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Long-range synchrony from short-range interactions is a familiar pattern in
biological and physical systems, many of which share a common set of ‘uni-
versal’ properties at the point of synchronization. Common biological
systems of coupled oscillators have been shown to be members of the
Ising universality class, meaning that the very simple Ising model replicates
certain spatial statistics of these systems at stationarity. This observation is
useful because it reveals which aspects of spatial pattern arise independently
of the details governing local dynamics, resulting in both deeper under-
standing of and a simpler baseline model for biological synchrony.
However, in many situations a system’s dynamics are of greater interest
than their static spatial properties. Here, we ask whether a dynamical
Ising model can replicate universal and non-universal features of ecological
systems, using noisy coupled metapopulation models with two-cycle
dynamics as a case study. The standard Ising model makes unrealistic dyna-
mical predictions, but the Ising model with memory corrects this by using an
additional parameter to reflect the tendency for local dynamics to maintain
their phase of oscillation. By fitting the two parameters of the Ising model
with memory to simulated ecological dynamics, we assess the correspon-
dence between the Ising and ecological models in several of their features
(location of the critical boundary in parameter space between synchronous
and asynchronous dynamics, probability of local phase changes and ability
to predict future dynamics). We find that the Ising model with memory is
reasonably good at representing these properties of ecological metapopula-
tions. The correspondence between these models creates the potential for the
simple and well-known Ising class of models to become a valuable tool for
understanding complex biological systems.
1. Introduction
Synchrony of dynamics in spatially extended systems has been a subject of
intense study in a diverse array of scientific disciplines and range of biological
scales [1–6]. In ecological systems, the study of synchrony of oscillations in
population numbers across space and time has a long history [7] and has pro-
vided great insights into fundamental issues of population dynamics [3,5]. The
dynamics of flocking in birds or schooling in fish and similar behaviour in bac-
teria [8] essentially are examples of synchrony across a large scale determined
by local interactions [9–11]. At the suborganism scale, how the dynamics of
individual neurons lead to collective behaviour is a key question in neuro-
science [12]. The synchrony of neural oscillators is thought to play an
important role in behaviour [6] and in various pathologies [13].

Given the ubiquity of analogous synchronous behaviour across a range of
biological systems and scales, it is reasonable to look for explanations that do
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not depend on fine details. One approach is based on the
Ising model from physics, which is an idealized description
of the macroscopic behaviour of magnetic materials based
on the local coupling of the microscopic magnetic moments
of electrons. The Ising model (see, for example, [14–18]) is a
fundamental model in statistical physics and the simplest
example of a ‘spin’ model. It was introduced to understand
how long-range order can develop from local interactions in
the setting of ferromagnetism—the global alignment of
atomic-scale magnetic moments to produce bulk magnet-
ism in materials such as iron. A variety of biological
synchrony phenomena have previously been described
using models based on the Ising model and related spin
models, such as cell synchrony [19], pattern formation
[20], synchronous nerve firing [21,22], swarming and flock-
ing dynamics [11,23] and masting behaviour [24]. These
previous studies have focused on static properties, but
synchronization is a dynamic phenomenon. Important
questions emerge when considering the dynamics of syn-
chrony that require further properties of the Ising model.
We focus here on ecological systems where these dynamic
features emerge, but the ideas and approaches should
have much wider applicability.

Long-range synchrony in population fluctuations is
widely observed and is thought to occur through several
non-mutually exclusive mechanisms [3,5,25–27]. Long-range
correlations in environmental perturbations and long-
distance dispersal are both capable of synchronizing local
population dynamics across a large geographical scale
[7,28–31]. However, some species with limited dispersal abil-
ities also show strong spatial synchrony [32]. For populations
with cyclic dynamics, short-range dispersal (or, equivalently,
other forms of local coupling such as resource sharing
between neighbouring trees [24]) is often sufficient to drive
long-distance synchrony [33–37], suggesting a role for
short-distance coupling in some of the examples of synchrony
we see in nature.

Population densities of species such as forest insects [38],
voles [39] and annual plants [40], as well as fruit yield of
alternate-bearing plants [41], may exhibit a strong pattern
of alternation between high and low states. This prevailing
two-cycle has two possible phases of oscillations: highs in
odd years or highs in even years. This suggests a correspon-
dence with the discrete ‘spin-up’ or ‘spin-down’ states of the
Ising model. Environmental stochasticity can explain the
fact that exact highs and lows vary from cycle to cycle in
real populations, and that real two-cycles may at times
change their phase, corresponding to ‘spin flips’ in
dynamical Ising models.

Local coupling of multiple subpopulations undergoing
noisy two-cycles in a metapopulation can lead to long-
range synchrony [27,34,41–43]. While many continuous
measures of synchrony have been proposed [44–48], we
can take advantage of the binary nature of the two-cycle
to classify metapopulations as either ‘synchronous’ at
the scale of the metapopulation (most subpopulations are
high in the same years) or else ‘incoherent’ (with perhaps
some locally synchronized populations but no long-
range synchrony). Intuitively, higher dispersal rates and
weaker (spatially uncorrelated) environmental stochasticity
promote synchrony.

For metapopulations with noisy local two-cycles, the tran-
sition from incoherence to global synchrony occurs abruptly
with gradual increases in dispersal or decreases in noise
[41]. This kind of sharp phase transition is also a characteristic
of the Ising model [15,17]. In its original application to mag-
netic materials, the strength of microscopic interaction
between electron magnetic moments (‘spins’) and the temp-
erature (analogous to noise level) of the system determine
whether spins are globally aligned so that the material dis-
plays permanent magnetism. Systems that follow the same
power-law scaling of correlation functions as the Ising
model at the transition point from disordered to ordered
are in what is known as the Ising universality class. In pre-
vious work, Noble et al. [41] showed that many ecological
two-cycle oscillators fall into this class.

The transition from incoherence to synchrony in any
model in the Ising universality class shares some non-trivial
features exactly with the transition from disorder to order in
the Ising model. Universality thus allows us to understand
many features of synchrony in models like the noisy coupled
ecological two-cycles by instead studying the Ising
model, which is very simple, tractable, well understood and
amenable to detailed, quantitative mathematical and compu-
tational analysis. However, universal properties that are
exactly shared by all members of the Ising universality class
are limited to the large-distance and long-time properties of
correlation functions measured in the stationary (equilibrium)
state near the critical point.

Here we posit that a dynamical Ising model can accurately
represent a much broader array of non-universal features of
the behaviour exhibited by metapopulations with noisy
two-cycles, including the approach to the stationary state
and local dynamical properties. To obtain a faithful represen-
tation, we need to go beyond the simplest dynamical Ising
model and add a self-interaction (local memory) term to the
dynamical Ising model [49]. This memory term reflects that
subpopulations are strongly influenced by their own current
state, owing to local density dependence. We use inference
methods [50] to find the Ising model parameters that best
represent simulated ecological metapopulation dynamics.

We find surprisingly good agreement between the full
metapopulation model and its Ising representation. This
allows us to use the Ising model to develop new quantitative
predictions and qualitative insights. For example, the noisy,
locally coupled Ricker metapopulation has three par-
ameters: dispersal, noise and local intrinsic population
growth rate. The interplay between these parameters in
determining the dynamics and patterns of synchronization
can be rather complex [34,51,52]. The Ising model with
memory is a significantly simpler model with only two par-
ameters: an effective local coupling and an effective memory
term. Each of these parameters plays an intuitively clear role
in determining both the dynamics and patterns of synchro-
nization. More importantly, for natural systems for which we
lack a validated mechanistic model, the dynamical Ising
model provides a simple representation that makes very
few assumptions about underlying mechanisms. Using
Ising inference methods, we are able to obtain a reasonable
description that both has predictive value and yields
qualitative insights.

Our study is primarily focused on dynamics near the
critical transition to synchrony, where it is most difficult to
model the behaviour of a system owing to the emergence
of multiple length scales and time scales [15,17]. In this
work we ignore the spatial correlations in environmental
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Figure 1. The steps in constructing and assessing a dynamical Ising model that best describes a two-cycle metapopulation.
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stochasticity because we wish to focus specifically on the role
of short-range dispersal in generating large-scale synchrony.
Correlated noise can be easily added to the dynamical Ising
model and will be the subject of a subsequent study.
1.1. Overview
The overall programme of the paper is sketched in figure 1.
First, we carry out simulations of our metapopulation
models, which consist of noisy, locally coupled lattice maps
(§2.1). The first row of the figure shows three successive snap-
shots of this model with the colour code representing local
subpopulation densities. From the (continuous) subpopu-
lation densities we obtain a reduced description, where the
phase of oscillation of each subpopulation is represented by
a phase variable that takes values of ±1 (§2.2). A dynamical
Ising model with memory introduced in §2.3 equips the
phase variables with stochastic, Markovian dynamics. Finally,
from successive snapshots of the phase variables (second row
of figure 1) we use maximum-likelihood inference methods
(electronic supplementary material, appendix D) to obtain
values of the two parameters of the dynamical Ising model
that best represent the dynamics of the metapopulation
models. Results from the application of this programme and
an assessment of the accuracy of the dynamical Ising rep-
resentation are presented in §3. The stationary state and
approach to the stationary state are studied in §3.1 and §3.2,
respectively, and the predictive power of Ising dynamics is
tested in §3.3. The results show that the inferred dynamical
Ising model is a reasonably good approximation to the
more complex metapopulation dynamics for several meta-
population models and a wide range of parameters of the
models. Shortcomings of the dynamical Ising representation
and an idea for how to improve it are discussed in §3.4. The
paper closes with a discussion in §4.
2. Models and methods
2.1. Dynamical metapopulation models: noisy coupled

lattice maps
The simplest metapopulation models have identical local
populations arrayed on a two-dimensional square lattice
with only local dispersal, namely a noisy coupled lattice
map [53,54]. Metapopulation models of this form with
dispersal between four nearest neighbour patches on the
lattice are studied on a grid of size L × L with N = L2

patches. Let Xi,t be the subpopulation density in patch i
at time t and let Xt = {Xi,t} represent the collection of all sub-
population sizes. We use periodic boundary conditions,
which makes our lattice topologically equivalent to a
torus. While true ecological systems have edges, this set-
up yields results that are more homogeneous and differ
little from other possible boundary conditions except in
small systems.

Each subpopulation undergoes local dynamics, interacts
with its nearest neighbours through dispersal and is subject
to uncorrelated environmental noise. These three processes
happen in a sequence and are represented, respectively, by
three operators, R, D and N, described below.
2.1.1. Local dynamics R
Short-period oscillations in species with seasonal life histories
and intraspecific density dependence are well described by
discrete-time quadratic maps such as the Ricker and logistic
models [55–58]. For example, the local dynamics with the
Ricker map [59] acting on all the patches independently, R,
is given by

Xi,tþ1 ; (RXt)i ¼ Xi,t exp [r(1� Xi,t)], (2:1)



Table 1. Metapopulation models studied here. The models are defined in
detail in electronic supplementary material, appendix A. Except where
otherwise state, reported results refer to model A. In all cases,
measurement is done after the action of noise. In model D, the order of
local dynamics and dispersal is reversed.

model local map growth parameter sequence

A Ricker r = 2.2 NDR

B Ricker r = 2.4 NDR

C logistic r = 3.2 NDR

D Ricker r = 2.2 NRD
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with Xi,t∈ [0, ∞), whereas the local dynamics with the logis-
tic map is given by

Xi,tþ1 ; (RXt)i ¼ rXi,t(1� Xi,t), (2:2)

with Xi,t∈ [0, 1], where the parameter r is the intrinsic popu-
lation growth rate. Each patch in a metapopulation is
assumed to undergo the same local dynamics and have the
same growth rate.

As r increases, the behaviour of the map goes through a
series of bifurcations following the classic period-doubling
route to chaos [60]. For the rest of the work, we choose r
such that the local dynamics is in the two-cycle regime so
Xi,t oscillates between high and low values.

2.1.2. Dispersal D
During dispersal a fraction ϵ of each subpopulation leaves its
home patch and ϵ/4migrates to each of the four neighbouring
patches. The dispersal operator, D, takes the form

Xi,tþ1 ; (DXt)i ¼ (1� e)Xi,t þ e

4

X

hj;ii
Xj,t, (2:3)

where 〈j; i〉 indicates a sumover the nearest neighbours of site i.
The values of dispersal ϵ≤ 1/2 are reasonable from the biologi-
cal standpoint by ensuring that a majority of the local
population remains in its home patch.

2.1.3. Noise N
We use log-normally distributed, multiplicative noise that
acts independently on each patch at each time step,

(NXt)i ¼ Xi,t exp (lzi,t), (2:4)

where λ is the noise level and ζi,t are independent, identically
distributed normal variates with mean zero and unit
standard deviation.

The three processes can be arranged in any order to form
a metapopulation model. In the case of NDRXt, each process
acts once per cycle in the same order, first R, then D and
finally N. Any cyclic permutation of this order represents
the same model but with the population censused at different
stages in the cycle (see [28] for a discussion of the effect of
census time on measured synchrony). On the other hand,
NRD and its three cyclic permutations represent a distinct
metapopulation model. We study four metapopulation
models with different choices of local dynamics and sequence
of processes (table 1). For a given model, the additional three
parameters are the number of patches, N, dispersal, ϵ, and
noise, λ.
2.2. Synchrony and phase transitions in metapopulation
models

A discrete two-cycle oscillator, for example the Ricker map at
r = 2.2, has two possible phases of oscillation. In what we
define arbitrarily as the ‘plus’ phase, the high value of the
oscillator occurs at odd times; in the ‘minus’ phase,
the high values occur at even times. We define a two-cycle
variable, Mi,t, for each subpopulation i at time t as an
alternating-sign first difference,

Mi,t ¼ 1
2
(�1)t(Xi,tþ1 � Xi,t): (2:5)

When Mi,t is positive (negative) the oscillation in patch i is in
the plus (minus) phase.

The variable Mi,t contains both amplitude and phase
information. We can extract the phase, ~Si,t, of the oscillation
by taking the sign (signum function, sgn) of Mi,t,

~Si,t ¼ sgn(Mi,t), (2:6)

where ~Si,t takes values ±1. We refer to ~Si,t as the subpopu-
lation phase variable. For a single local oscillator without
noise in a steady-state two-cycle, the phase variable is inde-
pendent of time. In the presence of noise, the phase of
oscillation and thus the phase variable changes stochastically,
as shown in figure 2, where the points circled in red denote
times when the phase of oscillation changes.

Let Mt = {Mi,t} and ~St ¼ {~Si,t} denote the collection of two-
cycle variables and associated phase variables, respectively,
for all subpopulations.

For much of the remainder of this study, we consider the
behaviour of the metapopulation model after it has reached a
stationary state where the statistical properties of Mt and,
therefore, ~St are time-independent. The spatial and temporal
average of ~Si,t or, equivalently, the average over the stationary
distribution [61], s,

s(l, e) ¼ 1
T � Tb

1
N

XT�1

t¼Tb

XN

i¼1

~Si,t

�����

�����, (2:7)

is called the ‘synchronization order parameter’ and measures
the degree of synchrony in the entire metapopulation. Tb is a
time we wait for the system to reach its stationary state and T
is a much longer time. For a large system, the metapopulation
may remain synchronized for very long times even though
the phase variable of individual oscillators may change on
relatively short time scales.

The metapopulation’s stationary state depends on the
noise and dispersal parameters and, as a function of these
parameters, undergoes a critical transition (also sometimes
referred to as a continuous or second-order phase transition)
in the following sense. The synchronization order parameter,
s(λ, ϵ), changes continuously as a function of both noise λ and
dispersal ϵ. For a given value of dispersal and noise less than
a critical value, λc(ϵ), the synchronization order parameter is
non-zero and its magnitude approaches 1 as λ approaches
zero. Synchronization occurs for arbitrarily large systems
but the time scale to synchronize increases with system
size. As λ increases for fixed ϵ, the synchronization order par-
ameter decreases and it is very near zero for all values λ≥
λc(ϵ). Figure 3a is the state diagram (also referred to as the
phase diagram) obtained for a metapopulation model A
showing regions in the noise-dispersal (λ–ϵ) plane where
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Figure 2. (a) A time series of the Ricker variable Xt for a single noisy Ricker map in the two-cycle regime (r = 2.2) with noise level, λ = 0.15. The amplitude and
phase of the oscillations vary due to the noise. Times when the phase of the oscillation changes are marked with red circles. (b) The time series of ~St , representing
the phase of oscillation of the Ricker variable, is obtained from the time series Xt (equation (2.6)).
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there is synchronous (ordered, |s| > 0) and incoherent (disor-
dered, s≈ 0) behaviour together with the critical line, λc(ϵ),
separating these regions. As expected, for higher values of
dispersal, synchrony is maintained for higher values of
noise. To obtain the critical line, the critical noise, λc(ϵ), is
found for a number of ϵ values using the Binder cumulant
method (electronic supplementary material, appendix B) [62].

The transition from incoherence to synchrony in the
metapopulation model is a critical transition because it exhi-
bits two related features: large fluctuations and long-ranged
correlations. These features can be seen qualitatively in
figure 3b, which shows typical snapshots of the local popu-
lation variables of the metapopulation after it has reached
the stationary state for different values of dispersal and
noise. As shown in [41], the critical transition of many
noisy lattice map systems in the two-cycle regime, including
the metapopulation models studied here, are in the Ising
universality class.

2.3. Dynamical Ising model with memory
In this work we seek to go beyond universal properties and
understand whether the Ising model can provide a good
description of the local dynamics of a metapopulation.1 For
this purpose we need to introduce dynamical Ising models.
Several dynamical Ising models have been studied in statisti-
cal physics [63]. All of these models have stationary state
properties described by Gibbs distributions in the Ising uni-
versality class but they differ in their dynamics. The
standard dynamical model, sometimes known as heat bath
dynamics or the Glauber model [64,65], has no self-inter-
action. For this reason, it fails to capture an essential feature
of the metapopulation model—that each subpopulation
tends to preserve its own phase of oscillation, as is seen in
figure 2. In this section and in electronic supplementary
material, appendix C we introduce the dynamical Ising
model with memory, which provides a far better description
of the metapopulation dynamics.
The degrees of freedom of Ising models are Ising spins,2

St = {Si,t} with Si,t = ±1. In the standard dynamical Ising
model the state of each spin at time t + 1 is influenced by
the state at time t of its nearest neighbours with an interaction
strength, J. For the dynamical Ising model with memory
[49,66], the state of a spin at time t + 1 is additionally influ-
enced by its own state at time t with a self-interaction
strength, K. The spatial structure and thus the neighbourhood
of each spin in the dynamical Ising model is the same square
grid as in the metapopulation models. Spins are updated in
parallel as they are in the metapopulation models.

The dynamics of the Ising model with memory is most
succinctly stated in term of the probability, P(Si,t+1 =−Si,t|St,
J, K ), that spin Si,t changes sign from time t to t + 1. This
‘flip probability’ depends only on the state of the spin and
its four nearest neighbours according the flip probability
function Pf,

P(Si,tþ1 ¼ �Si,tjSt, J, K) ¼ Pf (hi,tSi,t), (2:8)

where hi,t is the sum of neighbour spins,

hi,t ¼
X

hj;ii
S j,t, (2:9)

and the flip probability function takes the form

Pf (x) ¼
exp

��Jx� K
�

2 cosh
�
Jxþ K

� : (2:10)

Flips are suppressed when a spin is in the same state as the
majority of its neighbours x = hi,tSi,t > 0 and vice versa.
When the memory term K is large, flips are suppressed
regardless of the state of the neighbours, Pf→ e−2K, and the
dynamics of the system is very slow.

2.4. Ising representation of the metapopulation models
In this section we describe the methods we use to obtain the
best dynamical Ising model representation of a metapopula-
tion and then to assess the fidelity of that representation. For
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a given metapopulation model, we carry out simulations to
generate a large set of successive triples of snapshots of the
subpopulation densities, (Xt, Xt+1, Xt+2), for various values
of dispersal and noise along its critical line, λc(ϵ). From
each triple, we obtain a pair of phase configurations,
(~St, ~Stþ1) (figure 1). We use these generated pairs to infer
the parameters J and K of the dynamical Ising model that
maximize the likelihood of producing the same distribution
of pairs of Ising spin configurations (St, St+1). We describe
the dynamical inference method in electronic supplementary
material, appendix D. Note that the inference method is
based solely on the flip probabilities and hence can be
applied to metapopulation data at any time, not just in the
stationary state. Furthermore, since the phase variables and
Ising variables are binary, the inference procedure is straight-
forward to implement and reasonably accurate even with
relatively little metapopulation data.

We can use the inferred Ising model as a predictive tool as
follows. Suppose we are given information about the metapo-
pulation at times t and t + 1 in the form of the phase variables
~St (which involves the transition between times t and t + 1).
We can use these data as an initial value for the dynamical
Ising model by setting St ¼ ~St, and then calculate the flip
probability given by equation (2.8) to predict the future
state of the metapopulation from the Ising model. These
probabilistic predictions are then compared with the meta-
population data and assessed using measures of forecast
skill. The set-up is sketched in figure 4.
3. Results
In this section we present the results of our metapopulation
simulations and their Ising representations. Our objective is
to provide a broad assessment of the dynamical Ising
model with memory as an effective tool for describing and
predicting metapopulation dynamics. In §3.1 we test whether
the inferred Ising model has stationary states which are close
to the critical stationary states of the metapopulation models
they are representing. In §3.2 we explore how the best fit Ising
parameters change as a function of time as the metapopula-
tion goes from an initially random configuration towards
the stationary state. In §3.3 we compare the flip probability
of an Ising spin with the probability of a phase change in a
subpopulation and measure the forecast skill of the
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dynamical Ising model to predict phase changes in subpopu-
lations. Finally, in §3.4 we identify what the dynamical Ising
model misses that cause errors in modelling the
metapopulation.

3.1. Inferred Ising parameters in the stationary state
Figure 5a shows a snapshot of the Ising model with memory
in the stationary state simulated with the inferred parameters
for the metapopulation model A with dispersal ϵ = 0.325 and
critical noise λc(ϵ) = 0.179. The snapshot displays long-range
correlations and is visually similar to the corresponding criti-
cal snapshot of the metapopulation model (figure 3b, red
box).

Figure 5b shows the maximum-likelihood parameters J
and K of the dynamical Ising model inferred from simulation
data of the four metapopulation models for various values of
dispersal ϵ and noise λc(ϵ). Each coloured point represents
the inferred value of J and K for a given value of dispersal
ϵ and noise λc(ϵ) chosen from the critical line of the appro-
priate metapopulation model. For model A, the critical line
is shown in figure 3 (and electronic supplementary material,
figure A1 for other models). The order of the points in
figure 5b is the reverse of the order of the points in figure 3.
This ordering can be understood intuitively from the obser-
vation that increasing noise should reduce the stability of
the phase of the local oscillators and increasing dispersal
should increase the coupling between neighbouring oscil-
lators. Thus we expect that, with increasing noise and
dispersal, the inferred memory K will decrease and the
inferred coupling J will increase, as clearly seen in figure 5b.

The critical line of the dynamical Ising model with
memory from [49] is re-plotted in red in figure 5b. Since the
stationary state of the metapopulation models is at a critical
point for each of the simulated values of dispersal and
noise, a perfectly accurate Ising representation of the meta-
population would also have critical stationary states. We
see that this is not quite the case, and instead the inferred
Ising models have stationary states close to but clearly
below the critical line in the disordered state. It is perhaps
not surprising that a simplified model that is inferred from
the local dynamical properties of a metapopulation fails to
exactly capture the large-scale ordering properties of the
system in the stationary state. We explore a possible cause
of this failure in §3.4. Nonetheless, the inferred parameters
are close enough to the Ising critical line to display
long-ranged correlations (figure 5a).

Figure 5b also shows that the dynamical Ising represen-
tation is robust and performs very similarly independent of
the underlying metapopulation dynamics since the results
for the four different metapopulation models all lie on
nearly the same curve.

3.2. Time dependence of inferred Ising parameters
The inferred Ising results shown in figure 5b are obtained
from simulation results after the metapopulation has reached
the stationary state. We repeat the inference calculation at
various times before the metapopulation has reached its
stationary state for the case ϵ = 0.2 and its critical noise
λc(ϵ) = 0.15, starting from a random initial condition with
half of the subpopulations at the low value of the two-cycle
and the other half at the high value (figure 6b, t = 0).

Figure 6a shows the inferred parameters at different times
after random initial conditions. The snapshots in figure 6b
show the evolution of the configurations with time t. Long-
range correlations and critical behaviour develop slowly
and are not fully visible until t = 104. We observe that, at
early times, the inferred values of J and K decrease and
later increase to saturate at the inferred values in the station-
ary state. A perfectly accurate dynamical model should
have parameters that are independent of the current state of
the system. The relatively weak time dependence of the
parameters is another indication that the dynamical Ising
model is a good but not perfect approximation to the
metapopulation model.

3.3. Flip probability and forecast skill
Figure 7a shows the average flip probability (rate of phase
changes of subpopulations) measured in the steady state of
the metapopulation compared with the prediction of the
inferred dynamical Ising model, E[Pf (~hi~Si)], where the expec-
tation is over values of ~hi~Si in the metapopulation steady state
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and Pf is defined in equation (2.8). The Ising model very
accurately predicts the average rate of phase changes.

The remaining panels of figure 7 show flip probabilities
conditioned on specific initial (time t) values of the product
~hi~Si, which take values ±4, ±2 and 0. When ~hi~Si is positive,
the neighbours of subpopulation i have the same phase of
oscillation as subpopulation i and phase changes are discour-
aged; when ~hi~Si is negative, phase changes are encouraged, as
evidenced in the plots. Again, the predictions of the dynami-
cal Ising model with memory, Pf (~hi~Si), are quite accurate.
These results show that the effects of neighbours are very
important for understanding the behaviour of a subpopu-
lation and that the Ising model does a good job of
capturing these effects through the neighbour coupling, J.
The small value of the flip probability, especially for weak
noise, shows the importance of phase memory, captured in
the memory parameter K. Note that the standard (K = 0)
dynamical Ising model predicts a flip probability of 1/2 for
~hi ¼ 0, which is far from the observed behaviour of the meta-
population model (figure 7b). It is perhaps not surprising that
the Ising model with memory does quite a good job at pre-
dicting the five conditional flip probabilities shown in
figure 7b–f since these five measured numbers are the
inputs to the dynamical inference procedure that yields J
and K (see electronic supplementary material, appendix D).

A more stringent test of the predictive power of the Ising
model is the forecast skill in predicting whether a specific
subpopulation i will undergo a phase change from time t to
t + 1 given the time t data, ~hi,t~Si,t. The Ising prediction for
the probability of this flip is Pf (~hi~Si). Figure 8 shows the
Brier forecast skill score (electronic supplementary material,
appendix E) for this probabilistic prediction. The forecast
skill score compares the forecast with a reference forecast,
which we here choose as the overall average rate of phase
changes (red points in figure 7a). The forecast skill score is
bounded by the skill score of the underlying metapopulation
model, shown as the upper curve in figure 8, which is less
than 1 and decreasing with noise because the metapopulation
model is inherently stochastic. The forecast skill of the Ising
model with memory is relatively far from the bound,
especially for low noise. We believe this lack of skill is the
result of the loss of information going from the original con-
tinuous two-cycle variables Mi,t to the binary-phase variables
~Si,t as discussed in the next section.
3.4. What does the dynamical Ising model miss?
In the previous section we saw that the dynamical Ising
model with memory displays low skill in predicting phase
changes in the metapopulation model for weak noise. We
believe that this deficiency is the result of using a model
with binary variables to predict the behaviour of a system
with continuous variables. Figure 9a shows a time series of
the two-cycle variable of M0,t (see equation (2.5)) of
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subpopulation 0 in the steady state. The two-cycle variable
contains both phase and amplitude information. Consider
times in the figure where the phase variable changes sign
(~S0,tþ1 ¼ �~S0,t). These events invariably occur when the
amplitude of M0,t is small, with a value in or near
the narrow grey band in the figure. On the other hand, the
binary variables Si,t contain no amplitude information. Dyna-
mical Ising models cannot capture the fact that phase changes
occur when the amplitude of oscillation becomes small. We
believe this defect explains why the forecast skill score is rela-
tively low and also why the inferred Ising parameters do not
fall exactly on the critical curve of the Ising model with
memory.

To test the latter hypothesis, we discarded the 5% of the
subpopulations in the metapopulation data with the smallest
values of Mi,t (grey band in figure 9) and re-ran inference on
the remaining data. The results are shown in figure 10. The
parameters J and K now fall much closer to the critical line
of the Ising model with memory. This success suggests
using a generalization of the Ising model with three states,
−1, 0 and +1, to better capture the fact that phase changes
typically occur when the amplitude of oscillation is near
zero. The Blume–Capel model [67,68] is an appropriate
three-state generalization of the Ising model that will be the
subject of a future study.

Note that the inferred values of K are larger when the
smallest values of the two-cycle variable are discarded. In
this reduced dataset there are far fewer phase changes,
which corresponds to larger values of K. This consideration
explains the high initial value of K in the time-dependent
inference shown in figure 6a. The initial condition in this
simulation is a 50 : 50 mixture of high and low two-cycle
values of the Ricker map. Since there are initially no small
values of the two-cycle variable, phase changes are again
unlikely and the inferred K is large. Finally, a similar con-
sideration explains why the forecast skill score of the Ising
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model improves with noise (figure 8) since at higher noise it
is more likely for a subpopulation to change phase without its
amplitude of oscillation becoming small.

Figure 9b shows the observed distribution of the two-
cycle variable M0,t and reveals that this distribution is
broad with values near zero quite common. In principle,
the two peaks in this distribution should be exactly sym-
metric (M and −M equally probable). The asymmetry in the
figure is because the histogram is constructed from a finite
time series (6 × 107 steps) and because the rate of phase
flips of the entire metapopulation is very low.
4. Discussion
Previous work [41] has demonstrated a correspondence
between the critical point of the static Ising model and the
large-scale properties of stationary states of spatially coupled
biological models with simple cyclic behaviour. But for bio-
logical systems in general and ecological systems in
particular, shorter term dynamical behaviour is of much
more interest. We have shown here that a simple dynamical
Ising model can be successfully employed to understand
and predict the dynamics of more complex, cyclic biological
systems. Focusing on ecological metapopulation models,
we found it necessary to include a memory term in the
dynamical Ising model since subpopulations tend to main-
tain their phase of oscillation. We inferred the parameters
of the dynamical Ising models that best represent the
simulated dynamics of several metapopulation models. Com-
paring the Ising representations with the full models, we
found good agreement for both stationary states (figure 5)
and dynamical properties (figure 7).

A key issue in understanding ecological dynamics is pre-
diction given the level of knowledge of a system [69]. A
simplified representation will obviously omit details but a
comparison is vital for understanding the limits to prediction.
We are interested in the Ising model specifically because it is
a simplification of complete ecological dynamics and, there-
fore, it is unsurprising that the forecast skill score for the
Ising model is low relative to the metapopulation model
(figure 8). Nevertheless, the forecast skill shows that infor-
mation useful for prediction is obtained, even for the
simplest model.

Our results point to avenues for including more biological
detail that would provide further understanding by dealing
with obvious limitations resulting from simplifications. A
major insight from our work is that both the static and
dynamic properties of a wide range of two-cycle metapopu-
lation models can be reproduced by the Ising model with
memory. This means that certain features of ecological meta-
populations with local two-cycles will arise independent of
the details governing the dynamics. In other words, the suc-
cess of the Ising representation reveals which aspects of
ecological synchrony are detail-independent, yielding a
much more general understanding of synchrony and pattern
formation than can be derived from any specific model. The
dynamical Ising model with memory therefore serves as a
simple baseline model with which to study ecological oscil-
lators, without requiring any specific details of local
dynamics. This is useful because we rarely know the exact
structure of density dependence governing the dynamics of
real populations. Even when we do know these functions
with reasonable certainty, we may lack precise parameter esti-
mates. By fitting the Ising model with memory to observed
dynamics, we gain a quantitative representation that can be
used for both understanding and prediction despite these
sources of uncertainty.

Many of the more biological details we do not include
here can be included in models that are only moderately
more complex and still quite general. While the Ising model



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20200571

11
itself is limited to representing systems whose local dynamics
can be categorized into two distinct states, such as coupled
noisy two-cycles, other spin models may allow us to take
this approach further. For instance, by retaining slightly
more information, the three-state Blume–Capel model
[67,68] shows promise for representing the general mechan-
ism of changes in the phase of oscillation of subpopulations
in a metapopulation.

Another possibility would be to use these ideas to exam-
ine dynamics of some continuous time systems with three or
more species where there is a limit cycle that undergoes
period doubling as a parameter is changed, such as the
Hastings–Powell model [70]. These dynamics can be studied
in discrete time by examining the resulting Poincaré map [71],
which has dimension only slightly greater than 1 and has
period-2 cycles like the ones we consider here. If dispersal
is similar for all three species, the onset of synchrony
should occur as in the Ising model. If dispersal rates differ
markedly between species, the Ising representation may no
longer be useful, as more complex patterns like desynchroni-
zation of one species with increased dispersal of another can
result [72].

Heterogeneous metapopulations with varying local
dynamics, noise and dispersal on imperfect lattices could
also be represented with corresponding dynamical Ising
models with different coupling and memory at each
lattice site. The performance of the Ising representation in
this more realistic setting is an important question for
future research.

Although we considered only spatially uncorrelated noise
here, correlated environmental stochasticity, the Moran effect,
is thought to be an important synchronizing force in ecology
[7]. Correlated noise can be represented by a dynamical Ising
model with an external field that acts on the entire lattice.
Whether the parameters of an Ising model with such a field
can be reliably estimated from simulated metapopulations
with correlated noise remains an open question. If so, Ising
models fitted to data might be useful for determining the
relative roles of dispersal and correlated noise in driving
observations of synchrony.

It is important to emphasize that, while we have focused
here on ecological models, the insights apply much more
broadly to the application of ideas from statistical physics
for understanding spatially coupled biological dynamics. A
key general conclusion is that a dynamical Ising model
with memory, only slightly more complex than the standard
Ising model, can both represent dynamics on biologically
relevant time scales and highlight the importance of local
(in space) memory of the system state as a difference between
biological systems and the standard Ising model.
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1There are universal dynamical properties but these apply to asymp-
totic long-time and long-distance properties of time correlation
functions not the local and short-time properties studied here.
2We use the notation St to refer to the spin configuration of a
dynamical Ising model, in contrast to ~St, which represents the sub-
population phases of oscillation as described in §2.2.
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