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METHODOLOGY

Unsupervised machine learning applied 
to scanning precession electron diffraction data
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and Alexander S. Eggeman2 

Abstract 

Scanning precession electron diffraction involves the acquisition of a two-dimensional precession electron diffrac-
tion pattern at every probe position in a two-dimensional scan. The data typically comprise many more diffraction 
patterns than the number of distinct microstructural volume elements (e.g. crystals) in the region sampled. A dimen-
sionality reduction, ideally to one representative diffraction pattern per distinct element, may then be sought. Further, 
some diffraction patterns will contain contributions from multiple crystals sampled along the beam path, which may 
be unmixed by harnessing this oversampling. Here, we report on the application of unsupervised machine learning 
methods to achieve both dimensionality reduction and signal unmixing. Potential artefacts are discussed and preces-
sion electron diffraction is demonstrated to improve results by reducing the impact of bending and dynamical diffrac-
tion so that the data better approximate the case in which each crystal yields a given diffraction pattern.
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Introduction
Scanning transmission electron microscopy (STEM) 
investigations increasingly combine the measurement of 
multiple analytical signals as a function of probe position 
with post-facto computational analysis [1]. In a scan, the 
number of local signal measurements is usually much 
greater than the number of significantly distinct micro-
structural elements and this redundancy may be har-
nessed during analysis, for example by averaging signals 
over like regions to improve signal to noise. Unsuper-
vised machine learning techniques automatically exploit 
data redundancy to find patterns with minimal prior con-
straints [2]. In analytical electron microscopy, such meth-
ods have been applied to learn representative signals 
corresponding to separate microstructural elements (e.g. 
crystal phases) and to unmix signals comprising contri-
butions from multiple microstructural elements sampled 
along the beam path [3–10]. These studies have primarily 

applied linear matrix decompositions such as independ-
ent component analysis (ICA) and non-negative matrix 
factorisation (NMF).

Scanning precession electron diffraction (SPED) ena-
bles nanoscale investigation of local crystallography [11, 
12] by recording electron diffraction patterns as the elec-
tron beam is scanned across the sample with a step size 
on the order of nanometres. The incorporation of dou-
ble conical rocking of the beam, also known as preces-
sion [13], achieves integration through a reciprocal space 
volume for each reflection. Precession has been found to 
convey a number of advantages for interpretation and 
analysis of the resultant diffraction patterns, in particu-
lar the suppression of intensity variation due to dynami-
cal scattering [14–16]. The resultant four-dimensional 
dataset, comprising two real and two reciprocal dimen-
sions (4D-SPED), can be analysed in numerous ways. For 
example, the intensity of a sub-set of pixels in each dif-
fraction pattern can be integrated (or summed) as a func-
tion of probe position, to form so-called virtual bright 
field (VBF) or virtual dark field (VDF) images [17, 18]. 
VBF/VDF analysis has been used to provide insight into 
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local crystallographic variations such as phase [17], strain 
[19] and orientation [20]. In another approach, the col-
lected diffraction patterns are compared against a library 
of precomputed templates, providing a visualisation of 
the microstructure and orientation information, a pro-
cess known as template or pattern matching [11]. These 
analyses do not utilise the aforementioned redundancy 
present in data and may require significant effort on the 
part of the researcher. Here, we explore the application 
of unsupervised machine learning methods to achieve 
dimensionality reduction and signal unmixing.

Methods
Materials
GaAs (cubic, F43m) nanowires containing type I twin 
( �3 ) [21] boundaries were taken as a model system for 
this work. The long axis of these nanowires is approxi-
mately parallel to the [111] crystallographic direction as a 
result of growth by molecular beam epitaxy [22] on (111). 
In cross section, these nanowires have an approximately 
hexagonal geometry with a vertex-to-vertex distance of 
120–150 nm. Viewed near to the [110] zone axis, the twin 
boundary normal is approximately perpendicular to the 
incident beam direction.

SPED experiments
Scanning precession electron diffraction was performed 
on a Philips CM300 FEGTEM operating at 300 kV with 
the scan and simultaneous double rocking of the electron 
beam controlled using a NanoMegas Digistar external 
scan generator. A convergent probe with convergence 
semi-angle of ∼ 1.5 mrad and precession angles of 0, 9 
and 35 mrad was used to perform scans with a step size 
of 10 nm using the ASTAR software package. The resolu-
tion was thus dominated by the step size. PED patterns 
were recorded using a Stingray CCD camera to capture 
the image on the fluorescent binocular viewing screen.

It is generally inappropriate to manipulate raw data 
before applying multivariate methods such as decompo-
sition or clustering, which cannot be considered objec-
tive if subjective prior alterations have been made. In this 
work, the only data manipulation applied before machine 
learning is to align the central beams of each diffraction 
pattern. Geometric distortions introduced from the angle 
between the camera and the viewing screen were cor-
rected by applying an opposite distortion to the data after 
the application of machine learning methods.

Multislice simulations
A twinned bi-crystal model was constructed with the 
normal to the [111] twin boundary inclined at an angle 
of 55◦ to the incident beam direction so that the two 
crystals overlapped in projection. In this geometry, both 

crystals are oriented close to 〈511〉 zone axes with coher-
ent matching of the {06̄6} and {28̄2} planes in these zones. 
Three precession angles were simulated using the Tur-
boSlice package [23]: 0, 10 and 20 mrad, with 200 distinct 
azimuthal positions about the optic axis to ensure appro-
priate integration in the resultant simulated patterns [24]. 
The crystal model used in the simulation comprised 9 
unique layers each 0.404  nm thick. 15 layers were used 
leading to a total thickness of 54.6 nm. These 512× 512-
pixel patterns with 16-bit dynamic range were convolved 
with a 4-pixel Gaussian kernel to approximate a point 
spread function.

Linear matrix decomposition
Latent linear models describe data by the linear combi-
nation of latent variables that are learned from the data 
rather than measured—more pragmatically, the repeated 
features in the data can be well approximated using a 
small number of basis vectors. With appropriate con-
straints, the basis vectors may be interpreted as physical 
signals. To achieve this, a data matrix, X , can be approxi-
mated as the matrix product of a matrix of basis vectors 
W (components), and corresponding coefficients Z (load-
ings). The error in the approximation, or reconstruction 
error, may be expressed as an objective function to be 
minimised in a least squares scheme:

where ||A||F is the Frobenius norm1 of matrix A . More 
complex objective functions, for example incorporat-
ing sparsity promoting weighting factors [25], may be 
defined. We note that the decomposition is not nec-
essarily performed by directly computing this error 
minimisation.

Three linear decompositions were used here: singular 
value decomposition (SVD) [2, 26], independent compo-
nent analysis (ICA) [27], and non-negative matrix factor-
isation (NMF) [25, 28]. These decompositions were used 
as implemented in HyperSpy [29], which itself draws on 
the algorithms implemented in the open-source package 
scikit-learn [30].

The singular value decomposition is closely related to 
the better-known principal component analysis, in which 
the vectors comprising W are orthonormal. The optimal 
solution to rank L is then obtained when W is estimated 
by eigenvectors (principal components) corresponding 
to the L largest eigenvalues of the empirical covariance 
matrix2. The optimal low-dimensional representation of 
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the data is given by zi = W
T
xi , which is an orthogonal 

projection of the data on to the corresponding subspace 
and maximises the statistical variance of the projected 
data. This optimal reconstruction may be obtained via 
truncated SVD of the data matrix—the factors for PCA 
and SVD are equivalent, though the loadings may differ 
by independent scaling factors [31].

Unmixing measured signals to determine source sig-
nals a priori is known as blind source separation (BSS) 
[32]. SVD typically yields components that do not corre-
spond well with the original sources due to its orthogo-
nality constraint. ICA solves this problem by maximising 
the independence of the components, instead of the vari-
ance, and is applied to data previously projected by SVD 
using the widespread FastICA algorithm [27]. NMF [25, 
28] may also be used for BSS and imposes W ≥ 0,Z ≥ 0 . 
To impose these constraints, the algorithm computes 
a coordinate descent numerical minimisation of Eq.  1. 
Such an approach does not guarantee convergence to 
a global minimum and the results are sensitive to ini-
tialisation. The implementation used here initialises the 
optimisation using a non-negative double singular value 
decomposition (NNDSVD), which is based on two SVD 
processes, one approximating the data matrix, the other 
approximating positive sections of the resulting partial 
SVD factors [33]. This algorithm gives a well-defined 
non-negative starting point suitable for obtaining a 
sparse factorisation. Finally, the product WZ is invariant 
under the transformation W → W� , Z → �−1

Z , where � 
is a diagonal matrix. This fact is used to scale the loadings 
to a maximum value of 1.

Data clustering
Clustering points in space may be achieved using numer-
ous methods. One of the best known is k-means, in which 
the positions of several cluster prototypes (centroids) are 
iteratively updated according to the mean of the nearest 
data points [34]. The clusters thus found are considered 
to be “hard”—each datum can only belong to a single 
cluster. Here, we apply fuzzy c-means [35] clustering, 
which has the significant advantage that data points may 
be members of multiple clusters allowing for an interpre-
tation based on mixing of multiple cluster centres. For 
example, a measured diffraction pattern that is an equal 
mixture of the two basis patterns lies precisely between 
the two cluster centres and will have a membership of 0.5 
to each. We also employ the Gustafson–Kessel variation 
for c-means, which allows the clusters to adopt elliptical, 
rather than spherical, shapes [36].

Cluster analysis in spaces of dimension greater than 
about 10 is unreliable [37, 38] as with increasing dimen-
sion “long” distances become less distinct from “short”. 
The relevant dimension of the collected diffraction 

patterns is the size of the image, on the order of 104 . A 
dimensionality reduction is, therefore, performed first, 
using SVD, and clustering is applied in the space of load-
ing coefficients [34]. The cluster centres found in this 
low-dimensional space can be re-projected into the data 
space of diffraction patterns to produce a result equiva-
lent to a weighted mean of the measured patterns within 
the cluster. The spatial occurrence of each basis pattern 
may then be visualised by plotting the membership val-
ues associated with each cluster as a function of probe 
position to form a membership map.

Results
SPED data were acquired with precession angles of 0, 9 
and 35 mrad from a GaAs nanowire oriented near to a 
[110] zone axis such that the twin boundary normal was 
approximately perpendicular to the incident beam direc-
tion, as shown in Fig. 1. The bending of this nanowire is 
evident in the data acquired without precession (Fig. 1a) 
as at position iii the diffraction pattern is near the zone 
axis, whereas at position i a Laue circle is clearly visible. 
The radius of this Laue circle is ∼ 24 mrad , which pro-
vides an estimate of the bending angle across the field 
of view. When a precession angle of 35 mrad (i.e. larger 
than the bending angle) was used, all measured patterns 
appear close to zone axis (Fig. 1b) due to the reciprocal 
space integration resulting from the double conical rock-
ing geometry. The effect of this integration is also seen 
in the contrast of the virtual dark-field image, which 
shows numerous bend contours without precession and 
less complex variation in intensity with precession. We 
surmise that precession leads to the data better approxi-
mating the situation where there is a single diffraction 
pattern associated with each microstructural element, 
which here is essentially the two twinned crystal orien-
tations and the vacuum surrounding the sample. The 
region of interest also contains a small portion of carbon 
support film, which is just visible in the virtual dark-field 
images as a small variation in intensity. The position of 
the carbon film has been indicated in the figure.

Using SVD, we can produce a scree plot showing the 
fraction of total variance in the data explained by each 
principal component pattern. Figure 2a shows the scree 
plot for the 0, 9 and 35 mrad data. A regime change, from 
relatively high variance components to relatively low 
variance components, may be identified [2, 39] after 3 
components for the data acquired with 35 mrad preces-
sion, after 4 components with 9 mrad precession, and 
cannot clearly be identified without precession. While 
there is a small change in the line after 4 components in 
the curve for data recorded without precession, the vari-
ance described by the components on either side of this 
is relatively similar, particularly given the ordinate is on 
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Fig. 1  SPED data from a GaAs nanowire and virtual dark-field images formed by plotting the intensity within the disks marked around {111} 
reflections, as a function of probe position. a Without precession and b with 35 mrad precession. Diffraction pattern and VDF image scale bars are 
common to all subfigures and measure 1 Å −1 and 150 nm respectively. The approximate position of the carbon film is indicated by the red dashed 
line
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Fig. 2  SVD and ICA analysis of SPED data from a GaAs nanowire. a Scree plot of variance explained by each SVD component for 0, 9 and 35 mrad 
data. b First 3 SVD components for 35 mrad data. c ICA components for 35 mrad data. Intensities in red indicate positive values and those in blue 
indicate negative values. Pattern and loading scale bars are common to all subfigures and measure 1 Å −1 and 150 nm respectively
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a log scale. This demonstrates that the use of precession 
reduces the number of components required to describe 
the data, consistent with the intuitive understanding of 
the effect of reciprocal space integration achieved using 
precession. The 4th component, significant in the 9 mrad 
data, arises because the top and bottom of the nanowire 
are sufficiently differently oriented, as a result of bend-
ing, to be distinguished by the algorithm. We, therefore, 
continue our analysis focusing attention on data acquired 
with relatively large precession angles.

Component patterns and corresponding loading maps 
obtained by SVD and ICA analysis of 35 mrad SPED data 
are shown in Fig.  2b, c, respectively. In either analysis, 
each feature clearly describes some significant variation 
in the diffraction peak intensities, although it is worth 
noting that SVD requires two components to describe 
the two twins in the wire where ICA needs only one. 
Both descriptions of the data are mathematically sensible 
and physical insight can be obtained from the differences 
between diffraction patterns that are highlighted by neg-
ative values in the SVD and ICA component patterns, but 
neither method produces patterns that can be directly 
associated with crystal structure. To make use of more 
conventional diffraction pattern analysis, we seek decom-
position constraints that yield learned components which 
more closely resemble physical diffraction patterns. To 
this end, we apply NMF and fuzzy clustering.

The data were decomposed to three component pat-
terns using NMF, of which, by inspection, one corre-
sponded to the background and two corresponded to 
the two twinned crystal orientations—the latter shown 
in Fig. 3a, b. The choice of three components was guided 
by the intrinsic dimensionality indicated by the SVD 
analysis and it was further verified that a plot of the NMF 
reconstruction error (Eq.  1) as a function of increasing 
number of components showed a similar regime change 
to the SVD scree plot (see “Availability of data and mate-
rials” section at the end of the main text). In the NMF 
component patterns, white spots are visible, representing 
intensity lower than background level. We describe these 
as a pseudo-subtractive contribution of intensity from 
those locations.

In Fig.  3c, SVD loadings for the scan data are shown 
as a scatter plot, where the axes correspond to the SVD 
factors. Because the SVD and PCA factors are equiva-
lent, this projection represents the maximum possible 
variation in the data, and so the maximum discrimina-
tion. The loadings associated with each measured pat-
tern are approximately distributed about a triangle in this 
space. Fuzzy clustering was applied to three SVD com-
ponents, and the learned memberships are overlaid as 
contours. Three clusters describe the distribution of the 
loadings well, and the cluster centres correspond to the 

background and the twinned crystals as shown in Fig. 3d, 
e. Both the NMF factors and c-means centers represent 
the same orientations, but the pseudo-subtractive arte-
facts in the NMF factors are not present in the cluster 
centers.

The scatter plot in Fig.  3c also shows that two of the 
clusters comprise two smaller subclusters. Membership 
maps for these subclusters reveal that the splitting is due 
to the underlying carbon film with the subcluster nearer 
to the background cluster in each case corresponding 
to the region where the film is present. In the member-
ship maps, there are bright lines along the boundaries 
between the nanowire and the vacuum, due to overlap 
between clusters.

The unmixing of diffraction signals from overlapping 
crystals was investigated. SPED data with a precession 
angle of 18 mrad were acquired from a nanowire tilted 
away from the [110] zone axis by ∼ 30◦ , such that two 
microstructural elements overlapped in projection. The 
overlap of the two crystals was assessed using virtual 
dark-field imaging, NMF loading maps, and fuzzy clus-
tering membership maps (Fig.  4). The region in which 
the crystals overlap can be identified by all these meth-
ods. The VDF result can be considered a reference and 
is obtained with minimal processing but requires man-
ual specification of appropriate diffracting conditions 
for image formation. The NMF and fuzzy clustering 
approaches are semi-automatic. There is good agree-
ment between the VDF images and NMF loading maps. 
The boundary appears slightly narrower in the cluster-
ing membership map. The NMF loading corresponding 
to the background component decreases along the pro-
file, which may be related to the underlying carbon film, 
whilst the cluster membership for the background con-
tains a spurious peak in the overlap region. Finally, the 
direct beam intensity is much lower in the NMF compo-
nent patterns than in the true source signals. Our results 
indicate that either machine learning method is superior 
to conventional linear decomposition for the analysis of 
SPED datasets, but some unintuitive and potentially mis-
leading features are present in the learning results.

Discussion
Unsupervised learning methods (SVD, ICA, NMF, and 
fuzzy clustering) have been explored here in application 
to SPED data as applied to materials where the region of 
interest comprises a finite number of significantly differ-
ent microstructrual elements, i.e. crystals of particular 
phase and/or orientation. In this case, NMF and cluster-
ing may yield a small number of component patterns and 
weighted average cluster centres that resemble physical 
electron diffraction patterns. These methods are, there-
fore, effective for both dimensionality reduction and 



Page 7 of 14Martineau et al. Adv Struct Chem Imag             (2019) 5:3 

Fig. 3  NMF and fuzzy clustering of SPED data from a GaAs nanowire. a, b NMF factors and corresponding loading maps. c Two-dimensional 
projection of 3 component SVD loadings onto the plane of the second and third loading with cluster membership as contours. d, e Weighted 
average cluster centre patterns. Pattern and loading scale bars are common to all subfigures and measure 1 Å −1 and 150 nm respectively
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signal unmixing although we note that neither approach 
is well suited to situations where there are continuous 
changes in crystal structure. By contrast, SVD and ICA 
provide effective means of dimensionality reduction but 
the components are not readily interpreted using analo-
gous methods to conventional electron diffraction analy-
sis, owing to the presence of many negative values. The 
SVD and ICA results do nevertheless tend to highlight 
physically important differences in the diffraction signal 
across the region of interest. The massive data reduc-
tion from many thousands of measured diffraction pat-
terns to a handful of learned component patterns is very 
useful, as is the unmixing achieved. Artefacts in the 
learning results were however identified, particularly 
when applied to achieve signal unmixing, and these are 
explored further here.

To illustrate artefacts resulting from learning meth-
ods, model SPED datasets were constructed based on 
line scans across inclined boundaries in hypothetical 
bicrystals. Models (Figs. 5 and 6) were designed to high-
light features of two-dimensional diffraction-like signals 
rather than to reflect the physics of diffraction. These 
were, therefore, constructed with the strength of the sig-
nal directly proportional to thickness of the hypothetical 

crystal at each point, with no noise, and Gaussian peak 
profiles.

The model SPED dataset shown in Fig. 5 comprises the 
linear summation of two square arrays of Gaussians (to 
emulate diffraction patterns) with no overlap between 
the two patterns. NMF decomposition exactly recov-
ers the signal profile in this simple case. In contrast, the 
membership profile obtained by fuzzy clustering, which 
varies smoothly owing to the use of a Euclidean distance 
metric, does not match the source signal. The boundary 
region instead appears qualitatively narrower than the 
true boundary. Further, the membership value for each of 
the pure phases is slightly below 100% because the clus-
ter centre is a weighted average position that will only 
correspond to the end member if there are many more 
measurements near to it than away from it. A related 
effect is that the membership value rises at the edge of 
the boundary region where mixed patterns are closer to 
the weighted centre than the end members. We conclude 
that clustering should be used only if the data comprises 
a significant amount of unmixed signal. In the extreme, 
cluster analysis cannot separate the contribution from 
a microstructural feature which has no pure signal in 
the scan, for example a fully embedded particle. These 

Fig. 4  SPED data from a GaAs nanowire with a twin boundary at an oblique angle to the beam. a Virtual dark-field images formed, using a virtual 
aperture 4 pixels in diameter, from the circled diffraction spots. b NMF decomposition results. c Clustering results. For b and c the profiles are 
taken from the line scans indicated, and the blue profile represents the intensity of the background component. Pattern and loading scale bars are 
common to all subfigures and measure 1 Å −1 and 70 nm respectively
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observations are consistent with the results reported in 
association with Fig. 4.

A common challenge for signal separation arises 
when the source signals contain coincident peaks from 
distinct microstructural elements, as would be the case 
in SPED data when crystallographic orientation rela-
tionships exist between crystals. A model SPED data-
set corresponding to this case was constructed and 
decomposed using NMF and fuzzy clustering (Fig.  6). 

In this case, the NMF decomposition yields a fac-
tor containing all the common reflections and a fac-
tor containing the reflections unique to only one end 
member. Whilst this is interpretable, it is not physi-
cal, although it should be noted that this is an extreme 
example where there is no unique information in one of 
the source patterns. Nevertheless, it should be expected 

Fig. 5  Construction and decomposition of an idealised model SPED dataset system comprising non-overlapping two-dimensional signals. a 
Schematic representation of hypothetical bi-crystal. b Ground truth end-member patterns and relative thickness of the two crystals. c Factors and 
loadings obtained by 2-component NMF. d Cluster centre average patterns and membership maps obtained by fuzzy clustering
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Fig. 6  Non-independent components. a Expected result for an artificial dataset with two ‘phases’ with overlapping peaks. b NMF decomposition. c 
Cluster results. d SVD loadings of the dataset, used for clustering. Each point corresponds to a diffraction pattern in the scan—several are indicated 
with the dotted lines. Contours indicate the value of membership to the two clusters—refer to “Methods” section “Data clustering”
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that the intensity of shared peaks is likely to be unreli-
able in the learned factors and this was the case for the 
direct beam in learned component patterns shown in 
Fig.  4. As a result, components learned through NMF 
should not be analysed quantitatively3. The weighted 
average cluster centres resemble the true end members 
much more closely than the NMF components. The 
pure phases have a membership of around 99%, rather 
than 100%, due to the cluster centre being offset from 
the pure cluster by the mixed data, as shown in Fig. 6d. 
The observation that memberships extend across all the 
data (albeit sometimes with vanishingly small values) 
explains the rise in intensity of the background com-
ponent in Fig. 4c in the interface region. Such interface 
regions do not evenly split their membership between 
their two true constituent clusters, meaning that some 
membership is attributed to the third cluster, causing a 
small increase in the membership locally. These issues 

may potentially be addressed using extensions to the 
algorithm developed by Rousseeuw et al. [41] or using 
alternative geometric decompositions such as vertex 
component analysis [42].

Precession was found empirically to improve machine 
learning decomposition as discussed above (Fig.  2), so 
long as the precession angle is large enough. This was 
attributed primarily to integration through bending 
of the nanowire. Precession may also result in a more 
monotonic variation of diffracted intensity with thick-
ness [15] as a result of integration through the Bragg 
condition. It was, therefore, suggested that precession 
may improve the approximation that signals from two 
overlapping crystals may be considered to be combined 
linearly. To explore this, a multislice simulation of a line 
scan across a bi-crystal was performed and decomposed 
using both NMF and fuzzy clustering (Fig.  7). With-
out precession, both the NMF loadings and the cluster 
memberships do not increase monotonically with thick-
ness but rather vary significantly in a manner reminis-
cent of diffracted intensity modulation with thickness 
due to dynamical scattering. Both the loading profile 
and the membership profile reach subsidiary minima 

Fig. 7  Unsupervised learning applied to SPED data simulated using dynamical multislice calculations a Original data with a 20 mrad precession 
angle. b NMF decomposition, in which the loadings have been re-scaled as in Fig. 5. The factors show pseudo-subtractive features, typical of NMF. 
c Cluster analysis. The high proportion of data points from the boundary means there is information shared between the cluster centres. Without 
precession, neither method can reproduce the original data structure

3  This problem may be mitigated by enforcing a sum-to-one constraint on the 
loadings learned through NMF during optimisation. See for example [40].
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when the corresponding component is just thicker than 
half the thickness of the simulation, which corresponds 
to a thickness of approximately 100 nm and is consist-
ent with the 22̄0 extinction length for GaAs of 114 nm. 
This suggests that the decomposition of the diffraction 
patterns is highly influenced by a few strong reflections; 
hence, the variation of the 22̄0 reflections with thick-
ness is overwhelming the other structural information 
encoded in the patterns. The removal of this effect, an 
essential function of applying precession, is seen: with 10 
or 20 mrad precession this intensity modulation is sup-
pressed and the loading or membership maps obtained 
show a monotonic increase across the inclined boundary. 
The cluster centres again show intensity corresponding to 
the opposite end member due to the weighted averaging. 
Precession is, therefore, beneficial for the application of 
unsupervised learning algorithms both in reducing signal 
variations arising from bending, which is a common arte-
fact of specimen preparation, and reducing the impact of 
dynamical effects on signal mixing.

Noise and background are both significant in determin-
ing the performance of unsupervised learning algorithms. 
Extensive exploration of these parameters is beyond the 
scope of this work but we note that the various direct 
electron detectors that have recently been developed and 
that are likely to play a significant role in future SPED 
studies have very different noise properties. Therefore, 
understanding the optimal noise performance for unsu-
pervised learning may become an important considera-
tion. We also note that the pseudo-subtractive features 
evident in the NMF decomposition results of Fig. 3 may 
become more significant in this case and the robustness 
of fuzzy clustering to this may prove advantageous.

Conclusions
Unsupervised machine learning methods, particularly non-
negative matrix factorisation and fuzzy clustering, have 
been demonstrated here to be capable of learning the sig-
nificant microstructural features within SPED data. NMF 
may be considered a true linear unmixing whereas fuzzy 
clustering, when applied to learn representative patterns, 
is essentially an automated way of performing a weighted 
averaging with the weighting learned from the data. The 
former can struggle to separate coincident signals (includ-
ing signal shared with a background or noise) whereas the 
latter implicitly leaves some mixing when a large fraction 
of measurements are mixed. In both cases, precession elec-
tron diffraction patterns are more amenable to unsuper-
vised learning than the static beam equivalents. This is due 
to the integration through the Bragg condition, resulting 
from rocking the beam, causing diffracted beam intensities 

to vary more monotonically with thickness and the inte-
gration through small orientation changes due to out of 
plane bending. This work has, therefore, demonstrated that 
unsupervised machine learning methods, when applied to 
SPED data, are capable of reducing the data to the most 
salient structural features and unmixing signals. The scope 
for machine learning to reveal nanoscale crystallography 
will expand rapidly in the coming years with the applica-
tion of more advanced methods.
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