herds formed by this ungulate,
rather than persistent foraging as for the sable moving in somewhat smaller herds. Notably, buffalo
herds tend to remain close to water during the dry season, in contrast to the journeys undertaken by
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sable herds to remaining water sources over distances of 3–5km (Cain, Owen-Smith and Macandza,
2012). To check that the zero transition probability between states 1 and 2 for the buffalo was
not an anomalous peculiarity of the particular data set that we had used, we also fitted a HMM
to the movements of another buffalo herd in a different region of the Kruger National Park, and
obtained this same pattern.. The confidence intervals around the parameter estimates for the HMM
were always narrower than for the IMM parameter confidence intervals, which illustrates that the
inclusion of the time dependence via the Markov chain even improves the precision of the state
dependent distribution parameters.

In the case of the extreme value simulation, it is interesting to note that the IMM performs
less well as the number of states increase and when the transition probabilities are more extreme.
Reducing the time step would tend to increase the probability of remaining within the same state
from one time to the next and would correspond to the “remain within a state” extreme scenarios. In
this case, the IMMs perform poorly in comparison to the HMMs, which take into account the time
dependence. In a corresponding situation if the time step was increased, the persistence in a state
will decrease and the IMM is likely to perform better.

The HMMs provide information about the probability of shifting from one state to another, and
the state allocation is not only based on the probability of observing a displacement of a particular
distance. The transition matrix in effect determines how long an animal is likely to remain within a
state. Nevertheless, the assumption of a first order Markov process may be misleading, because the
longer an animal has been resting, the more likely that it is to shift towards foraging as it becomes
more hungry, while persistent foraging eventually leads to satiation and hence resting. It is expected
furthermore that the performance of the IMM relative to the HMM will depend on the temporal
resolution of the data, with HMMs increasingly better supported when states commonly persist
through multiple time steps.

6. Conclusion

Hidden Markov models provide a balance between computational requirements and model simplic-
ity which allows for reasonably simple interpretation of the latent states in terms of the behaviour
of an animal. A number of authors have identified them as promising for modelling animal move-
ments in heterogeneous environments (Dragon, Bar-Hen, Monestiez and Guinet, 2012; Barraquand
and Benhamou, 2008; Patterson, Thomas, Wilcox, Ovaskainen and Matthiopoulos, 2008; Langrock
et al., 2012). In the end, it is expected that the decision about which analysis to use will be based
on the questions being addressed about the ecology of the animal including the scale and regular-
ity of the movements and the distances travelled, and the desired outcomes of the model (Dragon
et al., 2012). If a simple state allocation is required from which the behaviour of the animal will be
inferred, then the IMM may be sufficient. Gutenkunst, Newlands, Lutcavage and Edelstein-Keshet
(2007) suggested that the major uncertainty in the analysis of animal movement data comes from an
ignorance of the “perfect movement model”. This is a fundamental aspect of statistics, that the un-
derlying true model is seldom known. However, with improvements in remote sensing technology,
it is likely that the available data will become richer and have the potential to better characterize the
true behavioural states, which can then be used to validate and refine the movement models.
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7. Tables and Figures

Table 1: Transition probability matrices used for the extreme value simulation.
2-state 3-state 4-state 2-state 3-state 4-state

R
em

ai
n

w
ith

in
a

st
at

e

Sc
en

ar
io

1 0.75 0.25 0.75 0.15 0.10 0.75 0.15 0.05 0.05

Tr
an

si
tio

n
to

an
ot

he
rs

ta
te

Sc
en

ar
io

1 0.25 0.75 0.15 0.75 0.10 0.15 0.75 0.05 0.05
0.25 0.75 0.15 0.75 0.10 0.05 0.75 0.15 0.05 0.75 0.25 0.15 0.10 0.75 0.05 0.15 0.75 0.05

0.10 0.15 0.75 0.050 0.05 0.75 0.15 0.75 0.10 0.15 0.05 0.05 0.15 0.75
0.15 0.05 0.05 0.75 0.75 0.05 0.05 0.15

Sc
en

ar
io

2 0.80 0.20 0.80 0.15 0.05 0.80 0.10 0.05 0.05

Sc
en

ar
io

2 0.20 0.80 0.15 0.80 0.05 0.10 0.80 0.05 0.05
0.20 0.80 0.05 0.80 0.15 0.05 0.80 0.10 0.05 0.80 0.20 0.05 0.15 0.80 0.05 0.10 0.80 0.05

0.15 0.05 0.80 0.05 0.05 0.80 0.10 0.80 0.05 0.15 0.05 0.05 0.10 0.80
0.10 0.05 0.05 0.80 0.80 0.05 0.05 0.10

Sc
en

ar
io

3 0.90 0.10 0.90 0.05 0.05 0.90 0.04 0.03 0.03
Sc

en
ar

io
3 0.10 0.90 0.05 0.90 0.05 0.04 0.90 0.03 0.03

0.10 0.90 0.05 0.90 0.05 0.03 0.90 0.04 0.03 0.90 0.10 0.05 0.05 0.90 0.03 0.04 0.90 0.03
0.05 0.05 0.90 0.03 0.03 0.90 0.04 0.90 0.05 0.05 0.03 0.03 0.04 0.90

0.04 0.03 0.03 0.90 0.90 0.03 0.03 0.04

Sc
en

ar
io

4 0.95 0.05 0.95 0.03 0.02 0.95 0.02 0.02 0.01

Sc
en

ar
io

4 0.05 0.95 0.03 0.95 0.02 0.02 0.95 0.02 0.01
0.05 0.95 0.02 0.95 0.03 0.01 0.95 0.02 0.02 0.95 0.05 0.02 0.03 0.95 0.01 0.02 0.95 0.02

0.02 0.03 0.95 0.02 0.01 0.95 0.02 0.95 0.03 0.02 0.02 0.01 0.02 0.95
0.02 0.02 0.01 0.95 0.95 0.02 0.01 0.02
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Table 2: Simulated Sable 4-state HMM parameters and fitted values for IMM and HMM. δi denotes
the stationary distribution or mixing parameters for the HMM or IMM respectively; and µi and σi

denote the location and scale parameters respectively of the log-normal distributions for the i-th state
of either model. γi j is the transition probability from the i-th to j-th state for the HMM.

True Model Fitted Models

HMM IMM IMM 90% CI Std Err - IMM HMM HMM 90% CI Std Err - HMM
δ1 0.50 0.50 (0.41, 0.56) 0.05 0.51 (0.47, 0.55) 0.02
δ2 0.26 0.24 (0.10, 0.41) 0.09 0.23 (0.19, 0.29) 0.03
δ3 0.18 0.19 (0.09, 0.31) 0.07 0.19 (0.16, 0.23) 0.02
δ4 0.06 0.07 (0.05, 0.09) 0.01 0.06 (0.05, 0.08) 0.01
µ1 -3.71 -3.66 (-3.92, -3.47) 0.14 -3.63 (-3.75, -3.53) 0.07
µ2 -1.68 -1.79 (-2.07, -1.54) 0.17 -1.75 (-1.86, -1.61) 0.08
µ3 -0.40 -0.55 (-0.77, -0.42) 0.11 -0.52 (-0.60, -0.44) 0.05
µ4 0.69 0.62 (0.51, 0.71) 0.06 0.64 (0.59, 0.69) 0.03
σ1 1.13 1.16 (1.05, 1.25) 0.06 1.17 (1.10, 1.23) 0.04
σ2 0.67 0.64 (0.40, 0.92) 0.16 0.65 (0.56, 0.75) 0.06
σ3 0.50 0.48 (0.34, 0.71) 0.11 0.52 (0.46, 0.58) 0.04
σ4 0.32 0.33 (0.27, 0.38) 0.03 0.32 (0.29, 0.36) 0.02
γ11 0.70 0.71 (0.67, 0.75) 0.03
γ12 0.21 0.19 (0.15, 0.25) 0.03
γ13 0.08 0.08 (0.05, 0.10) 0.02
γ14 0.01 0.01 (0.01, 0.02) 0.00
γ21 0.37 0.34 (0.29, 0.39) 0.03
γ22 0.41 0.39 (0.33, 0.47) 0.04
γ23 0.19 0.23 (0.17, 0.29) 0.04
γ24 0.03 0.03 (0.02, 0.05) 0.01
γ31 0.25 0.32 (0.27, 0.37) 0.03
γ32 0.25 0.19 (0.14, 0.25) 0.03
γ33 0.41 0.40 (0.35, 0.45) 0.03
γ34 0.09 0.09 (0.07, 0.12) 0.01
γ41 0.08 0.08 (0.04, 0.12) 0.03
γ42 0.06 0.06 (0.00, 0.12) 0.03
γ43 0.32 0.34 (0.28, 0.41) 0.04
γ44 0.54 0.51 (0.46, 0.57) 0.03

Table 3: Simulated state allocation for fitted IMM (left) and HMM (right).
Sable

State Allocation IMM State Allocation HMM
State 1 State 2 State 3 State 4 State 1 State 2 State 3 State 4

Tr
ue

St
at

e State 1 2158 294 26 0

Tr
ue

St
at

e State 1 2233 222 23 0
State 2 204 876 257 5 State 2 223 901 216 2
State 3 0 78 725 86 State 3 0 78 750 61
State 4 0 0 23 268 State 4 0 0 27 264

Buffalo
State Allocation IMM State Allocation HMM

State 1 State 2 State 3 State 4 State 1 State 2 State 3 State 4

Tr
ue

St
at

e State 1 3374 323 118 0

Tr
ue

St
at

e State 1 3441 287 87 0
State 2 499 736 974 37 State 2 157 1712 372 5
State 3 10 201 2681 298 State 3 36 234 2813 107
State 4 0 0 183 566 State 4 0 4 181 564
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Table 4: Simulated Buffalo 4-state HMM parameters and fitted values for IMM and HMM. δi de-
notes the stationary distribution or mixing parameters for the HMM or IMM respectively; and µi and
σi denote the location and scale parameters respectively of the log-normal distributions for the i-th
state of either model. γi j is the transition probability from the i-th to j-th state for the HMM.

True Model Fitted Models

HMM IMM IMM 90% CI Std Err - IMM HMM HMM 90% CI Std Err - HMM
δ1 0.37 0.41 (0.36, 0.45) 0.03 0.37 (0.36, 0.38) 0.01
δ2 0.23 0.13 (0.04, 0.36) 0.10 0.24 (0.23, 0.25) 0.01
δ3 0.32 0.36 (0.11, 0.50) 0.13 0.31 (0.30,0.33) 0.01
δ4 0.08 0.11 (0.02, 0.24) 0.07 0.08 (0.07, 0.09) 0.01
µ1 -4.06 -3.91 (-4.10, -3.79) 0.10 -4.06 (-4.11, -4.02) 0.03
µ2 -1.98 -2.24 (-2.49, -1.71) 0.24 -2.03 (-2.08, -1.98) 0.03
µ3 -1.01 -1.09 (-1.20, -0.95) 0.08 -1.01 (-1.04, -0.98) 0.02
µ4 0.06 -0.07 (-0.47, 0.33) 0.25 0.06 (0.00, 0.12) 0.03
σ1 1.11 1.15 (1.07, 1.21) 0.04 1.10 (1.07, 1.13) 0.02
σ2 0.81 0.49 (0.29, 0.87) 0.17 0.82 (0.79,0.86) 0.02
σ3 0.58 0.53 (0.34, 0.73) 0.12 0.57 (0.55,0.60) 0.01
σ4 0.48 0.52 (0.36, 0.63) 0.09 0.48 (0.45,0.51) 0.02
γ11 0.66 0.65 (0.64, 0.67) 0.01
γ12 0.00 0.00 (0.00, 0.00) 0.00
γ13 0.32 0.33 (0.31, 0.34) 0.01
γ14 0.02 0.02 (0.01, 0.03) 0.01
γ21 0.56 0.53 (0.50, 0.56) 0.02
γ22 0.44 0.46 (0.43, 0.49) 0.02
γ23 0.00 0.00 (0.00, 0.00) 0.00
γ24 0.00 0.01 (0.00, 0.02) 0.01
γ31 0.00 0.00 (0.00, 0.00) 0.00
γ32 0.35 0.37 (0.35, 0.39) 0.01
γ33 0.58 0.56 (0.54, 0.59) 0.02
γ34 0.08 0.07 (0.06, 0.08) 0.01
γ41 0.03 0.01 (0.00, 0.02) 0.01
γ42 0.19 0.18 (0.14, 0.23) 0.03
γ43 0.20 0.21 (0.17, 0.27) 0.03
γ44 0.59 0.59 (0.55,0.64) 0.03
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Table 7: Punda Maria sable - Fitted model parameters for 4-state IMMs and HMMs.

Parameter 90% CI Std Error Parameter 90% CI Std Error

4-
st

at
e

H
M

M

-LL -1477.34

4-
st

at
e

IM
M

-LL -1102.32
AIC -2914.69 AIC -2182.64
BIC -2794.14 BIC -2116.33
δ1 0.51 (0.46,0.55) 0.03 δ1 0.59 (0.45,0.66) 0.08
δ2 0.25 (0.20,0.31) 0.03 δ2 0.20 (0.03,0.34) 0.10
δ3 0.18 (0.14,0.22) 0.02 δ3 0.17 (0.05,0.31) 0.08
δ4 0.06 (0.05,0.08) 0.01 δ4 0.05 (0.03,0.08) 0.02
µ1 -3.68 (-3.81,-3.56) 0.08 µ1 -3.42 (-3.76,-3.20) 0.24
µ2 -1.66 (-1.79,-1.51) 0.09 µ2 -1.42 (-2.15,-0.97) 0.38
µ3 -0.41 (-0.50,-0.33) 0.05 µ3 -0.34 (-0.71,-0.04) 0.25
µ4 0.69 (0.63,0.75) 0.04 µ4 0.73 (0.59,0.84) 0.08
σ1 1.13 (1.06,1.19) 0.04 σ1 1.26 (1.12,1.36) 0.09
σ2 0.68 (0.57,0.81) 0.07 σ2 0.71 (0.23,0.93) 0.22
σ3 0.50 (0.43,0.56) 0.04 σ3 0.55 (0.28,0.73) 0.16
σ4 0.31 (0.27,0.35) 0.02 σ4 0.29 (0.20,0.36) 0.05
γ11 0.71 (0.66,0.75) 0.03
γ12 0.20 (0.15,0.26) 0.03
γ13 0.08 (0.05,0.11) 0.02
γ14 0.01 (0.00,0.02) 0.00
γ21 0.36 (0.32,0.41) 0.03
γ22 0.42 (0.34,0.50) 0.05
γ23 0.18 (0.12,0.24) 0.04
γ24 0.03 (0.01,0.05) 0.01
γ31 0.27 (0.22,0.33) 0.04
γ32 0.22 (0.16,0.29) 0.04
γ33 0.41 (0.36,0.48) 0.04
γ34 0.09 (0.06,0.12) 0.02
γ41 0.09 (0.04,0.13) 0.03
γ42 0.06 (0.00,0.13) 0.04
γ43 0.32 (0.25,0.40) 0.05
γ44 0.53 (0.46,0.59) 0.04



INDEPENDENT OR DEPENDENT MODELS? 311

Table 8: Punda Maria buffalo - Fitted model parameters for 4-state IMMs and HMMs.

Parameter 90% CI Std Error Parameter 90% CI Std Error

4-
st

at
e

H
M

M

-LL -6501.99

4-
st

at
e

IM
M

-LL -4728.16
AIC -12963.97 AIC -9434.33
BIC -12817.43 BIC -9353.73
δ1 0.37 (0.36, 0.39) 0.01 δ1 0.36 (0.33,0.40) 0.02
δ2 0.23 (0.21, 0.24) 0.01 δ2 0.33 (0.12, 0.44) 0.10
δ3 0.32 (0.31, 0.33) 0.01 δ3 0.30 (0.17, 0.48) 0.09
δ4 0.08 (0.07, 0.09) 0.01 δ4 0.01 (0.01, 0.02) 0.01
µ1 -4.06 (-4.09, -4.02) 0.02 µ1 -4.13 (-4.25, -3.98) 0.08
µ2 -1.98 (-2.02,-1.94) 0.03 µ2 -1.75 (-2.26,-1.50) 0.24
µ3 -1.01 (-1.04, -0.99) 0.02 µ3 -0.74 (-0.94,-0.62) 0.10
µ4 0.06 (0.01, 0.10) 0.03 µ4 0.66 (0.52, 0.77) 0.08
σ1 1.11 (1.09, 1.13) 0.02 σ1 1.06 (1.00, 1.13) 0.04
σ2 0.81 (0.78, 0.84) 0.02 σ2 0.83 (0.53, 0.94) 0.13
σ3 0.58 (0.56, 0.61) 0.01 σ3 0.62 (0.51, 0.70) 0.06
σ4 0.48 (0.45, 0.51) 0.02 σ4 0.25 (0.15, 0.33) 0.06
γ11 0.66 (0.64, 0.67) 0.01
γ12 0.00 (0.00, 0.00) 0.00
γ13 0.32 (0.31, 0.34) 0.01
γ14 0.02 (0.01, 0.03) 0.00
γ21 0.56 (0.53, 0.59) 0.02
γ22 0.44 (0.41, 0.47) 0.02
γ23 0.00 (0.00, 0.00) 0.00
γ24 0.00 (0.00, 0.00) 0.00
γ31 0.00 (0.00, 0.00) 0.00
γ32 0.35 (0.33, 0.36) 0.01
γ33 0.57 (0.55, 0.59) 0.01
γ34 0.08 (0.07, 0.09) 0.01
γ41 0.03 (0.01, 0.04) 0.01
γ42 0.19 (0.16, 0.23) 0.02
γ43 0.20 (0.15, 0.24) 0.03
γ44 0.59 (0.55, 0.62) 0.02

Table 9: State allocation for Sable and Buffalo using IMM and HMM.

Sable Buffalo
State allocation - IMM State allocation - IMM

State 1 State 2 State 3 State 4 State 1 State 2 State 3 State 4

St
at

e

al
lo

ca
tio

n

-H
M

M

State 1 1495 10 0 0

St
at

e

al
lo

ca
tio

n

-H
M

M

State 1 3718 402 6 0
State 2 259 487 32 0 State 2 260 1788 282 0
State 3 0 82 494 13 State 3 0 1266 2787 1
State 4 0 0 31 161 State 4 0 0 591 140
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Figure 1: State allocation by time of day using 4-state Mixture Model and Hidden Markov model -
Sable and Buffalo.
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Figure 2: Fitted distributions for IMM and HMM models - Sable and Buffalo. Distributions are
shown unweighted, and would be adjusted by the Component Weights shown in the Figure to form
the fitted distribution.
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