
Routing in multimodal transportation networks with non-scheduled

lines

DARKO DRAKULIC, NAVER LABS Europe,, , France,

CHRISTELLE LOIODICE, NAVER LABS Europe,, , France,

VASSILISSA LEHOUX∗, NAVER LABS Europe,, , France,

Over the last decades, new mobility ofers have emerged to enlarge the coverage and the accessibility of public transportation
systems. In many areas, public transit now incorporates on-demand transport lines, that can be activated at user need. In this
paper, we propose to integrate lines without predeined schedules but with predeined stop sequences into a state-of-the-art
trip planning algorithm for public transit, the Trip-Based Public Transit Routing algorithm [33]. We extend this algorithm
to non-scheduled lines and explain how to model other modes of transportation, such as bike sharing, with this approach.
The resulting algorithm is exact and optimizes two criteria: the earliest arrival time and the minimal number of transfers.
Experiments on two large datasets show the interest of the proposed method over a baseline modelling.

CCS Concepts: · Mathematics of computing→ Graph algorithms.

Additional Key Words and Phrases: Multimodal routing, on-demand public transportation, bicriteria shortest paths

1 INTRODUCTION

Based on modern public transit routing algorithms, hundreds of trip planning applications are used by millions
of users every day. They integrate public transit information with road networks and usually compute itineraries
combining only public transportation services with walking transfers, which is often referred to as public
transit routing. In order to ofer a more integrated experience to their users, some applications allow for more
multimodality, combining public transportation with other available transportation ofers, such as taxis, bike
sharing or car sharing. We then speak of multimodal or intermodal routing.

In addition to the classical scheduled public transportation, many transport authorities propose special trans-
portation ofers in sub-urban areas, or for elderly or disabled people. They are usually organized as on-demand
services, where transportation authorities deine lines (sequence of stops) or areas of coverage, but no ixed
schedules. For this type of service, users must "activate" the desired trip by contacting the transport agency.
A lot of transport authorities in France ofer this type of services, for example in Montauban metropolitan
area [1] (non-scheduled lines with only a subset of stops activated), in Flers metropolitan area [27] (on-demand
transportation between predeined stations during given time intervals), or in Pays de Dreux [18] (on-demand
transportation for elderly people from home place to any destination within a zone). Note that some transport
authorities also provide on-demand services with predeined schedules, but in that case, a public transit routing
algorithm can integrate them as classical scheduled lines in itinerary computations.

∗Corresponding author

Authors’ addresses: Darko Drakulic, NAVER LABS Europe,, Meylan,, France,, darko.drakulic@naverlabs.com; Christelle Loiodice, NAVER
LABS Europe,, Meylan,, France,, christelle.loiodice@naverlabs.com; Vassilissa Lehoux, NAVER LABS Europe,, Meylan,, France,, vassilissa.
lehoux@naverlabs.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from
permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1084-6654/2023/11-ART
https://doi.org/10.1145/3632969

ACM J. Exp. Algor.

HTTPS://ORCID.ORG/0000-0002-3171-663X
HTTPS://ORCID.ORG/0000-0003-0499-0921
HTTPS://ORCID.ORG/0000-0002-6512-283X
https://orcid.org/0000-0002-3171-663X
https://orcid.org/0000-0003-0499-0921
https://orcid.org/0000-0002-6512-283X
https://doi.org/10.1145/3632969

2 • Darko Drakulic, Christelle Loiodice, and Vassilissa Lehoux

In this paper, we propose an extension of the Trip-Based Public Transit Routing (TB) algorithm [33] which
is a state-of-the-art algorithm for public transit routing. We modify it to deal with non-scheduled lines, that
we deine as lines that can be activated on given periods and for which a sequence of stops is deined, as well
as possibly time-dependent transport duration between stops of the line, but no exact schedules. This model
covers also the simpler cases where the line has exactly two stops. Bike sharing for instance could be modeled
using non-scheduled lines, for example by creating one line per pair of stations that are reachable from each
other. In that case, the bike section is considered as a trip from the algorithm point of view, and using bike
sharing increases the number of transfers between trips of the itinerary. Similarly, taxi-like ofers that cover
some predeined sets of origins and destinations can be modeled as non-scheduled lines. In both cases, we then
consider that using those modes is equivalent to taking one additional trip in terms of inconvenience (which is
modeled by the number of transfers of an itinerary).
Many public transit routing and multimodal trip planning algorithms have been proposed recently in the

literature [5], but to the best of our knowledge, general non-scheduled lines have not been considered explicitly.
In Section 2, we discuss recent algorithms for public transit and multimodal routing and models for the simpler

cases that appear in the literature. In Section 3 we introduce the notation and briely present the Trip-Based
Public Transit Routing algorithm [33] that we extend in Section 4 for supporting non-scheduled lines. In Section 5,
we present the results of experiments on two real world datasets (Île-De-France and Netherlands), we summarize
our work and give directions for future research in Section 6.

2 RELATED WORK

In this article, we are mainly interested in two classical criteria to minimize in multimodal routing, which are the
number of transfers and the arrival time. The number of transfers represents the inconvenience for the user to
change vehicles and is an important criterion for evaluating itineraries. Given a start time, computing the Pareto
set for those two criteria is intractable as the size of the Pareto set can be exponential [23]. However, the Pareto
front is of polynomial size (bounded by the number of trips) and can be computed in polynomial time, along with
one solution per value in the Pareto front (this is often referred to computing the Pareto set in the literature,
while only a subset of the Pareto set is indeed obtained). As in [29], we denote by complete set such a solution set.
Most recent algorithms, considering either minimum arrival time alone or bicriteria queries, can compute earliest
arrival time or Pareto front in time ranging from tens of microseconds to a few hundreds of milliseconds for large
public transit networks. Transfer Patterns [4], RAPTOR [11, 14], Connection Scan (CSA) [16], Public Transit
Labeling [13] or Trip-Based Public Transit Routing [33] have been speciically designed for those networks as
using directly classical methods for road networks does not seem to perform well with the time-dependent
schedules [3].
Although, to the best of our knowledge, combination of scheduled and non-scheduled lines in public transit

networks has not been studied before, some algorithms can handle more transportation modes in combination to
public transit, including bike or car sharing.
In the graph-based approaches, the diferent networks corresponding to each mode are combined into a

single time-dependent or time-expanded graph. The timetable information and transfer constraints (for instance
minimum change times at a station) are modeled into the graph structure, often increasing signiicantly the graph
size [28], or limited to restrictive cases like periodic schedules [8, 20]. In that type of approach, non-scheduled
lines can be modeled into the graph as additional arcs and nodes available for some time intervals. In order to take
into account the diferent modes with graph-based modeling, one possible solution is to deine an automaton that
restricts the possible mode sequences and solve a label-constrained shortest path problem. The label-constrained
shortest path problem is tractable for regular languages [2] and some authors proposed algorithms allowing for
mode sequences using or not public transit. Kirchler et al. [24] adapt the ALT algorithm [21] to take into account

ACM J. Exp. Algor.

Routing with non-scheduled lines • 3

predeined mode sequences, resulting in the SDALT algorithm (State-Dependent ALT). They consider a network
that includes bike and car sharing. Dibbelt et al. [17] modify Contraction Hierarchy [19] to integrate user deined
sequences provided at query time. The resulting algorithm is called User Constrained Contraction Hierarchy.
They apply it on networks combining cars and public transportation, but the approach could be applied for bike
or car sharing. One of the drawbacks of this algorithm is the preprocessing time (42 minutes on a network with
30.5K stops and 1.6M connections) that doesn’t allow for real-time modiication of the schedules.
The second main type of approaches consists in using timetable directly without modeling it into a graph.

The RAPTOR algorithm [14] is one of these algorithms, using dynamic programming to perform a breadth-irst
search that labels the stops reached, one additional trip being taken at each iteration of the algorithm. It has been
modiied in [12, 31] to allow for some more complex mode sequences, such as combining public transit with bike
or car sharing, by modeling it similarly as a walking transfer or with a biking part equivalent to a trip. Shortest
travel times between stops using bike or car sharing are then precomputed and integrated as alternative ways
to change from one line to another. A recent approach [30] combines RAPTOR with ULTRA [7] to reduce the
running time and to consider several bike sharing operators simultaneously.

In this article, we are interested in the general case, where the sequence of non-scheduled lines contains more
than two elements. However, as bike and car sharing are special cases of non-scheduled lines with two-stop
sequences, our algorithm could be used to interleave them with public transportation, even if it is not the main
objective here. The proposed method integrates non-scheduled lines in the Trip-Based Public Transit Routing
algorithm that we present in Section 3.

3 PRELIMINARIES

We introduce in this section the notation used in the paper, and explain the principle of the Trip-Based Public
Transit Routing (TB) algorithm [33].

3.1 Notation

Public transit networks are deined by their stops and trip schedules. A stop � is a physical location where
passengers can board or alight a public transportation vehicle (e.g. a bus, a tram, a metro). A trip � is represented
by its schedule: a sequence of stops −→� (�) = (�1� , �

2
� , . . .) where the vehicle stops, with arrival time �arr (�, �)

and departure time �dep (�, �) at its ��ℎ stop ��� . A partial order is deined over trips with the same stop sequence
(�1, �2, . . . , ��) by the relations ≤ and <:

� ≤ � ′ ⇔ ∀� ∈ {1, 2, . . . , �}, �arr (�, �) ≤ �arr (�
′, �)

� < � ′ ⇔ (� ≤ � ′ and ∃� ∈ {1, 2, . . . , �}, �arr (�, �) < �arr (�
′, �))

A scheduled line � is then a totally ordered set of trips with the same stop sequence −→� (�). This order is used
along the paper to deine minimum (earliest) element of a line verifying a given property. Note that if there are
two trips with the same stop sequence such that one is overtaking the other, they are associated to diferent
lines, making this line deinition diferent from the classical one, which groups together all trips with the same
stop sequence. � is the set of all scheduled lines, ��

�
represents the ��ℎ stop of line � and �� denotes the line of

trip � . For each stop � , we deine the set of the lines passing by � with their corresponding stop index at � by
�(�) = {(�, �) | � ∈ �, � ∈ {1, 2, . . . |−→� (�) |}, � = ��

�
}.

When arriving at stop ��
�
at time � , it is possible to board a trip � of line � if � ≤ �dep (�, �). When it exists, we can

hence deine the earliest trip of line � departing from its ��ℎ stop after time � , that we denote by earliest(�, �, �).
The segment of the trip � between stops of index � and � is denoted by ��� → �

�
� and similarly, a transfer between

the ��ℎ stop of trip � and the ��ℎ stop of trip � ′ is denoted by ��� → �
�
� ′ .

ACM J. Exp. Algor.

4 • Darko Drakulic, Christelle Loiodice, and Vassilissa Lehoux

Minimum walking transfer duration (footpath) between stops � and � is denoted by Δ�fp (�, �) and minimum
changing vehicle duration at stop � by Δ�ch(�) (for example, the duration for changing platforms at the same
stop). Transfer ��� → �

�
� ′ is feasible if and only if:

�arr (�, �) + Δ�fp (�
�
� , �

�
� ′) ≤ �dep (�

′, �), if ��� ≠ �
�
� ′

or �arr (�, �) + Δ�ch (�
�
�) ≤ �dep (�

′, �), if ��� = �
�
� ′

Lines without a schedule.

Now, we extend the above deined notation to lines without a schedule, whose set is denoted �̂. A non-scheduled
line � is deined by a sequence −→� (�) = (�1

�
, �2

�
, . . .) of stops, and the function earliest(�, �, �) that returns the

schedule of the earliest trip of � that can be boarded at stop � after time � . They have no ixed timetable, as they
should be activated at the user’s demand and trips for those lines can be instantiated during given time intervals
when the service is available. We can deine as before the set of all lines without schedule passing by � . We
denote it by �̂(�).
For easy computation of trip earliest(�, �, �), we deine, for each stop of the non-scheduled line � , the union

of availability intervals for the ��ℎ stop of � , and we denote it by � (�, �). Those availability intervals correspond
to times at which a vehicle of the non-scheduled line can depart from that stop. A possible way to deine those
time intervals is to deine them for the irst stop and then translate them to the other stops of the line by
adding traveling duration between stops. This could be the case for on-demand buses if the bus passes by all
the stops when activated. Another possibility is to use the same time interval for all stops. It can be the case for
non-scheduled lines deined for bike sharing stations or for taxi-like transportation between two points where the
time-intervals represent the service availability period. Once a departure time at a stop of the non-scheduled line
is chosen for a given vehicle, its schedule can be deined, for instance by considering ixed travel times between
stops for that line (see Section 4.1).

An easy way of including non-scheduled lines in existing trip planning algorithms is to discretize the intervals
of � (�, 1) and generate all possible trips (e.g. creating one trip every minute). In a context of urban mobility, the
intervals can be wide (typically from 7.00 am to 6.00 pm) so this approach can signiicantly increase the number
of trips and the number of possible transfers. For the TB algorithm, it has a signiicant impact on preprocessing
and query times. This approach is used in our experiments as a baseline method.

In some cases, a boarding or alighting duration might be considered for the lines of �̂. For instance, it can model
the time needed to buy a bus ticket or to get of with some luggage. For bike sharing rides, the boarding time
could be the duration needed to get the bicycle from the station and the alighting time the duration to put it back
in place. We denote by Δ�bo (�) the duration necessary for boarding the line and Δ�al (�) the duration necessary
for alighting. To remain general, we consider boarding and alighting times for all lines, as we can just set them to
0 when they are not relevant. Note that you can also use them to increase the robustness of planning to delays by
imposing an additional line-dependent duration to transfer times. For instance, an additional alighting time can
be added to a line that is frequently late to increase the probability to board the next vehicle.
Routing problem.

In this article, we consider the problem of inding a complete set of itineraries in public transit networks with
non-scheduled lines for minimum arrival time and number of transfers, given an origin node �src, a destination
node �tgt and a start time �src (bi-criteria earliest arrival time queries) or for minimum arrival time, number
of transfers and maximum departure time, given an origin node �src, a destination node �tgt and a start time
range [�edt, �ldt] (proile queries).

ACM J. Exp. Algor.

Routing with non-scheduled lines • 5

3.2 Trip-Based Public Transit Routing

Trip-Based Public Transit Routing [33] is an algorithm for bi-criteria earliest arrival time queries in public transit
networks, minimizing the arrival time and the number of transfers. The author claims to consider maximum
departure time as a secondary criterion used to break ties, but it is proven in [25] that there is no guarantee
regarding this last criterion.
The TB algorithm is based on the preprocessing of a set of the possible transfers between trips. The aim is

to build for each trip, during a preprocessing phase, a neighborhood of reachable trips in such way that for
each value in the Pareto front, there exists an optimal path with this value using only elements of the resulting
neighborhoods. A bicriteria earliest arrival time query then consists in a breadth-irst search like exploration in a
time-independent graph, that we denote search graph, where trips are vertices and transfers are arcs. Figure 1
gives an outline of the algorithm. The method proposed in [33] also covers proile queries.

Fig. 1. Phases of the TB algorithm

Preprocessing. The transfer set size impacts the exploration time. As many transfers cannot appear in any
optimal solution, it is advisable to prune the transfer set. For instance, if you consider the possible transfers
between one trip and a diferent line, only the earliest trip that can be boarded is relevant for the above deined
queries. The author hence suggests two pruning methods.

The irst removes U-turn transfers for each trip. Indeed, it is often possible to start from one stop, taking a trip,
then to get down at the next station, and take another trip back to the initial stop, describing a U-turn. Those
U-turn transfers are usually longer than intra-station transfers and can in that case be removed (otherwise they
are kept). The second aims at pruning the set of feasible transfers for each trip based on earliest arrival times
at stops. Each transfer is considered, starting with the later ones. If taking later transfers (or remaining on the
current trip) leads to identical or better arrival times or if all the trips reachable via the transfer can be reached
via those later transfers, then the current transfer is removed from the set, as it cannot lead to other optimal
values than the transfers already kept. Note that the transfer set obtained is not minimal in terms of number of
transfers, and that it depends on the order of the transfers checked.
Bi-criteria earliest arrival time queries. In the context of the TB algorithm, bi-criteria earliest arrival time
queries minimize arrival time and number of transfers given a departure time � , a source stop �src, and a target
stop �tgt. Note that even if this case is not considered in [33], it is not necessary for the origin and destination of
the queries to be stops. If they are placed anywhere on the road network, the algorithm is hardly modiied but
the footpaths to reach the closest stops in the network must be computed, for instance by classical shortest paths
in the road network.

Bi-criteria earliest arrival time queries start with an initialization phase where the queue of the search phase is
initialized and its target set is computed from the source and target stops. The target set is the set of lines L from
which the destination can be reached:

L = {(�, �, 0) | (�, �) ∈ �(�tgt)} ∪
{(�, �, Δ�fp (�, �tgt)) | (�, �) ∈ �(�) and � is a neighbor of �tgt}

ACM J. Exp. Algor.

6 • Darko Drakulic, Christelle Loiodice, and Vassilissa Lehoux

In the query phase, the author labels the trips by the index �(�) of the irst reached stop of � , initialized to∞
for all trips. He deines for each number of transfers one queue �� of trip segments reached after � transfers. �0

is initialized from the lines that can be taken from the source stop. For any stop � reached by walking from �src,
the earliest trip of (�, �) ∈ �(�) is added to the queue, starting at index � . It is the minimum trip � of line � such that

�dep (�, �) ≥

{
� if � = �src
� + Δ�fp (�src, �) otherwise

After initialization, a breadth-irst like search is performed. At each iteration, the algorithm scans in turn the
trip segments of the queue. If the current one belongs to a line of the target set, the arrival time at destination is
compared to that of the current solution set. Then, the trip segments reached by transferring from the current
trip segment are added to the queue of the next iteration if they improve the trips’ labels. In particular, a trip
segment ��� → ��� is added if � is smaller than any trip of �� taken so far at stop � . When a trip � is marked with
the label �(�) = � , all the later trips of �� are marked with the minimum of � and their current index.
Proile queries. In proile queries, the user provides an earliest departure time �edt and a latest departure time �ldt,
i.e. an interval in which to depart. The result of the query is a complete set of solutions for minimum arrival
time, minimum number of transfers and maximum departure time starting within the interval. The computation
for proile queries is as follows: perform an earliest arrival time query starting at �ldt and add the solutions to
the result set of the proile search. Then restart the search starting at the preceding instant without resetting
the trip labels. By iterating the process, you obtain a complete set of solutions without performing unnecessary
computations as the labels only let you improve on preceding arrival times.

4 TRIP-BASED ALGORITHMWITH NON-SCHEDULED LINES

As we mentioned above, to the best of our knowledge, lines without a schedule are not covered in the literature,
although the special case of bike sharing appears in several articles (e.g. [12, 24, 31]). We explain here our method
for the general case where the non-scheduled lines can have more than two stops in their sequence.

4.1 Defining a trip for a non-scheduled line

The algorithm we propose is independent of the deinition of the function earliest(�, �, �) that deine the earliest
trip segment of a trip � of a non-scheduled line � starting after a time � at stop ��

�
. However, we describe here a

method based on availability intervals deined for each stop of the line, in order to study the complexity of the
algorithm, given this function. To deine earliest(�, �, �), we need to evaluate the travel times between each pair
of consecutive stops for this trip segment. One possibility is to use the same principle as in the General Transit
Feed Speciication (GTFS) format [22] for frequency-based trips: one trip with a complete schedule is deined and
the others are translations of it with diferent start times. It is the solution chosen here for our experiments. A
more complex solution could consider time-dependent travel times between the line’s consecutive stops and
time-dependent arrival and departure times of the trips at its stops. In that case, one must keep in mind that trips
of a line cannot overtake one another and that those time-dependent travel times need to respect the FIFO (First
In, First Out) property.

Note that the trip segment’s departure time is either time � if � ∈ � (�, �) or the earliest instant of � (�, �) after � .
If such time doesn’t exist in the current day, then we can consider taking the line the day after if the service is
available. In that case, we take the irst trip of � passing at � the next day. To simplify computations, the minimum
value of the union of the availability intervals of the next day when it exists can be added to � (�, �) for all lines
and all stops. If the intervals of � (�, �) are sorted in increasing start time order, the trip segment’s departure time
can be computed in logarithmic time in the number of intervals using binary search.

ACM J. Exp. Algor.

Routing with non-scheduled lines • 7

4.2 Transfers to and from a line without schedule

In the TB algorithm, the transfer generation phase starts by computing all the possible transfers for each trip.
For each stop ��� of the current trip � , ind all the stops � that can be reached by footpaths (i.e. Δ�fp (��� , �)
is deined), and check if a transfer can take place for each element (�, �) of �(�). Stop � is reached at time
� = �arr (�, �) + Δ�fp (�

�
� , �) (or � = �arr (�, �) + Δ�ch (�) if � = ���) and we can enforce a minimum boarding time to

get the minimum time � = � + Δ�bo (�) at which a trip of line � can be taken. If it is deined, only the transfer to
the earliest trip of each line passing after time � is added to the neighborhood of � . We can proceed identically for
admissible transfers from trips of scheduled lines to non-scheduled lines. The earliest trip passing at � after � is
deined as in Section 4.1 and we keep only the transfer to that trip.

Initially, the trips of non-scheduled lines are not instantiated: they are implicit within the non-scheduled line
deinition. It is however possible to precompute some trip segments and transfers to make the search faster. We
extend the set of transfers � to add the transfers from a trip of a scheduled line to non-scheduled lines. We then
prune the resulting extended set of transfers as before. We denote with �̂ the set of transfers from a trip segment
of a scheduled line to a trip segment of a non-scheduled line. � ∪ �̂ is the extended set of transfers.
Note that for non-scheduled lines, we do not perform a preprocessing of the transfers to scheduled and

non-scheduled lines: instead, the transfers from trip segments of non-scheduled lines are computed online during
the query phase. It avoids explicitly creating all the non-scheduled trips, which would increase the size of the
search graph signiicantly, as shown in Section 5.

4.3 Modifications in the query phase

The algorithm for the query phase and its initialization can be found in Algorithm 1. The auxiliary procedures of
both are described in Algorithm 2.
In the initialization, the lines without schedule are scanned similarly to regular lines for determining the

algorithm’s targets. To build the initial queue, we consider the availability intervals of non-scheduled lines at the
stops reached from the origin and the minimum boarding times to propose the earliest trip segment for reached
lines.

A major diference with the initial version of the algorithm is the change in determining the next trip segments
to add to the queue. For transfers from scheduled lines, the set � ∪ �̂ of transfers contains all the preprocessed
transfers. For transfers from non-scheduled lines, the transfers are computed on the ly. For transfers to scheduled
lines, the trip to take is computed as in the initial algorithm and the trip segments added to the queue by the
procedure ENQUEUE_TRIP. For transfers to non-scheduled lines, as ENQUEUE_TRIP is only adapted to lines
with predeined schedules, the more complicated process of ENQUEUE_LINE and UPDATE_R is required to avoid
adding to the queue elements that cannot lead to paths with new optimal values.
This process is as follows. For a non-scheduled line � , label �̂(�) contains a set of pairs (�, �) with � the index

of a stop and � the earliest departure time at that stop of a trip of � during the search. This set is such that an
element (�, �) of �̂(�) is not dominated by any other element of �̂(�). A pair (�, �) is dominated by a pair (�, � ′) if
and only if

� ≥ � and � > �dep (earliest(�, �, �
′), �)

Indeed, if � ≥ � , the trip is boarded later at � , missing some transfer opportunities compared to boarding it at � .
And if � > �dep (earliest(�, �, � ′), �), then the earliest trip that can be boarded at � after � ′ brings you at the ��ℎ

stop earlier than � . Hence, the set �̂(�) contains at most |−→� (�) | elements and we can check the dominance of a
new pair over the elements of the set in polynomial time. To maintain the elements of �̂(�), one can save for each
stop � of � the earliest departure time of a trip of � at that stop during the search. In that case, �̂(�, �) represents
the earliest departure time of � at its ��ℎ stop in the current search. Another possibility is to sort the pairs of the

ACM J. Exp. Algor.

8 • Darko Drakulic, Christelle Loiodice, and Vassilissa Lehoux

Algorithm 1 Earliest arrival time query

input Timetable data, transfer set� ∪ �̂
input Source stop �src , destination stop �tgt , start time �src
output Result set � of Pareto values
� ← ∅, L ← ∅
�� ← ∅ for � = 0, 1, . . .
� (�) ← ∞ for each trip �

�̂ (�, �) ← ∞ for each line � without schedule and each index � = 0, 1, . . . , |−→� (�) |
INITIALIZATION(�src)
���� ←∞ ⊲ The current minimum arrival time at target
� ← 0
while�� ≠ ∅ do

for each ��� → ��� ∈ �� do

for each (�� , �, Δ�) ∈ L with � < � and �arr (�, �) + Δ� < ���� do
���� ← �arr (�, �) + Δ� ⊲ A target is reached and arrival time is improved
� ← � ∪ { (����, �) }, removing dominated entries

if �arr (�, � + 1) + Δ�al (��) < ���� then ⊲ Filling the queue for the next round

if �� ∈ �̂ then ⊲ Transfers must be computed
for each stop ��� with � < � ≤ � do

for each stop � such that Δ�fp (�
�
� , �) is deined do

� ← �arr (�, �) + Δ�al (��) + Δ�fp (�
�
� , �)

for each (�, �) ∈ � (�) do
� ′ ← earliest(�, �, � + Δ�bo (�))
ENQUEUE_TRIP(� ′, �, � + 1)

for each (�, �) ∈ �̂ (�) do
ENQUEUE_LINE(�, �, � + Δ�bo (�), � + 1)

else
for each transfer ��� → �

�
� ∈ � with � < � ≤ � do

ENQUEUE_TRIP(�, �, � + 1)
for each ��� → �

�

�
∈ �̂ do

ENQUEUE_LINE(�, �, �arr (�, �) + Δ�al (��) + Δ�fp (�
�
� , �

�

�
) + Δ�bo (�), � + 1)

� ← � + 1

procedure INITIALIZATION(�)
for each stop � s.t. Δ�fp (�, �tgt) is deined do ⊲ Initialization of the target set

Δ� ← 0 if �tgt = �, else Δ�fp (�, �tgt)

for each (�, �) ∈ � (�) ∪ �̂ (�) do
L ← L ∪ (�, �, Δ� + Δ�al (�))

for each stop � s.t. Δ�fp (�src, �) is deined do ⊲ Initialization of�0

Δ� ← 0 if �src = �, else Δ�fp (�src, �)
for each (�, �) ∈ � (�) do

� ← earliest(�, �, � + Δ� + Δ�bo (�))
ENQUEUE_TRIP(�, �, 0)

for each (�, �) ∈ �̂ (�) do
ENQUEUE_LINE(�, �, � + Δ� + Δ�bo (�), 0)

set �̂(�) by increasing stop index and to use the fact that the times are sorted in decreasing order to accelerate the
dominance checks while needing less memory. This implementation is used in our experiments. However, as
�̂(�, �) is more explicit, we use this notation in Algorithm 1 and Algorithm 2. Procedure UPDATE_R describes the
update process of �̂ and computes the maximum index � for which �̂(�, �) is modiied, so as to determine the last
element of the trip segment to add to the queue in the procedure ENQUEUE_LINE if �̂ is modiied. This avoid
revisiting stops already reached at an earlier or identical time as with this trip segment.

Note that since proile queries are an adaptation of earliest arrival time queries, it is possible to take them into
account as proposed in [33] even after the modiications.

ACM J. Exp. Algor.

Routing with non-scheduled lines • 9

Algorithm 2 Earliest arrival query auxiliary procedures

procedure ENQUEUE_TRIP(trip � , index � , number of transfers �)
if � < �(�) then ⊲ Adding the given trip segment to the queue

�� ← �� ∪ {�
�
� → �

� (�)
� }

for each trip � with � ≤ � and �� = �� do

�(�) ← min (�(�), �)

procedure ENQUEUE_LINE(line � ∈ �̂, index � , time � , number of transfers �)
���, � ← UPDATE_R(�, �, �) ⊲ Updating non-scheduled line labels
if ��� ≥ � then ⊲ Adding the earliest trip segment to the queue

�� ← �� ∪ {�
�
� → ����� }

procedure UPDATE_R(line � ∈ �̂, index � , time �)
outputMaximum index � s.t. �̂(�, �) is modiied, � − 1 if no modiication
������� ← �

� ← earliest(�, �, �)
while ������� ≤ |

−→
� (�) | and �dep (�, �������) < �̂(�, �������) do

�̂(�, �������) ← �dep (�, �������)

������� ← ������� + 1
⊲ Trip is scanned to its end or stop is reached by an earlier trip

return ������� − 1, �

4.4 Complexity and correctness

In [33], the complexity of the algorithm is not indicated. Although our objective here is to study the proposed
non-schedule line extension, the proofs below could be adapted to show that the algorithm is correct and performs
a number of operations polynomial in the input size.
Complexity. We discuss here the worst case complexity in term of number of operations for the non-scheduled
line extension. An important diference with the original algorithm is that only part of the instance is represented
in the search graph. We denote by � = (� ,�) the search graph, by � the set of stops of the network and by ��
the number of trips of scheduled lines.

Lemma 4.1. The size of the search graph � = (� ,�) is polynomial in the input size.

|� | = O(�� |�̂ | |� |
2 |) and |�| = O(�� (�� + |�̂ |) |� |

2)

Proof. The set of vertices � of the search graph contains the trips of the scheduled lines and the destination
trips of the transfers of �̂ . The number of elements in� is hence bounded by the number �� of trips of scheduled
lines plus the size of �̂ . Given an origin trip � , it would be possible to transfer from each stop of � (except
the irst one) to each stop (except the last one) of each non-scheduled line and to keep those transfers in �̂ .
Thus we have |�̂ | = O(�� |�̂ | |� |2), if � is the set of stops, and |� | is polynomial. Similarly, we can bound the
number of elements of � by |� | = O(� 2

� |� |
2). The arcs � of the search graph represent the transfers of � ∪ �̂ . So

|�| = O(�� (�� + |�̂ |) |� |
2). □

Lemma 4.2. The preprocessing of the search graph runs in polynomial time in the input size.

Proof. Arcs from trips of non-scheduled lines are implicit. Computing the earliest trip of a line leaving a given
stop after a time � can be done eiciently using binary search in O(log�) for scheduled lines, if � is the number

ACM J. Exp. Algor.

10 • Darko Drakulic, Christelle Loiodice, and Vassilissa Lehoux

of trips of the line and O(log |� |) for non-scheduled lines. From Lemma 4.1, the set of earliest feasible transfers
can hence be obtained in O(�� (log(��)�� + log(|� |) |�̂ |) |� |2). The pruning phase is also polynomial, as for each
transfer, at most all the stops’ labels must be updated, which give a O(|� | |�|) number of updates. By Lemma 4.1,
the number of arcs in the search graph is polynomial and hence the number of updates is also polynomial. □

Lemma 4.3. The query phase of the Trip-Based Public Transit Routing algorithm with non-schedule lines runs in

polynomial time in the input size.

Proof. For the initialization of the query phase, at most all the stops can be reached from �src and all the lines
taken, which takes � (|� | |� ∪ �̂ |) ’ENQUEUE’ operations. At each iteration, we loop over the queue’s content.
For each trip segment in the queue, we irst iterate over the targets (those number is bounded by |� | |� ∪ �̂ |).
Then if it is from a scheduled line, we scan its outgoing arcs. At most, |� ∪ �̂ | arcs are processed and elements are
added to the queue. Otherwise, the worst case corresponds to the existence of a transfer from each stop of the
non-scheduled line to each stop of any other line. It is thus bounded by O(|� ∪ �̂ | |� |2). It results in a polynomial
number of ’ENQUEUE’ operations.
The ENQUEUE_TRIP procedure updates in the worst case the labels of all the trips of the line of its input trip � .

It hence has complexity O(��). ENQUEUE_LINE updates at most |−→� (�) | labels of the set of labels of its input
line � . It is thus bounded by |� |.

Overall, we obtain that each step of the search phase is polynomial in the instance size.
To bound the number of iterations, irst note that it is not possible to take twice the same trip in an optimal

solution. A solution that alights a trip to board it again has at least one more transfer than the solution remaining
on the current trip. It hence cannot be built by the algorithm and, for the original algorithm, the number of
iterations is bounded by �� . Taking twice the same line would be possible, for instance if the line is passing twice
by the same stop, but not taking an earlier trip at a stop already passed by a preceding trip of the same line. The
number of non-scheduled line trip segments in a solution built by the algorithm is hence bounded by O(|� |).
Hence, the number of iterations is in O(�� + |� | |�̂ |). □

Bringing it all together, we obtain the following theorem:

Theorem 4.4. The Trip-Based Public Transit Routing algorithm with non-schedule lines runs in polynomial time

in the input size.

Proof. Directly from Lemma 4.2 and Lemma 4.3. □

Correctness. The algorithm is correct if and only if for any value in the Pareto front, its solution set contains a
solution with this value. By construction, such a set of solutions is obtained by the algorithm, given the pruned
information contained in the search graph. To prove that the algorithm is correct, we thus need to show that we
didn’t remove too many arcs during the pruning, i.e. that for any optimal solution in the Pareto set, there exists an
optimal solution with the same value whose transfers are either in the pruned transfer set � ∪ �̂ or are transfers
from non-scheduled lines. Let � be an optimal solution with at least one transfer described by the trip segments

that compose it: � =
〈
�
�1
�1
→ ��1�1 , �

�2
�2
→ ��2�2 , . . . , �

��+1
��+1
→ ���+1��+1

〉
. If all its transfers are either in the transfer set� ∪�̂

or are transfers from non-scheduled lines, we are done. If not, from this solution, we build another optimal
solution �′ whose transfers are either in � ∪ �̂ or are transfers from non-scheduled lines. First, iterating from
�
�2
�2
→ ��2�2 , we replace the trip segments � ���� → �

��
��
that are not the earliest for which the transfer to ��� is possible

from �
��−1
��−1

. Since � is optimal, it is not possible to arrive sooner at stop ���+1��+1
and trip segment � ��+1��+1

→ ���+1��+1
is not

modiied. To simplify, we keep the same notation for the modiied trip segments of � if any.

ACM J. Exp. Algor.

Routing with non-scheduled lines • 11

Netherlands IDF
stops # lines # foot paths
47313 2773 429.4K

stops # lines # foot paths
42302 1869 752K

trips # connections
Baseline 364.2K 6.527M
Non-sch. 317.7K 5.938M

trips # connections
Baseline 373.3K 7.867M
Non-sch. 318.0K 7.014M

Table 1. Netherlands and IDF datasets

Consider the last transfer ����� → �
��+1
��+1

of � . If trip �� is from a non-scheduled line, we keep it in �′. Otherwise,

suppose that this transfer is not in � ∪ �̂ . In that case, there exists a transfer �
�′
�

��
→ �

� ′
�+1

� ′
�+1

in � ∪ �̂ from �� such

that �′� ≥ �� and � ′�+1 arrives at �
��+1
��+1

at time �arr (��+1, ��+1) or before by deinition of the pruning phase. Note
that as the solution is optimal, it is exactly at time �arr (��+1, ��+1). If we denote with �′�+1 the smallest index in the

stop sequence of � ′�+1 such that �′�+1 ≥ � ′�+1 and �
��+1
��+1

= �
�′
�+1

� ′
�+1

, we can hence replace the two last trip segments by

�
��
��
→ �

�′
�

��
, �

� ′
�+1

� ′
�+1

→ �
�′
�+1

� ′
�+1

in �′.

Proceeding likewise for the other transfers going backward in the solution, we can obtain a solution �′ with
the same value as � those transfers are all in � ∪ �̂ or are transfers from a non-scheduled line.

5 EXPERIMENTS.

To the best of our knowledge, there is no open transit dataset with non-scheduled lines. One of the reason
is that the most widespread data format, the GTFS format [22], does not provide speciications for deining
non-scheduled lines. A recent proposal [26] extends it to some on-demand transports [32], but it doesn’t cover the
general case of non-scheduled lines, where the stop sequences of the lines are deined. Due to lack of standards,
service providers usually develop their own methods for speciication and integration of non-scheduled lines in
their trip planners if they wish to propose them.
For our experiments, we modiied public datasets for Netherlands [9] and Île-De-France [10] (IDF). The

Netherlands dataset contains on-demand lines, but with predeined schedules, which require phone activation.
From the perspective of the TB algorithm, this type of lines are handled as standard lines as they have predeined
schedules and are not appropriate for our need. We hence slightly change the original dataset by converting
253 on-demand lines with predeined schedules to lines without schedule. For the IDF dataset, we obtain 201
non-scheduled lines. For each line, we set the availability period to 7.30 am to 7 pm for the irst stop and translate
the interval for each later stop of the line according to a ixed travel time between the origin stop and that
stop. We denote by Non-sch. those datasets and we use the proposed algorithm to compute itineraries in those
networks.
We also generate another variation of those datasets: instead of non-scheduled lines, we instantiated all the

possible trips for the non-scheduled lines by generating one trip every 30 seconds in the interval. Those datasets
are our baseline, as they allow to take into account non-scheduled lines without modiication of the base algorithm.
Note that in many public transit datasets, the time precision is either one minute or 30 seconds, so one trip every
30 seconds is hence quite close to instantiating all possible trips for the non-scheduled lines. There remains the
diference that travel times can have higher precision (for instance one second) and hence the solutions generated
can be diferent with the two models.

ACM J. Exp. Algor.

12 • Darko Drakulic, Christelle Loiodice, and Vassilissa Lehoux

Netherlands IDF
Time # Transfers to # Transfers to Time # Transfers to # Transfers to
(s) scheduled lines non-sch. lines (s) scheduled lines non-sch. lines

Baseline 21 39.384M 0 59 105.862M 0
Non-sch. 20 35.551M 55.6K 53 84.212M 1.191M

Table 2. Preprocessing phase

Netherlands IDF
Query Mean time Min time Max time Mean time Min time Max time

(ms) (ms) (ms) (ms) (ms) (ms)

B
as
el
in
e Earliest arrival 26 7 100 36 13 75

Proile 8.30 96 18 263 85 32 143
Proile 14.30 82 17 203 90 30 140

N
on

-s
ch Earliest arrival 21 6 74 24 4 43

Proile 8.30 77 19 163 78 8 119
Proile 14.30 70 16 172 84 9 158

Table 3. uery times for Baseline and Non-sch

Table 1 summarizes the datasets. Non sch. and baseline have the same number of stops, lines and foot paths, but
the number of trips and connections (transfer between two consecutive stops taking a trip) difer. The experiments
are run on a 2.4 GHz CPU Intel(R) Xeon(R) CPU E5-2680 server with 56 cores, 35M of L3 cache and 1 TB of RAM
by using a solver developed in the Rust programming language.

Preprocessing times of the two settings are similar, although the setting using non-scheduled lines is slightly
faster, as it has less trips to process (see Table 2). Remark that the preprocessing time is low enough to allow
for real-time updates of the network every couple of minutes. It implies that in the case when a non-scheduled
trip is booked, it is possible to update the network to include it as a scheduled trip. It is also possible to modify
the availability intervals of some stops-line pairs to take into account the fact that this booked vehicle is no
longer available, or to keep people from booking two trips on the same non-scheduled lines within a few minutes
interval. In the case of the baseline, this will express by removing trips from the dataset before and after the
booked vehicle. Note that, as of today, non-scheduled lines are implemented in areas that are usually not very
populated, and for a demand that is punctual (otherwise, a regular line would have been put in place). It is hence
unlikely that two users will try and reserve simultaneously the same line for similar times of day, generating a
conlict in the reservation process. However, in the hypothesis of such a conlict, the system could detect it and
replan the itinerary set of one of the users.

To compare query times, we selected randomly 300 origin-destination pairs over each network. We generated
3 queries per origin-destination pair: an earliest arrival time query and two proile queries. For each query, a
complete set of solutions is computed. We ixed the departure times of the earliest arrival time queries at 8.30
(am), a time at which trips are usually more frequent (which makes the exploration more time consuming) and
for proile queries, we considered time intervals of length one hour, starting at 8.30 and 14.30 respectively. Proile
queries starting at 14.30, a time where trip frequencies are less high, result in fewer solutions and are hence
expected to run faster than the ones starting at 8.30. Results of the experiments can be found in Table 3.
For our experiments, we turned about 10% of the lines into non-scheduled lines, and hence cannot expect a

huge diference in query times between the baseline and the Non-sch implementation. However, the diference is

ACM J. Exp. Algor.

Routing with non-scheduled lines • 13

Dataset Dataset

stops # lines # foot paths # biking stations
2678 78 60.4K 354

trips # connections
Baseline 67.8K 973.4K
Non-sch. 75.11M 151.06M

Preprocessing Query mean times (ms)
Time # Transfers to # Transfers to
(s) scheduled lines non-scheduled lines

Baseline 1156 4486.71M 0
Non-sch. 10 4.46M 51.30M

Query Baseline Non-sch
Earliest arrival 858 215
Proile 8.30 8761 2713
Proile 14.30 6458 3065

Table 4. Results on the Bruxelles data set

signiicant enough for the method to be interesting from a performance point of view, as mean query times are
around 19% faster than that of the baseline for earliest arrival time queries in the Netherlands network and 33%
in the IDF network. For proile queries, the gap is smaller but higher than 9%.

Note that we also tried our method on the much smaller TAG network [15] of the metropolitan area of Grenoble
in France (less than 2K stops and 20K trips). For this network, we processed as before the few on-demand lines,
but the execution times are very low (less than 10 ms on average) and very close for all methods. We would
hence suggest to transport authorities concerned with small networks with few non-schedule lines to use the
baseline which is simpler to implement.

To better appreciate the efectiveness of the method in a context with many on-demand lines, we also consider
the network of Bruxelles in Belgium for which public transit and bike sharing station information is available. As
explained, it is not the targeted use case, as other, dedicated models might be more appropriate to this special
case, but the algorithm can be applied in this context. Given the position of the bike sharing stations, we keep as
non-scheduled lines bike paths of more than 1 km and less than 15 minutes riding time between any two bike
sharing stations.

The data set and results are summarized in Table 4. As the number of non-scheduled lines is much larger, the
size of the search graph is highly impacted (see results of the preprocessing phase). The query times are between
2 and 4 times higher for the base line (3.99 times for bi-criteria earliest arrival time queries), which gives a large
advantage to the Non-sch. algorithm. As expected, query times are higher than with only a small portion of
non-scheduled lines in the data set, but still well below the second for bi-criteria earliest arrival time queries,
which makes it compatible with real world applications.

6 CONCLUSION AND FUTURE WORK.

In this article, we proposed a method for computing itineraries in public transit or multimodal networks with
scheduled and non-scheduled lines. It extends the Trip-Based Public Transit Routing algorithm to on-demand lines
with a predeined stop sequence and availability intervals but no associated schedules. Experimental results over
two large datasets show that the proposed approach performs better than the baseline consisting in discretizing
the availability interval to generate all the possible trips for the non-scheduled lines.

This model has car and bike sharing as a special case. We show in our experiments that it could indeed be used
in the context of bike sharing. A perspective of our work could hence be to test our method with multimodal
networks including those modes, against classical modeling as a transfer, and not as a trip, or against other more
dedicated models. Another line of work could be concerned with applying classical acceleration techniques, such

ACM J. Exp. Algor.

14 • Darko Drakulic, Christelle Loiodice, and Vassilissa Lehoux

as Transfer Patterns [4, 6], to the proposed algorithm. Transfer patterns have been adapted to Trip-Based Public
Transit Routing in [34] and could be extended to take into account non-scheduled lines.

REFERENCES

[1] [n. d.]. Transports Montalbanais. https://www.montm.com/transport-a-la-demande-et-pmr/ Access date: 2021/03/29.
[2] Chris Barrett, Riko Jacob, and Madhav Marathe. 2000. Formal-Language-Constrained Path Problems. SIAM J. Comput. 30, 3 (May 2000),

809ś837. https://doi.org/10.1137/S0097539798337716
[3] Hannah Bast. 2009. Car or Public TransportÐTwo Worlds. In Eicient Algorithms: Essays Dedicated to Kurt Mehlhorn on the Occasion

of His 60th Birthday, Susanne Albers, Helmut Alt, and Stefan Näher (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 355ś367.
https://doi.org/10.1007/978-3-642-03456-5_24

[4] Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris Harrelson, Veselin Raychev, and Fabien Viger. 2010. Fast
Routing in Very Large Public Transportation Networks Using Transfer Patterns. In Proceedings of the 18th Annual European Conference

on Algorithms: Part I (Liverpool, UK) (ESA’10). Springer-Verlag, Berlin, Heidelberg, 290Ð-301.
[5] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann, Thomas Pajor, Peter Sanders, Dorothea Wagner, and

Renato F. Werneck. 2016. Route Planning in Transportation Networks. In Kliemann L., Sanders P. (eds) Algorithm Engineering - Selected

Results and Surveys. Lecture Notes in Computer Science, Vol. 9220. Springer, Cham, 19ś80. https://doi.org/10.1007/978-3-319-49487-6_2
[6] Hannah Bast, Matthias Hertel, and Sabine Storandt. 2016. Scalable Transfer Patterns. In 2016 Proceedings of the Eighteenth Workshop on

Algorithm Engineering and Experiments (ALENEX). 15ś29. https://doi.org/10.1137/1.9781611974317.2
[7] Moritz Baum, Valentin Buchhold, Jonas Sauer, Dorothea Wagner, and Tobias Zündorf. 2019. UnLimited TRAnsfers for Multi-Modal

Route Planning: An Eicient Solution. In 27th Annual European Symposium on Algorithms (ESA 2019) (Leibniz International Proceedings

in Informatics (LIPIcs), Vol. 144), Michael A. Bender, Ola Svensson, and Grzegorz Herman (Eds.). Schloss DagstuhlśLeibniz-Zentrum fuer
Informatik, Dagstuhl, Germany, 14:1ś14:16. https://doi.org/10.4230/LIPIcs.ESA.2019.14

[8] Alessio Cionini, Gianlorenzo D’Angelo, Mattia D’Emidio, Daniele Frigioni, Kalliopi Giannakopoulou, Andreas Paraskevopoulos, and
Christos Zaroliagis. 2017. Engineering graph-based models for dynamic timetable information systems. Journal of Discrete Algorithms

46-47 (2017), 40ś58. https://doi.org/10.1016/j.jda.2017.09.001
[9] datahub. [n. d.]. Timetables for transit in Netherlands. https://old.datahub.io/dataset/gtfs-nl Access date: 2019/07/29.
[10] Île de France Mobilités. [n. d.]. Open Data portal. https://data.iledefrance-mobilites.fr/pages/home/ Access date: 2020/05/04.
[11] Daniel Delling, Julian Dibbelt, and Thomas Pajor. 2019. Fast and Exact Public Transit Routing with Restricted Pareto Sets. In Proceedings of

the Twenty-First Workshop on Algorithm Engineering and Experiments (ALENEX). Editor(s): Stephen Kobourov and Henning Meyerhenke,
San Diego, California, USA, 54ś65. https://doi.org/10.1137/1.9781611975499.5

[12] Daniel Delling, Julian Dibbelt, Thomas Pajor, Dorothea Wagner, and Renato F. Werneck. 2013. Computing Multimodal Journeys in
Practice. In Experimental Algorithms - Proceedings of the 12th International Symposium, SEA 2013 (Lecture Notes in Computer Science,

Vol. 7933). Springer Berlin Heidelberg, 260ś271. https://doi.org/10.1007/978-3-642-38527-8_24
[13] Daniel Delling, Julian Dibbelt, Thomas Pajor, and Renato F. Werneck. 2015. Public Transit Labeling. In Experimental Algorithms -

Proceedings of the 14th International Symposium (SEA 2015) (Lecture Notes in Computer Science, Vol. 9125), Evripidis Bampis (Ed.). Springer
International Publishing, 273ś285. https://doi.org/10.1007/978-3-319-20086-6_21

[14] Daniel Delling, Thomas Pajor, and Renato F. Werneck. 2012. Round-Based Public Transit Routing. In Proceedings of the 14th Meeting

on Algorithm Engineering and Experiments (ALENEX’12), Society for Industrial and Applied Mathematics (Eds.). 130ś140. https:
//doi.org/10.1287/trsc.2014.0534

[15] Syndicat Mixte des Mobilités de l’Aire Grenobloise. [n. d.]. Horaires théoriques du réseau TAG. https://transport.data.gouv.fr/datasets/
horaires-theoriques-du-reseau-tag/ Access date: 2020/05/04.

[16] Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. 2013. Intriguingly Simple and Fast Transit Routing. In Experimental

Algorithms. International Symposium on Experimental Algorithms, SEA 2013 (Lecture Notes in Computer Science, Vol. 7933), Vincenzo
Bonifaci, Camil Demetrescu, and Alberto Marchetti-Spaccamela (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 43ś54. https:
//doi.org/10.1007/978-3-642-38527-8_6

[17] Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. 2012. User-Constrained Multi-Modal Route Planning. In Proceedings of the 14th

Workshop on Algorithm Engineering and Experiments (ALENEX’12). SIAM, 118ś129. https://doi.org/10.1137/1.9781611972924.12 Editors
David A. Bader and Petra Mutzel.

[18] Agglo du Pays de Dreux. [n. d.]. Linéad. https://www.linead.fr/8-Transport-a-la-demande.html Access date: 2021/03/29.
[19] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. 2008. Contraction Hierarchies: Faster and Simpler Hierarchical

Routing in Road Networks.. In Experimental Algorithms. 7th Workshop on Experimental Algorithms (WEA 2008) (Lecture Notes in Computer

Science, Vol. 5038), C.C. McGeoch (Ed.). Springer, Berlin, Heidelberg, 319ś333. https://doi.org/10.1007/978-3-540-68552-4_24
[20] Kalliopi Giannakopoulou, Andreas Paraskevopoulos, and Christos Zaroliagis. 2019. Multimodal Dynamic Journey-Planning. Algorithms

12, 10 (2019). https://doi.org/10.3390/a12100213

ACM J. Exp. Algor.

https://www.montm.com/transport-a-la-demande-et-pmr/
https://doi.org/10.1137/S0097539798337716
https://doi.org/10.1007/978-3-642-03456-5_24
https://doi.org/10.1007/978-3-319-49487-6_2
https://doi.org/10.1137/1.9781611974317.2
https://doi.org/10.4230/LIPIcs.ESA.2019.14
https://doi.org/10.1016/j.jda.2017.09.001
https://old.datahub.io/dataset/gtfs-nl
https://data.iledefrance-mobilites.fr/pages/home/
https://doi.org/10.1137/1.9781611975499.5
https://doi.org/10.1007/978-3-642-38527-8_24
https://doi.org/10.1007/978-3-319-20086-6_21
https://doi.org/10.1287/trsc.2014.0534
https://doi.org/10.1287/trsc.2014.0534
https://transport.data.gouv.fr/datasets/horaires-theoriques-du-reseau-tag/
https://transport.data.gouv.fr/datasets/horaires-theoriques-du-reseau-tag/
https://doi.org/10.1007/978-3-642-38527-8_6
https://doi.org/10.1007/978-3-642-38527-8_6
https://doi.org/10.1137/1.9781611972924.12
https://www.linead.fr/8-Transport-a-la-demande.html
https://doi.org/10.1007/978-3-540-68552-4_24
https://doi.org/10.3390/a12100213

Routing with non-scheduled lines • 15

[21] Andrew Goldberg and Chris Harrelson. 2005. Computing the shortest path: A* search meets graph theory. In Proceedings of the 16th

Annual ACMśSIAM Symposium on Discrete Algorithms(SODA’05). SIAM, 156ś165.
[22] GTFS [n. d.]. General Transit Feed Speciication. https://gtfs.org/ Access date: 2021/03/29.
[23] Pierre Hansen. 1980. Bicriterion Path Problems. InMultiple Criteria DecisionMaking Theory andApplication (Lecture Notes in Economics and

Mathematical Systems, Vol. 177), Günter Fandel and Tomas Gal (Eds.). Springer Berlin Heidelberg, 109ś127. https://doi.org/10.1007/978-
3-642-48782-8_9

[24] Dominik Kirchler, Leo Liberti, and Roberto Woller Calvo. 2015. Eicient Computation of Shortest Paths in Time-Dependent Multi-Modal
Networks. ACM Journal of Experimental Algorithmics (JEA) 19 (Jan. 2015). https://doi.org/10.1145/2670126

[25] Vassilissa Lehoux and Darko Drakulic. 2019. Mode Personalization in Trip-Based Transit Routing. In 19th Symposium on Algorithmic

Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2019) (OpenAccess Series in Informatics (OASIcs), Vol. 75),
Valentina Cacchiani and Alberto Marchetti-Spaccamela (Eds.). Schloss DagstuhlśLeibniz-Zentrum fuer Informatik, Dagstuhl, Germany,
13:1ś13:15. https://doi.org/10.4230/OASIcs.ATMOS.2019.13

[26] Ross MacDonald. 2020. Mobility on Demand (MOD) Sandbox: Vermont Agency of Transportation (VTrans) Flexible Trip Planner. Technical
Report 0150. Federal Transit Administration (FTA) Research.

[27] Transports publics de Flers Agglo. [n. d.]. Némus. https://nemus.lers-agglo.fr/se-deplacer/transport-a-la-demande Access date:
2021/03/29.

[28] Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. 2008. Eicient Models for Timetable Information in Public
Transportation Systems. ACM Journal of Experimental Algorithmics (JEA) 12, 2.4 (2008), 1ś39. https://doi.org/10.1145/1227161.1227166

[29] Andrea Raith, Marie Schmidt, Anita Schöbel, and Lisa Thom. 2018. Extensions of labeling algorithms for multi-
objective uncertain shortest path problems. Networks 72, 1 (2018), 84ś127. https://doi.org/10.1002/net.21815 _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.21815.

[30] Jonas Sauer, Dorothea Wagner, and Tobias Zündorf. 2020. Faster Multi-Modal Route Planning With Bike Sharing Using ULTRA.
In 18th International Symposium on Experimental Algorithms (SEA 2020) (Leibniz International Proceedings in Informatics (LIPIcs),

Vol. 160), Simone Faro and Domenico Cantone (Eds.). Schloss DagstuhlśLeibniz-Zentrum für Informatik, Dagstuhl, Germany, 16:1ś16:14.
https://doi.org/10.4230/LIPIcs.SEA.2020.16

[31] Luis Ulloa, Vassilissa Lehoux, and Frédéric Roulland. 2018. Trip Planning Within a Multimodal Urban Mobility. IET Intelligent Transport

Systems 12, 2 (2018), 87ś92. https://doi.org/10.1049/iet-its.2016.0265
[32] GTFS-Flex v2. [n. d.]. Flexible public transit services in GTFS. https://github.com/MobilityData/gtfs-lex/blob/master/spec/reference.md
[33] Sascha Witt. 2015. Trip-Based Public Transit Routing. In Algorithms - Proceedings of the 23rd Annual European Symposium on Algorithms

(ESA’15) (Lecture Notes in Computer Science, Vol. 9294), Nikhil Bansal and Irene Finocchi (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 1025ś1036. https://doi.org/10.1007/978-3-662-48350-3_85 Editors: Nikhil Bansal and Irene Finocchi.

[34] Sascha Witt. 2016. Trip-Based Public Transit Routing Using Condensed Search Trees. In Proceedings of the 16th Workshop on Algorithmic

Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016) (OpenAccess Series in Informatics (OASIcs), Vol. 54),
Marc Goerigk and Renato Werneck (Eds.). Schloss DagstuhlśLeibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 10:1ś12. https:
//doi.org/10.4230/OASIcs.ATMOS.2016.10 Editors: Marc Goerigk and Renato Werneck.

ACM J. Exp. Algor.

https://gtfs.org/
https://doi.org/10.1007/978-3-642-48782-8_9
https://doi.org/10.1007/978-3-642-48782-8_9
https://doi.org/10.1145/2670126
https://doi.org/10.4230/OASIcs.ATMOS.2019.13
https://nemus.flers-agglo.fr/se-deplacer/transport-a-la-demande
https://doi.org/10.1145/1227161.1227166
https://doi.org/10.1002/net.21815
https://doi.org/10.4230/LIPIcs.SEA.2020.16
https://doi.org/10.1049/iet-its.2016.0265
https://github.com/MobilityData/gtfs-flex/blob/master/spec/reference.md
https://doi.org/10.1007/978-3-662-48350-3_85
https://doi.org/10.4230/OASIcs.ATMOS.2016.10
https://doi.org/10.4230/OASIcs.ATMOS.2016.10

	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Notation
	3.2 Trip-Based Public Transit Routing

	4 Trip-Based algorithm with non-scheduled lines
	4.1 Defining a trip for a non-scheduled line
	4.2 Transfers to and from a line without schedule
	4.3 Modifications in the query phase
	4.4 Complexity and correctness

	5 Experiments.
	6 Conclusion and future work.
	References

