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Autonomous mobile systems nowadays deploy FPGA-based System on Programmable Chips (SoPCs) for supporting their
dynamic multitask multimodal workloads. For such field-deployed systems, activation times, execution periods of tasks, and
variations in environmental conditions are usually difficult to predict. 'ese dynamic variations result in a new challenge of
dynamic thermal cycling stress on the SoPC die, which can result in transient and even permanent hardware faults in the
computing system. 'is paper proposes the approach of run-time structural adaptation (RTSA) to mitigate dynamic thermal
cycling stress on the SoPC dies. RTSA assumes the tasks to have multiple implementation variants, called Application Specific
Processing (ASP) circuit variants, which vary in hardware resources, operating frequency, and power consumption. Dynamically
reconfiguring appropriate ASP circuit variants of tasks allow systems to maintain their die temperature in the desired range while
taking into account variations in power budget and modes of operation. 'is means the essence of RTSA is a decision-making
mechanism which can select at run-time, a suitable system configuration (set of ASP circuit variants of active tasks), whenever
needed, to meet the die temperature constraints. To do so, run-time die temperature prediction for potential system config-
urations using an estimation model is required. 'is paper presents a generic method to derive an analytical model for any SoPC
that can estimate the die temperature in real time and thus support the decision-making mechanism. To develop this method, the
thermal behavior of SoPC die under different task scenarios is studied and relation of die temperature to frequency, resource
utilization, and power consumption is analyzed. An RTSA-enabled experimental platform is set up on Xilinx Zynq XC7Z020
SoPC for this purpose. Experimental results also demonstrate that the proposedmethod can be used to derive a model in run-time,
thus enabling systems to self-derive and dynamically update the model in run-time.

1. Introduction

Modern generation autonomous mobile systems such as
mobile robotic systems, car driver assistance systems and
autonomous cars, civil and military drones, satellites and
planetary mission spacecraft, and unmanned submarine
systems demand high-performance processing of multitask
data-stream workloads. 'e workloads usually include
multiple real-time video-streams, communication data-
streams, LiDAR or radar data-streams, and acoustical and
audio-streams. Such systems running complex applications
have critical performance specifications. For example, a
certain number of tasks must satisfy a performance range,
not exceeding certain power consumption/dissipation limits

and keeping on-chip and system thermal conditions in a
determined range. Additionally, the number, performance,
criticality, and functionality of the tasks can change in run-
time based on the occurrence of external and/or internal
events. 'is means systems are required to have multiple
modes of operation to survive in different scenarios. 'us,
we are looking at autonomous mobile systems supporting
multimodal multitask stream processing workloads. On the
other hand, considering the FPGA-based SoPC computing
platforms on which such systems are deployed, there are
always limitations of available resources such as (a) limited
amount of platform hardware resources; (b) limited power
generation, accumulation, and dissipation resources; (c)
limited thermal range at on-chip, board, and system levels;
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and (d) limited reliability of system components. It is
necessary to mention that the above limitations are not only
static but can dynamically change due to predicted or
sudden events caused by different factors. For example,
hardware resources are statically limited by restrictions of
the available area, mass, or weight of the system. However,
the dynamic workload may limit available resources for
upcoming tasks. Hardware faults caused by radiation,
thermal cycling effects, aging, or other factors can also limit
certain amount of resources for some time (transient fault)
or permanently. 'e same can be considered for power
resources. 'ere is an upper limit for available power that
can be generated. However, over a period of time, reduction
of fuel or available solar power, etc., can reduce the power
budget dynamically. As well, the fault of the power generator
or solar panels or other sources of power can suddenly
reduce the power budget for the system. 'erefore, au-
tonomous mobile systems need to be able to sustain their
dynamic workloads in the presence of dynamic changes in
power budget, thermal conditions, and hardware resource
conditions. 'us, for such systems, self-sustainability im-
plies run-time adaptation to (a) dynamic multitask multi-
modal workload, (b) variations in power budget, (c)
variations in thermal conditions, (d) external conditions
affecting system performance, and (e) possible transient and
permanent hardware faults. When a system itself can keep
the above multiobjective requirements in the permitted
range, it can continue its mission. Otherwise, the systemmay
stop functioning permanently and that can cause domino
effect for associated systems.

A system can adapt in three possible ways: (a) para-
metric, (b) behavioral, and (c) structural. All these forms of
adaptation are widely used by different types of organisms
from plants to almost all animals. Parametric adaptation is
the simplest form of adaptation for systems. As the name
suggests, it alters system parameters for adaptation, for
example, power regulation, temperature control at on-chip
and board levels, and change in operating frequency.
Changing system parameters can help in run-time adap-
tation when changes in workload and environmental con-
straints are within the limits and resolution of the system
parameters that can be changed. However, beyond those
limits, other forms of adaptation must come to the rescue.
Behavioral level of adaptation is expected to be provided by
variation in workload. 'is can be achieved by varying the
active set of tasks or changing the modes of the active tasks.
'ere is a lot of work done in this area of workload man-
agement. However, with these existing solutions, it may not
always be possible to satisfy the changing constraints on
temperature, performance, power consumptions, and/or
available resources along with dynamic changes in the
workload [1]. 'is type of adaptivity is therefore not con-
sidered in this work. Run-time structural adaptation (RTSA)
means that a system can change its architecture at run-time
to adapt to the current: (a) multitask workload specifica-
tions, (b) power budget, (c) temperature range, and (d)
hardware resource limitations. Since the system can adapt by
changing its architecture, RTSA is the most flexible form of
adaptation a system can use to sustain itself against multiple

dynamic internal and external factors. 'erefore, the pre-
sented research is focused on RTSA. 'e paper targets
complex autonomous mobile systems processing multi-
modal multitask workloads where all or most of the tasks are
computationally intensive by nature. 'e research is
therefore applicable to run-time reconfigurable FPGA de-
vices or FPGA-based SoPCs; they are the most suitable
platforms to develop such systems.

For the discussed class of systems having computa-
tionally intensive workloads, each task is implemented in the
form of a dedicated hardware circuit called ASP circuit. 'is
circuit is based on the task algorithm and data structure and
is designed using certain hardware description language like
VHDL or Verilog. 'e ASP circuits of all the tasks are stored
in the form of configuration bit-files (or bitstreams) for the
targeted FPGA/SoPC device. Each task capable of RTSA
must have several implementation variants, i.e., ASP circuit
variants [2]. 'e ASP circuit variants of each task vary in
resource utilization, operating frequency, performance, and
power consumption. 'ey are stored in the form of partial
configuration bitstreams for the target FPGA in the system
memory and can be configured/reconfigured on the partially
reconfigurable regions (PRRs) of the FPGA as and when
required [3]. Depending on the required system mode, a
suitable system configuration, i.e., a set of suitable ASP
circuit variants corresponding to the active set of tasks can
be configured such that all the mode conditions are satisfied.
'e mode of operation assumes (a) required set of active
tasks and their performance range, (b) available power
budget, (c) die temperature limits, and (d) currently avail-
able hardware resources. For example, in a low power budget
condition, ASP circuit variants of tasks which can operate at
a lower frequency and occupy more resources as compared
to the system configuration in high power budget condition
can be configured [1]. 'is way, the performance of the
critical tasks is not affected, but SoPC power consumption is
reduced. Similarly, when hardware resources are scarce, ASP
circuit variants that operate at a higher frequency and utilize
lesser number of PRRs can be configured. Although this will
increase the power consumption of the SoPC, it will allow
more tasks in active set to run simultaneously in the limited
resource condition.

Field-deployed mission-critical systems are complex
systems with a very large number of tasks and their modes. To
enable such systems with RTSA, their tasks will have a
multitude of ASP circuit variants. With a huge number of
tasks and their ASP circuit variants, a tremendously large
design space of system configurations is formed. 'erefore,
the key aspect for making such systems capable of RTSA is a
run-time decision-making mechanism that can find in run-
time, the most efficient combination of ASP circuit variants of
all active tasks that can fit in the available hardware resources,
can provide acceptable power consumption, maintain the die
temperature in the required range, and simultaneously satisfy
the performance constraints of the tasks. 'e concept and
initial experimental verification of the aforementioned mul-
tiobjective decision-making mechanism was done on the
Xilinx Zynq 7000 family of FPGA devices [1, 4]. 'e
mechanism presented in [1, 4] enables run-time adaptation to
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system workload/mode, power budget, and hardware re-
source constraints. However, an important aspect yet to be
considered is simultaneous mitigation of on-chip thermal
cycling due to changes in external temperature or the current
set of executing tasks. 'is means run-time adaptation to
thermal changes in order to maintain the die temperature in
the desired range needs to be incorporated for achieving self-
sustainability to all the discussed parameters. It is necessary to
mention that thermal cycling associated with (a) dynamic
variations of the workload and (b) variations of external-to-
FPGA device temperature has become one of the most sig-
nificant reasons for transient and even permanent hardware
faults in the flip-chip technology-based FPGAs. In addition to
that, the thermal inertia of the SoPC is very different from the
thermal inertia of the FPGA package connected to power
dissipation units (e.g., heat sink and board layers) [5]. 'us,
SoPCs incorporating dynamic multistream processing ASP
circuits bring in the new problem of thermal stability of the
SoPCs, absence of which may cause significant issues with
system reliability. 'erefore, the main aspect of the presented
research is to provide the supporting tools to develop the
discussed run-time decision-making mechanism that can
enable RTSA in systems to dynamically maintain the die
temperature in the desired range and thus provide temper-
ature stability (the decision-making mechanism is not in the
scope of this paper).

It can be foreseen that, for the run-time decision-making
process, an analytical model for predicting die temperature
will be needed.'is is because the run-time decision-making
mechanism will need to evaluate the die temperature of
different candidate system configurations for selecting the
appropriate ASP circuit variants for the active set of tasks
that can maintain the die temperature in the desired range.
For systems with a large design spaces, it is practically not
feasible to measure and store the die temperature for all the
system configurations in a lookup table (LUT). For example,
a system with a total of 16 tasks, 16 ASP circuit variants per
task, 20 modes, and 5 tasks per mode will have a design space
of 165 � 1,048,576 system configurations per mode. 'is
means die temperature for 20x165 system configurations
will need to be measured and stored in a large LUT during
the system design phase. Although this is not practical, even
if this much information is stored in a LUT, the search time
would be very large to make it useful at run-time. Fur-
thermore, any addition or modification of system modes,
tasks, or their variants will imply redoing the entire offline
process all over again! 'us, it is necessary to have an an-
alytical model which can estimate the die temperature of
system configurations under evaluation at run-time so that
the decision-making system can select the most appropriate
configuration for RTSA. An analytical model is required
since we are looking at a model that can give results in run-
time, i.e., within units of seconds or even less. Only a
mathematical equation can satisfy this condition. It saves
time, memory, and hardware resources and meets the run-
time requirements. It is thus necessary to create an efficient
methodology that can derive an analytical die temperature

estimation model for a FPGA platform and the set of tasks
running on it. Certainly, different FPGAs supporting dif-
ferent applications will result in different thermal model
coefficients. 'erefore, the methodology must be able to
derive a model for any FPGA device and application pair.

'is paper presents a methodology to derive a simplified
run-time mathematical model that can estimate the die
temperature for any given system configuration to be
deployed in any partially reconfigurable FPGA device or
FPGA-based SoC. Along with the feature of being a universal
method for any FPGA device, the proposed method is also
simple enough for systems to self-derive the die temperature
estimation model for themselves in run-time. For example,
consider a system developed on a Xilinx Zynq XC7Z020 SoC
connected with a Xilinx Kintex-7 FPGA device. 'e pro-
posed generic method to derive the die temperature esti-
mation model can be programmed in the ARM-Cortex A9
core of the Zynq device. Using this code, the system can self-
derive a die temperature estimation model for the pro-
grammable logic (PL) region of the Zynq device and the
Kintex-7 device for the application being supported. If the
FPGA device in use changes, or the application changes, the
system can use the same programmed generic method once
again to derive the new model parameters for the new FPGA
device and/or application.'us, offline manual derivation of
model coefficients is not required.

Development of a die temperature estimation model
requires a detailed investigation of on-chip thermal behavior
of the dynamically reconfigurable SoPCs in different
workload scenarios. 'e complexity of this behavior de-
pends on the resource utilization and operating frequencies
of the different ASP circuits running on the die and the
dynamic variations of external-to-FPGA environmental
temperature.'is paper, therefore, conducts a detailed study
of the die temperature behavior in different multitask sce-
narios. It analyzes the relationship of the die temperature to
factors such as resource utilization, frequency, and power
consumption in detail. It closely observes the behavior of
heat distribution in the FPGA die and the pattern of tem-
perature rise and fall in different multitask cases imple-
mented on Xilinx partially reconfigurable FPGA platform
(Xilinx Zynq 7000 family).

'us, the novel contributions of the paper are as follows:

(a) A detailed analysis of the thermal behavior of SoPC
die when different ASP circuits of tasks are operating
at different frequencies in different PRRs of the die is
presented. Relation of die temperature to factors
such as frequency, resource utilization, and thus
power consumption is observed.

(b) A methodology is presented to derive a mathe-
matical model that can predict the die temperature
for any system configuration in run-time. 'e
method is generic and can be used to derive a model
for any FPGA-based SoPC device.

(c) An RTSA-enabled experimental setup is developed
that is used to study the thermal behavior of the
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SoPC die and to develop the methodology to derive
the run-time die temperature estimation model.
Xilinx Zynq XC7Z020 SoPC housed on the Zed-
Board is used for this purpose. 'e setup can be used
for any RTSA-related experiments along with being
used for the context of this paper.

'e related literature observation is provided in Section
2. Section 3 briefly describes the SoPC on-chip framework to
be configured in the target FPGA to support the RTSA
process. 'e organization of RTSA-enabled experimental
setup to study the die temperature behavior in multitask
scenario is presented in Section 4. Sections 5 and 6 provide
details of the various experiments conducted and results of
the investigation of the FPGA die thermal behavior. Section
7 studies the behavior of total power consumption of the die
to analyze it with respect to the thermal behavior of the die.
Section 8 presents generalized steps for deriving the die
temperature estimation model for any SoPC deployed in a
partially reconfigurable FPGA platform. 'e methodology
for the model derivation is validated on the Zynq XC7Z020
device in Section 9. Section 10 presents an example of how
the die temperature estimation model can be used in run-
time to carry out structural adaptation to dynamically
maintain the die temperature in the desired range whenever
needed, while simultaneously maintaining the performance
of the tasks. Section 11 concludes the results of this research.

2. Literature Review

In this paper, we have reasoned why a run-time decision-
making mechanism needs to be developed for mitigating
thermal dynamics on a SoPC die. 'is mechanism can
dynamically select a suitable system configuration, i.e., a set
of ASP circuit variants for the active tasks such that the
desired FPGA die temperature is maintained. 'e major
advantage of this mechanism will be the following: once
integrated with the decision-making mechanism proposed
in [1], it will result in a complete multiobjective mechanism,
which will allow autonomous mobile systems to adapt and
sustain their dynamic workloads in presence of changing
power budgets, system modes, temperature, and available
hardware resources, at run-time! We have, therefore, ob-
served the current literature from the same perspective;
whether the thermal management methods proposed in
recent research works can support multiobjective run-time
adaptation in systems. Although the suggested decision-
making mechanism for maintaining FPGA die temperature
is not in the scope of this paper, we have shown that a
requirement for such a mechanism is a model that can
estimate the die temperature of any system configuration
under consideration at run-time. Based on this necessity, we
are proposing a method to derive a mathematical model for
run-time die temperature estimation. Hence, along with the
above-discussed viewpoint of literature review, we have also
studied the recent research efforts for predicting the die
temperature.

Dynamic frequency scaling (DFS) is a well-known
method for temperature management, where the operating

frequency of tasks is increased or decreased to increase or
decrease the die temperature. DFS has been used for almost
all kinds of application platforms. It has been observed to be
used for tasks running on soft-core processors [6], for tasks
executing on the FPGA die [7], for multicore processor-
based SoCs (MPSoCs) [8], and in NOC-based MPSOCs
[9, 10]. Although the method is commonly used, it has an
inherent disadvantage of affecting the performance of the
executing tasks. It is therefore best suited for applications
that are tolerant to changing performance of the tasks. For
example, tasks running on processors that may have soft
deadlines for completion or which may have enough slack
time to allow reduction in their performance can make good
use of DFS. However, DFS does not fit well for systems
supporting computationally intensive tasks with strict per-
formance constraints, executing as dedicated ASP circuits.
Additionally, DFS alone will not be able to support run-time
multiobjective adaptation in systems. Although it can be
used for both power and thermal management, since the
tasks have fixed hardware circuits (no ASP circuit variants),
it will not always be able to meet the power budget and
temperature conditions. It also cannot support adaptation to
varying hardware resources (due to faults) and changing
workloads due to changing modes. In order to support these
objectives, it will again require ASP circuit variants of tasks
such that the performance of tasks can be maintained while
changing their frequency using the appropriate task variants.
'is points to run-time structural adaptation as a solution to
develop self-sustaining systems.

Other thermal management methods depend on the
tasks being supported. 'e required temperature profile is
achieved by scheduling tasks, managing (suspending or
turning on) tasks, allocating task workloads to specific re-
gions, or migrating them between regions of the die ac-
cordingly [11–16]. Such methods are dependent on the type
of executing tasks and therefore are more suited for pro-
cessor-based tasks and which have fixed periods of execu-
tion. In such cases, it becomes easier to implement the
scheduling or allocation policies. However, autonomous
mobile systems support tasks which begin or stop execution
based on several unpredictable workload or environmental
conditions. Task-based thermal management techniques
may not always work for such systems. It is because they may
not always be able to bring the die temperature at the desired
level. 'ey can minimize the temperature by scheduling/
allocating the executing tasks, but that minimum temper-
ature achieved may not be the desired die temperature to be
maintained at that point of time. Also, with such task-de-
pendent adaptation methods, multiobjective adaptation to
varying workload and environmental conditions cannot be
achieved.

'e use of self-heating circuits is also observed to in-
crease/decrease the die temperature [17–19]. 'ese are
dummy circuits which are distributed in different regions of
the die; the numbers and location depend on the die tem-
perature to be achieved. A very apparent disadvantage is the
use of extra hardware resources to heat up the die. Systems
supporting critical multitask multimodal applications face a
challenge to manage their ever-increasing workloads on the
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limited available resources. In such a case, trying to allocate
extra resources just for heating up the die is not an ac-
ceptable solution.

All the above observations in a way show that run-time
structural adaptation using a decision-making mechanism is
the best possible way for developing a completely self-sus-
taining system. Using ASP circuit variants for tasks and
selecting the appropriate variant as and when the set of
conditions change can achieve run-time multiobjective
adaptation. As discussed in the Introduction section, this
calls for a run-time model to predict the die temperature for
potential system configurations. However, not many re-
search efforts are seen in the direction of estimating or
predicting the die temperature, especially in a run-time
scenario. Most methods observed are temperature sensing
methods. A variety of ring-oscillator-based sensors and
sensors based on other circuits have been developed, which
sense the temperature profile of the die. Based on this,
different dynamic adaptation methods can be applied
[20–29]. 'e use of sensors assumes the use of task-based
thermal management techniques. Based on the temperature
distribution obtained from the sensors, the tasks are either
rescheduled or reallocated or migrated to achieve the desired
temperature profile. Happe et al. [24] discuss a run-time
temperature prediction model, whose parameters are
learned at run-time from different measurements made
using sensors.'emodel is proposed to be used for mapping
task threads between processor cores and hardware circuits
based on the temperature predictions. When considering
dynamic multiobjective adaptation, the use of sensors is not
an effective solution due to the following reasons:

(a) Since several sensors are deployed in different lo-
cations of the die, they use up extra hardware re-
sources, which is a scarce resource for autonomous
mobile systems.

(b) 'e sensors need a system configuration to be
programmed on the die to observe the die tem-
perature for that configuration. For selecting an
appropriate system configuration at run-time, it is
not possible to program every possible system
configuration, sense the temperature, and then de-
cide a suitable configuration that maintains the die
temperature in the required range.

(c) Since the observed sensors are primarily temperature
sensors, their use alone cannot help to achieve the
goal of run-time multiobjective adaptation.

While observing the existing thermal models, they are
not suitable either for run-time use or for FPGA-based
devices. Castilhos et al. [30] present a run-time software
model that can predict the temperature distribution in
MPSoCs.'is model is very specific to the instruction-based
processors in the MPSOCs and therefore cannot be applied
to a FPGA die in general, which supports tasks running in
the form of dedicated hardware circuits. Vendor tools like
Xilinx Power Estimator [31] and Intel FPGA Power and
'ermal Calculator [32] are commonly used for temperature
prediction of FPGA/SoC devices. However, these tools can

be used offline to predict the temperature for created designs
since they use complex and detailed thermal models that
require parameters like ambient temperature, switching
activity factor of the design and the individual resource types
used in the design, board setup, and heatsink parameters.
'ese models, therefore, take time varying from minutes to
hours depending on the size of the designs, to predict
temperature. Due to this, they are unsuitable for run-time
temperature prediction, which requires a model to provide
results within fractions of seconds. State-of-the-art tools like
HotSpot [33–35] make use of accurate thermal models that
predict the temperature for processor chips at the micro-
architecture level using the packaging and floorplan infor-
mation of the chips. Again, such efficient models can help
develop temperature-aware systems at design time. 'e
thermal simulations when included in the design flow can
result in thermally optimized designs. However, since the
models are targeted for processor chips and involve detailed
simulations, they cannot be applied for run-time die tem-
perature prediction in SoPC devices. 'ermal models have
also been developed for SoC devices and 3D integrated
silicon chips, as in [36, 37], which predict the temperature at
different granularity levels and at different stages of design
flow. 'ese models too can only be used to develop thermal-
aware or thermally optimized designs at design time and
cannot be applied for run-time prediction. Other observed
temperature estimation methods are design and device-
specific methods [38] and hence cannot be used for run-time
temperature prediction.

Luo et al. [39] present thermal models that can predict
the temperature of a multi-FPGA system consisting of 4
FPGAs, for a given set of tasks in run-time. Machine
learning algorithms are used to derive the thermal models.
'emodels fit well in the context of this paper and are suited
for run-time die temperature prediction. A set of 10
benchmarks, allocated in different combinations on the 4
FPGAs, thus resulting in 5040 samples, are used to train and
test the machine learning-based thermal models. Analyzing
the models from the point of view of this paper, if a run-time
die temperature prediction model needs to be obtained for a
FPGA device running a multitask multimodal application
using a machine learning algorithm, there are no other
training samples for the model except for the application
itself. 'is is because every application has its unique set of
switching activity factors of its inputs, outputs, and the
resources utilized, which affects the power consumption and
hence the die temperature. Using other applications/designs
for training the model will not lead to accurate model co-
efficients for the required application. It is also seen in [39]
that although the models have a good accuracy when the
benchmarks are a part of both the training and testing
samples, their accuracy is lower when the training and
testing samples use different independent benchmarks.
While this is acceptable for the purpose that the models are
being used for in [39], a low accuracy in the range of 7–12°C
is not suitable for RTSA, i.e., while finding a system con-
figuration that fits in the specified temperature range (which
can change dynamically). Additionally, the tuning param-
eters used for the models in [39] are very specific to the used
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multi-FPGA system. To use the models on a different
platform, the tuning parameters need to be changed; their
values depend on the user and the system. 'is means there
is no generic/standard guideline that can be followed for the
machine learning algorithm chosen, when the system
changes. 'us, although the thermal models presented in
[39] are a very good solution for run-time temperature
prediction, they cannot be applied for the purpose of RTSA.

From the discussion in the Introduction section, what is
required is a simplified method that can directly derive the
coefficients of the run-time die temperature estimation
model from data collected from actual measurements. 'is
paper presents such a method to derive a mathematical
model for run-time die temperature estimation for a FPGA
device and the application being supported on it. Since the
coefficients are derived from actual measurements on the
FPGA, they correspond to the FPGA device and its asso-
ciated application and are accurate enough to serve the
purpose of RTSA. 'e proposed method is generic and
hence can be used to derive the model coefficients for any
FPGA and application pair.

3. Architecture of SOPC Framework
Capable of RTSA

A SoPC which can accommodate RTSA must have an
underlying architecture that supports the RTSA process.
'is means, there must be a framework which allows a SoPC
to change its architecture (set of ASP variants of active tasks)
dynamically. Due to the multitask nature of the considered
SoPC, such framework must be able to accommodate
multiple ASP circuits of tasks and be able to change ar-
chitecture of one ASP circuit without interrupting or stalling
other ASP circuits. 'us, the entire area of hardware re-
sources should be virtually divided into a number of
identical PRRs called as slots.'e ASP circuit of a task can be
configured in one or multiple slots. 'e portion of the ASP
circuit configured in one slot is called ASP component or
Collaborative Macro-Function Unit (CMFU) of the ASP.
'e number as well as reconfigurable partition boundaries of
the slots can be defined during the SoPC design phase based
on the largest ASP component that needs to fit in a slot. 'e
method for this design procedure is specific for each type of
FPGA and associated CAD system (e.g., [40]). All the above
SoPC slots in the framework should have the ability to
communicate with each other in two ways: (a) transmission
of their data-streams from the ASP component, i.e., CMFU
of the upstream task to the CMFU of the downstream task,
and (b) to exchange control and synchronization infor-
mation between different CMFUs of the same task. Fur-
thermore, when ASP circuit of a task needs to be configured/
reconfigured, this framework must support the configura-
tion of the required CMFUs in available slots and their self-
assembling to form a complete functional circuit. 'e
framework must also allow flexible component relocation
between slots. Such a framework called “Multi-mode/task
Adaptive Collaborative Reconfigurable self-Organized Sys-
tem (MACROS)” framework has been developed to support
RTSA. It has been implemented and tested for multi-video-

stream applications on Xilinx Zynq 7000 and Kintex-7
families of FPGA platforms. 'e detailed description of this
concept and MACROS SoPC organization is discussed in
[41].

As shown in Figure 1, the entire area of hardware re-
sources available on the target FPGA is divided into several
slots (PRRs). ASP circuits can be configured in dedicated
slots by loading the partial configuration bit-files of the ASP
components to the configuration memory segments corre-
sponding to those slots. All slots are connected to each other
through the Distributed Communication and Control In-
frastructure (DCCI). DCCI works as a universal Network-
on-Chip (NoC) for the SoPC and consists of (a) a crossbar,
(b) a set of Local Connection and Control Units (LCCUs),
(c) a control data broadcast network, and (d) a system mode
broadcast bus. 'is framework allows any ASP component
(CMFU), allocated in any slot of the SoPC to directly
communicate to other ASP components of the same or
different tasks over associated LCCUs. As well, it is possible
for ASP components to change the data transfer link to any
other slot of the same ASP circuit or ASP circuits of other
tasks as and when necessary. Since all links are direct be-
tween components, it is possible to deploy ASP circuits of
several tasks to run simultaneously on the SoPC without
interference or suspension of any circuits in case of con-
figuration/reconfiguration or switching data links in any of
the SoPC slots. For this purpose, the SoPC infrastructure
contains a special dedicated circuit, Bit-file and Configu-
ration Management (BCM), to synchronize the slot re/
configuration process with the computation processes in
other slots accommodating other ASP components. All the
details of this framework are presented in [41].

4. RTSA-Enabled Experimental Setup

To develop a mathematical model for predicting the die
temperature for a given set of executing tasks, the thermal
behavior of the die and what factors the behavior depends on
needs to be observed and analyzed. Since the focus is on
partially reconfigurable SoPC platforms supporting multi-
task multimodal workloads, multiple questions need to be
answered:

(i) How does the heat spread when tasks are configured
in all the PRRs of the die?

(ii) What is the behavior of rise in temperature in such a
case?

(iii) What happens to the die temperature when there
are spare PRRs along with tasks executing in other
PRRs?

(iv) How is the heat distribution and thermal behavior
when the multiple executing tasks have the same
frequency?

(v) What if the multiple tasks have different
frequencies?

(vi) What kind of relation can be developed between
temperature and frequency and/or resource utili-
zation and/or power consumption?
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To find answers for all these questions, several experi-
ments need to be conducted. It is best to have an experi-
mental setup so that all the required experiments can be
conducted on the same setup. 'is way, it would be easier to
relate and analyze the results of the various experiments.
Also, since this is an ongoing research, it would be ideal to
have the same setup even for future experiments. To serve
the above purpose, an experimental setup is developed
which has an architecture that allows run-time structural
adaptation. To start with, the requirements of such a setup
are as follows:

(i) A recent SoPC device, capable of DPR, is required
for all the experimental evaluations

(ii) 'ere must a mechanism to monitor the die
temperature

(iii) 'ere must be a mechanism to measure the total
power consumption of the die

(iv) 'e reconfigurable area of the SoPC die must be
deployed with the MACROS framework to support
RTSA

(v) 'ere must be test tasks such that their partial
bitstreams can be configured in any PRR of the die
whenever required

(vi) 'e tasks must be capable of operating at different
frequencies
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(vii) 'ere must be a mechanism to dynamically change
the operating frequencies of the individual tasks as
needed

If the above requirements are met, it becomes possible to
conduct experiments using any number of tasks as and when
needed. 'eir locations and frequencies can also be varied
dynamically. 'e MACROS framework can ensure seamless
communication and synchronization between the executing
tasks. Power consumption and die temperature can si-
multaneously be measured for any experiment conducted.
'us, a run-time structurally adaptable experimental in-
frastructure is developed. Based on the above requirements,
the RTSA-enabled experimental setup is developed as
follows.

'e SoPC under test used for the RTSA-enabled ex-
perimental setup is the Xilinx Zynq XCZ7020 [42] (referred
as Zynq in the rest of the paper), housed on the ZedBoard
[43]. 'e ZedBoard has a means to measure its total power
consumption. 'ere is a current sense resistor of 10mΩ in
series with its 12V power supply. Voltage measured across
the resistor can provide the total current consumption, using
which the total power consumption of the board can be
calculated. If only the on-chip resources are utilized for the
experiments, the total power consumption of the board can
be considered as the total power consumption of the die.'e
Zynq device has a temperature sensor that can measure the
average die temperature. 'e sensed temperature can be
converted into a digital value by the XADC (analog to digital
temperature) hard-core [44] on the Zynq device. 'e ARM-
Cortex A9-based Processing System (PS) can read this value
from the XADC core with the help of a C-code on Xilinx
SDK and convert the digital value back to temperature.'us,
experiments to observe the thermal behavior and power
consumption of the die under multiple scenarios can be
conveniently carried out using the ZedBoard.'is makes the
ZedBoard an appropriate choice for a lab environment.

A partially reconfigurable architecture has been devel-
oped on the die with the MACROS framework [41], as
shown in Figure 2. 'e Zynq PL has four PRRs (PRR1 to
PRR4) where different ASP circuits can be programmed.'e
PRRs are equal in size and include the same amount of
reconfigurable resources. 'ree partially reconfigurable
computational tasks (T1, T2, and T3) have been designed,
which are arithmetic functions that include all the types of
reconfigurable resources, i.e., Logic Slices, BRAM slices, and
DSP slices. 'e difference between the tasks is the amount of
each type of resource utilized and, hence, the area they
occupy in a PRR. 'ree tasks with different resource utili-
zation are developed so that we can have more data to
understand the thermal behavior of the die and the relation
between temperature and resource utilization, frequency,
and power consumption. A task can be programmed to run
on any frequency in the range of 30MHz to 180MHz, in
multiples of 30MHz. Four clock outputs of a PLL, named,
clock0 to clock3, are used for this purpose. Each clock output
feeds a task in one PRR. A memory and time optimized
C-code developed using Xilinx SDK is used to program the
frequency of the task in each PRR. Based on the combination

of frequencies provided, the code finds the values of the PLL
registers that need to be updated to achieve the required
frequency combination, from a lookup table (LUT), and
then programs the PLL registers. Instead of involving the PS
section of the Zynq device, the clock frequency for a task
circuit in each PRR could also be changed using the pro-
grammable logic (PL) region of the Zynq device. 'e Dy-
namic Reconfiguration Port (DRP) [44] could be used to talk
to the XADC. However, that could affect the die temperature
being monitored during the experiments. 'erefore, the PS
part of the device is used to change the clock frequencies.'e
logic used to optimize the C-code that programs the required
frequency combination for the executing tasks is discussed
as follows.

4.1. Description ofMemory and TimeOptimized Code Logic to
Set Operating Frequencies for Tasks in Different PRRs.
Since a task in each PRR can be configured to run at one
frequency from six possible frequencies (30MHz to
180MHz), there are 6 × 6 × 6 × 6 � 1296 possible combi-
nations of frequencies for tasks in the four PRRs. Having a
single LUT to store the PLL register values would require
1296 entries for each PLL register. If the clock output phase
and duty cycle are kept to default values, there are five 32-bit
registers that need to be programmed to configure the
frequencies of the tasks in the four PRRs [45].

Clock Configuration Register 0 decides a common di-
vider value for all the output clocks, and Clock Configu-
ration Registers 2, 5, 8, and 11 decide the divider values for
clock0 to clock3, respectively. 'is means the total LUT
memory that would be required is 1296 entries× 5 PLL
registers/entry× 4 bytes/register� 25920 bytes ≈26 kB.

'e LUTsize can be reduced by breaking down the LUT
into multiple small LUTs, eliminating redundant frequency
combinations, and storing only the divider values instead of
specific PLL register values. Reducing LUT size saves
memory and the search time within the LUT to access the
required value.

When deciding divider values for the four clock outputs
of the PLL, what matters is the combination of frequency
and not the order of frequency according to PRRs. For
example, a combination of 30, 60, 90, and 120MHz means
clock0 (which feeds the task in PRR1) is 30MHz, clock1
(which feeds the task in PRR2) is 60MHz, clock2 (which
feeds the task in PRR3) is 90MHz, and clock3 (which feeds
the task in PRR4) is 120MHz. Similarly, a combination of
120, 90, 30, and 60MHz means clock0 is 120MHz, clock1 is
90MHz, clock2 is 30MHz, and clock3 is 60MHz. 'ere can
be a total of 24 such arrangements of the four frequencies.
However, with respect to finding divider values from an
LUT, all the 24 combinations are the same. It is because the
only difference in these combinations is which register will
be programmed with which divider value. In the first case,
Clock Configuration Register 2 for clock0 output will be
programmed for 30MHz whereas in the second case, Clock
Configuration Register 8 for clock2 will be programmed for
30MHz. Using the above logic, the LUTsize can be reduced
as follows.
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'e given combination of frequencies can be sorted in a
particular order (ascending or descending) and their cor-
responding clock output indices (i.e., which clock output
they correspond to) can be stored. Divider values can then be
obtained from the LUT for the sorted combination of fre-
quencies. Once that is done, the corresponding PLL register
values can be mapped using the stored indices and pro-
grammed in the PLL. For example, suppose the combination
of frequencies is 90, 120, 180, and 60MHz; the sorted
combination in ascending order is 60, 90, 120, and 180MHz.
'e corresponding clock output indices are stored as 3, 0, 1,
and 2 (means clock3 � 60MHz, clock0 � 90MHz,
clock1 � 120MHz, and clock2 � 180MHz). Let the divider
values for the sorted combination found from the LUT be
D0, D1, D2, and D3. 'ese divider values are mapped to the
corresponding PLL register using the stored indices. 'is
means D0 is programmed for clock3, i.e., for Clock Con-
figuration Register 11. Similarly, D1 is programmed for
clock0, i.e., for Clock Configuration Register 2, and so on.
For any other combination of the above frequencies from the
24 possible combinations, the only change is the map of
clock indices. 'e divider values from the LUT remain the
same. 'is way, redundant entries can be eliminated from
the LUT and its size can be drastically reduced. 'us, the
large LUT of 1296 entries can be broken down into the
following small LUTs:

(i) LUT1: all four clock frequencies are different, e.g.,
90, 120, 30, and 60MHz. 'is combination after
sorting in ascending order becomes 30, 60, 90, and
120MHz. For a frequency range from 30MHz to

180MHz, there are 6
4􏼠 􏼡 such sorted possible

combinations� 15 combinations.

(ii) LUT2: two clock frequencies are the same, e.g., 30,
90, 60, and 30MHz. 'is combination after sorting
in ascending order becomes 30, 60, and 90MHz. For
a frequency range from 30MHz to 180MHz, there

are 6
3􏼠 􏼡 such sorted possibilities� 20

combinations.

(iii) LUT3: two clock frequencies are the same and the
remaining two clock frequencies are the same, e.g.,
30, 60, 60, and 30MHz. 'is combination after
sorting in ascending order becomes 30 and 60MHz.
For a frequency range from 30MHz to 180MHz,

there are 6
2􏼠 􏼡 such sorted possibilities� 15

combinations.
(iv) LUT4: three clock frequencies are the same, e.g., 30,

60, 30, and 30. 'is combination after sorting in
ascending order becomes 30 and 60MHz. For a
frequency range from 30MHz to 180MHz, there are
6
2􏼠 􏼡 such sorted possibilities� 15 combinations.

(v) LUT5: all clock frequencies are the same, e.g., 30, 30,
30, and 30MHz. For a frequency range from

30MHz to 180MHz, there are only 6
1􏼠 􏼡 such

possibilities� 6 combinations.

'us, total number of combinations are
15 + 20 + 15 + 15 + 6� 71, as against 1296 in the above
unoptimized case. In this case, the LUTs need to store only
divider values and not actual PLL register values. 'e
number of divider values to be stored in the LUT is equal to
the number of different frequencies that the LUT corre-
sponds to. 'is means LUT1 has four 32-bit divider values,
LUT2 has 3 divider values, LUT3 and LUT4 have 2 divider
values, and LUT5 has only one divider value. Additionally,
each LUT also has another 32-bit divider value for Clock
Configuration Register 0, for each frequency combination in
that LUT. 'us, size of LUT1 � 15 entries× 5 divider values/
entry× 4 bytes/value� 300 bytes. Similarly, size of
LUT2 � 320 bytes, size of LUT3 and LUT4 � 180 bytes, and
size of LUT5 � 48 bytes. 'e total LUT size now becomes
300 + 320 + 180 + 180 + 48�1028 bytes, slightly more than
1 kB. Practically treating it as 2 kB, there is a reduction in the
LUT size by a factor of 13!

In the experimental platform used for this paper, the
reconfigurable region of Zynq is divided into 4 PRRs, as a
result of which the above discussed LUT size reduction is
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Figure 2: RTSA-enabled experimental platform.
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achieved. 'e same logic can be used for a larger number of
PRRs and a larger range of task frequencies. A much higher
LUT size reduction factor will be observed. 'us, the ap-
proach used for developing the LUT-based C-code effi-
ciently utilizes the system memory and search time to
dynamically program the desired combination of task fre-
quencies in the four PRRs.

To summarize, an RTSA-enabled experimental platform
is developed such that three partially reconfigurable tasks
can be configured dynamically in any of the four PRRs.
Using the memory and time optimized code, the tasks in the
four PRRs can be programmed with any frequency com-
bination to conduct the planned experiments, which are
discussed in the next section.

5. Investigation ofDieTemperatureBehavior in
Multitask Scenario

'e paper [5] observes the thermal behavior of the die when
an ASP circuit of a task is configured only in one PRR of the
FPGA, when the operating frequency of the task is varied,
and when the ASP circuit of the same task is relocated to
different PRRs. 'e following thermal behavior has been
noted.

'e FPGA die has a very fast heat distribution, as a result
of which the PRR location in which a task’s ASP circuit is
configured plays no role in influencing the die temperature.
For a given ASP circuit of a task, the die temperature rises for
≈10 minutes and then saturates in a temperature range
which is the same irrespective of the PRR location. 'e
saturation temperature is higher when a task operates at a
higher frequency. When a task is no longer running on the
PRR, the die temperature cools down to a lower temperature
within a minute and then continues to remain at that
temperature. 'e paper [5] thus provides an insight into the
heating/cooling behavior when a task’s ASP circuit is con-
figured in a single PRR of the FPGA. However, in actual
field-deployed systems, there are multiple tasks executing in
multiple PRRs at different frequencies. Due to the varying
workload, the number of ASP circuits deployed in the
available PRRs can also vary, i.e., all the PRRs could be
occupied or some could be spare. 'e thermal behavior of
the die in such a scenario where multiple tasks are executing
at different frequencies in some or all PRRs still needs to be
observed. Also, the thermal behavior needs to be analyzed
mathematically from the perspective of a potential model
that can estimate the die temperature for any system con-
figuration. Experiments have been planned to analyze the
discussed context.

For this set of experiments, ASP circuits of the tasks (T1,
T2, and T3) are configured in different PRRs at different
frequencies to form different system configurations. A
greybox [3] is configured at 30MHz in the PRR where no
task is executing. For each system configuration, the die
temperature is observed along with the total power con-
sumption every 30 seconds for a span of 20 minutes. Since
the cool-down behavior is already obtained from [5], it

would remain the same even for this set of experiments. 'is
is because the cool-down phase has the same configuration
of greyboxes deployed in all the PRRs operating at 30MHz
irrespective of the system configuration deployed prior to it.
'erefore, observation of the cool-down phase is not re-
peated in this set of experiments. 'e following system
configurations have been tested:

(1) T1 in PRR1 @ 90MHz, and T2 in PRR2 @90MHz
(2) T1 in PRR2 @ 120MHz, and T3 in PRR4 @ 120MHz
(3) T1 in PRR1 @ 90MHz, T2 in PRR2 @ 120MHz, T3 in

PRR3 @ 60MHz, and T3 in PRR4 @ 120MHz
(4) T3 in PRR1 @ 90MHz, T2 in PRR2 @ 120MHz, T2 in

PRR3 @ 120MHz, and T1 in PRR4 @ 60MHz
(5) T2 in PRR1 @ 120MHz, T1 in PRR2 @ 60MHz, and

T3 in PRR4 @ 90MHz

Although the choice of a task and its operating frequency
in a PRR are random, the above configurations are chosen so
that we have

(i) Cases of tasks running at different frequencies
(configurations 3, 4, and 5) and cases where all tasks
are running at the same frequency (configurations 1
and 2)

(ii) Cases where one PRR is spare, i.e., ASP circuits of
three tasks are running on three PRRs (configuration
5), two PRRs are spare, i.e., ASP circuits of two tasks
are running on two PRRs (configurations 1 and 2),
and no spare PRR is available, i.e., ASP circuits of
tasks are running on all PRRs (configurations 3 and
4). Note: the case for three spare PRRs, i.e., ASP
circuit of a task running on one PRR is already
studied in [5].

Figure 3 shows the temperature vs. time curves for each
system configuration.'e nature of curves obtained for each
configuration is the same as the thermal behavior observed
in [5].'e temperature rises for around 10minutes and then
saturates within a temperature range. Here, we take a closer
look at the curves obtained in Figure 3 to get a detailed idea
of how the temperature of the die rises and reaches satu-
ration. 'e curves can be split into three regions. In the first
1.5–2 minutes, the temperature rapidly rises with an ap-
proximate slope (call it slope1) of 3.5 to 4°C per minute. After
that, from around 1.5 to 6 minutes, the temperature rise
slows down and the slope (call it slope2) changes to ≈1°C per
minute. After the 6–6.5 minutes, the temperature saturates
at the level reached and stays there within a range of +2°C for
the remaining time the configuration is running.

'e slopes of temperature rise follow the above-dis-
cussed pattern irrespective of the number, type, location, and
frequency of the tasks configured on the FPGA die. Consider
the following: when system configuration 3 is running on the
die, the temperature rise curve has slope1 � 4 and slope2 � 1,
as can be seen in Figure 3. When each task of configuration 3
is programmed alone in a single PRR, similar slope values
are observed:
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(i) T1 configured in PRR1 alone @ 90MHz: slope1 � 4
and slope2 � 1

(ii) T2 configured in PRR2 alone @ 120MHz:
slope1 � 3.5 and slope2 � 1

(iii) T3 configured in PRR3 alone @ 60MHz: slope1 � 3.5
and slope2 � 1

(iv) T3 configured in PRR4 alone @ 120MHz: slope1 � 4
and slope2 � 1

As can be observed, the slopes of die temperature rise are
the same whether only one task is configured in a PRR or
there are multiple tasks running on different PRRs at dif-
ferent frequencies.'us, the temperature rise slopes for a die
remain the same irrespective of the number of tasks (i.e.,
resource utilization), frequency of operation, and their PRR
locations (in our case, slope1 � 3.5–4°C/min and
slope2 � 1°C/min for the Zynq device used for the
experiments).

From the above observation, if we know the base tem-
perature of the die for a configuration, i.e., die temperature
when a configuration is programmed after the FPGA is
turned ON, we can predict the saturation temperature of the
die using the slopes of temperature rise. However, noting the
base temperature of system configurations as an offline
process is not feasible. If we have 10 tasks, and 10 ASP circuit
variants per task, the base temperature for 1010 configura-
tions will need to be noted and stored in a tremendously
large LUT. Even if hypothetically, the base temperatures
were stored, the search time for the LUTwould be too large
for run-time temperature prediction. 'is means although
the above results give a complete understanding of the
thermal behavior of the die under different scenarios, the
behavior cannot be directly used to predict the saturated
temperature of a configuration. More experiments are
therefore needed to be carried out to achieve this goal, which
are discussed as follows.

6. Investigation of Die Temperature
Behavior with Changing
System Configurations

All the above experiments have been carried out in isolation.
'is means after the temperature readings for one system
configuration are taken, the ZedBoard is turned off until it
completely cools down. When tasks are running on the die,
the temperature rise is a result of rise in both static and
dynamic power consumption. Each experiment carried out
runs for a maximum of 20 minutes. After this experiment, if
the FPGA is turned OFF and turned ON, the static power
consumption (SPC) noted is higher than the usual static
power consumption obtained when the FPGA is completely
cooled down.'is is because the static temperature of the die
has increased due to the tasks that have been running on it.
As a result, to get accurate observations for the thermal
behavior of the die in the above set of experiments, the FPGA
is cooled down completely before starting a new experiment.
'is means the static power consumption of the FPGA at the
beginning of every experiment has been the same, i.e., we

have the same starting point. 'is is required so that all the
results obtained can be compared directly without any
scaling or modification.

In field-deployed systems, tasks are going to be con-
tinuously running on the die. If a new system configuration
needs to be programmed, the FPGA is not going to be turned
off before programming the configuration. As a result, it is
necessary to observe the thermal behavior when different
system configurations are programmed one after the other,
without allowing any cool-down period.'e experiments for
this observation are performed as follows: configuration 5
from the above set of experiments is programmed. 'e
temperature rise is observed every 30 seconds for a span of
20 minutes. After 20 minutes, configuration 4 is pro-
grammed, and temperature rise is observed for 20 minutes.
After that, configuration 2 is programmed and the process
repeats, followed by configuration 3. A graph of temperature
vs. time is plotted for the entire span of 80minutes, as shown
in Figure 4.

It is observed that, in every 20-minute period corre-
sponding to a configuration, the die temperature settles in
the same saturation temperature range that has been ob-
served for that configuration in the set of experiments
discussed in Section 5. As can be seen in Figure 4, in the first
20 minutes, the temperature saturates to 52–52.5°C, which
can also be observed in Figure 3 for configuration 5. Sim-
ilarly, from 20 to 40 minutes, the temperature is observed to
be saturated at ≈54°C, which is the saturation temperature
observed for configuration 4 in Figure 3. From 40 to 60
minutes, the temperature is saturated at ≈53.5°C, which is
the saturation temperature observed for configuration 2 in
Figure 3. From 60 to 80minutes, the temperature saturates at
around 54°C, which is the saturation temperature observed
for configuration 3 in Figure 3.

'e above observation once again confirms the rapid
heat distribution in the die. As soon as the configuration
changes, the corresponding change in die temperature is
immediately observed. 'e heat distribution is fast enough
such that the die temperature settles at the saturation
temperature of a configuration as soon as it is programmed.
From the above obtained results, it is also clear that any
configuration that is programmed after a set of tasks has
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Figure 3: Die temperature vs. time for different system
configurations.
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already run for more than 6-7 minutes after starting up and
the temperature directly settles at the saturation temperature
for that configuration. From this, it can be implied that the
die temperature depends on a specific parameter. Every
configuration apparently varies in that specific parameter
based on which the saturation temperature for that con-
figuration is observed. 'is parameter needs to be identified.

From all the experiments conducted, it is clear that the
die temperature can depend on the following parameters:
number of tasks running on the die, the resource utilization
of the tasks, the type of resources utilized, location of the
tasks, and their operating frequencies. Experimental results
in [5] show that, for a given configuration, the die tem-
perature does not depend on the location of the tasks.
Kirischian et al. [46] present results which show that die
temperature behavior does not depend on the type of re-
sources being utilized, i.e., Logic, BRAM, or DSP slices. We
are left with three parameters: number of tasks, their re-
source utilization, and operating frequencies of the tasks.
Every system configuration discussed in the above set of
experiments has a different combination of number tasks,
their total resource utilization, and their operating fre-
quencies. One specific parameter that can encompass all
these parameters is total power consumption (TPC). Power
consumption of the die depends on the operating fre-
quencies of tasks, resource utilization of the tasks, and the
number of tasks [1, 4]. A relation between saturated die
temperature for a given system configuration and corre-
sponding total power consumption must therefore be found.
'is relation can represent themodel to predict the saturated
die temperature for any potential system configuration to be
deployed on the SoPC die.

7. Analyzing Total Power
Consumption Behavior

It is understood from the above section that if we can find a
relation between die temperature and total power con-
sumption, which in turn depends on resource utilization and
frequency of the executing tasks, all the parameters that can
influence the die temperature are taken into consideration.
In order to observe the relation between die temperature and
TPC, the behavior of TPC must be observed. Multiple

experiments have been conducted for this purpose. TPC
behavior has been observed for the same period that the die
temperature behavior has been observed in the above set of
experiments. Initially, TPC behavior is observed for the case
when only one task is configured in a PRR. For this ob-
servation, the following experiments are carried out.

Task T1 is configured in PRR1 at 30MHz. 'e other
PRRs are configured with greyboxes running at 30MHz.
TPC of the die is noted every 30 seconds for a span of 20
minutes. T1 is then replaced by a greybox, and the cool-
down TPC when no task is running is observed every 30
seconds for a span of 10 minutes. Next, the frequency of T1 is
increased to 60MHz, and the same 30-minute experiment is
repeated. 'e experiment repeats for a total of six times,
where the frequency of T1 is increased up to 180MHz. T1 is
then relocated to PRR2, with greyboxes in other PRRs. Once
again, a set of six experiments is conducted, where frequency
of T1 is increased from 30 to 180MHz, and TPC is read for a
span of 20 minutes followed by a cool-down period of 10
minutes. 'e experiments repeat for T1 relocated at PRR3
and PRR4. Using the TPC results, graphs for TPC vs. time
are plotted.

Figure 5 shows a graph of TPC vs. time when task T1 is
configured in PRR1. 'e six curves correspond to the TPC
when T1 runs at a frequency of 30MHz to 180MHz in steps
of 30MHz. Observing the TPC behavior in 0–20 minutes,
TPC rises for around 5 minutes and then saturates at a value,
just like how the die temperature behaves. In the cool-down
phase (20–30 minutes), the TPC immediately falls to a stable
value and stays there for the period observed; again, just like
the temperature. Graphs obtained for TPC vs. time when T1
is configured in PRR2, PRR3, and PRR4 are very similar to
Figure 5. 'is is expected because the difference between
each graph is only the location of the task. Since the task is
the same, its power consumption in any location should be
the same.

'e behavior of TPC is also observed for a multitask
scenario. As mentioned in the experiments discussed in
Section 5, TPC of the die is observed for every configuration
along with the die temperature. Figure 6 shows the graph for
TPC vs. time for all the 5 configurations discussed in that set
of experiments. 'e curves have the same behavior as can be
seen in Figure 5; the TPC rises for a few minutes and then
settles at a saturated value for the remaining period of
observation.

From these results, it is possible to derive a relation
between saturated TPC (STPC) and saturated die temper-
ature (ST), which represents the saturated temperature es-
timation model (STEM).

From the thermal behavior and TPC behavior noted in
all the experiments, a simple methodology to derive the
STEM is developed.'e derivation steps are presented in the
next section.

8. Generalized Steps for STEM Derivation for
Any SoPC Device

From Section 7, we know that the STEM will be an equation
that predicts the saturated die temperature in terms of STPC.
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Figure 4: Die temperature vs. time for four consecutive system
configurations.
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In a run-time scenario, the smallest time to obtain STPC for
a system configuration is run-time prediction. In a system
with large number of tasks and their ASP circuit variants, it
is not practical to store STPC values for every possible
configuration in a LUT. 'is means once STPC is estimated
for a system configuration, it can be used to predict the
saturated die temperature for the same configuration.

'e authors in [1, 47] present a method to derive the
Dynamic Power Consumption Estimation Model (DPCEM)
that can predict the DPC for a potential system configu-
ration to be deployed on the SoPC die, at run-time. 'e
DPCEMpredicts the DPC that a system configuration would
have at around 3 minutes of time post its deployment after
system power-up. Referring to equation (7) in [1], the Es-
timated DPC (EDPC) of a FPGA die is obtained as follows:

EDPC(FPGA) (mW) �
Fcc

Fmin
× CLS × NLS + CBS × NBS(

+ CDS × NDS + CF􏼁,

(1)

where Fcc is the current operating frequency of the task and
Fmin is the minimum operating frequency for the task. CLS,
CBS, and CDS are the coefficients representing the slopes of
rise in DPC with respect to Logic, BRAM, and DSP slices,

respectively. NLS, NBS, and NDS are the number of Logic,
BRAM, and DSP slices used by the task, respectively. CF is a
constant.

For a system configuration with Nc tasks, the total re-
source utilization of the configuration is the sum of the
resource utilization of individual tasks. 'us, as presented in
equation (13) in [1], the above equation (1) changes to the
following:

EDPC(FPGA) (mW) �
Fcc

Fmin
× CLS × 􏽘

Nc−1

n�0
NLSn + CBS

⎛⎝

× 􏽘

Nc−1

n�0
NBSn + CDS × 􏽘

Nc−1

n�0
NDSn + CF

⎞⎠.

(2)

By finding a relation between DPC of a system con-
figuration and its STPC, we can estimate STPC. Once that is
achieved, the STEM can be derived. 'e DPCEM derivation
requires the development of test designs with varying re-
source utilization: one reconfigurable resource type at a time
[1, 47]. 'e same test designs need to be used for STPC
derivation. Say, there are NL designs which differ from one
another in Logic slice utilization, NB designs which differ
from one another in BRAM slice utilization, and ND designs
which differ from one another in DSP slice utilization. For
each design at a specific resource utilization, NF bitstreams
are generated, which vary in the frequency of operation.
'us, the total number of available test bitstreams is as
follows:

N � NL + NB + ND( 􏼁 × NF. (3)

'e steps for STPC and STEM derivation are discussed
as follows:

(1) Turn on the SoPC device under test and note the
static power consumption (SPC).

(2) Configure a bitstream and note the TPC of the SoPC
device under test at ≈3 minutes of configuring the
bitstream. In this step, there is no temperature
monitoring. 'is means power is not consumed by
the hard- or soft-core processor which runs the code
to monitor the temperature.

(3) Turn off the SoPC device and let it cool down such
that when it is turned on again, it has the same SPC
as noted before in Step 1.

(4) Turn on the SoPC device and configure the same
bitstream. Note the TPC and the die temperature of
the SoPC device under test every 30 seconds for a
span of 20 minutes (the resolution of 30 seconds can
be further reduced based on the monitoring method
available, and the span of 20 minutes can also be
reduced or increased as long as a saturated value is
possible to be obtained). In this step, the hard- or
soft-core processor which runs the code to monitor
the temperature also consumes power. 'e noted
TPC therefore will be higher than the one observed
in Step 2.
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Figure 5: TPC vs. time plot when T1 is configured in PRR1.
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(5) Turn off the SoPC device and let it cool down such
that when it is turned on again, it has the same SPC
as noted before in Step 1.

(6) Repeat steps 1 to 5 for all the N bitstreams.
Note: the number of bitstreams to be used for these
tests can be less than N. 'is is because, as seen in
[4], the die temperature does not depend on the type
of resources being utilized. All we need is some
designs that vary in resource utilization, so that we
have data to relate temperature with power con-
sumption. 'e more the number of bitstreams used
for test, the more data will be available, leading to a
more accurate model. 'erefore, we suggest using all
the N bitstreams that were used for DPCEM
derivation.
Note: the coefficients obtained for a DPCEM relate to
the switching activity factor of the designs used to
derive the model. Since die temperature depends on
power consumption, it is advisable to use the same
test designs to derive the STEM as well. 'is way, the
STEM and DPCEM will be well in sync. Other test
designs can also be used to derive the STEM, as long
as their switching activity factors are similar to the
ones used for DPCEM derivation. If they have dif-
ferent switching activity factors, an accurate tem-
perature prediction may not be achieved.

(7) Plot the TPC vs. time (0–20 minutes) graphs from
the readings noted in Step 4 for all the N bitstreams.

(8) Using the TPC vs. time graphs, note the TPC ob-
served at 3 minutes and STPC (from the 10- to20-
minute section) for all N bitstreams. Tabulate the N

pairs of TPC (at 3 minutes) and STPC, and find the
difference between the two as shown in Table 1.

(9) Average the N readings in the (STPC − TPC3min)

column of Table 1. 'is gives a value R, which is the
rise in TPC to reach STPC.

(10) Form another table, with one column as the TPC at
3 minutes noted in Step 2 (i.e., without the pro-
cessor running) and the TPC at 3 minutes noted in
Step 4 (i.e., with the processor running). Find the
difference between the two for all the N designs as
shown in Table 2.

(11) Average the N readings in the (TPCStep4 − TPCStep2)
column of Table 2. 'is gives SPP; the static power
consumed by the hard- or soft-core processor
monitoring the temperature.

(12) From the above obtained values of SPC and SPP, the
model equation to estimate TPC (ETPC) becomes

ETPC (W) � SPC (W) + SPP (W) + EDPC (W). (4)

SPC and SPP are one-time offline measurements,
and the EDPC is obtained using the DPCEM, i.e.,
equation (2).

(13) From Step 9, we know the TPC rises by a value R, to
reach STPC. 'erefore, the model equation to es-
timate STPC (ESTPC) becomes

ESTPC (W) � ETPC (W) + R (W). (5)

(14) Now that we have a model equation for STPC, we
can derive the STEM. Plot the temperature vs. time
(0–20 minutes) graphs from the readings noted in
Step 4 for all the N bitstreams. Observing the
section of 10–20 minutes from the temperature vs.
time plots and TPC vs. time graphs obtained in Step
7, note the saturated temperature (ST) and the
corresponding STPC for all N designs. 'is way, N

ST and STPC pairs are obtained.
(15) Arrange the above N pairs in ascending order and

plot a graph of ST vs. STPC.
(16) From the curve obtained, establish a linear relation

between ST and STPC. A simple MS Excel plot is
enough to obtain the relation. It will be of the
following form:

ST(°C) � M × STPC(W) + C, (6)

whereM is the slope which relates the STand STPC
and C is a constant.

(17) For run-time prediction, the STEM equation can be
written as follows:

EST(°C) � M × ESTPC(W) + C. (7)

(18) Using equation (5), equation (7) can thus be re-
written to obtain the model equation to predict
saturated temperature as follows:

EST(°C) � M ×(ETPC(E) + R)(W) + C, (8)

where ETPC can be obtained from equation (4) and
EDPC can be obtained from equation (2).

Table 1: Relation between STPC and TPC observed at 3 minutes.

Design
no. TPC3min (mW) STPC (mW) STPC − TPC3min (mW)

Design1 TPC1 STPC1 Difference1
Design2 TPC2 STPC2 Difference2
. . .

DesignN TPCN STPCN DifferenceN

Table 2: Calculation of the average value of SPP.

Design
no. TPCstep2 TPCstep4 TPCstep4 − TPCstep2 (mW)

Design1 TPCstep21 TPCstep41 Difference1
Design2 TPCstep22 TPCstep42 Difference2
. . .

DesignN TPCstep2N TPCstep4N DifferenceN
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'us, we have a simple method to derive a model that
can predict the saturated temperature of any SoPC device for
potential system configurations that could be running on the
SoPC die. 'e STEM equation derived using the discussed
method incorporates all the possible on-chip parameters
that can influence the die temperature. As can be seen, the
STEM equation obtained is a linear equation. It can clearly
be used for run-time die temperature prediction. Also, since
the model is a linear equation, only two die temperature
measurements are essentially required to obtain the model
coefficients. 'e above process can therefore be carried out
in run-time by systems to self-derive the models and update
the coefficients if there are any changes in the SoPC platform
or the application being supported (details on the concept of
self-derivation of STEM are not in the scope of this paper).
'e decision-making mechanism can dynamically use the
derived model as and when needed to carry out RTSA, i.e.,
estimate the die temperature for potential system configu-
rations and select the most suitable configuration that can
satisfy the existing die temperature constraint.

9. Verification of Methodology for STEM
Derivation on Zynq Device

'e procedure for deriving the STEM is demonstrated and
validated on the Zynq device, housed on the ZedBoard. 'is
device is chosen since it has been used as the SoPC under test
for all the above experiments to observe the thermal be-
havior of the die. Also, a DPCEM has been derived for the
device in [1, 47].

A test design, consisting of all reconfigurable resources,
namely, Logic, BRAM, and DSP slices is developed. 'e
design is essentially arithmetic functions such that all the
reconfigurable resources are utilized. Five variants of the
design with increasing resource utilization are generated.
For each variant, 6 bitstreams are generated; each one op-
erating at a different frequency from 30 to 180MHz. 'us, a
total of 30 bitstreams are generated. When the ZedBoard is
turned on, the noted SPC� 2340mW (Step 1 of Section 8).
For each bitstream, the TPC of the Zynq device alone
(without the ARM processor running) is noted at ≈3
minutes of configuring the bitstream (Step 2 of Section 8).
Also, for each bitstream, TPC and die temperature (i.e., with
ARM processor running) are noted every 30 seconds, for a
span of 20 minutes (Step 4 of Section 8). According to Step 7
of Section 8, TPC vs. time plots are obtained for all the 30
bitstreams. 'e TPC at 3 minutes observation time is noted
and tabulated as shown in Table 3. Observing the section
from 10 to 20 minutes, STPC for all the 30 designs are
tabulated as shown in Table 3. It can be observed from
Table 3 that the difference between STPC and TPC observed
at 3 minutes is between 60 and 84mW, with a greater
number of readings at 60mW. 'is means, on average, the
value ofR, i.e., the rise in TPC to reach STPC, is 60mW (Step
9 of Section 8). Next, for all the 30 bitstreams, the average
value of the difference, when both TPC and die temperature
are noted and when TPC is monitored alone, is observed to
be 1176mW. 'is means the static power consumed by the
ARM core (SPP) is 1176mW (Step 10 of Section 8). From the

above obtained values of SPC, SPP, and R, the model
equation to estimate TPC (ETPC for the Zynq device
according to Step 12 of Section 8 becomes

ETPCZynq(W) � 2.340(W) + 1.176(W) + EDPC(W)

� EDPC(W) + 3.516(W).

(9)

Based on equation (10) in [1], EDPC for the Zynq device
is given as

EDPC(Zynq) (mW) �
Fcc

Fmin
× 0.013 × NLS + 1.1 × NBS(

+ 0.266 × NDS + 23.06􏼁.

(10)

Using equations (2) and (10), the EDPC for a system
configuration with Nc tasks running on the Zynq die can be
obtained as follows:

EDPC(Zynq) (mW) �
Fcc

Fmin
× 0.013 × 􏽘

Nc−1

n�0
NLSn + 1.1⎛⎝

× 􏽘

Nc−1

n�0
NBSn + 0.226 × 􏽘

Nc−1

n�0
NDSn + 23.06⎞⎠.

(11)

Once ETPC of Zynq is obtained using equations
(9)–(11), from Step 13 of Section 8, the model equation to
estimate STPC (ESTPC) can be obtained using the value of
R:

ESTPC(Zynq)(W) � ETPC(W) + 0.060(W). (12)

Using the die temperature readings obtained for the test
bitstreams, temperature vs. time graphs are plotted. Ob-
serving the section of 10–20 minutes from the temperature
vs. time plots, saturated temperature (ST) is noted for all the
designs. Arranging the STand corresponding STPC values in
ascending order, a graph of ST vs. STPC is plotted, as shown
in Figure 7. 'e curve obtained can be approximated by a
linear equation seen in the graph. 'us, we have

ST(Zynq)(°C) � 11.85 × SPTC(W) + 4.89. (13)

Equation (13) represents the model to predict the sat-
urated temperature based on STPC for the Zynq device. It
can therefore be rewritten using equations (9) and (12) as

EST(Zynq)(°C) � 11.85 × ESPTC(W) + 4.89

� 11.85 ×(ETPC(W) + 0.060) + 4.89

� 11.85 ×(EDPC(W) + 3.516 + 0.060) + 4.89

� 11.85 ×(EDPC(W) + 3.576) + 4.89.

(14)

Comparing the saturated temperature values estimated
using (14) and the measured die temperature values for the
30 bitstreams, the model has an accuracy of ±2°C. 'is is
acceptable considering the unavoidable experimental errors
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involved while measuring TPC and temperature. Also, in
actual systems, the range of temperature predicted by the
model will be of more value than the exact temperature. For
example, if the specifications require the die temperature to
be in the range of 50–52°C, and the STEM estimates 54–56°C
for a candidate system configuration, the configuration can

easily be rejected. 'e model has been validated for designs
with STPC up to 6W.

10. Run-Time STEM Application Example

'is section presents an example of how the STEM can be
used at run-time to carryout RTSA such that the die tem-
perature is maintained in the desired range without affecting
the performance of the active system tasks. Since a STEMhas
been derived for the Zynq XC7Z020 device in Section 9, the
same SoPC has been used for the example presented.

Consider a system developed on the Zynq device. 'e
system is deployed with the MACROS framework and is
divided into 8 slots to be capable of RTSA, as shown in
Figure 8. 'e system has two tasks T0 and T1. Task T0
performs video acquisition and processing of video frames
according to the 720p standard. It has a frame rate of 120 fps.
T1 is a communication and video-transmission task with a
performance of 16Mbps. Each task has 4 ASP circuit var-
iants which have different combinations of operating fre-
quency and resource utilization to provide the same task
performance. 'e two tasks can operate at 30MHz, 60MHz,
120MHz, and 240MHz. 'e operating frequency Fsys, re-
source utilization in terms of the reconfigurable Logic,
BRAM, and DSP slices used, and the performance of each
variant are presented in Table 4.

Table 3: Relation between STPC and TPC observed at 3 minutes for Zynq.

Frequency TPC3min (mW) STPC (mW) STPC − TPC3min (mW)

Design 1

30 3672 3732 60
60 3780 3840 60
90 3912 3972 60
120 4020 4080 60
150 4116 4176 60
180 4212 4272 60

Design 2

30 3696 3756 60
60 3876 3936 60
90 3984 4056 72
120 4128 4188 60
150 4260 4320 60
180 4356 4428 72

Design 3

30 3720 3780 60
60 3936 3996 60
90 4080 4140 60
120 4236 4296 60
150 4368 4440 72
180 4524 4584 60

Design 4

30 3732 3816 84
60 3972 4056 84
90 4152 4212 60
120 4344 4404 60
150 4500 4572 72
180 4668 4752 84

Design 5

30 3780 3852 72
60 3996 4056 60
90 4224 4284 60
120 4428 4512 84
150 4656 4728 72
180 4872 4956 84
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Figure 7: Plot for ST vs. STPC for 30 different bitstreams.

16 International Journal of Reconfigurable Computing



10.1. Initial State. Assume that, initially, the permitted die
temperature range (PDTR) is 50–52°C. As shown in
Figure 8(a), the system selects and configures ASP circuit
variants T0 − 0 and T1 − 0, which operate at 240MHz and
occupy 1 slot on the FPGA each, as the system configuration
that satisfies the PDTR. How the system decides this con-
figuration is not in the scope of this paper; however, the
following demonstrates how the selected configuration
satisfies the PDTR.

Using equation (11) and Table 4, the DPC of the two
tasks running on the Zynq device can be obtained as follows:

EDPC(Zynq) (mW) �
240
30

× 0.013 × 􏽘
2

n�0
NLSn + 1.1⎛⎝

× 􏽘

2

n�0
NBSn + 0.226 × 􏽘

2

n�0
NDSn + 23.06⎞⎠

� 1494.992mW.

(15)

From Section 9, the SPC of the Zynq is 2340mW. In this
example, while the system is running, die temperature is not
being measured. As a result, the ARM core is not being used;
only the FPGA resources are used. 'erefore, SPP is not
considered in the calculations here. Also, the value of R, the
rise in TPC to reach STPC, is observed as 60mW in Section
9. Using equations (4) and (5), the STPC is estimated as
follows:

ESTPC(Zynq)(W) � 2.340(W) + 1.495(W) + 0.060(W)

� 3.895(W).

(16)

From equation (13), the saturated die temperature of
Zynq can be estimated as

EST(Zynq)(°C) � 11.85 × 3.895 + 4.89 � 51°C. (17)

'e predicted die temperature falls within the permitted
range of 50–52°C. 'us, the selected configuration satisfies
the temperature constraint.

10.2. Need to Decrease Die Temperature. Suppose that the
external-to-chip temperature changes such that the die
temperature needs to be reduced and brought in the range of
46–48°C so that the difference between the external and on-
chip temperature is maintained as before to avoid thermal
cycling. 'e above system configuration does not satisfy the
new temperature constraint. 'e system needs to adapt in
run-time. It uses the STEM to evaluate potential configu-
rations and dynamically selects and configures ASP variants
T0 − 2 andT1 − 2, as shown in Figure 8(b), as the new system
configuration. 'ese ASP circuit variants operate at 60MHz
and occupy 3 slots on the FPGA each. Following the same
process as in Section 10.1, the STPC of this configuration is
estimated to be 3.545W. Using this ESTPC and equation
(13), the die temperature is estimated to be
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Figure 8: Scenarios of run-time adaptation to die temperature changes. (a) Fsys � 240MHz and (b) Fsys � 60MHz.

Table 4: ASP circuit variants of two systems tasks.

Variant no. No. of slots Fsys (MHz) Performance Logic slices BRAM slices DSP slices

T0 − 0 1 240 120 fps 3093 43 30
T0 − 1 2 120 120 fps 5897 79 54
T0 − 2 4 60 120 fps 11779 145 97
T0 − 3 8 30 120 fps 23259 254 176
T1 − 0 1 240 16Mbps 2061 22 82
T1 − 1 2 120 16Mbps 3893 40 157
T1 − 2 4 60 16Mbps 7514 58 245
T1 − 3 8 30 16Mbps 14499 94 447
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EST(Zynq)(°C) � 11.85 × 3.545 + 4.89 � 47°C. (18)

'e predicted die temperature falls within the permitted
range of 46–48°C. 'us, by using the run-time STEM and
RTSA, ASP circuit variants of tasks that operate at lower
frequency and occupy more resources are selected and
configured dynamically. 'e result is that the die temper-
ature is maintained in the desired range and the perfor-
mance of the tasks is also not affected.

11. Conclusion

'e presented research is aimed to find the methodology to
derive the thermal dynamic model for partially reconfig-
urable FPGA-based SoPCs supporting multitask stream-
processing applications. 'e main goal of this research is to
allow embedded decision-making systems to dynamically
select the most efficient set of task-specific ASP circuits to
keep the on-chip temperature in the required saturated level,
thus avoiding internal thermal cycling on the flip-chip FPGA
package. 'is is necessary due to the significant influence of
on-chip thermal cycling on the reliability of the systems.'is
new problem can mainly be caused due to the dynamic
nature of workload along with their changing operating
frequencies and may bring significant thermal instability if
not properly managed. 'erefore, there is a need to un-
derstand the thermal behavior of SoPC dies under multitask
workload conditions. From the observed behavior, a
methodology for deriving a model to predict the die tem-
perature for a system configuration in any given partially
reconfigurable SoPC device needs to be developed. 'e
model will allow the development of a run-time decision-
making mechanism, which will evaluate potential system
configurations using this model and select a suitable con-
figuration that maintains the required die temperature. 'is
mechanism, when integrated with the run-time decision-
making mechanism presented in [1], will provide a complete
run-time multiobjective mechanism that can enable run-
time adaption to workload, power budget, temperature, and
hardware resource constraints. To summarize, to achieve the
goal of thermal stability on the die, the first step is to study
the thermal behavior of the die and develop a method to
derive a model that can predict the die temperature for a
given system configuration.'is paper presents our research
efforts for the same. 'e main contributions of the paper are
as follows: (a) a detailed study of thermal behavior of SoPC
die in different workload scenarios, (b) a generic method-
ology to derive a run-time model that can predict the die
temperature for a system configuration running on any
FPGA-based SoPC device, and (c) an RTSA-enabled ex-
perimental setup on Xilinx ZYNQ XCZ7020 SoPC to study
the thermal behavior of the SoPC die and to develop the
methodology for deriving the saturated temperature esti-
mation model.
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