
1

Computational Intelligence in Wireless Sensor
Networks: A Survey

Raghavendra V. Kulkarni, Senior Member, IEEE, Anna Förster, Member, IEEE and
Ganesh Kumar Venayagamoorthy, Senior Member, IEEE

Abstract—Wireless sensor networks (WSNs) are networks
of distributed autonomous devices that can sense or monitor
physical or environmental conditions cooperatively. WSNs face
many challenges, mainly caused by communication failures,
storage and computational constraints and limited power
supply. Paradigms of computational intelligence (CI) have been
successfully used in recent years to address various challenges
such as data aggregation and fusion, energy aware routing, task
scheduling, security, optimal deployment and localization. CI
provides adaptive mechanisms that exhibit intelligent behavior
in complex and dynamic environments like WSNs. CI brings
about flexibility, autonomous behavior, and robustness against
topology changes, communication failures and scenario changes.
However, WSN developers are usually not or not completely
aware of the potential CI algorithms offer. On the other side,
CI researchers are not familiar with all real problems and subtle
requirements of WSNs. This mismatch makes collaboration and
development difficult. This paper intends to close this gap and
foster collaboration by offering a detailed introduction to WSNs
and their properties. An extensive survey of CI applications
to various problems in WSNs from various research areas
and publication venues is presented in the paper. Besides, a
discussion on advantages and disadvantages of CI algorithms
over traditional WSN solutions is offered. In addition, a general
evaluation of CI algorithms is presented, which will serve as a
guide for using CI algorithms for WSNs.

Index Terms—clustering, computational intelligence, data
aggregation, deployment, design, localization, quality of service,
routing, scheduling, security, sensor fusion, wireless sensor
networks

LIST OF ABBREVIATIONS

ACO Ant colony optimization
AIS Artificial immune system
CI Computational intelligence
CSMA Carrier sense multiple access
DE Differential evolution
EA Evolutionary algorithm
GA Genetic algorithm
LEACH Low energy adaptive clustering hierarchy
MAC Media Access Control

Authors acknowledge the support received for this work from the
National Science Foundation, USA, under the grants ECCS # 0625737 and
ECCE # 0348221, and National Competence Center in Research on Mobile
Information and Communication Systems (NCCR-MICS), a center supported
by the Swiss National Science Foundation under grant # 5005-67322.

Raghavendra V. Kulkarni and Ganesh Kumar Venayagamoorthy are
with the Real-Time Power and Intelligent Systems Laboratory, Missouri
University of Science and Technology, Rolla, MO-65409, USA e-mail:
({arvie,gkumar}@ieee.org).

Anna Förster is with the Faculty of Informatics, University of Lugano,
Switzerland e-mail: (anna.foerster@ieee.org).

Manuscript received January 07, 2009; revised October 23, 2009.

MANET Mobile ad hoc network
NN Neural network
PSO Particle swarm optimization
QoS Quality of Service Management
RL Reinforcement learning
RSSI Received signal strength indication
RTS Request to send
SI Swarm intelligence
SOM Self-organizing map
TDMA Time division multiple access
TPOT Team-partitioned, opaque-transition
WSN Wireless sensor network

I. INTRODUCTION

AWireless sensor network is a network of distributed
autonomous devices that can sense or monitor physical

or environmental conditions cooperatively [1]. WSNs are
used in numerous applications such as environmental
monitoring, habitat monitoring, prediction and detection of
natural calamities, medical monitoring and structural health
monitoring [2]. WSNs consist of a large number of small,
inexpensive, disposable and autonomous sensor nodes that are
generally deployed in an ad hoc manner in vast geographical
areas for remote operations. Sensor nodes are severely
constrained in terms of storage resources, computational
capabilities, communication bandwidth and power supply.
Typically, sensor nodes are grouped in clusters, and each
cluster has a node that acts as the cluster head. All nodes
forward their sensor data to the cluster head, which in
turn routes it to a specialized node called sink node (or
base station) through a multi-hop wireless communication as
shown in Figure 1. However, very often the sensor network
is rather small and consists of a single cluster with a
single base station [3]–[5]. Other scenarios such as multiple
base stations or mobile nodes are also possible. Article [6]
presents a classification of WSNs based on communication
functions, data delivery models, and network dynamics.
Resource constraints and dynamic topology pose technical
challenges in network discovery, network control and routing,
collaborative information processing, querying, and tasking
[2]. CI combines elements of learning, adaptation, evolution
and fuzzy logic to create intelligent machines. In addition
to paradigms like neuro-computing, reinforcement learning,
evolutionary computing and fuzzy computing, CI encompasses
techniques that use swarm intelligence, artificial immune
systems and hybrids of two or more of the above. Paradigms of

Raghavendra
©2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Raghavendra
To appear in IEEE Communications Surveys & Tutorials, volume 13, issue 1, 2011

2

Sink node

Sensor node

Cluster head

Wireless link

Phenomenon to be
monitored

Fig. 1. Architecture of a typical wireless sensor network

CI have found practical applications in areas such as product
design, robotics, intelligent control, biometrics and sensor
networks. Researchers have successfully used CI techniques to
address many challenges in WSNs. However, various research
communities are developing these applications concurrently,
and a single overview thereof does not exist. Most of the here
presented works have scattered in journals and conferences
whose prime focus is not WSNs. Aim of this survey is
to bridge this gap and present a brief, but comprehensive
survey of numerous CI approaches and applications, which
provide the WSN researchers with new ideas and incentives.
A discussion on yet unexplored challenges in WSNs, and a
projection on potential CI applications in WSN are presented
with an objective of encouraging researchers to use CI
techniques in WSN applications.

The rest of this paper is organized as follows: The main
challenges in WSNs are discussed in Section II. The paradigms
of CI are outlined in Section III. The WSN applications that
use CI approaches are clustered in three groups and discussed
in Sections IV, V and VI. A high level evaluation of CI
techniques in terms of their applicability to WSNs is provided
in Section VII, wrapped as a guide for WSN application
developers and practitioners. Finally, conclusions and authors’
vision on future trends and directions of applying CI methods
to various WSN problems are laid out in Section VIII.

II. CHALLENGES IN SENSOR NETWORKS

Real deployments of wireless sensor networks usually
implement one of the three general applications: periodic
reporting, event detection, and database-like storage. Periodic
reporting is by far the most used and the simplest application
scenario, in which at regular intervals the sensors sample
their environment, store the sensory data, and send it to
the base station(s). Actuators such as automatic irrigation
systems and alarm systems are often connected with such
WSNs. This scenario is used in most monitoring applications
in agriculture [7], [8], microclimate [4], [5], [9] and
habitat surveillance [10]–[12], military operations [13], and
disaster relief [14]. The main property of periodic reporting
applications is the predictability of the data traffic and volume.

In contrast, in event detection applications [3], [15], nodes
sense the environment and evaluate the data immediately for
its usefulness. If useful data (an event) is detected, the data is
transmitted to the base station(s). The data traffic can hardly
be predicted: events usually occur randomly and the resulting

data traffic is sporadic. However, a small amount of data has
to be exchanged for route management and aliveness checks
even when no events are detected.

The third group of sensor networks
applications, database-like storage systems [16], are similar
to event-based systems. All sensory data (regular sampling or
events) is stored locally on the nodes. Base stations search for
interesting data and retrieve it from the nodes directly. The
main challenge in these applications is to store the data in a
smart way for fast search and retrieval.

The challenges and properties of WSN deployments can be
summarized as follows:

Wireless ad hoc nature: A fixed communication infras-
tructure does not exist. The shared wireless medium places
additional restrictions on the communication between the
nodes and poses new problems like unreliable and asymmetric
links. But, it provides the broadcast advantage: A packet
transmitted by a node to another is received by all neighbors
of the transmitting node.

Mobility and topology changes: WSNs may involve
dynamic scenarios. New nodes may join the network, and the
existing nodes may either move through the network or out of
it. Nodes may cease to function, and surviving nodes may go in
or out of transmission radii of other nodes. WSN applications
have to be robust against node failure and dynamic topology.

Energy limitations: Nodes in most WSNs have limited
energy. The basic scenario includes a topology of sensor
nodes, and a limited number of more powerful base stations.
Maintenance or recharging of the batteries on sensor nodes is
not possible after deployment. Communication tasks consume
maximum power available to sensor nodes, and in order to
ensure sustained long-term sensing operation, communication
tasks need to be exercised frugally.

Physical distribution: Each node in a WSN is an
autonomous computational unit that communicates with its
neighbors via messages. Data is distributed throughout the
nodes in the network and can be gathered at a central
station only with high communication costs. Consequently,
algorithms that require global information from the entire
network become very expensive. Thus, reticent distributed
algorithms are highly desirable.

A brief description of the major WSN challenges addressed
by CI techniques is presented in the following subsections:

A. Design and Deployment
WSNs are used in vastly diversified applications ranging

from monitoring a biological system through tissue implanted
sensors to monitoring forest fire through air-dropped sensors.
In some applications, the sensor nodes need to be placed
accurately at predetermined locations, whereas in others, such
positioning is unnecessary or impractical. Sensor network
design aims at determining the type, amount and location of
sensor nodes to be placed in an environment in order to get a
complete knowledge of its functioning conditions.

B. Localization
Node localization refers to creating location awareness in all

deployed sensor nodes. Location information is used to detect

3

and record events, or to route packets using geometric-aware
routing [17], [18]. Besides, location itself is often the data
that needs to be sensed. An overview of localization systems
for WSNs is presented in [19]. Localization methods that
use time-of-arrival of signals from multiple base stations are
commonly used in WSNs [20].

C. Data Aggregation and Sensor Fusion
Sensor fusion is the process of combining of the data

derived from multiple sources such that either the resulting
information is in some sense better than would be possible
with individual sources, or the communication overhead
of sending individual sensor readings to the base station
is reduced. Due to large-scale deployment of sensors,
voluminous data is generated, efficient collection of which
is a critical issue. Most widely used non-CI methods for
sensor fusion include Kalman filter, Bayesian networks and
Dempster-Shafer method [21]. A survey of data aggregation
algorithms used in WSNs is presented in [22].

D. Energy Aware Routing and Clustering
Economic usage of energy is important in WSNs because

replacing or recharging the batteries on the nodes may be
impractical, expensive or dangerous. In many applications,
network life expectancy of a few months or years is desired.

Routing refers to determining a path for a message from
a source node to a destination node. In proactive routing
methods, routing tables are created and stored regardless of
when the routes are used. In reactive routing methods, routes
are computed as necessary. In densely deployed networks,
routing tables take a huge amount of memory, and therefore,
hybrids of proactive and reactive methods are suitable for
such networks. Another possible solution is to cluster the
network into hierarchies. An overview of modern WSN routing
algorithms is presented in [23].

E. Scheduling
In order to conserve energy, typical sensor nodes remain

in sleep mode most of the time, and go into active mode
periodically in order to acquire and transmit sensory data.
A strict schedule needs to be followed regarding when a
node should wake up, sense, transmit (or perform locomotion),
ensuring maximum network lifetime. Causing the WSN nodes
to take right actions at right time is the major objective of
WSN scheduling.

F. Security
Wireless links in WSNs are susceptible to eavesdropping,

impersonating, message distorting etc. Poorly protected
nodes that move into hostile environments can be easily
compromised. Administration becomes more difficult due to
dynamic topology. Various security challenges in wireless
sensor networks are analyzed and key issues that need to be
resolved for achieving adequate security are summarized in
[24]. Types of routing attacks and their countermeasures are
presented in [25]. A review of security threats to WSNs and
a survey of defense mechanisms is presented in [26].

G. Quality of Service Management

QoS is an overused term that has various meanings and
perspectives. QoS generally refers to the quality as perceived
by the user/application, while in the networking community,
QoS is accepted as a measure of the service quality that
the network offers to the applications/users. QoS refers to
an assurance by the network to provide a set of measurable
service attributes to the end-to-end users/applications in terms
of fairness, delay, jitter, available bandwidth, and packet loss.
A network has to provide the QoS while maximizing network
resource utilization. To achieve this goal, the network is
required to analyze the application requirements and deploy
various network QoS mechanisms. A survey of QoS support
in wireless sensor networks is presented in [27].

III. A BRIEF OVERVIEW OF THE PARADIGMS OF CI

CI is the study of adaptive mechanisms that enable
or facilitate intelligent behavior in complex and changing
environments [28], [29]. These mechanisms include paradigms
that exhibit an ability to learn or adapt to new situations,
to generalize, abstract, discover and associate. In [30], CI
is defined as the computational models and tools of
intelligence capable of inputting raw numerical sensory data
directly, processing them by exploiting the representational
parallelism and pipelining the problem, generating reliable
and timely responses and withstanding high fault tolerance.
Paradigms of CI are designed to model the aspects of
biological intelligence. CI encompasses paradigms such as
neural networks, reinforcement learning, swarm intelligence,
evolutionary algorithms, fuzzy logic and artificial immune
systems. These paradigms are briefly introduced in the
following subsections. Besides, it is common to find hybrids of
these paradigms, such as neuro-fuzzy systems, fuzzy-immune
systems etc. Certainly there exist more CI techniques, which
are not discussed here because they have not been applied
to WSNs problems yet and their properties do not suit the
requirements well. A broader discussion of CI can found in
[29], [30].

A. Neural Networks

The human brain, which possesses an extraordinary ability
to learn, memorize and generalize, is a dense network of
over 10 billion neurons, each connected on average to about
10,000 other neurons. Each neuron receives signals through
synapses, which control the effects of the signals on the
neuron. These synaptic connections play an important role
in the behavior of the brain. These findings have inspired
modeling of biological neural systems by means of NNs [31].
The three basic components of an artificial neuron shown in
Figure 2 are:

1) The links that provide weights Wji, to the n inputs of
jth neuron xi, i = 1, . . . , n;

2) An aggregation function that sums the weighted inputs to
compute the input to the activation function uj = Θj +
n∑
i=1

xiWji, where Θj is the bias, which is a numerical

value associated with the neuron. It is convenient to

4

x1

x2

xn

Wj1

Wj2

Wjn

Θj

uj yj

Ψ(uj)

Inputs Weights
(Synapses)

Nonlinear activation function
(Cell body)

Output
(Axon)

Fig. 2. Structure of an artificial neuron

think of the bias as the weight for an input x0 whose

value is always equal to one, so that uj =
n∑
i=0

xiWji;

3) An activation function Ψ that maps uj to vj = Ψ(uj),
the output value of the neuron. Some examples of the
activation functions are: step, sigmoid, tan hyperbolic
and Gaussian function.

An NN consists of a network of neurons organized in input,
hidden and output layers. In feedforward NNs, the outputs of
a layer are connected as the inputs to the next layer while
in recurrent networks, feedback connections are allowed as
shown in dotted lines in Figure 3. In an Elman type recurrent
network, a copy of hidden layer output, referred to as the
context layer, is presented as the input to the hidden layer.
In a Jordan type recurrent network, a copy of output of the
neurons in the output layer is presented as the input to the

Input
layer

Context
layer

Hidden
layer Output

layer

Fig. 3. Popular NN architectures: The connections shown in solid lines and
the context later make up a feedforward NN. Addition of the connections
shown in dotted lines converts it into a recurrent neural network.

hidden layer. Following is a non-exhaustive list of the types
of NNs that are found in literature.
• single-layer networks (e.g., Hopfield network);
• multilayered feedforward networks (e.g., Perceptron,

generalized neuron);
• temporal networks (e.g., Elman network, Jordan net-

work);
• self-organizing networks (e.g., Kohonen’s map).
NNs learn the facts represented by patterns and determine

their inter-relationships. Learning is the process in which
the weights of an NN are updated in order to discover
patterns or features in the input data. Learning methods are
classified into the following types: i) supervised learning,
ii) unsupervised learning and iii) reinforcement learning. In
supervised learning, a teacher presents an input pattern and
the corresponding target output. Network weights are adapted
in such a way that the error is minimized. The objective of
unsupervised learning is to discover patterns in the input data
with no help from a teacher. In reinforcement learning, the
learning agent communicates with its own environment, but
not with a teacher. The goal is to find a policy, which selects
an action at any time-step, which leads to the best possible
reward from the environment. To each action of the agent
the environment responds with a reward, which represents
the effectiveness of the action in that time-step; however,
there are no “correct” or “incorrect” actions. A survey of
NN learning methods, their properties and applications is
presented in [32]. NNs have been found successful in a
wide range of applications such as power system stabilization,
pattern classification, speech recognition, robotics, prediction
and image processing.

B. Fuzzy logic

Classical set theory allows elements to be either included
in a set or not. This is in contrast with human reasoning,
which includes a measure of imprecision or uncertainty, which
is marked by the use of linguistic variables such as most,
many, frequently, seldom etc. This approximate reasoning is
modeled by fuzzy logic, which is a multivalued logic that
allows intermediate values to be defined between conventional
threshold values. Fuzzy systems allow the use of fuzzy sets
to draw conclusions and to make decisions. Fuzzy sets differ
from classical sets in that they allow an object to be a partial
member of a set. For example, a person may be a member
of the set tall to a degree of 0.8 [33]. In fuzzy systems, the
dynamic behavior of a system is characterized by a set of
linguistic fuzzy rules based on the knowledge of a human
expert. Fuzzy rules are of the general form: if antecedent(s)
then consequent(s), where antecedents and consequents are
propositions containing linguistic variables. Antecedents of a
fuzzy rule form a combination of fuzzy sets through the use
of logic operations. Thus, fuzzy sets and fuzzy rules together
form the knowledge base of a rule-based inference system as
shown in Figure 4.

Antecedents and consequents of a fuzzy rule form fuzzy
input space and fuzzy output space respectively, which are
defined by combinations of fuzzy sets. Non-fuzzy inputs

5

Non-Fuzzy
Inputs

Inference Engine

Non-Fuzzy
Outputs

Fuzzification
Process

Defuzzification
Process

Fuzzy
Rules

Fuzzy
Sets

Fig. 4. Block diagram of a fuzzy inference system

are mapped to their fuzzy representation in the process
called fuzzification. This involves application of membership
functions such as triangular, trapezoidal, Gaussian etc. The
inference process maps fuzzified inputs to the rule base to
produce a fuzzy output. A consequent of the rule, and its
membership to the output sets are determined here. The
defuzzification process converts the output of a fuzzy rule
into a crisp, non-fuzzy form. Popular inference methods that
determine an approximate non-fuzzy scalar value to represent
the action to be taken include max-min method, averaging
method, root sum squared method, and clipped center of
gravity method [34].

Fuzzy logic has been applied successfully in control systems
(e.g., control of vehicle subsystem, power systems, home
appliances, elevators etc.), digital image processing and pattern
recognition.

C. Evolutionary Algorithms

Evolutionary algorithms model the natural evolution, which
is the process of adaptation with the aim of improving survival
capabilities through processes such as natural selection,
survival-of-the-fittest, reproduction, mutation, competition and
symbiosis. EC encompasses a variety of EAs that all share
a common underlying idea of survival of the fittest. EAs
use a population of solution candidates called chromosomes.
Chromosomes are composed of genes which represent a
distinct characteristic. A fitness function, which the EA seeks
to maximize over the generations, quantifies the fitness of an
individual chromosome. Process of reproduction is used to mix
characteristics of two or more chromosomes (called parents)
into the new ones (called offspring). Offspring chromosomes
are mutated through small, random genetic changes in order
to increase diversity. The fittest chromosomes are selected to
go into the next generation, and the rest are eliminated. The
process is repeated generation after generation until either a
fit enough solution is found or a previously set computational
limit is reached.

Following are the major classes of EAs.

• Genetic algorithms, which model genetic evolution

• Genetic programming whose individual chromosomes are
computer programs

• Evolutionary programming which model adaptive behav-
ior in evolution

• Evolutionary strategies which model strategy parameters
that control variation in evolution

• Differential evolution which is identical to GA except for
the reproduction mechanism

• Cultural evolution which models the evolution of culture
of a population and culture’s influence on genetic and
adaptive evolution of individuals

• Coevolution in which initially “dumb” individual evolve
through cooperation or competition and become fit
enough to survive

Successful applications of EA include planning, design,
control, classification and clustering, time series modeling,
music composing etc.

D. Swarm Intelligence

SI originated from the study of collective behavior of
societies of biological species such as flocks of birds, shoals
of fish and colonies of ants. SI is the property of a system
whereby collective behaviors of unsophisticated agents inter-
acting locally with their environment cause coherent functional
global patterns to emerge. While graceful but unpredictable
bird-flock choreography inspired the development of particle
swarm optimization [35], impressive ability of a colony of ants
to find shortest path to their food inspired the development of
ant colony optimization [36]. The honey bee algorithm mimics
foraging behavior of swarms of honey bees [37].

1) Particle Swarm Optimization: The basic PSO consists
of a population (or a swarm) of s particles, each of which
represents a candidate solution [35]. The particles explore an
n dimensional space in search of the global solution, where
n represents the number of parameters to be optimized. Each
particle i occupies position xid and moves with a velocity vid,
1 ≤ i ≤ s and 1 ≤ d ≤ n. The particles are initially assigned
random positions and velocities within fixed boundaries, i.e.,
xmin ≤ xid ≤ xmax and vmin ≤ vid ≤ vmax (in most
cases vmin = −vmax). Fitness of a particle is determined
from its position. The fitness is defined in such a way that
a particle closer to the solution has higher fitness value than
a particle that is far away. In each iteration, velocities and
positions of all particles are updated to persuade them to
achieve better fitness. The process of updating is repeated
iteratively either until a particle reaches the global solution
within permissible tolerance limits, or until a sufficiently large
number of iterations is reached. Magnitude and direction of
movement of a particle is influenced by its previous velocity,
its experience and the knowledge it acquires from the swarm
through social interaction.

In the gbest version of PSO, each particle has a memory to
store pbestid, the position where it had the highest fitness.
Besides, each particle can access the position gbestd, the
position of the particle having the maximum fitness. The gbest
particle represents the best solution found as yet. At each
iteration k, PSO adds velocity vid to each position xid and

6

steers the particles towards its pbestid and gbestd using (1)
and (2).

vid(k + 1) = w · vid(k) + c1 · rand1 · (pbestid − xid)
+c2 · rand2 · (gbestd − xid) (1)

xid(k + 1) = xid(k) + vid(k + 1) (2)

Here, rand1 and rand2 are random numbers having uniform
distribution in the range (0, 1). The velocity update equation
(1) shows that a particle is influenced by 3 components of
acceleration. The first term involves the inertia coefficient w,
0.2 < w < 1.2, and it denotes the inertia of the particle [38].
The second term involves the cognitive acceleration constant
c1. This component propels the particle towards the position
where it had the highest fitness. The third term involves the
social acceleration constant c2. This component steers the
particle towards the particle that currently has the highest
fitness.

The velocity of a particle is bounded between properly
chosen limits vmax and vmin. Similarly, the position of a
particle is restricted between properly chosen constants xmax

and xmin. Several variants of PSO have been devised [39]
and applied to optimization problems in power systems, stock
markets, antenna control and WSNs.

2) Ant Colony Optimization: ACO was introduced in [36]
as a metaheuristic for solving combinatorial optimization
problems. Foraging ants initially explore surroundings of their
nest in a random manner. When an ant finds a source of food,
it evaluates quantity and quality of the food and carries some
food to the nest. While returning to the nest, the ant deposits
a trail of chemical pheromone, which guides other ants to the
food source. This characteristic of ant colonies is exploited
in artificial ant colonies to solve combinatorial optimization
problems. Consider that two paths A and B exist between a
nest and a food source, and nA(t) and nB(t) number of ants
use them at time step t respectively, then the probability of
ant choosing path A at the time step t+ 1 is given by (3).

PA(t+ 1) =
(c+ nA(t))α

(c+ nA(t))α + (c+ nB(t))α
= 1− PB(t+ 1)

(3)
where c is the degree of attraction of an unexplored branch,
and α is the bias to using pheromone deposits in the decision
process. An ant chooses between the path A or path B using
the decision rule: if U(0, 1) ≤ PA(t+ 1) then choose path A
otherwise choose path B.

The main idea of the ACO metaheuristic is to model the
problem as a search for the best path in a “construction graph”
that represents the states of the problem. Artificial ants walk
through this graph, looking for good paths. They communicate
by laying pheromone trails on edges of the graph, and they
choose their path with respect to probabilities that depend on
the amount of pheromone previously left.

In ACO, an artificial ant builds a solution by traversing
the fully connected construction graph G = (~V , ~E), where
~V is a set of vertices and ~E is a set of edges. Solution
components may be represented either by vertices or by
edges. Artificial ants move from a vertex to another along the

edges of the graph, incrementally building a partial solution.
Additionally, ants deposit a certain amount of pheromone on
the components that they traverse. The amount of pheromone
deposited ∆τ may depend on the quality of the solution found.
Subsequent ants use the pheromone information as a guide
toward promising regions of the search space.

In Simple ACO, a small random amount of pheromone
τi,j(0) is assigned initially to each edge (i, j). An ant randomly
selects an edge to follow. A number of ants, k = 1, . . . , nk,
are placed on the source node. In each iteration, each ant
constructs a path to the destination node. An ant k at node
i chooses the node j ∈ Nk

i to visit next based on probability
computed using (4), where Nk

i is the set of nodes connected
to node i.

pkij(t) =

{
ταij(t)∑

j∈Nk
i
ταij(t)

if j ∈ Nk
i

0 if j /∈ Nk
i

(4)

For an ant k at node i, if Nk
i is null, then the predecessor

to node i is included in Nk
i . This causes the constructed

paths to contain loops. These loops are eliminated when an
ant reaches its destination node. When all the ants reach the
desired destination node, each ant returns to the source in the
reverse path and deposits a pheromone quantity,

∆τkij(t) ∝
1

Lk(t)
(5)

Lk(t) is the length of the path constructed by ant k in time step
t. The deposited pheromone ∆τkij(t) determines the quality of
the corresponding solution. In simple ACO, the quality of the
solution is expressed as the reciprocal of the number of hops
in the path. However, other measures such as cost of traveling
or physical distance of the path can be used instead. The
algorithm is terminated when a maximum number of iterations
are done, an acceptable solution is found or all ants follow the
same path.

ACO has been successfully applied to combinatorial
optimization problems such as the traveling salesman problem,
assignment problems, scheduling problems, and vehicle
routing problems.

E. Artificial Immune Systems

The biological immune system defends the body from
foreign pathogens. The three layers of a biological immune
system are: anatomic barrier, innate (nonspecific) immunity
and adaptive (specific) immunity, of which innate and adaptive
immunities influence each other. When adaptive immunity
detects the presence of a pathogen, it triggers a sequence of
responses of humoral immunity and cell-mediated immunity.
Innate immunity is directed on any pathogen. If the pathogen
survives the innate immunity, the body directs the defence
against a particular known type of pathogen. The biological
immune system is a parallel, distributed adaptive system
having decentralized control mechanism. This complex,
adaptive biological immune system is modeled by a number
of AIS models. These models capture such mechanisms of
biological immune systems as negative selection, immune
network model and clonal selection [40].

7

1) Immune network models: Immune network models are
based on the hypothesis that the immune system uses an
idiotypic network of interconnected B cells - a component
of the adaptive immune system- for antigen recognition. The
strength of interconnection between two B cells is proportional
to the affinity they share. A B cell population has two
types of sub-populations: the initial population and the cloned
population. The initial subset is generated from raw training
data, and the rest are used as antigen training items. Antigens
are randomly selected from training set and presented to areas
of the B cell network. In case of successful binding, the
B cell is cloned and mutated, leading to a diverse set of
antibodies. When a new B cell is created, it is integrated into
the network at the closest B cells. If the new cell can not be
integrated, it is removed from the population. If all binds fail,
a B cell is generated using the antigen as a template and is
then incorporated into the network.

2) Clonal selection: The clonal selection principal de-
scribes an immune response to an antigen stimulus. It
postulates that the cells that can recognize the antigen
proliferate. The main features of the clonal selection theory
are:

• The new cells are clones of their parents with a mutation
mechanism.

• Elimination of newly differentiated lymphocytes carrying
self-reactive receptors.

• Proliferation and differentiation on contact of mature cells
with antigens.

The CLONALG algorithm is based on clonal selection. It
is similar to the evolutionary algorithms and has following
features:

1) dynamical population,
2) exploration and exploitation of the search space,
3) ability to locate multiple optima,
4) ability to maintain local optimal solutions,
5) well defined stopping criterion.

3) Negative selection: The biological immune system
recognizes all cells within the body and classifies them as
self and non-self. Non-self cells are further classified so that
the appropriate defence mechanism can be initiated. Negative
selection provides tolerance to self cells. During the generation
of T-cells - components of cell-mediated immunity- receptors
are made through a pseudo-random genetic rearrangement.
Then they undergo negative selection in which T-cells that
react with self-proteins are destroyed. These matured cells
circulate throughout the body to perform immunological
functions. The negative selection algorithm has attracted a
lot of research attention and undergone significant evolution
since it was proposed. There exist several negative selection
algorithms that differ from each other in terms of data and
detector representation, generation/elimination mechanism and
matching rule. However, the two important aspects of all these
algorithms are:

1) The target concept is the complement of a self test.
2) The goal is to discriminate between self and non-self

patterns.

To implement a basic AIS, four decisions have to be made:
encoding, similarity measure, selection and mutation. Once an
encoding has been fixed and a suitable similarity measure is
chosen, the algorithm then performs selection and mutation,
based on the similarity measure, until the stopping criteria
are met. Typically, an antigen is the target or solution, e.g.
the data item which needs to be checked if it is an intrusion.
The antibodies are the remainder of the data. Antigens and
antibodies are represented or encoded in the same way. For
most problems, the most obvious representation is a string
of numbers or features, where the length is the number of
variables, the position is the variable identifier and the value
is the binary or real value of the variable. The similarity
measure or matching rule is the most important design choices
in developing an AIS algorithm, and is closely coupled to the
encoding scheme. If the encoding is binary, Hamming distance
can be a good measure of similarity. If the representation is
non-binary, there are even more possibilities to compute the
distance between the two strings (e.g., Euclidian distance). The
most commonly used mutation operators in AISs are similar
to those in GA. For binary strings, bits are flipped; for real
value strings, an element is changed at random; and for other
types, the elements are swapped.

In addition to the algorithms mentioned above, there exist
immune algorithms like immune genetic algorithm, agent
algorithm and immune algorithm with bacteria. Algorithms of
AIS have found successful practical application in computer
security, fault detection, abnormality detection, optimization
and data mining.

F. Reinforcement Learning
Conventional artificial intelligence is based on machine

learning, which is the development of the techniques and
algorithms that allow machines to simulate learning. Machine
learning attempts to use computer programs to generate
patterns or rules from large data sets. RL [41], [42] is a
sub-area of machine learning concerned with how an agent
should take actions in an environment so as to maximize some
notion of a long-term reward.

RL is biologically inspired and acquires its knowledge
by actively exploring its environment. At each step, it
selects some possible action and receives a reward from the
environment for this specific action. Note that the best possible
action at some state is never known a-priori. Consequently,
the agent has to try many different actions and sequences of
actions and learns from its experiences.

Usually, reinforcement learning tasks are described as a
Markov Decision Process (see Figure 5), consisting of an
agent, set of possible states S, set of possible actions A(st)
for all possible states st and a reward function R(st, at),
specifying the environment reward to the agent’s selected
action. Additionally, the policy πt defines how the learning
agent behaves at some time-step t. The optimal policy is
usually defined as π∗. The value function V (st, at) defines
the expected total reward when taking action at in state st,
if from the next state st+1 the optimal policy π∗ is followed.
This is the function the agent has to learn in order to achieve
the optimal policy.

8

left
right

forward
backward

pool of possible
actions

At

select an action

fulfill an action

environment

reward

agent

internal state
st

Fig. 5. Reinforcement learning model

RL is well suited for distributed problems, like routing.
It has medium requirements for memory and computation at
the individual nodes. This arises from the need of keeping
many different possible actions and their values. It needs some
time to converge, but is easy to implement, highly flexible to
topology changes and achieves optimal results.

Q-learning: One simple and powerful RL algorithm is
Q-learning [43]. It does not need any model of the environment
and can be used for online learning of the value function of
some RL task, referred to as the Q-value function. Q-values
are updated as follows:

Q(st+1, at) = Q(st, at) + (6)
α[rt+1 + φmax

a
Q(st+1, a)−Q(st, at)]

Where Q(st, at) is the current value of state st, when
action at is selected. The algorithm works as follows: at
some state st, the agent selects an action at. It finds the
maximum possible Q-value in the next state st+1, given that
at is taken and updates the current Q-value. The discounting
factor 0 < φ < 1 gives preference either to immediate rewards
(if φ� 1) or to rewards in the future (if φ� 0). The learning
constant 0 < α < 1 is used to tune the speed of learning to
achieve better convergence and stability of the algorithm.

Q-learning has been already widely applied to the wireless
ad hoc scenario, for example for routing in WSNs [44]–[47]. It
is very easy to implement and has a good balance of optimality
to memory and energy requirements.

Dual RL: Dual RL is very similar to Q-learning.
However, the reward function uses the best Q-values of
the next state and the previous one. This increases slightly
the communication overhead, but speeds up learning. The
DRQ-Routing [48] protocol is based on it and optimizes
point-to-point routing. However, compared to approaches with
Q-learning, the implementation is more complex.

TPOT Reinforcement Learning: Team-partitioned,
opaque-transition reinforcement learning (TPOT-RL) has been

developed for simulated robotic soccer [49]. It allows a team of
independent learning agents to collaboratively learn a shared
task, like soccer playing. It differs from traditional RL in its
value function, which is partitioned among the agents and each
agent learns only the part of it directly relevant to its localized
actions. Also, the environment is opaque to the agents, which
means that they have no information about the next possible
actions of their mates or their goodness.

TPOT-RL is fully distributed and achieves good results.
However, its implementation is not trivial and it requires
additional communication cost, since rewards are sent to the
agents only after concluding the task (in the network context:
after delivering the packet at the destination). It has been
implemented for routing in TPOT-RL-Routing [50].

Collaborative RL: A formal definition of RL in a
distributed environment and a learning algorithm is given
in [51]. It presents a reinforcement learning algorithm,
designed especially for solving the point-to-point routing
problem in MANETs. Collaborative RL is greatly based on
Q-learning, but uses also a decay function (very similar to
pheromone evaporation in ACO, see Section III-D) to better
meet the properties of ad hoc networks. The approach is
feasible also for routing in WSNs, since it requires only
minimal cost overhead.

An overall high-level comparison of CI approaches in
terms of computational requirements, memory requirements,
flexibility and optimality of results is given in Table I.
Solutions that require a heavy computational or storage
cost are suitable for centralized computations carried out
by a base station. On the other hand, solutions that
require less computations and storage are suitable for
distributed computations carried out at each node. Besides,
some paradigms assure optimal solutions, and some give
sub-optimal solutions. Optimality is measured as the ability
of the CI paradigm to find the best possible solution to some
problem and not just an approximation. For example, when
using RL for finding shortest paths for routing, it is indeed able
to find them. Flexibility refers to the ability of the algorithms
to adapt to a changing environment, like failing nodes. For
superior performance, the designer has to properly choose a
paradigm or a combination based on the exact application
scenario and requirements.

IV. DESIGN, DEPLOYMENT, LOCALIZATION, AND
SECURITY

The CI algorithms discussed in this paper have been
tailored or hybridized to suit the challenges in WSNs.
The subsequent sections have been organized into three
different classes of WSN problems: This section starts with
design, deployment, localization and security issues. The next
Section V presents a discussion on energy-aware routing and
clustering for WSNs and the survey is completed with an
overview of scheduling, data aggregation, sensor fusion and
QoS management problems and their CI-based solutions in
Section VI. Each subsection in this, and the following two
sections begins with a brief summary on suitability of the CI
approaches for the challenge under discussion and pros and

9

TABLE I
PROPERTIES OF BASIC CI PARADIGMS

CI Approach Computational
requirements

Memory requirements Flexibility Optimality

Neural networks Medium Medium Low Optimal
Fuzzy Logic Medium Medium High Optimal
Evolutionary algorithms Medium High Low Optimal
Swarm intelligence Low Medium High Optimal
Artificial Immune Systems Medium Problem dependant High Near Optimal
Reinforcement learning Low Medium High Optimal

cons of approaching the challenge with CI techniques. The
following Section VII summarizes the findings in the survey
and makes suggestions on which CI technique to focus on
when solving a particular problem.

A. Design and Deployment

CI techniques can be very helpful in the process of
designing and planning the deployments of sensor networks
and there have been many efforts to apply them in this
context. Table II lists some CI applications in WSN design
and deployment; and the applications are discussed in the
following paragraphs.

Deployment of the nodes of a WSN can be planned or
ad hoc depending on applications. Node positions of a WSN
for industrial or health monitoring application are determined
beforehand. On the other hand, nodes of a WSN for disaster
monitoring are deployed in an ad hoc manner. Coverage and
connectivity are among the important considerations in making
deployment decisions.

1) Fuzzy Logic: Fuzzy logic has been proposed for
deployment in [52]. This techniques assumes that the area to
be monitored by a sensor network is divided into a square grid
of sub-area, each having its own terrain profile and a level of
required surveillance (therefore, its own path loss model and
required path loss threshold). The proposed technique uses
fuzzy logic to determine the number of sensors n(i) necessary
to be scattered in a subarea i. For a sub-area i, path loss PL(i)
and threshold path loss PLTH are normalized on a scale 0 to
10, then divided into overlapping membership functions low,
medium and high. This requires 32 = 9 rules. The system
computes an output weight(i), from which the number of
sensors is determined as

n(i) =
weight(i)∑
j

weight(j)
(7)

The article shows that the fuzzy deployment achieves a
significant improvement in terms of worst case coverage in
comparison to uniform deployment.

2) Evolutionary Algorithms: A decision support system
based on coarse grain decomposition GA is proposed in [53].
The decision support system is meant for the use of a process
engineer who interacts with it to determine optimal sensor
network design as outlined in Figure 6.

The process engineer introduces information about the
process under stationary operating conditions through a
rigorous module called model generator, which involves linear

Model
Generator

Process Details

Mathematical
Model

Genetic Algorithm

Configuration A

Configuration B

Configuration C

:

Configuration K

Configuration C

Observability Analysis

OK? No

Yes

Refinement of
Configuration

Redundancy Analysis

Proposed Decision Support Scheme

Fig. 6. The role of GA in decision support system for sensor network design

functionalities and non-linear equations. Then, the engineer
chooses among the different candidates the initial sensor
network. The chosen configuration undergoes observability
analysis which determines which of the unmeasured variables
are observable. Based on the results, the engineer decides
whether the information achieved from the configuration is
satisfactory or not. If not, the sensor network needs to be
improved by adding more instruments before the analysis
is repeated. Traditionally, the analysis begins from an initial
sensor network with a few instruments chosen by the process
engineer based on his skills and experience. Then, an iterative
process takes place; the process engineer runs the tools in
the decision support system and refines the configuration until
satisfactory instrumentation is achieved. In the case of complex
industrial processes, a complete iteration involves a great deal
of expert examination and several executions of the analysis
software tools. Therefore, a good initial configuration assures
lesser number of iterations before the final configuration is
reached. The authors propose the use of a GA to determine
various initial configurations.

Each chromosome used in GA is a sequence of length
l which represents number of variables in the mathematical
model of the network, like in 10001100. Here, a 1 represents
the presence of a sensor to measure the variable at that position
in the mathematical model, and l is the number of variables
in the mathematical model. GA uses binary tournament to
select individuals to go to next generation maintaining the
best up-to-the-moment individual with the elitist approach.
The entire set of parents is replaced by offspring. One-point
crossover and bit-flip mutation operators are used to improve
exploitation and exploration respectively. The fitness function,

10

TABLE II
A SUMMARY OF CI APPLICATIONS IN WSN DESIGN AND DEPLOYMENT SURVEYED IN SUBSECTION IV-A

CI Paradigm Algorithm Articles Simulation/Real-deployment/Overview Centralized/Distributed
Fuzzy logic Fuzzy-Deployment [52] Simulation Centralized
EA Coarse Grain Decomposition GA [53] Real deployment Centralized
SI Sequential PSO [54] Simulation Centralized

PSO-SinkPath* [55] Simulation Centralized
Traffic-PSO* [56] Real deployment Centralized

RL COORD [57] Simulation Distributed
Service Directory Placement Protocol [58] Simulation Semi-distributed

*This algorithm is renamed here for easy reference.

which GA seeks to maximize, is defined as

f(i) = NR(i) +Nobs(i) + 1−NC(i) (8)

where NR(i), Nobs and NC(i) are the normalized values
corresponding to the reliability, observability and cost terms,
respectively. The proposed scheme is tested on a ammonia
synthesis plant, where all the compositions and critical
variables were set as measured. The Performance of an initial
sensor configuration suggested by the GA reported to be more
cost effective and more reliable than the initial configuration
determined by the process engineer. The initial configuration
suggested by GA is reported to have achieved a cost saving
of 60%, and a smaller amount of time to complete the whole
observability analysis.

3) Swarm Intelligence (PSO):
Sequential PSO: A sequential form of PSO is presented

for distributed placement of sensors for maritime surveillance
application in [54]. Given fixed-size sets STx of NTx
transmitters and SRx of NRx receivers, the goal is to determine
the optimal placement of sonar sensors so that detection
coverage is maximized in a fixed volume V representing a
maritime region. The sequential PSO algorithm consists of
selecting a sensor and subsequently optimizing its placement
with respect to the other sensors (assumed fixed) using the
standard PSO algorithm. The article shows that this technique
can reduce the function evaluations by about 59% and calls
to acoustic model procedure by about 92% and achieve about
6% better coverage compared to the standard PSO.

PSO-SinkPath: Yet another application of PSO is detailed
in [55]. The goal of this study is to determine the optimal path
for sink node movement across the sensor field. The article
defines node throughput as the average number of data units
forwarded by the sensor node in a time slot; and aggregated
throughput is the overall throughput of the sensor network
at a given sink node location. Further, average throughput
is the average of the aggregated throughput obtained in each
point along the selected path. Fitness of a particle is defined
as F = (ratio× average throughput), where ratio is the
number of sensor nodes within the communication range of
sink node. The results indicate that the approach is good for
sparse deployments and degrades as the number of sensors
increases. However, good network coverage is achieved.

Traffic-PSO : A topological planning method based on
PSO for traffic surveillance application is discussed in [56].
The study described in the article uses a large number of
camera loaded sensor nodes, densely deployed over a maze
of roads. Some of the nodes need to have higher transmission

power. The problem here is to determine optimal allocation of
high power transmitters to existing nodes such that maximum
coverage is achieved at minimum cost. The concept of small
world phenomenon [59] is effectively used in the study.
The proposed PSO algorithm is reported to have resulted in
symmetric distribution of high power transmitters, improved
network performance and enormous saving in system cost.

4) Reinforcement learning: COORD, a distributed rein-
forcement learning based solution to achieving best coverage
in a WSN is presented in [57]. The goal of the algorithm is
to cooperatively find the combination of active and sleeping
sensor nodes in a sensor network, which is still able to
perform full covered sensing of the desired phenomena. For
this the authors propose three similar approaches, all based on
Q-Learning.

In COORD, nodes are individual learning agents. The
actions taken are two: transferring from sleeping to active
mode and back. The sensor network is divided into a
rectangular grid and the goal is to cover each grid vertex by
some sensors, best by exactly one. A Q-value is assigned to
each grid vertex, which represents the number of sensor nodes,
currently covering this vertex. The probability of choosing an
action a in some step is given by the Boltzmann exploration
formula:

P (a) =
eQ(s,t)/T∑
a′eQ(s,a′)/T

(9)

During the search for an action, the temperature T is
decreased in order to increase the probability of selecting
the best actions. The Q-value is updated according to the
standard update formula (see Section III-F). In each run of
the algorithm, each node evaluates its current Q-value table
with all grid vertices it covers and takes an action. After that,
all nodes evaluate again their Q tables and so on.

The other two solutions are very similar and the results
they show are also comparable. The authors claim that
COORD performs best, but the presented measurements show
clearly that all three learning based approaches perform very
similar. A comparison to some state-of-the-art approach is not
provided and thus the results cannot be properly evaluated.
Also, a clear protocol implementation is missing, leaving open
many questions about coordination and exchange of Q-values
and the states of the grid vertices. However, the approach is
fully distributed and can be run online if needed. Also, it shows
a nice modeling work of converting a centralized problem into
a distributed one and solving it with RL.

11

SSDP: The study reported in [58] presents a rein-
forcement learning based approach for service positioning in
MANET. The system is presented as a semi-Markov decision
process and the optimal behavior is learned via Q-learning.
The learning agent is situated together with the service
provider on one of the hosts in the network and has the
ability to move to other hosts. Thus, only one learning agent
is present in the system (with more service providers more
agents have to be deployed). The system state is given through
different query-related parameters, like queries’ average hop
count, number of neighboring clients, etc. The protocol is
called service directory placement protocol and it can be run
together with any other service discovery protocols.

B. Localization

GA and PSO based localization algorithms have been
proposed recently, some of which are discussed here. The
algorithms are listed in Table III.

Most WSN localization algorithms share a common feature
that they estimate the location of nodes using the a priori
knowledge of the positions of special nodes called beacon
nodes or anchor nodes. The most intuitive solution to the
localization problem is to load each node with a global
positioning system. But it is not an attractive solution because
of cost, size and power constraints. Typically, the nodes
estimate their locations using signal propagation time or
received signal strength. Signal propagation time is estimated
through measurement of time of arrival, round trip time
of flight or time difference of arrival of two signals. The
localization is formulated as a multidimensional optimization
problem, and tackled with population based CI methods such
as GA and PSO.

1) Genetic Algorithm: A GA based node localization
algorithm GA-Loc is presented in [60]. Each of the N
non-anchor nodes in the study is assumed to have ability
to measure its distance form all its one-hop neighbors. GA
estimates the location of node i (xi, yi) by minimizing the
objective function OF defined in (10),

OF =
N∑
i=1

∑
j∈Ni

(
d̂ij − dij

)2

(10)

where Ni is a set of neighbors of node i, d̂ij is the estimate
of the distance between node i and its neighbor node j and
dij is the measured distance between node i and its neighbor
node j.

The real number coded GA uses roulette wheel selection and
three types of crossover operators order crossover, partially

mapped crossover and cycle crossover. The authors present
results of MATLAB simulations of different scenarios that
involve 100 nodes, eight or ten anchors, and 5% or 10%
Gaussian noise in distance measurement. The results show
very small (less than 1%) localization error in all simulations.
The algorithm seems to produce accurate localization, but
involves an overhead: A central node needs to collect from
all nodes their measurement of distances from all neighbors.
In addition, localization results produced by GA need to be
propagated back to all nodes. The algorithm has a scalability
limited by computational resources in the node which runs the
GA.

Two-phase localization: A two-phase centralized local-
ization scheme that uses simulated annealing and GA is
presented in [61]. The study approaches the problem in a
slightly different way: it attempts to minimize a performance
measure J which takes a node’s distance from all its neighbors.

min
x̂,ŷ

J =
N∑

i=M+1

∑
j∈N

(d̂ij − dij)2
 , dij ≤ R, j ∈ Ni (11)

Here dij =
√

(x̂i − x̂j) + (ŷi − ŷj)2, (x̂i, ŷi) are estimated
coordinates of node i, (x̂j , ŷj) are estimated coordinates of
one hop neighbor j of node i. Ni is a set of neighbors of node
i and R is the radio range. The study proposes two variants
of the two-phase localization method. In the first phase, the
initial localization is produced. The result of the first phase is
modified in the second phase. Authors have used two methods,
simulated annealing and GA, for the second phase. In the
first phase, only the nodes with three anchor neighbors are
localized. All nodes are divided into two groups: group A
containing M nodes with known location (in the beginning,
only the anchor nodes) and group B of nodes with unknown
location. In each step, node i, i = M + 1, 2, . . . , N from the
group B is chosen. Then, the three nodes from the group A that
are within the radio range of node i are randomly selected. If
such nodes exist, the location of node i is calculated based on
true inter-nodes distances between three nodes selected from
group A and the measured distances between node i and these
three nodes. The localized node i is moved to the group A.
Otherwise, another node from the group B is selected and the
operation is repeated. The algorithm is terminated when there
are no more nodes that can be localized based on the available
information.

The initial generation of GA used in the second phase
has a set of nodes whose coordinates are determined in
the first phase. The GA uses tournament selection, discrete
recombination crossover and random mutation. Simulation

TABLE III
A SUMMARY OF CI APPLICATIONS IN WSN LOCALIZATION SURVEYED IN SUBSECTION IV-B

CI Paradigm Algorithm Articles Simulation/Real-deployment/Overview Centralized/Distributed
EA GA-Loc* [60] Simulation Centralized

Two-Phase GA-Loc* [61] Simulation Centralized
Two-Phase Localization Algorithm [62] Simulation Centralized

PSO PSO-Loc* [63] MATLAB simulation Centralized
PSO Iterative PSO [64] MATLAB simulation Distributed

*This algorithm is renamed here for easy reference

12

results are presented. Besides, the results are compared with
those obtained using semidefinite programming [65]. Both GA
and simulated annealing have shown achieve less than 1%
localization error. However, simulated annealing is shown to
perform better than GA both in terms of localization error and
computation time.

Two-Phase Localization Algorithm: Another two-phase
centralized localization method that uses a combination of
GA and simulated annealing algorithm proposed in [62]
addresses a problem called flip ambiguity problem. It is likely
that in distance-based localization, a node is not uniquely
localized if its neighbors are on collinear locations. In such
topology, the node can be reflected across the line that joins its
neighbors while satisfying the distance constraint. The paper
proposes a two-phase localization algorithm in which in the
first phase, GA obtains an accurate localization estimation.
In the second phase, simulated annealing algorithm refines
the location estimation of only those nodes that have been
wrongly localized due to flip ambiguity. The information on
the number of nodes affected by flip ambiguity is collected
from the neighborhood information.

The GA in the first phase uses the objective function defined
in (11). Chromosomes are coded as sequences of real numbers
that represent x and y coordinates of the nodes to be localized.
Authors define a single vertex neighborhood mutation operator
and a descend based arithmetic crossover operator. If a node i
that does belong to neighborhood of node j in its localization,
but still has its transmission radius R less than the distance dij
is treated as wrongly localized. Simulated annealing algorithm
used in the second phase attempts to minimize the objective
function defined in (12), where lij represents the measured
distance between nodes i and j.

min
xi,yi

n∑
i=m+1

∑
j∈Ni

(dij − lij)2 +
∑
j /∈Nj
dij<R

(dij −R)2

 (12)

The algorithm is reported to have outperformed the
semi-definite programming algorithm in all presented simu-
lations.

2) SI (PSO): A PSO based localization scheme PSO-Loc is
presented in [63]. The objective of the scheme is to estimate
x and y coordinates of n nodes in a network of m nodes
deployed in 2-dimensional plane. The remaining M = (m−n)
nodes are anchor nodes. The localization problem is treated
as a 2n-dimensional optimization problem. The base station
runs PSO to minimize the objective function defined in (13).

f(x, y) =
1
M

M∑
i=1

(√
(x− xi)2 + (y − yi)2 − d̂i

)2

(13)

where (x, y) is the node location that needs to be determined,
M ≥ 3 is the number of anchors and (xi, yi) is the location
of anchor i. Here d̂i is the measured value of distance di
between a node and the anchor i, obtained under noise. The
authors simulate noise as d̂i = di + ni, where ni is a zero
mean additive Gaussian variable with variance σ2

d. In addition
to σ2

d, the density of anchor nodes affects the accuracy of

localization. The paper presents MATLAB
TM

simulation results
in terms of localization error versus various settings of anchor
node density and noise variance. The paper compares the
performance of PSO with that of a simulated annealing [66],
and shows that localization error in PSO is more than halved
in all experimental setups.

An extension of this work is reported in [64], which
uses PSO and bacterial foraging algorithm1 for range-based
distributed iterative node localization. In this approach,
each node runs two-dimensional PSO (or bacterial foraging
algorithm) to estimate its own x and y coordinates in a plane
mission space. The nodes that get localized with the help from
beacons act as beacons themselves in the next iteration. This
approach can mitigate inaccuracies due to flip ambiguity in the
sense that a node that got localized with the help of three near
collinear beacons in an iteration may get more reference nodes
in the next iteration. The study makes a comparison between
PSO and bacterial foraging algorithms as optimization tools.
PSO is reported to be faster than bacterial foraging algorithm.
However, the bacterial foraging algorithm is reported to be
less memory intensive and more accurate.

C. Security

Surprisingly, WSN security does not seem to be a fertile
area for CI applications compared with other issues. The
literature has a couple of articles that use CI approaches
for WSN security, one of which is discussed below. The
applications available in the literature have tackled the issue
of denial of service attacks at the node level. It is obvious that
the nodes are resource constrained, and therefore, algorithms
that involve high computational and storage burdens are not
attractive. Fuzzy logic and compact NNs are among solutions
discussed here, as summarized in Table IV.

Neural Networks: Many types of DoS attacks on WSNs
have been devised. In collision attacks, attackers transmit
packets regardless of status of the medium. These packets
collide with data or control packets from the legitimate
sensors. In unfairness attacks, adversaries transmit as many
packets as possible after sensing that the medium is free. This
prevents the legitimate sensors from transmitting their own
packets. In exhaustion attacks, adversaries transmit abnormally
large number of ready-to-send packets to normal sensor nodes,
thereby exhausting their energy quickly.

Multilayered perceptron and generalized neuron-based
distributed secure MAC protocols are proposed in [68], [69]
respectively. In these approaches, NNs onboard WSN nodes
monitor traffic variations, and compute a suspicion that an
attack is underway. When the suspicion grows beyond a
preset threshold, the WSN node is switched off temporarily. A
detects an attack by monitoring abnormally large variations in
sensitive parameters: collision rate Rc (number of collisions
observed by a node per second), average waiting time Tw
(waiting time of a packet in MAC buffer before transmission),
and arrival rate (RRTS), rate of RTS packets received by

1Bacterial foraging algorithm is a new population-based multidimensional
optimization approach that mimics foraging behavior of E. coli bacteria that
live in human stomach [67].

13

TABLE IV
A SUMMARY OF CI APPLICATIONS IN WSN SECURITY SURVEYED IN SUBSECTION IV-C

CI Paradigm Algorithm Articles Simulation/Real-deployment/Overview Centralized/Distributed
NN MLPMAC* [68] PROWLER Simulation Distributed

GNMAC* [69] PROWLER Simulation Distributed
Fuzzy logic FS-MAC [70] OPNET Simulation Distributed

*This algorithm is renamed here for easy reference

a node successfully per second. The strategy used in both
the articles is the same, but the nonlinear mapping between
traffic pattern variation and suspicion factor is implemented by
different types of NNs in these articles. MLP and generalized
neuron are trained using PSO.

These distributed methods ensure that only the part of the
WSN under attack is shut down, which is an advantage.
Besides, these methods have been reported to be quite effective
against DoS attacks, but the effectiveness depends on the
value of the threshold suspicion. If the traffic variation under
normalcy is unpredictable, then these methods are likely to
generate false alarms, which may shut down a node when an
important event occurs in the environment.

Fuzzy Logic: In the study presented in [70], the probability
that a denial of service attack has been perpetrated is estimated
using a decision function that involves two parameters, which
are determined using the steepest gradient descent algorithm.
A fuzzy logic approach towards secure media access control is
presented by the same authors in [71] for enhanced immunity
to collision, unfairness and exhaustion attacks. The study aims
at detecting and counteracting DoS attacks from adversaries
through innovative use of fuzzy logic on each node in the
network.

In the proposed algorithm, values that represent Rc and
RRTS are categorized into 2 levels, high and low, and values
that represent Tw are categorized into 2 levels, long and
short. The result, the possibility that an attack is detected,
is divided into 5 levels: very low, low, moderate, high and
very high. From 3 variables that in 2 classes, 23 (=8) rules
are formed. The study uses OPNET to simulate a network of
30 sensor nodes having a constant energy deployed randomly
in an area of 1 km × 1 km. Each attack is launched alone for
a random duration. Performance of the proposed protocol is
compared with that of CSMA/CA. The results show that the
former protocol offers a 25% increase in successful data packet
transmission, 5% less energy consumption per packet. In each
type of attack, the proposed protocol extends first node death
time in the network by over 100% as compared to CSMA/CA.

V. ENERGY AWARE ROUTING AND CLUSTERING

A list of the CI based approaches for energy aware routing
presented here is given in Table V. A survey and guide of
RL routing approaches for telecommunication networks was
performed in [72] and a networking perspective of machine
learning for wireless sensor networks is presented in [73].

Different approaches have been taken by different re-
searchers for energy aware routing. All-in-one distributed
real-time algorithms have proved to work well under
WSN-specific requirements like communication failures,
changing topologies and mobility. Such approaches are usually

based on RL, SI or NNs. However, these algorithms have
different properties, which need to be considered depending
on the application and deployment scenario. For example,
ant-based routing is a very flexible algorithm, but generates a
lot of additional traffic because of the forward and backward
ants that move through the network. In a WSN scenario, this
overhead has to be carefully considered and compared to that
in other protocols, which may not provide a very flexible
routing scheme, but a lower overhead. RL algorithms have
proved to work very well for routing and can be implemented
at nearly no additional costs. They should be the first choice
when looking for a flexible and low-cost routing paradigm.

On the other hand, algorithms which require an offline
learning phase, like GAs or offline NNs, can neither cope
up with changing properties of the network, nor provide
an energy efficient routing scheme. They require very high
costs of gathering first the relevant data on a base station,
then calculating the routing tree and then disseminating the
tree roles to the nodes. Communication failures cannot be
considered and in case of a topology change the whole
procedure has to be started from the beginning.

1) Neural Networks: A QoS driven routing algorithm called
sensor intelligence routing, is presented in [74] for automatic
reading of public utility meters. The study utilizes an NN in
every node to manage the routes for data flow. A modification
over Dijkstra algorithm proposed in the article finds minimum
cost paths from base station to every node. The edge cost
parameter between a pair of nodes wij is determined in each
node by a self organizing map, based on QoS parameters
latency, error rate, duty cycle and throughput. Each node pings
each of its neighbors to find out the quality of link. First
layer of SOM has 4 neurons and the second layer has 12
neurons in a 3 × 4 matrix. Inputs to the SOM are latency,
throughput, error-rate, and duty-cycle. The samples presented
as inputs to the SOM form groups in such a way that all
the samples in a group have similar characteristics. This gives
a map formed by clusters, where every cluster corresponds
with a specific QoS and is assigned a neuron of the output
layer. After a node has collected a set of input samples, it
runs the wining neuron election algorithm. After the winning
neuron is elected, the node uses the output function to assign
a QoS estimation. QoS is obtained in the samples allocated in
the cluster, a value between 0 and 10 is assumed. The highest
assignment corresponds to scenario in which the link measured
has the worst QoS predicted. Lowest assignment corresponds
to scenario in which the link measured has the best QoS
predicted. Performance of SIR is compared with that of energy
aware routing and directed diffusion. Two case studies are
discussed, one with an assumption of all healthy nodes, and the
other with 20% failed nodes. In both cases, average latency and

14

TABLE V
A SUMMARY OF CI APPLICATIONS FOR ENERGY AWARE ROUTING AND CLUSTERING IN WSNS SURVEYED IN SUBSECTION V

CI Paradigm Algorithm Articles Simulation/Real-deployment/
Overview

Centralized/
Distributed

NN Sensor Intelligence Routing [74] OLIMPO simulation Distributed
Fuzzy logic Fuzzy-Clusters* [75] Java simulation Centralized
EA GA-Routing* [76] Java simulation Centralized

TwoTier-GA* [77] Java simulation Centralized
Energy Efficient GA Clustering * [78] Simulation Centralized
Multi-objective DE [79] Simulation Centralized

SI PSO with time varying inertia weight [80] Simulation Centralized
PSO with time varying acceleration constants [80] Simulation Centralized
hierarchical PSO with time varying acceleration
constants

[80] Simulation Centralized

PSO with supervisor student mode [80] Simulation Centralized
Ant-based [72], [81]–[83] Overview
Collaborative Clustering [84] Prowler simulation Distributed
Ant-Building* [85] Simulation Distributed

RL FROMS [46] OMNeT++ simulation, testbed
with MSB430 sensor nodes

Distributed

Clique [86] OMNeT++ simulation Distributed
Q-Routing [45] Simulation Distributed
DRQ-Routing [48] Simulation Distributed
Q-RC [44] Simulation Distributed
RL-Flooding* [87] Prowler simulation Distributed
TPOT-RL [50] Simulation Distributed
SAMPLE [51] NS-2 simulation Distributed
AdaR [88] Simulation Centralized
Q-PR [47] Simulation Distributed
Q-Fusion [89] Simulation Distributed
RLGR [90] NS-2 simulation Distributed

*This algorithm is renamed here for easy reference.

power dissipated are studied. SIR shows superior performance
in all cases, especially so when the percentage of dead nodes
is high. However, the approach is expensive in terms of the
pings to neighboring nodes in order to learn the quality of
links. Besides, implementation of a SOM on a node entails
computational expenses.

2) Fuzzy Logic: Judicious cluster head election can reduce
the energy consumption and extend the lifetime of the network.
A fuzzy logic approach based on energy, concentration and
centrality is proposed for cluster head election in [75]. The
study uses a network model in which all sensor nodes transmit
the information about their location and available energy to
the base station. The base station takes into account the
energy each node has, the number of nodes in the vicinity
and a node’s distance from other nodes into account and
determines which nodes should work as the cluster heads.
The base station fuzzifies the variables node energy and node
concentration into three levels: low, medium and high, and
the variable node centrality into close, adequate and far.
Therefore, 33 (=27) rules are used for the fuzzy rule base.
The fuzzy outcome that represents the probability of a node
being chosen as a cluster head, is divided into seven levels:
very small, small, rather small, medium, rather large,
large, and very large. Triangular membership functions are
used to represent the fuzzy sets medium and adequate and
trapezoidal membership functions to represent low, high,
close and far fuzzy sets. The article observes a substantial
increase in the network life in comparison to the network that
uses the low energy adaptive clustering hierarchy approach.
For a 20-node scenario in a 100m × 100m field, the number
of data rounds before first-node-death in case of the proposed

method is on average about 1.8 times greater than in low
energy aware clustering hierarchy. Once again, the approach
involves the overhead of collecting necessary information at a
base station before determining cluster heads.

3) Evolutionary Algorithms: A GA based multi-hop routing
technique named GA-Routing is proposed in [91] for
maximizing network longevity in terms of time to first node
death. The challenge here is to come up with a routing
algorithm that maximizes the number of rounds before the
first node dies. The GA approach proposed here generates
aggregation trees, which span all the sensor nodes. Although
the best aggregation tree is the most efficient path in the
network, continuous use of this path would lead to failure
of a few nodes earlier than others. The goal of this study is to
find an aggregation tree, and the number of times a particular
tree is used before the next tree comes in force.

A gene represents an s bit number that denotes the
frequency and a chromosome contains k genes, each
representing a spanning tree Chromosome length is s×k bits.

Simulation results show that GA gives better lifetime than
the single best tree algorithm, and GA gives the same lifetime
as the cluster based maximum lifetime data aggregation
algorithm [92] for small network sizes. However, the algorithm
is centralized and the cost of disseminating the optimal routing
paths to the nodes is not considered.

Two-Tier GA: Another application of GA for maximum
lifetime routing for a two-tier network is presented in [77]. In
a two tier sensor network, a few sensor nodes having higher
power levels act as cluster heads. If a cluster head fails due
to loss of power, the whole cluster ceases to operate. This
influences load on the existing nodes, causing them to deplete

15

their power quickly. Flow-splitting type of routing algorithms
are used in such eventuality. The approach discussed in the
article uses GA determine a non-flow-splitting routing strategy.

A chromosome is represented as a string of node numbers
for a particular routing scheme. Length of chromosome is
equal to number of relay nodes. Selection of individuals
is carried out by using Roulette-Wheel selection method.
Uniform crossover is used with swapping probability of 0.5.
The node in the chromosome, which dissipates maximum
energy is selected as critical node. Destination of critical node
is changed to a randomly selected node. Average life time
extension of 200% is observed in comparison to the networks
that use minimum transmission energy model and minimum
hop routing model discussed in [93] and [94] respectively.

Energy Efficient GA Clustering: Another application
of GA in energy efficient clustering is described in [78].
The proposed GA represents the sensor nodes as bits of
chromosomes, cluster heads as 1 and ordinary nodes as 0.
The number of bits in a chromosome is equal to the number
of nodes. Fitness of each chromosome is computed as

F =
∑
i

α(wi, fi),∀fi ∈ {C,D,E, SD, T} (14)

where C represents sums of distances of nodes to cluster
heads, and distance from cluster head to the sink;

C =
k∑
i=1

dih + dhs (15)

D represents sums of distances from cluster heads from sink
nodes;

D =
m∑
i=1

dis (16)

SD represents the standard deviation of cluster distances,
where µ is the average of cluster distances; and

SD =

√√√√ 1
h

h∑
i=1

(µ− dclusteri)2 (17)

E represents the energy consumed in transferring aggregated
message from the cluster to the sink.

E =
k∑
j=1

ETjh + k · ER + EThs (18)

Initially, weights are assigned arbitrary weights wi, and then
weights are updated as

wi = wi−1 + ci ·∆fi (19)

where ∆fi = fi − fi−1 and ci = 1
1+e−fi−1

. The results show
that the GA approach possesses better energy efficiency than
do hierarchical cluster based routing and LEACH. However,
with GA, there is an overhead of gathering critical information
about the whole network on a base station, before determining
the clusters.

There are also some other similar ideas based on GAs,
where a base station computes the optimal routing, aggregation
or clustering scheme for a network based on the information

about full topology, remaining energy on the nodes etc. Such
algorithms are only feasible if the network is expected to have
a static topology, perfect communication, symmetric links and
constant energy. Under these restrictions, a centrally computed
routing or aggregation tree makes sense and is probably easier
to implement. However, these properties stay in full conflict
with the nature of WSNs.

Multi-objective DE: The study presented in [79]
proposes a multi-objective differential evolution algorithm to
determine a set of Pareto optimal routes with respect to
energy consumption, latency and channel capacity for single
and multipath routing problems2. Multi-objective differential
evolution produces multiple candidate routes that represent
different possible tradeoff between energy consumption and
latency for a communication in completely connected network
in which each node knows precise location of every other
node.

A chromosome in multi-objective DE consists of a sequence
of network node IDs with the source node in the first locus
and the destination node in the last locus. Each parent pi in
the population undergoes a reproduction operation to produce
an offspring p′i according to

p′i = γ · pbest + (1− γ) · pi + F ·
K∑
k=1

(pika − pikb) (20)

where pbest is the best individual in the parent population, γ
represents greediness of the operator, and K is the number of
perturbation vectors, F is the scale factor of the perturbation,
pika and pikb are randomly selected distinct individual pairs in
the parent population, and p′i is the offspring that is generated;
γ, K, and F are the parameters associated with the algorithm.
The whole population is divided into multiple ranks based on
the Pareto optimality concept. All parents and their offspring
compete for entering into the next generation based on their
ranks and the crowd distance metric σcrowd which indicates
similarity of solutions within the same rank. In discrete version
used in the article, three probabilities: greedy probability pg ,
mutation probability pm, and perturbation probability pp are
introduced.

The article presents simulation results which demonstrate
the ability of multi-objective DE to come up with a Pareto front
of multiple routes between a given source and destination.
At one extreme of the Pareto front exists the route that
has minimum latency but maximum energy requirement. At
the other, exists the route that requires minimum energy but
involves maximum latency. Again, the major weakness of the
approach is the necessity of the global view of the network
at the base station in order to compute distances between its
nodes.

4) Swarm Intelligence: Four variants of PSO, namely PSO
with time varying inertia weight, PSO with time varying
acceleration constants, hierarchical PSO with time varying
acceleration constants and PSO with supervisor student mode,
are proposed for energy aware clustering in [80]. In PSO with

2In Economics, Pareto optimality is a situation which exists when economic
resources and output have been allocated in such a way that no-one can be
made better off without sacrificing the well-being of at least one person.

16

time varying inertia weight, the inertia weight w is decreased
linearly from 0.9 in first iteration to 0.4 in the last iteration. In
PSO with time varying acceleration constants, inertia weight
is set constant, and acceleration constants c1 and c2 are varied
linearly from 2.5 to 0.5 linearly in every iteration. Therefore,
particles move towards the solution in large steps initially, and
the step size reduces in every iteration.

In hierarchical PSO with time varying acceleration constants
method, the particle update is not influenced by the velocity
in previous iteration. Thus, re-initialization of velocity is done
when the velocity stagnates in the search space. Therefore,
a new set of particles is automatically generated according
to the behavior of the particles in the search space, until the
convergence criteria is met. The re-initialization velocity is set
proportional to Vmax. Lastly, in PSO student supervisor model,
a new parameter called momentum factor (mc) is introduced,
and the PSO update equation is modified to (21).

xk+1
i = (1−mc) · xki +mc · vk+1

i (21)

PSO assigns nj nodes to each of the k cluster heads,
j = 1, 2, · · · , k such that the total energy loss due to physical
distances Edd is minimum. This is defined in (22), where Dj

is the distance between cluster head j and the sink.

F =
k∑
j=1

nj∑
i=1

(d2
ij +

D2
j

nj
) (22)

Clustering is based on a simple idea that for a group of
nodes that lie in a neighborhood, the node closest to the
base station becomes the cluster head. The approach has a
drawback: Clustering depends solely on physical distribution
of nodes, but not on energy available to the nodes. The
article reports two case studies; in the first, nodes have a
fixed transmission range and in the second, nodes do not
have any range restrictions. A detailed comparative analysis
of the algorithms for optimal clustering is presented in [80].
The results show that PSO with time varying inertia weights
performs better in the first case study, and PSO with student
supervisor model in the second.

Ant-based approaches: Biologically inspired techniques
like SI are popular tools used by researchers to address the
issue of energy aware routing.

Introductions to ant inspired algorithms and brief overviews
of ant based routing methods in WSNs are given in [82] and
[83]. The study presented in [83] investigates ant-based and
genetic approaches and the associated techniques for energy
aware routing in WSNs. The article presents a mathematical
theory of the biological computations in the context of WSNs,
and a generalized routing framework in WSNs. An overview
of emerging research directions is presented within the
biologically computational framework. A survey of adaptive
routing methods based on SI is given in [81] and in [72].

Collaborative Clustering Algorithm: In many applica-
tions, mere number of living nodes does not represent the
effectiveness of the network. For example, a network that has
lost a quarter of its nodes from one quadrant is less effective
than the network that has lost a quarter of its nodes from the
whole area uniformly. Article [84] defines a new parameter

for evaluating longevity of wireless sensor networks. The
parameter is called Effectiveness, and [84] defines it as in (23).
The network longevity is defined as the time for which the
network Effectiveness is equal to or greater than 70%.

Effectiveness =

√
Area Covered× Surviving Nodes

Total Area× Total Nodes
(23)

Biological soldier ants that have the support of other soldier
ants are found to be more aggressive in nature. An ant is
observed to exhibit higher eagerness to fight when it is amidst
strong ants. This fact inspires the collaborative clustering
algorithm for wireless sensor network longevity that possesses
good scalability and adaptability features. Here, each node has
an Eagerness value to perform an operation, which is defined
as

Eagerness = BCself +
1
10

N∑
i=1

BC(i) (24)

where BCself is the battery capacity of the node, N is the
number of neighbors the node has, and BC(i) is the battery
capacity of ith neighbor. At a regular periodicity, each node
computes its Eagerness value and broadcasts over the network.
The node that has highest Eagerness value decides to act as a
cluster head, and the other nodes accept it. The cluster head
floods the new clustering information, which helps other nodes
to readjust their power levels just enough for them to transmit
to the cluster head.

The method assures that only the nodes that have sufficient
energy in their reservoir, and have strong neighbors, opt to
become cluster heads. The algorithm has overheads due to
the fact that each node has to flood its Eagerness every now
and then. In addition, the traffic of packets might flow away
from a sink node just because a node in that direction has
higher Eagerness. Thus, the algorithm is sub-optimal in terms
of minimizing energy of the individual nodes, but optimal in
terms of making effective use of the energy available to the
whole network.

Results of several case studies conducted on
MATLAB-based PROWLER simulator are presented. A case
study differs from another in terms of the standard deviation in
distribution of the initial energy to the nodes. The network with
initial energy varying between 1500mAh to 2400 mAh that
uses the proposed algorithm is reported to have over 26% more
network life compared to the network without such a clustering
scheme. However, the algorithm needs to be evaluated under
realistic conditions like link failures and packet loss, which
could affect its work significantly.

AntBuilding: Article [85] presents an ant-system based
approach for routing in a WSN installed in a building. The
authors use software agents as ants in the network, which try
out different routes from the source to the destination and,
after completing a full tour, return to the source and update the
transition probabilities (pheromone levels) on all intermediate
nodes. The approach is very similar to AntHocNet [95], and
as every other swarm-based one, is fully distributed and is
well suited for networks. However, the returning ants in the
network create unnecessary overhead for a sensor network.

17

5) Reinforcement Learning: One of the fundamental and
earliest works in packet routing using machine learning
techniques is Q-Routing [45]. The authors describe a very
simple, Q-learning based algorithm, which learns the best
paths considering the least latency to the destinations.

A Q-value is assigned to each pair (sink, neighbor) at all
nodes, which is the estimation of how much time the packet
will travel to the sink taking this particular next step (including
packet queues). Upon sending a packet to some neighbor,
a node immediately receives a reward from it, namely the
minimum time this neighbor needs to forward the packet to
the sink:

t = min
z∈ neighbors of y

Qy(d, z) (25)

The new estimate of the remaining time is updated
according to:

∆Qx(d, y) = η(

new estimate︷ ︸︸ ︷
q + s+ t −

old estimate︷ ︸︸ ︷
Qx(d, y)) (26)

where η is the learning rate, q is the units of time the packet
has to spent in the queue of the current node x, and s is the
time for transmission between nodes x and y.

Simulations proved the algorithm to be highly efficient
under high network loads and to perform also well under
changing network topology. Although the approach was
developed for wired, packet-switched networks, it can be
easily applied to wireless networks and is especially well
suited for WSNs, since it uses only locally available
information at the nodes and is fully distributed.

DRQ-Routing: DRQ-Routing [48] is based on Q-Routing
and uses the same WSN application scenario: routing packets
from a source to a sink, while minimizing delivery time of the
packets. However, the authors use dual reinforcement learning
(See Section III-F). Thus, learning converges faster and the
protocol shows better performance. The approach is again
fully distributed and uses only local information and feedback
appended to packets from neighboring nodes. However, its
communication cost is slightly increased by the backward
rewards, compared to Q-Routing.

Q-RC: Q-RC (Q-Routing with Compression) [44]
presents a routing protocol, where the goal is to aggregate the
source packets as early as possible in the path, compress them
and send to a single sink (See Figure 7, taken from [44]).

Fig. 7. (a) routing driven compression and (b) compression driven routing

Again, agents are the sensor nodes and the actions are the
possible forwarding options to different neighbors. A q-value
is associated with each forwarding option and the one with
the highest q-value is considered the best. The q-values are
initialized according to:

Q(av) = β ∗Q1(av) + (1− β) ∗Q2(av) (27)

where Q1(av) ∈ {0, 0.5, 1} is the evaluation of making
progress to the sink and Q2(av) is the contribution of
achieving a good data aggregation. The second part is
updated according to incoming rewards, the first part if fixed
and pre-known. β is the weighting parameter. Update of
the q-values is done according to the standard Q-learning
algorithm (See Section III-F). The rewards are calculated with:

R(ρ, p, qu,best) = ρ ∗ p+ max
a

qu,a (28)

where ρ is compression rate achieved from p number of
packets at agent u. The exploration strategy is the well known
ε− greedy.

Results presented include convergence speed and total
energy expenditure compared to minimum hop-based routing.
The performance is unfortunately not compared to other
state-of-the-art protocols and thus it stays unclear how the
increased costs of exploration affect the total performance of
the system. However, the work is well modeled and presented
and the algorithm simple, elegant and very efficient. Beside
this, it can be easily adjusted to accommodate other cost
metrics and thus completely different system goals.

The best compression path is learned by Q-learning. The
approach is fully distributed and can be applied easily to
similar routing problems. However, the protocol is somewhat
premature, since it gives no communication details, nor an
implementation for exchanging the rewards.

An additional improvement of Q-RC is presented in [96],
where instead of pre-setting the parameters of the learning
algorithm, a Bayesian exploration strategy is used. For this,
a new metric is introduced, the value-of-perfect-information
and the actions are selected such that the expectation of the
q-values and and value-of-perfect-information are maximized.
To calculate value-of-perfect-information, three values need to
be stored at each node: (1) its Manhattan distance from the
sink, (2) its residual energy and (3) the number of previous
aggregated transmissions. The calculation of the immediate
reward changes accordingly. Simulation results show that the
cumulated reward during the learning phase of the protocol
more than doubles, thus speeding up the convergence.

The paper presents an idea which can be applied to all other
RL-based algorithms, which need parameter pre-setting and
should be further explored and refined.

AdaR: Yet another Q-Learning based routing mechanism
is presented in [88]. It uses an offline learning procedure, based
on Q-learning and claims to learn the routing value function
faster than traditional Q-Learning. The setting is similar to
those presented above: many source nodes are sending data
to a single base station. The algorithm takes into account the
aggregation ratio, the residual energy on the nodes, the hop

18

cost to the base station and the link reliability between the
nodes.

The algorithm runs in learning episodes. The learning agents
are again the nodes and Q-values are assigned to each possible
next hop at each node. During each episode, the current Q
values are used to route a packet to the base station. At
each hop, the full hop information is appended to the packet
(residual energy, rewards, etc.). Rewards are generated either
at the base station or at intermediate nodes, if some routing
threshold is exceeded. When the base station has enough such
packets (undefined how many), it calculates the Q values
offline for the nodes in the network and disseminates them
via a network-wide broadcast.

The approach has some useful properties, like taking into
account more than only one routing cost metric. However,
it shows also a number of drawbacks. The result section
unfortunately tries to evaluate the protocol only in terms of
how many such packets are needed to find the end policy
compared to a traditional Q-learning protocol. However, in a
real world scenario and implementation, the protocol is hard
to implement and maintain: a lot of additional communication
cost is incurred through the new Q-values broadcasts; the
protocol is hardly scalable because of the growing size of the
packet at each hop; in case of a link failure or node mobility,
a new round of learning episodes has to start to find the
new optimal policy. Not less important is the non-distributed
manner of learning of the algorithm, which is very different
from traditional RL approaches - it needs a whole set of
samples (packets) to offline calculate the optimal policy.

RL-Flooding: [87] is a constrained flooding routing
technique, able to handle very dynamic WSN environments.
Its basic idea consists of learning the costs to the single sink
at each node in the network by using Q-Learning (very similar
to the above proposed approaches). The costs can be defined
as any metric based on hops, remaining energy on the nodes,
energy required to reach the sink, etc. However, instead of
using the single best route to route the packet, RL-Flooding
allows all neighbors, whose cost to the sink is not greater
than that of the last hop to forward the node. This makes
the routing very flexible and the data delivery very fast and
reliable. However, in more static and reliable environments it
causes a lot of additional communication overhead.

Q-Fusion: A Q-Learning based routing protocol with
somewhat different goal is presented in [89], where sensing
nodes disseminate data tuples from military target detection
applications to interested nodes. However, sinks or interested
nodes are defined as forwarding nodes, able to fuse the data
about some detected event ei. The authors apply a Q-Learning
technique, where the rewards (feedbacks) are defined for a data
packet ei as:

reward =

1 if b is a sink for ei
0 if no reward arrived
max
nb

Qt−1(b) otherwise
(29)

where b is the rewarding node with its Q-values at time
t − 1 with its neighbors nb. Thus, the best fusion walks
through the network are learnt, until the data packet reaches

its TTL. There is no traditional sense of sinks or destinations
in this application and it shows again the broad applicability
of RL based techniques for learning any distributed goals in
a network at nearly no communication overhead.

Q-PR: Q-Probabilistic Routing [47] is another variation
of Q-Routing, where a geographic-based routing protocol is
implemented for routing data from single source to a single
sink. In each step of the algorithm to the sink a subset
of neighboring nodes is selected to forward the packet. A
complex coordination algorithm is implemented to make sure
that even under highly lossy links the message is forwarded.
The underlying approach is though based on Q-Learning,
where the best neighbors are learnt through experience (in
terms of geographic progress and residual energy). Compared
to a non-RL based geographic routing protocol, Q-PR shows
very good results, especially in terms of delivery rate.

RLGR: Another geographic-based routing protocol for
WSNs based on reinforcement learning is RLGR [90]. The
authors use RL to learn the best next hop to reach a single sink
in a network, using a reward function which includes besides
the traditional geographic progress to the sink also remaining
energy on the nodes and automatic avoidance of void areas:

reward =

R if next hop is not sink
RC if next hop is sink
−RD if cannot find next hop (void area)
−RE if next hop has very low energy

(30)
where R = β pr

pravg
+ (1 − β) Er

Einitial
. Here the first term R

combines normalized progress to the sink with normalized
remaining energy; and the other three terms manage special
cases. The protocol has been compared in simulation to GPSR,
a well-known geographic based routing protocol for WSNs and
has achieved very good results in terms of energy spreading
and routing costs.

TPOT-RL-Routing: The authors of TPOT-RL (see
Section III-F) have applied their algorithm to packet routing
in a network in [50]. TPOT-RL should be usually used when
many agents act as a team and have to learn to cooperate in
some task, without really knowing what the others are actually
doing. The goal of the paper is a proof-of-concept of the
wide applicability of the algorithm rather than developing a
high-performance routing protocol and thus does not provide
any comparison to other approaches. Besides this, although
application to network routing is possible, it is not the best
representation of the problem for two reasons: first, it presents
the network as one system with a large number of possible
states, and second, it assumes that additionally for every packet
sent to the sink, a backward packet is sent also back to the
sender to compute how many hops it traveled and thus to
deliver some reward to the learning agent. Both assumptions
are valid, but do not optimally use the properties of a network
(wireless or not).

SAMPLE: Collaborative RL (see Section III-F) is defined
and applied to optimal routing in a mobile ad hoc network
in [51]. The approach learns the optimal routing policy through
feedback among agents, using Boltzmann exploration strategy.
A routing protocol is implemented on top of collaborative RL,

19

called SAMPLE, and tested in different network topologies
with various mobility. The approach is fully distributed and
the implementation is feasible also for WSNs, since all routing
information is sent together with the data packets.

FROMS: An energy-aware multicast routing protocol
based on Q-Learning called FROMS is presented in [46].
Its goal is to minimize the energy spent in a network, while
delivering packets to many sinks simultaneously. The idea is
based on an optimal broadcast Steiner tree, where a minimum
number of broadcasts are needed to deliver one packet from
an independent source to all sinks.

Each sensor node is a learning agent, which learns the best
hop costs to any combination of sinks in the network. Actions
are possible next hop(s) for routing the packet towards the
sinks. An important property of the learning mechanism is the
separation of the possible actions into actions and sub-actions:
a sub-action involves only one neighboring sensor, while a
complete action involves the sub-actions to many neighboring
sensors, so that the full desired set of sinks is reached. For
more examples and details of this mechanism, please refer to
the original paper.

The Q-values of the sub-actions are initialized based on
the individual hop counts to each of the sinks, which are
disseminated during an announcement message from each
sink. This initial value is an upper bound estimate of the real
costs:

Q(ai) =

(∑
d∈Di

hopsnid

)
− 2(| Di | −1) (31)

where Di are the targeted destinations. The Q values of the
complete actions are a sum of the Q values of the involved
neighbors. At each step of the algorithm, a forwarding node
selects an action to reach the desired set of destinations. This
can be done greedily, randomly or uniformly and is referred
to as the exploration strategy. Before broadcasting the packet
to all the neighbors, the forwarding node also includes its
best Q-value for this set of destinations, thus giving reward
to its neighbors. When receiving a packet from a neighbor,
a node has two procedures to follow: to compete its new
Q-value given the included reward and to forward the packet,
if applicable. Updating of the Q-values is done according to:

Qnew (ai) = Qold(ai) + α(R(ai)−Qold(ai)) (32)

where the reward is computed as

R(ai) = ca + MIN aQ(a) (33)

Simulation results show that FROMS performs well even in
case of mobility or node failure and is able to achieve up to
25% energy savings, compared to a simple Directed Diffusion
multicast approach. The exploration strategy, the initialization
of the Q-values, as well as an eventual exploration stop greatly
influence the properties of the protocol and its performance.
Basically it can be tuned to perform best in different scenarios,
but it requires deep knowledge of the protocol and some time
for experimenting. Also, the mechanism shows its full power

under long-lived data flows, so that the costly exploration
phase stabilizes and near-optimal routes can be followed.

Clique: An attempt to efficiently solve the clustering
problem in WSNs in presented in [86]. The most important
disadvantage of traditional clustering algorithms is their high
communication overhead for forming the clusters, and electing
and announcing the cluster heads.

Clique [86] solves the problem by avoiding all-over the
cluster head selection process. It assumes the nodes in the
WSN have some a-priori clustering information, like a simple
geographic grid or room or floor information in a building. It
further assumes that the possibly multiple sinks in the network
announce themselves through network-wide data requests.
During the propagation of these requests all network nodes
are able to gather 1-hop neighborhood information consisting
of the remaining energy, hops to individual sinks and cluster
membership. When data becomes available for sending, nodes
start routing it directly to the sinks. At each intermediate node
they take localized decisions whether to route it further to
some neighbor or to act as a cluster head and aggregate data
from several sources. Clique uses Q-Learning to select the best
decision.

The learning agents are the nodes in the network. The
available actions are ani = (ni, D) with ni ∈ {N, self }, or in
other words either routing to some neighbor in the same cluster
or serving as cluster head and aggregating data arriving from
other nodes. After aggregation, Clique hands over the data
packet control to the routing protocol, which sends it directly
and without any further aggregation to the sinks. In contrast
to the original Q-Learning, Clique initializes the Q-Values not
randomly or with zeros, but with a initial estimation of the
real costs of the corresponding routes, based on the hops to
all sinks and the remaining batteries on the next hops. The
update rules for the Q-Values are the original Q-Learning ones,
where the learning constant is set to 1 to speed up the learning
process. The reward is simply the best available Q-Value at
the rewarding node plus the cost of sending to this node. The
most important property of Clique is its role-free nature. In
contrast to most cluster head selection algorithms, it does not
try to find the optimal cluster head (in terms of cost), but
incrementally learns the best without knowing either where
or who the real cluster heads are. As a result, at the beginning
of the protocol, multiple nodes in the cluster may act as cluster
heads. While this temporarily increases the overhead, it is a
short-term tradeoff in comparison to the overhead required to
agree on a single cluster head. Later in the protocol operation,
after the real costs have been learned, multiple cluster heads
occur only in disconnected clusters, where a single cluster
head cannot serve all cluster members.

VI. SCHEDULING, DATA AGGREGATION AND SENSOR
FUSION, AND QOS MANAGEMENT

A. Scheduling

Several aspects of scheduling in WSNs are accomplished
through CI techniques like fuzzy neural network, GA, AIS,
RL and hybrids of PSO and GA. Table VI summarizes some
CI based solutions to scheduling in WSN discussed below.

20

1) Fuzzy Neural Network: A fuzzy Hopfield neural network
is proposed in [97] to solve the TDMA broadcast scheduling
problem in WSNs. The problem is treated as discrete
energy minimization problem that is mapped into a Hopfield
neural network. The objective of the broadcast scheduling
problem is to find a conflict-free transmission schedule for
each node in TDMA slots. The optimization criterion is
to find the TDMA schedule having minimal TDMA cycle
length and maximum node transmissions. The results of
fuzzy Hopfield neural network are compared against methods
proposed earlier, namely, state vector coloring noisy chaotic
neural network [105], Hopfield neural network-GA [106] and
mean field annealing [107]. TDMA frame length, channel
utilization factor, and average time delay are used as metrics
for comparison. The paper portrays fuzzy Hopfield neural
network’s ability to minimize TDMA frame length and
maximize the channel utilization in order to achieve the
lower time broadcast delay. However, the paper compares
the performance of fuzzy Hopfield neural network with those
of other NN-based techniques reported earlier, but not the
traditional scheduling methods. Moreover, the paper does take
into account computational overheads.

2) Evolutionary Algorithms: GA is employed effectively
in communication scheduling to minimize the effects of
bio-heating from tissue implanted bio-sensor network in [98].
Tissues are sensitive to increase in temperature resulting from
normal operation of sensor nodes. The cluster heads that
transmit more frequently, or those at higher power level
are likely to cause more damage to tissues. Therefore, it is
necessary to rotate cluster head allocation in order to minimize
thermal effects. The algorithm GA Thermal Effect reported in
[98] uses GA for fast computation of optimal rotation sequence
based on a parameter called temperature increase potential.
It is assumed that all sensors are surgically implanted, and
the base station uses the knowledge of precise locations of
all sensors to compute cluster head rotation sequences. The
study uses a rotation sequence as a chromosome. GA uses
order crossover in which individuals are randomly chosen for
mating, and offspring are produced by swapping randomly
selected segments of parent’s chromosomes. Mutation is
performed by swapping two randomly selected positions in a
chromosome sequence. Roulette wheel selection is used. The
paper presents a comparison of the time taken to determine a
minimum temperature leadership rotation sequence by GA and
other methods that use finite-difference time-domain approach.

It is shown that the GA is several orders faster than the other
methods.

Dynamic Alliance GA: A dynamic alliance model based
on GA is proposed for sleep scheduling of nodes in a randomly
deployed large scale WSN in [99]. Such networks deploy a
large number of redundant nodes for better coverage, and how
to manage the combination of nodes for a prolonged network
operation is a major problem. The scheme proposed in the
article divides the network life into rounds. In each round, a
set of nodes is kept active (this set is referred to as a dynamic
alliance) and the rest of the nodes are put in sleep mode. It is
ensured that the set of active nodes has adequate coverage and
connectivity. When some of the active nodes die, blind spots
appear. At this time, all nodes are woken up for a decision
on the next set of nodes to remain active in the next round.
This is clearly a multi-objective optimization problem. The
first objective is to minimize the overall energy consumption of
the dynamic alliance, and the second objective is to minimize
the number of the nodes in the dynamic alliance.

For a random deployment of N nodes, chromosomes in
the proposed GA are N -bit binary strings in which a binary
1 in position k represents that the node k is a part of the
current dynamic alliance. Fitness function is obtained by
goal programming 3. GA uses roulette wheel selection, and
a 2-point crossover with a cross over probability Pc such
that 0.6 ≤ Pc ≤ 1. Mutation is performed by flipping of a
random bit with a probability of Pm = 0.34. The best 10
individuals of a generation and their 10 best offsprings go the
next generation. When the change in fitness of consecutive
generations converges within 0.01%, the GA is stopped.

The article presents simulations results on a random
deployment of a 40-node network in an area of 100×100
m2. However, although the algorithm works with random
deployments, gathering the topology information on a single
base station is critical and non-feasible in a realistic scenario.

Active Interval Scheduling: A scheduling problem called
the active interval scheduling problem in hierarchical WSNs
for long-term periodical monitoring is introduced in [100], and
an approach based on compact GA is proposed as a solution
thereto. A hierarchical sensor network has its nodes partitioned
into several clusters, each controlled by a local control center.
Each local control center collects detection results from nodes
in its cluster, and forwards the same to a global control center.

3Goal programming is a technique used by decision-makers to solve
multi-objectives decision-making problems to find a set of satisfying solutions
[108].

TABLE VI
A SUMMARY OF CI APPLICATIONS IN WSN SCHEDULING SURVEYED IN SUBSECTION VI-A

CI Paradigm Algorithm Articles Simulation/Real-deployment/Overview Centralized/Distributed
Fuzzy neural network FHNN-Scheduling* [97] Simulation Centralized
EA GA Thermal Effect* [98] Evaluation through simulation Centralized

Dynamic Alliance-GA* [99] Simulation Centralized
Active Interval Scheduling [100] Simulation Centralized

AISs Immune Based Scheduling* [101] Simulation Centralized
RL Actor-Critic [102] Simulation Distributed

RL-MAC [103] NS-2 simulation Distributed
A Hybrid of PSO and GA GA-PSO* [104] Simulation Centralized

*This algorithm is renamed here for easy reference.

21

The sensing operation is divided into sensing slots. In each
slot, all nodes in a cluster wake up at a preset time, record
and broadcast sensor data, and go to sleep at a preset time
decided by the local control center. Length of time for which
the nodes remain active is called active interval. The active
times of neighboring clusters have to be mutually exclusive,
otherwise communication in one cluster interferes with that in
another. The length of the active interval should be minimum
in order to save power, but is should be long enough to give
all sensor nodes a chance to transmit their data.

Article [100] uses compact GA to determine the active
interval for each cluster in the network depending on
the number of nodes in the cluster. Length of the active
interval is taken as the fitness function that GA seeks
to minimize. The GA chromosomes represent schedules.
Appropriate competition operator and cross over operator are
defined. Comparison between the results of compact GA and
those of two greedy interval scheduling algorithms proposed
by the same authors in [109] are presented. GA is shown
to produce schedules having lesser time costs, which means
lesser power consumed.

3) Artificial Immune Systems: An immune system based
node scheduling scheme is presented for power minimization
and collision preemption in [101]. The objective of the scheme
are to optimize the route of each hop of N nodes to minimize
power consumed, and to order the nodes in path ensuring
collision free propagation. In the proposed method, antigen
(problem domain) is represented as sets of A(i), i=1,2,. . . ,N ,
where i denotes serial number of a node, and A(i) denotes
its index. Antibody (solution space), is represented using
array codes. The code length of antibody gene is same as
the length of antigen code L. Each row denotes the set of
Bj(i), which is the code of the ith node on the route from
jth source to the sink. Therefore, routes from N nodes to
the sink consist of an array of length N × L. Chromosomes
are randomly initialized. Crossover and aberrance are the
two immune operators defined. Crossover swaps two selected
chromosomes, while Aberrance operator selects a node and
makes a variation ensuring that all required conditions are met.
This method is reported to outperform direct, multi-hop, static
clustering and LEACH schemes.

4) Reinforcement Learning: Actor Critic Algorithm, a near
optimal point-to-point communication framework based on
RL is presented in [102]. The goal of the algorithm is to
maximize throughput per total consumed energy in a sensor
network, based on node-to-node communication. Given its
current buffer size and last channel transmission gain, the
node decides the best modulation level and transmit power
to maximize the total throughput per consumed energy. For
this, the authors use the standard RL algorithm and test
their algorithm on a two-node and multi-node scenarios.
Unfortunately no comparison to other state-of-the-art protocols
is presented in order to evaluate the gain of the RL algorithm.

RL-MAC: [103] applies reinforcement learning to adjust
the sleeping schedule of a MAC protocol in a WSN setting.
The MAC protocol is very similar in its idea to the other
WSN MAC protocols like S-MAC or T-MAC. It divides the
time into frames and the frames into slots, where each node

is allowed to transmit messages only during its own reserved
slot. However, unlike other protocols, it changes the duration
of the frames and slots according to the current traffic. At
the beginning of its reserved slot, the node first transmits
some control information, including also a reward for the other
nodes. The reward function depends on the number of waiting
messages on the nodes and on the number of successfully
transmitted messages during the reserved slot. It reports higher
data throughput and lower energy expenditure compared to
S-MAC.

5) Hybrid Algorithms: Time division multiple access based
medium access control is a popular technique used in sensor
networks because it can reduce the delay, provide real-time
guarantees and save power by eliminating collisions. It is
customary in such a MAC to send the node in sleep mode
when there is no need of transmission. But, unnecessary
state transitions between the active and sleep modes lead
to wastage of energy. A multi-objective TDMA scheduling
method for many-to-one sensor networks is presented in [104].
The article proposes a hybrid of PSO and GA for optimization
(therefore, the name GA-PSO). The performance of the hybrid
algorithm is compared to that of PSO, max degree first
coloring algorithm and node based scheduling algorithm. In
TDMA scheduling problem, time is split into equal intervals
called time slots. Each time slot accommodates a single packet
between pairs of nodes in the network. The challenge here is
to assign time slots to nodes so that collisions would not occur.
The energy necessary in a N -node network is given by

EC =
N∑
i=1

[P txi × (ttxi − ts−txi) + P rxi × (trxi − ts−rxi)] (34)

where P txi and P rxi are power transmitted and received by
the node i respectively. ttxi and trxi are transmission and
reception times at node i respectively; and ts−txi and ts−rxi

transition time between active and sleep modes respectively.
The proposed hybrid optimization algorithm minimizes the
objective function below.

F (s) = α× EC + (1− α)× TS (35)

where TS is the total number of slots under the schedule and
α defines the trade off between the two objectives EC and
TS.

A schedule is coded into a binary number using an encoding
scheme. Given N tasks and each task i includes Mi hops, an
individual is a sequence composed of all the task ID numbers
from 0 to N − 1, where each task number i appears for Mi

times. Each individual has a length of
N−1∑
i=0

Mi bits. GA uses

tournament selection, one-point cross over and a two-position
swap mutation. First, a random population is generated and
the PSO is performed for a specific number of iterations. Then
the GA is performed on the PSO optimized population until
desired performance is obtained. GA is used to get closer to the
optimal solution as is good at solving discrete problems. The
results show that the schedule determined by hybrid algorithm
in a 169 node, 489 link scenario 644 mJ of energy, which is

22

marginally better than the schedules determined by max degree
first coloring algorithm and node based scheduling algorithm
consume 740 mJ and 666 mJ respectively.

B. Data Aggregation and Sensor Fusion
Some CI based solutions to data aggregation and sensor

fusion problem are discussed below and summarized in
Table VII. The methods capable of automatic adjustment
and self-adaptation are required for intelligent fusion of
information from distributed nodes in a multi-sensor network.
Data aggregation and sensor fusion are addressed through
GA, fuzzy logic, RL and NNs. Some of the approaches
focus on determining efficient aggregation paths and others
deal with fusion rules. GAs have resulted in efficient data
aggregation routes in a mobile agent based WSN because of
their inherent parallel nature and ability to deal with difficult
real world problems like non-homogeneous, noisy, incomplete
and/or obscured information. However, these parallel search
algorithms require the costs of collecting required information
at a base station before determining the aggregation path for
the agent. Due to its ability to converge quickly to the optimal
solution, PSO proves to be a good substitute for GA. Similarly,
ACO can be a good substitute for GA because of its distributed
nature, which obviates collection of prior information at the
base station before determining an optimal route. On the other
hand, a neural network’s ability to learn and dynamically
adapt to the changing scenarios makes it a natural choice
for information fusion applications. Reinforcement learning
has also been applied successfully for solving the optimal
aggregation path problem - it is fully distributed and able
to adapt quickly to topology changes or failing nodes. Many
applications, especially for monitoring or predicting events,
require centralized gathering of data. In such applications, a
centralized approach like neural networks, GA or PSO can be
successfully applied to learn the properties of the data.

1) Fuzzy Logic: A novel distributed approach based on
fuzzy numbers and weighted average operators to perform
an energy efficient flooding-based aggregation is proposed in
[110]. In this study, each sensor node maintains an estimate
of the aggregation value represented as a symmetric triangular
fuzzy number. Aggregation is done at each node if either a
new measurement value is locally available to the node, or if
a new value is received from a neighboring node. Each node
maintains a table of sensor values received from neighboring
nodes. Based on the estimate, a node decides if a newly
measured sensor data has to be propagated in the network
or not. This reduces the number of messages transmitted,
and thus reduces the energy spent. The article presents the
results of experiments on a network of twelve motes that
use flooding-based aggregation, deployed in an apartment to
monitor temperature profile over 24 hours. The article reports a
reduced number of received and transmitted messages leading
to network life-time of an impressive 418 days. However, no
comparison to “normal” network lifetime is provided, which
complicates the interpretation of their results.

2) Evolutionary Algorithms: Article [111] gives an
overview of basic and advanced concepts, models, and variants
of GA in various applications in information fusion.

GAgent: The issue of data aggregation for a target
detection application is addressed in [112] through mobile
agent-based distributed sensor networks wherein a mobile
agent selectively visits the sensors and incrementally fuses
the appropriate measurement data. GA is used to determine the
optimal route for the agent to traverse (thus, the name GAgent).
Mobile agents are special programs that are dispatched from
a source node to be executed at remote nodes. A mobile agent
arrives at a remote node, gains access to services and data,
collects needed information or performs certain actions, and
departs with the results. The number of nodes on the route
and the sequence in which they are visited by a mobile agent
have an impact on energy consumed, path loss, and detection
accuracy. The energy consumed and path loss need to be
minimized, while the signal energy has to be maximized.

The study uses a two-level chromosome representation,
where the first level stands for the sequence of nodes in
the route and the second level represents presence and
absence of nodes in the route, as shown in Figure 8.
Reproduction operator ensures that an offspring that has
better fitness than the minimum in the current population
remains in the population, and the parent having minimum
fitness is eliminated. Two point crossover with big crossover
probability (> 0.9) is used. Two mutation points are selected
randomly and the values of these two points are exchanged.
In addition, two mutation points are selected randomly and
the order of nodes between these two points is reversed.
Several case-studies with node sizes from 200 to 1500
are made. Results are compared with those of popular
heuristic algorithms local-closest-first and global-closest-first.
The results show that the GA comes up routes superior to
the ones determined by both the aforementioned heuristic
algorithms in all case studies.

In [112], the cost of gathering the information on a central
unit to compute the optimal path is not considered. This cost
does not apply to global-closest-first and local-closest-first
distributed heuristic algorithms. The protocol still needs to
be evaluated in a sophisticated network scenario, where all
necessary costs are taken into account and compared.

S1

S2 S5

S3

S10

S9

S6

S8

S4

S7

S0

A dead
sensor node

0 1 2 4 5 3 6 8 7 9 10

1 1 1 0 1 1 0 0 0 0 1

Chromosome
Level 1

Chromosome
Level 2

A visited
active sensor
node

An unvisited
active sensor
node

A wireless segment of
mobile agent’s
complete route

Fig. 8. A mobile agent’s route in the distributed WSN scenario and the
two-level chromosome code for the route

23

TABLE VII
A SUMMARY OF CI APPLICATIONS FOR DATA AGGREGATION AND SENSOR FUSION IN WSNS SURVEYED IN SUBSECTION VI-B

CI Paradigm Algorithm Articles Simulation/Real-deployment/Overview Centralized/Distributed
Fuzzy Logic Flooding-Based Aggregation [110] Real deployment Distributed
EA [111] Overview

GAgent* [112] Simulation Centralized
Stochastic Gradient GA [113] Simulation A combination of centralized and distributed
Parallel GA [114] Simulation A combination of centralized and distributed

RL Q-RC [44] Simulation Distributed
*This algorithm is renamed here for easy reference.

GA-Stochastic Gradient and Parallel GA: GA is used in
[113] and [114] to address the problem of optimal detection
performance in sensor networks that have communication
constraints. Both the studies consider the parallel fusion
architecture in which local sensors feed their quantized
decisions to a single fusion center through the medium that has
a bit rate constraint. N sensors gather T measurements yn,t
of a state of nature H per sensor, make a local decision un,t
per measurement using a mapping function γn and send local
decisions to a single fusion center. The fusion center makes a
binary global decision H̃ ∈ {H0, H1} based on the collection
of local decisions from all sensors. Each sensor classifies each
measurement into L = 2b classes, where b is the number of
bits transmitted per measurement. The fusion center maps NT
local decisions into one of the two classes H0 and H1 using
a mapping function γ0. It is assumed that each sensor has a
quantizer characterized by L− 1 thresholds defined in (36).

un =

0 if yn ≤ λn,1
1 if λn,1 ≤ yn ≤ λn,2
...

...
L− 1 if yn > λn,L−1

(36)

Both articles [113] and [114] address the following issues:
1) Structure of the fusion rule that optimizes the detection

probability error Pe = Pr(H̃ 6= H).
2) Tradeoff between number of sensors N , number of bits

per measurement b and SNR.
3) Convergence of the error decay rate as N →∞
In the stochastic gradient GA approach proposed in [113],

fusion rules are represented in binary chromosome strings as
follows: There are N sensors and each sensor classifies its
measurement into L classes, a fusion rule is represented as
a string of LN bits. Each combination of local decisions is
represented by a vector of N integers. Because L = 2b, a
combination of local decisions is represented as a string of bN
bits. The approach proposed here uses GA to search for the
optimal fusion rule and a gradient-based algorithm optimizing
the local thresholds. The article reports good convergence
of GA to the optimal solution. However, for each solution
candidate of fusion rule in GA, N(L − 1) variables need to
be evaluated for gradient.

In the parallel GA approach proposed in [114], GA is
used to optimize both the fusion rule and the local thresholds
simultaneously. Each chromosome here has a fusion rule
and a set of local thresholds. Because the complex gradient
calculations are not necessary, this approach has an advantage
over stochastic gradient GA in terms of computational

expenses. Results indicate that the parallel GA approach
achieves the same detection error probability as the stochastic
gradient GA does in homogeneous and heterogeneous sets of
nodes, but its computational complexity is one order lesser.

3) Reinforcement Learning: As mentioned above, RL has
been successfully applied to learning the best aggregation and
routing path to the sink in a distributed manner, like the Q-RC
protocol [44], which has been presented in Section V.

C. QoS Management

Table VIII lists the CI applications in QoS management
discussed here. A holistic QoS approach has not received
significant research attention, and energy efficiency has been
the main QoS metric in research efforts. The existing
QoS approaches are classified into stateful and stateless
approaches depending on the mechanisms used to support
QoS. The stateful approaches need flow state information to be
maintained in the network nodes. This is difficult to manage
in dynamic networks and it restricts the scalability. Stateless
approaches typically use feedback-based mechanisms and
local control to support service differentiation and real-time
services. The stateless source-based approaches may get an
old view of the real status of resources which can lead to the
admission of more traffic than what an intermediate node can
really support.

1) Fuzzy logic: A fuzzy logic based congestion estimation
method within a proposed QoS architecture Fuzzy-QoS is
presented in [115]. The architecture comprises of a QoS
Management and Control module which is implemented both
at node level and at the sink for a system level QoS
administration. The Fuzzy-QoS approach uses packet arrival
rate, buffer size in a sensor node to determine and maintain a
fuzzy table for the conditions of buffer congestion. The fuzzy
set consists of two fuzzy variables: packet arrival rate (p) and
buffer size (s), ~A = {p, s}. Each of these fuzzy variables
takes values of 0, 0.5, 1 depending on low, medium or high
congestion conditions. Then, the fuzzy table is computed using
max-min composition. This table denotes the estimation of
the current congestion level. This helps in making decision
regarding if a packet needs to be dropped. The article reports
that the approach reduces the number of dropped important
event-driven packets in comparison to that in continuous traffic
and query-driven traffic models.

The approach named Fuzzy-Control of Congestion proposed
in [116] is a fuzzy logic technique for improving the control of
congestion through buffer threshold management in wireless
ad hoc networks. The threshold function has a significant

24

TABLE VIII
A SUMMARY OF CI APPLICATIONS IN WSN QOS MANAGEMENT SURVEYED IN SUBSECTION VI-C

CI Paradigm Algorithm Articles Simulation/Real-deployment/Overview Centralized/Distributed
Fuzzy logic Fuzzy-QoS* [115] Simulation Combination of centralized and distributed

Fuzzy-Control of Congestion [116] Simulation Distributed
FuzzyMARS [117] Simulation Distributed

*This algorithm is renamed here for easy reference.

influence on the performance of a network in terms of a
average packet delay and throughput. Therefore, the selection
of a particular threshold is critical for an adequate congestion
control.

The fuzzy logic develops a more realistic representation
of buffer occupancy that helps to offer an efficient decision
making regarding if an in-coming packet should be accepted
or rejected by a node. the definition of buffer occupancy will
consider the two fuzzy cases of getting full and not getting
full, rather than admit and no-admit in the previously reported
approaches. This fuzzy representation replaces the two
discrete sets by a continuous set membership, and performs
small gradual transitions between different states of buffer
occupancy. The sigmoidal membership function proposed
here aims to determine the fuzzy threshold depending on
the fullness of the buffer. The admit membership function
is inversely proportional to the occupancy fullness level of
buffer. Thus, when the occupancy fullness is small, the value
of the admit membership function is big, and vice versa.
Fuzzy rules are framed in such a way that when the value
of the admit membership function is big, then the accepted
incoming packets into buffer is increased; and when the value
of the admit membership function is small, then the accepted
incoming packets into buffer is reduced.

The article presents results of NS-2 simulation under diverse
mobility and traffic conditions. In terms of traffic scalability,
the Fuzzy-Control of Congestion achieves a reduction in terms
of average end-to-end delay by about 74-92% in comparison
to the IEEE 802.11 wireless networks, with almost the same
throughput.

FuzzyMARS: A fuzzy logic QoS approach for wireless
ad hoc network, named FuzzyMARS is proposed in [117].
The approach uses fuzzy logic for best-effort traffic regulation,
real-time traffic regulation and admission control. The
feedback delay from MAC layer is the input to the fuzzy
logic, and traffic regulation rate is the output. The input and
output variables are fuzzified into in three classes low, medium,
and high, and fuzzy rules are defined. The mean-of-maxima
method [34] for defuzzification. The performance evaluation
results show that FuzzyMARS experiences low and stable
delays under different channel conditions, traffic scalability,
and network mobility while preserving the throughput.

VII. GUIDE TO CI METHODS FOR WSNS

Many CI methods have outperformed or complimented
conventional methods under uncertain environments and
severe limitations in power supply, communication bandwidth,
and computational capabilities. However, all works presented
here are not the best possible solutions and many have not
been compared to traditional or to other CI approaches.

Additionally, only a few researchers have evaluated their
algorithms under real WSN environments like test-bed or
deployments.

Authors’ findings have been summarized in Figure 9. The
columns of the table represent the application areas in WSNs
considered in this survey, while the rows represent the main
CI techniques. The size of the black circles represent the
number of articles surveyed in this paper for the particular
combination of WSN problem and CI approach. In contrast,
the shadowing of the box represents an evaluation of the
applicability and suitability of the CI method for the particular
problem. Of course, this evaluation is not always true: It
depends highly on the exact CI algorithm, its parameters and
the exact formulation of the problem. However, this overview
gives a good insight about which CI method to explore first,
when trying to solve a WSN problem.

Design and deployment is usually a centralized problem,
where an optimal architecture for the WSN to be deployed
is determined. Here, centralized models like NNs, GAs and
PSO are very well suited. They can produce optimal results
from large data-sets and memory and processing restrictions
do not apply. RL can be used for online optimal deployment,
like optimizing current deployments or even self-deployment
with mobile robots.

For localization, it looks like NNs and GAs are the
best suited techniques, although they need to be used in
a centralized manner. The problem is the high variance of
the localization data, like RSSI values to compute distances
between nodes. Here, large data-sets are needed to produce
good localization results, which can be handled only centrally
anyway.

Fuzzy logic is well suited for security and QoS problems.
It is able to compute general non-optimal rules that can
accommodate larger variance of the data, as in case of security
applications.

Routing and clustering seems to be the most popular WSN
problem for applying CI methods (in fact, it is also a very
active research area in general). However, not all CI methods
are equally suited. NNs and EAs have very high processing
demands and are usually centralized solutions. In the case of
NNs, learning can be also be conducted online at each of the
nodes, but is slow and has high memory requirements. These
two CI approaches are slightly better suited for clustering
when the clustering schemes can be pre-deployed (see also
the following discussion of design and deployment issues).
Fuzzy logic is very well suited for implementing routing and
clustering heuristics and optimizations, like link or cluster
head quality classification. However, it generates non-optimal
solutions and fuzzy rules need to be re-learnt upon topology
changes.

25

CI paradigms ▼

WSN challenges ►

Neural Networks

Fuzzy Logic

Evolutionary
Algorithms

Swarm Intelligence

Artificial Immune
Systems

Reinforcement Learning

Design and
Deployment Localization Security Routing and

Clustering
Scheduling
and MAC

Data
Aggregation
and Fusion

QoS
Management

Not appropriate Less appropriate Moderately appropriate Most appropriate

1 to 2 papers 3 to 4 papers 5 to 6 papers 7 to 8 papers 9 or more papers

Fig. 9. An overview of WSN challenges and the CI paradigms applied to address them

SI is a very popular paradigm for computing routing
schemes for MANETs. However, in WSNs it requires high
communication overhead for sending ants separately for
managing the routes. Besides, SI usually requires the ants to
be sent back to the source of the data, which further increases
the energy expenditure. The SI model needs to be changed to
accommodate the WSNs requirements and properties, but this
has not been done so far.

RL is the best option when dealing with distributed and
dynamic problems like routing and clustering for WSNs. It
has exactly the needed properties, and it has been applied
very successfully to both problems, even on real test-bed. RL
produces optimal routing decisions, it is flexible and robust
against node and link failures and it is fully distributed. Its
communication requirements are nearly zero and it maintains
data delivery even in case of topology changes. Q-Learning
is the most popular RL method to apply to WSNs because it
has the lowest communication and processing demands and
its model is very flexible.

Nearly the similar properties and discussion as for routing
and clustering hold good for scheduling and MAC problems.
Scheduling is also a highly distributed and dynamic problem,
and again RL is the best suited technique. Fuzzy logic can be
used for implementing heuristics and optimizations. SI can be
applied too, but with higher communication requirements.

When dealing with data aggregation and fusion, the best
suited CI methods are fuzzy logic, evolutionary algorithms
and neural networks. However, are centralized approaches,
which increases the communication overhead in the network
while gathering the data on a central node for processing and

disseminating the results back to the nodes. On the other hand,
data fusion is very often accomplished only after gathering
the data on the base station or on cluster heads, which makes
the approaches well suited. All other CI methods are rather
secondary choices, since their models do not correspond well
to the problem.

It is interesting to note that two CI techniques, NNs and
AIS, have been rarely applied to WSNs. This is particularly
awkward in the case of NNs, because this paradigm is very
well studied and there exist many different NN models with
different properties. AISs are rather a new research area and
are not so well studied. They could be good solutions to
security problems, but a general evaluation remains open to
future research.

VIII. CONCLUSIONS AND FUTURE APPLICATIONS OF CI
IN WSNS

Recent literature shows that researchers have focused their
attention on innovative use of CI techniques to address WSN
issues such as design and deployment, localization, security,
optimal routing and clustering, scheduling, data aggregation
and fusion, and QoS management. Recent implementations of
CI methods in various dynamical and heterogeneous networks
are presented in this survey paper. CI paradigms and numerous
challenges in sensor networks are briefly introduced, and the
CI approaches used by researchers to address the challenges
are briefly explained. In addition, a general evaluation of CI
algorithms is presented, which will serve as a guide for using
CI algorithms for WSNs.

26

An advanced CI approach called adaptive critic design holds
promise to generate practical optimal/sub-optimal approaches
to the distributed sensor scheduling problem. There are
successful applications of adaptive critic designs in power
systems, which show that the technique provides guaranteed
stable optimal solutions under uncertainties and noise [118].
The potential of adaptive critic designs remains to be exploited
in the field of WSN scheduling.

In addition, there is a vast scope for research in methods for
efficient data representation and advanced algorithms for data
reduction. Currently there are no techniques for distributed
estimation under dynamic communication constraints. Existing
centralized multi-sensor estimation techniques assume that the
choice of which data to send from any particular sensor to
the centralized node is fixed. This approach suffers serious
disadvantages and is typically feasible for certain non-critical
static sensor situations.

Future research is likely to focus on developing a well
founded analytical approach to distributed multi-sensor esti-
mation problem where there are time varying communication
bandwidth constraints.

Cross-layer design and parameter learning is envisioned to
be an interesting new research area for CI in WSNs. Right
now, the majority of the solutions presented here apply CI
to one limited problem in areas like multicast routing, link
quality, optimal clustering or placement. However, most issues
arise from cross-layer incompatibility and the high human
intervention needed for parameter setting and adjustment.
Learning platforms and paradigms are needed rather than
specialized solutions.

In spite of a multitude of successful CI applications in
WSNs, the main concern is that the most of these algorithms
or protocols are still in development stage, and they may
remain forever in non-finalized state. Very few protocols have
grown out of the simulation environment. Most of them do
not even consider unreliable or asymmetric links, node failure
and mobility. Besides, a common problem is the lack of
comparison to conventional state-of-the-art protocols to clearly
identify the advantages of introducing CI. Thus, the goal of
CI research community for the future of CI in WSNs is to
improve already existing solutions, refine them and define
well-performing real-world protocols. There are only a few
already published initiatives in this direction.

REFERENCES

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey
on sensor networks,” IEEE Commun. Mag., vol. 40, no. 8, pp. 102–114,
Aug. 2002.

[2] C. Y. Chong and S. Kumar, “Sensor networks: Evolution, opportunities,
and challenges,” Proc. IEEE, vol. 91, no. 8, pp. 1247–1256, Aug. 2003.

[3] G. Werner-Allen, K. Lorincz, M. Ruiz, O. Marcillo, J. Johnson, J. Lees,
and M. Welsh, “Deploying a wireless sensor network on an active
volcano,” IEEE Internet Computing, vol. 10, no. 2, pp. 18–25, 2006.

[4] K. Martinez, P. Padhy, A. Riddoch, R. Ong, and J. Hart, “Glacial
Environment Monitoring using Sensor Networks,” in Proc. 1st

Workshop on Real-World Wireless Sensor Networks (REALWSN),
Stockholm, Sweden, 2005, p. 5pp.

[5] I. Talzi, A. Hasler, S. Gruber, and C. Tschudin, “Permasense:
investigating permafrost with a WSN in the swiss alps,” in Proc. 4th

Workshop on Embedded Networked Sensors (EmNets), Cork, Ireland,
2007, pp. 8–12.

[6] S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman, “A taxonomy of
wireless micro-sensor network models,” SIGMOBILE Mob. Comput.
Commun. Rev., vol. 6, no. 2, pp. 28–36, 2002.

[7] K. Langendoen, A. Baggio, and O. Visser, “Murphy loves potatoes:
experiences from a pilot sensor network deployment in precision
agriculture,” in Proc. 20th Int. Symposium on Parallel and Distributed
Processing Symposium (IPDPS), Rhodes Island, Greece, 2006.

[8] J. McCulloch, P. McCarthy, S. M. Guru, W. Peng, D. Hugo, and
A. Terhorst, “Wireless sensor network deployment for water use
efficiency in irrigation,” in Proc. conf. Workshop on Real-world
Wireless Sensor Networks (REALWSN), Glasgow, Scotland, 2008, pp.
46–50.

[9] E. A. Basha, S. Ravela, and D. Rus, “Model-based monitoring for early
warning flood detection,” in Proc. conf. 6th ACM conf. on Embedded
network sensor systems (SenSys), New York, NY, USA, 2008, pp.
295–308.

[10] G. Barrenetxea, F. Ingelrest, G. Schaefer, and M. Vetterli, “The
hitchhiker’s guide to successful wireless sensor network deployments,”
in Proc. 6th ACM conf. on Embedded network sensor systems (SenSys),
New York, NY, USA, 2008, pp. 43–56.

[11] T. Naumowicz, R. Freeman, A. Heil, M. Calsyn, E. Hellmich,
A. Braendle, T. Guilford, and J. Schiller, “Autonomous monitoring
of vulnerable habitats using a wireless sensor network,” in Proc.
3rd Workshop on Real-World Wireless Sensor Networks (REALWSN),
Glasgow, Scottland, 2008, pp. 51–55.

[12] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler, “Lessons
From a Sensor Network Expedition,” in Proc. 1st European
Workshop on Sensor Networks (EWSN), Berlin, Germany, 2004, pp.
307–322. [Online]. Available: http://www.cs.berkeley.edu/∼polastre/
papers/ewsn04.pdf

[13] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless sensor networks: A survey,” Computer Networks, vol. 38,
no. 4, pp. 393–422, 2002.

[14] E. Cayirci and T. Coplu, “SENDROM: sensor networks for disaster
relief operations management,” Wireless Networks, vol. 13, no. 3, pp.
409–423, 2007.

[15] G. Wittenburg, K. Terfloth, F. López Villafuerte, T. Naumowicz,
H. Ritter, and J. Schiller, “Fence monitoring – experimental evaluation
of a use case for wireless sensor networks,” in Proc. 4th European
Conf. on Wireless Sensor Networks (EWSN), Delft, The Netherlands,
2007, pp. 163–178.

[16] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“TinyDB: an acquisitional query processing system for sensor
networks,” ACM Trans. on Database Systems, vol. 30, no. 1, pp.
122–173, 2005.

[17] N. Patwari, J. Ash, S. Kyperountas, A. Hero, R. Moses, and N. Correal,
“Locating the nodes: Cooperative localization in wireless sensor
networks,” IEEE Signal Processing Mag., vol. 22, no. 4, pp. 54–69,
July 2005.

[18] J. Aspnes, T. Eren, D. Goldenberg, A. Morse, W. Whiteley, Y. Yang,
B. Anderson, and P. Belhumeur, “A theory of network localization,”
IEEE Transactions on Mobile Computing, vol. 5, no. 12, pp.
1663–1678, Dec. 2006.

[19] A. Boukerche, H. Oliveira, E. Nakamura, and A. Loureiro, “Localiza-
tion systems for wireless sensor networks,” IEEE Wireless Commun.
Mag., vol. 14, no. 6, pp. 6–12, December 2007.

[20] I. Guvenc and C.-C. Chong, “A survey on TOA based wireless
localization and NLOS mitigation techniques,” IEEE Commun. Surveys
Tuts., vol. 11, no. 3, pp. 107–124, 2009.

[21] R. R. Brooks and S. S. Iyengar, Multi-sensor fusion: Fundamentals
and applications with software. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 1998.

[22] R. Rajagopalan and P. Varshney, “Data-aggregation techniques in
sensor networks: a survey,” IEEE Commun. Surveys Tuts., vol. 8, no. 4,
pp. 48–63, Fourth Quarter 2006.

[23] P. Jiang, Y. Wen, J. Wang, X. Shen, and A. Xue, “A study of routing
protocols in wireless sensor networks,” in Proc. 6th World Congress on
Intelligent Control and Automation WCICA 2006, Y. Wen, Ed., vol. 1,
2006, pp. 266–270.

[24] F. Hu and N. K. Sharma, “Security considerations in ad hoc sensor
networks,” Ad Hoc Networks, vol. 3, no. 1, pp. 69–89, 2005.

[25] C. Karlof and D. Wagner, “Secure routing in wireless sensor networks:
Attacks and countermeasures,” Elsevier’s AdHoc Networks Journal,
Special Issue on Sensor Network Applications and Protocols, vol. 1,
no. 2–3, pp. 293–315, Sep 2003.

[26] X. Chen, K. Makki, K. Yen, and N. Pissinou, “Sensor network security:
a survey,” IEEE Commun. Surveys Tuts., vol. 11, no. 2, pp. 52–73, 2009.

27

[27] D. Chen and P. Varshney, “QoS support in wireless sensor networks:
A survey,” June 2004.

[28] G. K. Venayagamoorthy, “A successful interdisciplinary course
on computational intelligence,” IEEE Computational Intelligence
Magazine, vol. 4, no. 1, pp. 14–23, 2009.

[29] A. Engelbrecht, Computational Intelligence: An Introduction, 2nd ed.
New York, USA: John Wiley & Sons, 2007.

[30] A. Konar, Computational Intelligence: Principles, Techniques and
applications. Springer, 2005.

[31] S. Haykin, Neural networks: A comprehensive foundation. Prentice
Hall, 1994.

[32] P. Baldi and K. Hornik, “Learning in linear neural networks: A survey,”
IEEE Trans. Neural Networks, vol. 6, no. 4, pp. 837–858, 1995.

[33] L. A. Zadeh, “Soft computing and fuzzy logic,” IEEE Trans. Software
Eng., vol. 11, no. 6, pp. 48–56, 1994.

[34] L. A. Zadeh, “Fuzzy logic = computing with words,” IEEE Trans.
Fuzzy Syst., vol. 4, no. 2, pp. 103–111, May 1996.

[35] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc.
IEEE Int. Conf. on Neural Networks, vol. 4, 27 Nov.–1 Dec. 1995, pp.
1942–1948.

[36] M. Dorigo, “Optimization, learning and natural algorithms,” Ph.D.
dissertation, Politecnico di Milano, Italy, 1992.

[37] C. Tovey, “The honey bee algorithm: A biological inspired
approach to internet server optimization,” in the Alumni Magazine
for ISyE at Georgia Institute of Technology, Spring 2004, pp.
13–15. [Online]. Available: http://ormstomorrow.informs.org/archive/
fall04/Tovey%20article.pdf

[38] Y. Shi and R. C. Eberhart, “Parameter selection in particle swarm
optimization,” in EP ’98: Proc. 7th Int. Conf. on Evolutionary
Programming VII. London, UK: Springer-Verlag, 1998, pp. 591–600.

[39] Y. del Valle, G. Venayagamoorthy, S. Mohagheghi, J.-C. Hernandez,
and R. Harley, “Particle swarm optimization: Basic concepts, variants
and applications in power systems,” IEEE Trans. Evol. Comput.,
vol. 12, no. 2, pp. 171–195, April 2008.

[40] D. Dasgupta, “Advances in artificial immune systems,” IEEE
Computational Intelligence Magazine, vol. 1, no. 4, pp. 40–49, Nov.
2006.

[41] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
The MIT Press, March 1998.

[42] L. P. Kaelbling, M. L. Littman, and A. P. Moore, “Reinforcement
learning: A survey,” Journal of Artificial Intelligence Research, vol. 4,
pp. 237–285, 1996.

[43] C. Watkins, “Learning from delayed rewards,” Ph.D. dissertation,
Cambridge University, Cambridge, England, 1989.

[44] P. Beyens, M. Peeters, K. Steenhaut, and A. Nowe, “Routing with
compression in wireless sensor networks: A Q-learning approach,” in
Proc. 5th European Workshop on Adaptive Agents and Multi-Agent
Systems (AAMAS), 2005.

[45] J. A. Boyan and M. L. Littman, “Packet routing in dynamically
changing networks: A reinforcement learning approach,” Advances in
Neural Information Processing Systems, vol. 6, 1994.

[46] A. Förster and A. L. Murphy, “FROMS: Feedback routing for
optimizing multiple sinks in WSN with reinforcement learning,” in
Proc. 3rd Int. Conf. on Intelligent Sensors, Sensor Networks and
Information Processing (ISSNIP), 2007.

[47] R. Arroyo-Valles, R. Alaiz-Rodrigues, A. Guerrero-Curieses, and
J. Cid-Suiero, “Q-probabilistic routing in wireless sensor networks,”
in Proc 3rd Int. Conf. on Intelligent Sensors, Sensor Networks and
Information Processing (ISSNIP), 2007.

[48] S. Kumar and R. Miikkulainen, “Dual reinforcement Q-routing: An
on-line adaptive routing algorithm,” in Proc. Artificial Neural Networks
in Engineering Conf., 1997.

[49] P. Stone and M. Veloso, “Team-partitioned, opaque-transition rein-
forcement learning,” in Proc. 3rd annual conf. on Autonomous Agents
(AGENTS). New York, NY, USA: ACM Press, 1999, pp. 206–212.

[50] P. Stone, “TPOT- RL applied to network routing,” in Proc. 17th Int.
Conf. on Machine Learning. San Francisco, CA: Morgan Kaufmann,
2000.

[51] J. Dowling, E. Curran, R. Cunningham, and V. Cahill, “Using feedback
in collaborative reinforcement learning to adaptively optimize MANET
routing,” IEEE Trans. Syst., Man, Cybern. B, vol. 35, no. 3, pp.
360–372, 2005.

[52] L. Zhao and Q. Liang, “Fuzzy deployment for wireless sensor
networks,” in Proc. IEEE Int. Conf. on Computational Intelligence for
Homeland Security and Personal Safety CIHSPS, Q. Liang, Ed., 2005,
pp. 79–83.

[53] N. B. B. Jessica A. Carballido, Ignacio Ponzoni, “CGD-GA: A
graph-based genetic algorithm for sensor network design.” Inf. Sci.,
vol. 177, no. 22, pp. 5091–5102, 2007.

[54] P. Ngatchou, W. Fox, and M. El-Sharkawi, “Distributed sensor
placement with sequential particle swarm optimization,” in Proc. IEEE
Swarm Intelligence Symposium SIS, 8–10 June 2005, pp. 385–388.

[55] C. Mendis, S. Guru, S. Halgamuge, and S. Fernando, “Optimized sink
node path using particle swarm optimization,” in Proc. 20th Int. Conf.
on Advanced Information Networking and Applications AINA, S. Guru,
Ed., vol. 2, 2006.

[56] J. Hu, J. Song, X. Kang, and M. Zhang, “A study of particle
swarm optimization in urban traffic surveillance system,” in Proc.
IMACS Multiconference on Computational Engineering in Systems
Applications, J. Song, Ed., vol. 2, 2006, pp. 2056–2061.

[57] M. Seah, C. Tham, K. Srinivasan, and A. Xin, “Achieving
coverage through distributed reinforcement learning in wireless sensor
networks,” in Proc. 3rd Int. Conf. on Intelligent Sensors, Sensor
Networks and Information Processing (ISSNIP), 2007.

[58] S. Gonzalez-Valenzuela, S. T. Vuong, and V. C. M. Leung, “A
reinforcement-learning approach to service directory placement in
wireless ad hoc networks,” in Proc. IEEE 5th Int. Workshop on
Aplications and Services on Wireless Networks. IEEE Press, 2005.

[59] J. Travers and S. Milgram, “An experimental study of the small world
problem,” Sociometry, vol. 32, no. 4, pp. 425–443, 1969.

[60] G.-F. Nan, M.-Q. Li, and J. Li, “Estimation of node localization with a
real-coded genetic algorithm in WSNs,” in Proc. Int. Conf. on Machine
Learning and Cybernetics, vol. 2, 2007, pp. 873–878.

[61] M. Marks and E. Niewiadomska-Szynkiewicz, “Two-phase stochastic
optimization to sensor network localization,” in Proc. Int. Conf.
on Sensor Technologies and Applications SensorComm, 2007, pp.
134–139.

[62] Q. Zhang, J. Huang, J. Wang, C. Jin, J. Ye, W. Zhang, and J. Hu, “A
two-phase localization algorithm for wireless sensor network,” in Proc.
Int. Conf. on Information and Automation ICIA, 2008, pp. 59–64.

[63] A. Gopakumar and L. Jacob, “Localization in wireless sensor networks
using particle swarm optimization,” in Proc. IET Int. Conf. on Wireless,
Mobile and Multimedia Networks, 2008, pp. 227–230.

[64] R. V. Kulkarni, G. Venayagamoorthy, and M. X. Cheng, “Bio-inspired
node localization in wireless sensor networks,” in Proc. IEEE Int. conf.
on Systems, Man and Cybernetics, Oct. 2009.

[65] H. Wolkowicz, Handbook of Semidefinite Programming. Kluwer
Academic Publishers, 2000.

[66] P. J. M. Laarhoven and E. H. L. Aarts, Eds., Simulated annealing:
Theory and applications. Norwell, MA, USA: Kluwer Academic
Publishers, 1987.

[67] K. Passino, “Biomimicry of bacterial foraging for distributed
optimization and control,” IEEE Control Syst. Mag., vol. 22, no. 3,
pp. 52–67, 2002.

[68] R. V. Kulkarni and G. Venayagamoorthy, “Neural network based secure
media access control protocol for wireless sensor networks,” in Proc.
Int. Joint Conf. on Neural Networks, June 2009.

[69] R. V. Kulkarni, G. K. Venayagamoorthy, A. V. Thakur, and S. K.
Madria, “Generalized neuron based secure media access control
protocol for wireless sensor networks,” in Proc. IEEE Symposium on
Computational Intelligence in Multi-Criteria Decision-Making MCDM,
Mar 30-April 2 2009, pp. 16–22.

[70] Q. Ren and Q. Liang, “Secure media access control (MAC) in wireless
sensor networks: Intrusion detections and countermeasures,” in Proc.
15th IEEE Int. Symposium on Personal, Indoor and Mobile Radio
Communications PIMRC, vol. 4, 5–8 Sept. 2004, pp. 3025–3029.

[71] Q. Ren and Q. Liang, “Fuzzy logic-optimized secure media access
control (FSMAC) protocol wireless sensor networks,” in Proc. IEEE
Int. Conf. on Computational Intelligence for Homeland Security and
Personal Safety CIHSPS, March 31 –April 1 2005, pp. 37–43.

[72] A. Förster, “Machine learning techniques applied to wireless ad hoc
networks: Guide and survey,” in Proc. 3rd Int. Conf. on Intelligent
Sensors, Sensor Networks and Information Processing (ISSNIP), 2007.

[73] M. Di and E. Joo, “A survey of machine learning in wireless sensor
networks,” Proc. 6th Int. Conf. on Information, Communications and
Signal Processing, 2007.

[74] J. Barbancho, C. León, J. Molina, and A. Barbancho, “Giving neurons
to sensors: QoS management in wireless sensors networks.” in Proc.
IEEE Conf. on Emerging Technologies and Factory Automation ETFA,
C. Leon, Ed., 2006, pp. 594–597.

[75] I. Gupta, D. Riordan, and S. Sampalli, “Cluster-head election using
fuzzy logic for wireless sensor networks,” in Proc. 3rd Annual
Communication Networks and Services Research Conf., D. Riordan,
Ed., 2005, pp. 255–260.

28

[76] M. Islam, P. Thulasiraman, and R. Thulasiram, “A parallel ant colony
optimization algorithm for all-pair routing in MANETs,” in Proc. Int.
Parallel and Distributed Processing Symposium, P. Thulasiraman, Ed.,
2003.

[77] S. Wazed, A. Bari, A. Jaekel, and S. Bandyopadhyay, “Genetic
algorithm based approach for extending the lifetime of two-tiered
sensor networks,” in Proc. 2nd Int. Symposium on Wireless Pervasive
Computing ISWPC, A. Bari, Ed., 2007.

[78] S. Hussain, A. W. Matin, and O. Islam, “Genetic algorithm for energy
efficient clusters in wireless sensor networks,” in Proc. 4th Int. Conf. on
Information Technology ITNG, A. W. Matin, Ed., 2007, pp. 147–154.

[79] F. Xue, A. Sanderson, and R. Graves, “Multi-objective routing in
wireless sensor networks with a differential evolution algorithm,” in
Proc. IEEE Int. Conf. on Networking, Sensing and Control ICNSC,
A. Sanderson, Ed., 2006, pp. 880–885.

[80] S. Guru, S. Halgamuge, and S. Fernando, “Particle swarm optimisers
for cluster formation in wireless sensor networks,” in Proc. Int. Conf.
on Intelligent Sensors, Sensor Networks and Information Processing,
S. Halgamuge, Ed., 2005, pp. 319–324.

[81] P. Arabshahi, A. Gray, I. Kassabalidis, M. A. El-Sharkawi, R. J.
Marks, A. Das, and S. Narayanan, “Adaptive routing in wireless
communication networks using swarm intelligence,” in Proc. the 9th

AIAA Int. Communications Satellite Systems Conf., Toulouse, France,
2001.

[82] K. M. Sim and W. H. Sun, “Ant colony optimization for routing and
load-balancing: Survey and new directions,” IEEE Trans. Syst., Man,
Cybern. A, vol. 33, no. 5, pp. 560–572, 2003.

[83] S. S. Iyengar, H.-C. Wu, N. Balakrishnan, and S. Y. Chang,
“Biologically inspired cooperative routing for wireless mobile sensor
networks,” IEEE Systems Journal, vol. 1, no. 1, pp. 29–37, 2007.

[84] S. Bashyal and G. K. Venayagamoorthy, “Collaborative routing
algorithm for wireless sensor network longevity,” in Proc. 3rd Int. Conf.
on Intelligent Sensors, Sensor Networks and Information Processing
ISSNIP, Dec. 2007.

[85] R. Muraleedharan and L. A. Osadciw, “A predictive sensor network
using ant system,” in Proc. Int. Society For Optical Engineering
Symposium, R. M. Rao, S. A. Dianat, and M. D. Zoltowski, Eds., vol.
5440, August 2004, pp. 181–192.

[86] A. Förster and A. L. Murphy, “CLIQUE: Role-Free Clustering with
Q-Learning for Wireless Sensor Networks,” in Proc. 29th Int. Conf. on
Distributed Computing Systems (ICDCS), Montreal, Canada, 2009.

[87] Y. Zhang and M. P. J. Fromherz, “A robust and efficient flooding-based
routing for wireless sensor networks,” Journal of Interconnection
Networks, vol. 7, no. 4, pp. 549–568, 2006.

[88] P. Wang and T. Wang, “Adaptive routing for sensor networks using
reinforcement learning,” in Proc. 6th IEEE Int. Conf. on Computer
and Information Technology (CIT). Washington, DC, USA: IEEE
Computer Society, 2006.

[89] B. Yu, P. Scerri, K. Sycara, Y. Xu, and M. Lewis, “Scalable and reliable
data delivery in mobile ad hoc sensor networks,” in Proc. 4th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS), 2006.

[90] D. Shaoqiang, P. Agrawal, and K. Sivalingam, “Reinforcement learning
based geographic routing protocol for UWB wireless sensor network,”
in Proc. IEEE Global Telecommunications Conf. (GLOBECOM),
November 2007, pp. 652–656.

[91] O. Islam and S. Hussain, “An intelligent multi-hop routing for wireless
sensor networks,” in Proc. WI-IAT Workshops Web Intelligence and Int.
Agent Technology Workshops, Dec. 2006, pp. 239–242.

[92] K. Dasgupta, K. Kalpakis, and P. Namjoshi, “An efficient
clustering-based heuristic for data gathering and aggregation in sensor
networks,” in Proc. IEEE Wireless Communications and Networking
WCNC, vol. 3, 16–20 March 2003, pp. 1948–1953.

[93] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan,
“Energy-efficient communication protocol for wireless microsensor
networks,” in System Sciences, 2000. Proc. 33rd Annual Hawaii Int.
Conf. on, Jan. 2000.

[94] G. Gupta and M. Younis, “Load-balanced clustering of wireless sensor
networks,” in Proc. IEEE Int. Conf. on Communications ICC ’03,
vol. 3, 2003, pp. 1848–1852 vol.3.

[95] G. Di Caro, F. Ducatelle, and L. Gambardella, “AntHocNet: An
adaptive nature-inspired algorithm for routing in mobile ad hoc
networks,” European Trans. on Telecommunications, vol. 16, pp.
443–455, 2005.

[96] S. Hao and T. Wang, “Sensor networks routing via bayesian
exploration,” in Proc. 31st IEEE Conf. on Local Computer Networks,
2006, pp. 954–955.

[97] Y. J. Shen and M. S. Wang, “Broadcast scheduling in wireless sensor
networks using fuzzy hopfield neural network,” Expert Syst. Appl.,
vol. 34, no. 2, pp. 900–907, 2008.

[98] Q. Tang, N. Tummala, S. Gupta, and L. Schwiebert, “Communication
scheduling to minimize thermal effects of implanted biosensor
networks in homogeneous tissue,” IEEE Trans. Biomed. Eng., vol. 52,
no. 7, pp. 1285–1294, 2005.

[99] Z. Shi, Z. Zhe, L. Qian-nan, and C. Jian, “Dynamic alliance based
on genetic algorithms in wireless sensor networks,” in Proc. Int.
Conf. on Wireless Communications, Networking and Mobile Computing
WiCOM, 22–24 Sept. 2006, pp. 1–4.

[100] M. H. Jin, W. Z. Liu, D. Hsu, and C. Y. Kao, “Compact
genetic algorithm for performance improvement in hierarchical sensor
networks management,” in Proc. 8th Int. Symposium on Parallel
Architectures, Algorithms and Networks ISPAN, 7–9 Dec. 2005.

[101] W. Xue and Z. Chi, “An immune algorithm based node scheduling
scheme of minimum power consumption and no collision for wireless
sensor networks,” in Proc. NPC Workshops Network and Parallel
Computing Workshops IFIP Int. Conf. on, 18–21 Sept. 2007, pp.
630–635.

[102] C. Pandana and K. J. R. Liu, “Near-optimal reinforcement learning
framework for energy-aware sensor communications,” IEEE J. Select.
Areas Commun., vol. 23, no. 4, pp. 788–797, 2005.

[103] Z. Liu and I. Elahanany, “RL-MAC: A reinforcement learning based
MAC protocol for wireless sensor networks,” Int. Journal on Sensor
Networks, vol. 1, no. 3/4, pp. 117–124, 2006.

[104] J. Mao, Z. Wu, and X. Wu, “A TDMA scheduling scheme for
many-to-one communications in wireless sensor networks,” Comput.
Commun., vol. 30, no. 4, pp. 863–872, 2007.

[105] H. Shi and L. Wang, “Broadcast scheduling in wireless multihop
networks using a neural-network-based hybrid algorithm,” Neural
Netw., vol. 18, no. 5-6, pp. 765–771, 2005.

[106] S. Salcedo-Sanz, C. Bousono-Calzon, and A. Figueiras-Vidal, “A mixed
neural-genetic algorithm for the broadcast scheduling problem,” IEEE
Trans. Wireless Commun., vol. 2, no. 2, pp. 277–283, 2003.

[107] G. Wang and N. Ansari, “Optimal broadcast scheduling in packet radio
networks using mean field annealing,” IEEE J. Select. Areas Commun.,
vol. 15, no. 2, pp. 250–260, 1997.

[108] J. Ignizio, Introduction to Linear Goal Programming. Sage
Publications, 1986.

[109] M.-H. Jin, D. F. H. Yu-Cheng Huang, C.-Y. Kao, Y.-R. Wu, and C.-K.
Lee, “On active interval scheduling in static sensor networks,” in Proc.
IASTED Int. Conf. on Communication Systems and Applications, July
2004, pp. 126–131.

[110] B. Lazzerini, F. Marcelloni, M. Vecchio, S. Croce, and E. Monaldi,
“A fuzzy approach to data aggregation to reduce power consumption
in wireless sensor networks,” in Proc. Annual meeting of the North
American Fuzzy Information Processing Society NAFIPS, 3–6 June
2006, pp. 436–441.

[111] I. V. Maslov and I. Gertner, “Multi-sensor fusion: An evolutionary
algorithm approach,” Inf. Fusion, vol. 7, no. 3, pp. 304–330, 2006.

[112] Q. Wu, N. Rao, J. Barhen, S. Iyengar, V. Vaishnavi, H. Qi, and
K. Chakrabarty, “On computing mobile agent routes for data fusion
in distributed sensor networks,” IEEE Trans. Knowledge Data Eng.,
vol. 16, no. 6, pp. 740–753, June 2004.

[113] S. Aldosari and J. Moura, “Fusion in sensor networks with com-
munication constraints,” in Proc. 3rd Int. Symposium on Information
Processing in Sensor Networks IPSN, 2004, pp. 108–115.

[114] N. Gnanapandithan and B. Natarajan, “Parallel genetic algorithm based
optimal fusion in sensor networks,” in Proc. 3rd IEEE Consumer
Communications and Networking Conf. CCNC, vol. 2, 2006, pp.
763–767.

[115] S. A. Munir, Y. W. Bin, R. Biao, and M. Jian, “Fuzzy logic based
congestion estimation for QoS in wireless sensor network,” in Proc.
IEEE Wireless Communications and Networking Conf. WCNC 2007,
March 2007, pp. 4336–4341.

[116] L. Khoukhi and S. Cherkaoui, “FuzzyCCG: A fuzzy logic QoS
approach for congestiosn control in wireless ad hoc networks,” in Proc.
1st ACM int. workshop on Quality of service & security in wireless and
mobile networks, Q2SWinet. New York, NY, USA: ACM, 2005, pp.
105–111.

[117] L. Khoukhi and S. Cherkaoui, “Experimenting with fuzzy logic for
QoS management in mobile ad hoc networks,” Int. Journal of Computer
Science and Network Security, vol. 8, no. 8, pp. 372–386, August 2008.

[118] G. K. Venayagamoorthy, R. G. Harley, and D. C. Wunsch, “Comparison
of heuristic dynamic programming and dual heuristic programming
adaptive critics for neurocontrol of a turbogenerator,” IEEE Trans.
Neural Networks, vol. 13, no. 3, pp. 764–773, May 2002.

29

Raghavendra V. Kulkarni (M’97–SM’05) received
his B.E. degree in electronics & communication
engineering from Karnatak University, India, in
1987, and M. Tech. degree in electronics engineering
from the Institute of Technology, Banaras Hindu
University, India, in 1994. Prior to 2006, he served
Gogte Institute of Technology, Belgaum, India, as an
assistant professor. He is currently working towards
his PhD degree in electrical engineering in the
Missouri University of Science and Technology
(Missouri S&T), Rolla, USA. His research interests

include the development of wireless sensor network applications using
computational intelligence tools.

Mr. Kulkarni was the registration and publications chair of the 2008
IEEE Swarm Intelligence Symposium (SIS’08). He is a life member of the
Indian Society for Technical Education (ISTE), and a member of the IEEE
Computational Intelligence Society and the International Neural Network
Society (INNS).

ANNA FÖRSTER
(born EGOROVA)

Address: Faculty of Informatics, UNISI, Via G. Buffi 13, CH-6900 Lugano
Tel: +41 58 666 4719
e-mail: anna.foerster@ieee.org
Date of Birth: 13 April 1979 Sofia, Bulgaria
Nationality: Bulgarian
Civil status: Married

EDUCATION

10/2005 – 05/2009 Universita della Svizzera Italiana, PhD in Computer Science.
Dissertation title: Teaching Networks How to Learn: Data Dissemination for Wireless
Sensor Networks with Reinforcement Learning

10/2000 – 07/2004 Freie Universität Berlin, Computer Science (major) , Aeronautical Engineering (minor)
(GPA 1.7/1.0)

09/1998 – 09/2000 Technical University of Sofia, Computer Science (GPA 6.00/6.00)

WORK EXPERIENCE
 Universita della Svizzera Italiana

from 07/2009 PostDoctoral Researcher at the Faculty of Informatics

10/2005 – 06/2009 Research and Teaching Assistant at the Faculty of Informatics
2007 Instructor of the bachelor course Introduction to Programming in C, 2 ECTS.
2008 Instructor of the bachelor course Introduction to Wireless Sensor Networks,

10 ECTS.

 McKinsey & Company

08/2004 – 09/2005 Fellow Consultant at the Business Technology Office, Berlin, Germany. Major projects in
Retail Banking IT and IT Application Services.

 Institute of Computer Science at Freie Universität Berlin

10/2003 – 7/2004 Research Assistant (part-time) in the Artificial Intelligence Group
10/2001 – 7/2004 Teaching Assistant (part-time)
09/2002 - 7/2004 Research Project „Soccer playing robots – RoboCup“ at the Free University of Berlin,

Artificial Intelligence Group. Participation in the 7th World Championship for Soccer Robots
Robocup 2003, Padova, Italy; German and European Championship for Soccer Robots
German Open 2003, Paderborn, Germany

Konrad Zuse Zentrum Berlin

04/2001 – 05/2002 Research Student (part-time), Image Processing Department

SCHOLARSHIPS AND AWARDS

06/2009 Travel grant for the 27th International Conference on
Distributed Computing Systems (ICDCS) 2009

1/2004 e-fellows.net scholar of the month
10/2003 DAAD Award for Best International Student at the Free University of Berlin
05/2002 - 11/2004 e-fellows.net scholar
08/2000 DAAD, Summer School at the University of Osnabrück, Germany

SOCIAL WORK

9/2003 – 01/2004 Women's representative at the Faculty of Mathematics and CS, Free University of Berlin.
05/1996 – present Rotary Club associate - Altena, Werdohl, Plettenberg for charity activity in Bulgaria.

LANGUAGES Bulgarian – native; Russian – native; German - fluent; English – fluent; Italian – basic.

INTERESTS Archeology, Bibliology, Climbing and Mountaineering

MEMBERSHIPS ACM, IEEE Computer Society, Deutscher Alpenverein.

Anna Förster (S’08–M’09) received her PhD
from the University of Lugano, Switzerland and
her Masters degree from the Free University in
Berlin, Germany. Currently she is a postdoctoral
researcher at the University of Lugano, Switzerland.
She has worked on various topics in Robotics
and Artificial Intelligence, before concentrating on
communication, implementation and deployment
issues of wireless sensor networks. Her current
research interests include intelligent communication,
evaluation and deployment optimization in wireless

sensor networks, vehicular networking, delay-tolerant networking, and the
interplanetary internet.

Dr. Förster is a member of Association for Computing Machinery (ACM),
IEEE Communication Society and the Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering (ICST). She is
serving as a steering committee member for the international OMNeT++
workshop and as a technical programm committee member and a reviewer
for numerous top-quality conferences and journals in wireless networking and
simulation.

Ganesh Kumar Venayagamoorthy
(S’91–M’97–SM’02) received his Ph.D. degree
in electrical engineering from the University of
KwaZulu Natal, Durban, South Africa, in Feb.
2002. Currently, he is an Associate Professor
of Electrical and Computer Engineering, and the
Director of the Real-Time Power and Intelligent
Systems (RTPIS) Laboratory at Missouri University
of Science and Technology (Missouri S&T). He was
a Visiting Researcher with ABB Corporate Research,
Sweden, in 2007. His research interests are in the

development and applications of advanced computational algorithms for
real-world applications, including power systems stability and control, smart
grid, sensor networks and signal processing. He has published 2 edited books,
5 book chapters, over 70 refereed journals papers and 250 refereed conference
proceeding papers. He has been involved in approximately US$ 7 Million of
competitive research funding.

Dr. Venayagamoorthy is a recipient of several awards, including a 2007
US Office of Naval Research Young Investigator Program Award, a 2004
US National Science Foundation CAREER Award, the 2008 IEEE St. Louis
Section Outstanding Educator Award, the 2006 IEEE Power Engineering
Society Walter Fee Outstanding Young Engineer Award, the 2005 IEEE
Industry Applications Society (IAS) Outstanding Young Member Award, the
2003 International Neural Network Society (INNS) Young Investigator Award,
and Missouri S&T 2008, 2007 and 2006 Faculty Excellence Awards, 2006
Teaching Excellence Award and 2007 Teaching Commendation Award.

Dr. Venayagamoorthy has been involved in the leadership and organization
of many conferences including the General Chair of the 2008 IEEE Swarm
Intelligence Symposium (St. Louis, USA) and the Program Chair of 2009
International Joint Conference on Neural Networks (Atlanta, USA). He is
currently the Chair of the IEEE Power and Energy Society (PES) Working
Group on Intelligent Control Systems, the Chair of IEEE Computational
Intelligence Society (CIS) Task Force on Power Systems Applications, the
Vice-Chair of the IEEE PES Intelligent Systems Subcommittee, and the Chair
of IEEE CIS and IEEE Industry Applications Society St. Louis Chapters. He
is a Fellow of the Institution of Engineering and Technology (IET), UK and
the South African Institute of Electrical Engineers (SAIEE), a Senior Member
of the INNS, and a Member of the INNS Board of Governors.

