
How Do Successful and Failed Projects Difer?

A Socio-Technical Analysis

MITCHELL JOBLIN, Saarland University & Siemens Corporate Research, Germany

SVEN APEL, Saarland University, Saarland Informatics Campus, Germany

Software development is at the intersection of the social realm, involving people who develop the software, and the technical
realm, involving artifacts (code, docs, etc.) that are being produced. It has been shown that a socio-technical perspective provides
rich information about the state of a software project.

In particular, we are interested in socio-technical factors that are associated with project success. For this purpose, we
frame the task as a network classiication problem. We show how a set of heterogeneous networks composed of social and
technical entities can be jointly embedded in a single vector space enabling mathematically sound comparisons between
distinct software projects. Our approach is speciically designed using intuitive metrics stemming from network analysis
and statistics to ease the interpretation of results in the context of software engineering wisdom. Based on a selection of 32
open-source projects, we perform an empirical study to validate our approach considering three prediction scenarios to test
the classiication model’s ability generalizing to: (1) randomly held-out project snapshots, (2) future project states, and (3)
entirely new projects.

Our results provide evidence that a socio-technical perspective is superior to a pure social or technical perspective when it
comes to early indicators of future project success. To our surprise, the methodology proposed here even shows evidence
of being able to generalize to entirely novel (project hold-out set) software projects reaching predication accuracies of 80%,
which is a further testament to the eicacy of our approach and beyond what has been possible so far. In addition, we identify
key features that are strongly associated with project success. Our results indicate that even relatively simple socio-technical
networks capture highly relevant and interpretable information about the early indicators of future project success.

CCS Concepts: · Software and its engineering→ Extra-functional properties; Collaboration in software develop-

ment.

Additional Key Words and Phrases: Empirical Software Engineering, Statistical Network Analysis, Quantitative Software
Engineering, Information System Success, Socio-Technical Networks

1 INTRODUCTION

Software engineering is often a collaborative efort, and the likelihood of achieving a successful outcome depends
largely on the extent to which developers are able to work together efectively. A testament to this observation is
the abundance of tools and techniques used in software engineering (e.g., version control systems, issue trackers,
service architectures etc.) that were conceived, at least in part, to address the problem of coordinating the activities
of software developers.

A fortunate side efect of using tools to support the coordination of developer activities is the wealth of detailed
records stored by these systems. Version controls systems exemplify this and contain a rich expression of the
historical activities of all developers contributing to a code base.

Authors’ addresses: Mitchell Joblin, Saarland University & Siemens Corporate Research, Germany; Sven Apel, Saarland University, Saarland
Informatics Campus, Germany.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from
permissions@acm.org.

© 2022 Association for Computing Machinery.
1049-331X/2022/1-ART1 $15.00
https://doi.org/10.1145/3504003

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/3504003


1:2 • Mitchell Joblin and Sven Apel

The activities of software developers recorded in version control systems are often abstracted using network
models and analyzed using methods from social network analysis [1ś6]. The analysis of developer networks
has led to a number of interesting and useful insights about socio-technical aspects of software engineering.
For example, we now know that networks capturing developer communication and coordination (1) contain
non-random structures such as hierarchy and community [3, 7], (2) they evolve towards a state of increased
inequality among its members [3], and (3) they encode information that is more indicative of code quality issues
than software metrics [4]. The body of existing work has shown strong evidence that developer networks are
an information-rich representation of how developers organize their work, and that this representation is an
accurate depiction of reality [1, 2, 7, 8]. An unexpected theme of this work is that relatively simple socio-technical
network models contain surprisingly rich structures that are indicative of complex software properties (e.g., bug
proneness). We aim at further exploring the seemingly simple nature of these networks from a new perspective.

Our goal is to build on the established foundation of developer networks by addressing the following research
question:

To what extent do the socio-technical dimensions captured by developer networks relate to long-term future
project success?

The concept of project success is certainly multifaceted and no general deinition exists in this context. For the
purpose of our study, we adopt the terminology and deinitions introduced by an empirical study of 104 projects
investigating the reasons for failures in modern open-source projects [9]. This study’s deinition concentrates
on project failures that result in abandonment. Still, this deinition certainly captures a meaningful notion of
success and is useful because it is amenable to statistical analysis. From this study, we adopt the terms fail, and
in contrast success, to classify the outcome of a project. That is, failed projects are characterised by achieving a
high-level of popularity followed by eventual abandonment. Each project was classiied by means of keyword
search in the documentation followed by a qualitative evaluation conducted with project maintainers. In contrast,
a successful project is characterised by achieving a high-level of popularity with tens of thousands of commits
and cultivating a highly active developer community with hundreds or thousands of contributors. We make
use of these two classes of projects to identify relevant socio-technical factors that appear early in a projects
development that are predictive of long-term future project outcomes.
Perspectively, an understanding of socio-technical factors that are associated with successful projects could

provide a basis for more efective governance strategies. It may also hint at opportunities for tooling to support
efective developer collaboration. For example, a GitHub extension may lag artifacts developed according to
socio-technical structural principles consistent with unsuccessful projects. In the long term, developer networks
could help in devising data-driven project management strategies where decisions are supported by data on the
project’s state and by state transition models to drive the project toward successful outcomes.

Our goal is to explore the capacity of simple developer networks to encode early indicators of a complex future
outcome. Improving over state-of-the-art methods in this area and drawing inspiration from social network
analysis, we utilize a scale-invariant feature extractor to circumvent challenges associated with comparing
variable sized networks and avoid obvious confounders (e.g., number of commits). For interpretability purposes,
we utilize well understood network metrics and linear models to enable the identiication of the networks’
structural properties that are associated with future project success. To validate our approach and indings, we
use cross-validation to identify important socio-technical factors that generalize under three distinct scenarios:
(1) randomly held-out project snapshots, (2) future project states, and (3) entirely new projects.

Our results demonstrate that socio-technical developer networks reliably capture early indicators of future
project success. Most notably, a socio-technical model generalizes well to entirely new projects, unlike the
more common baseline developer-centric model. On the methodological side, we show that our approach using

ACM Trans. Softw. Eng. Methodol.



How Do Successful and Failed Projects Difer?

A Socio-Technical Analysis • 1:3

socio-technical developer networks can alleviate common data sparsity issues, preserve important indications
of future success, and lead to the identiication of more general indings. Through model interpretation, we
ind evidence that the social and technical dimensions contribute complementary information about project
success and statistical variance in the local socio-technical environment plays a key role in future outcomes.
Surprisingly, the methodology proposed here even shows evidence of being able to generalize to entirely novel
(project hold-out set) software projects reaching predication accuracies over 80%, which is a further testament to
the eicacy of our approach and beyond what has been possible so far.

In summary, we make the following contributions:

• We propose an interpretable approach for identifying early indicators of future success that requires only
version control system data. The approach goes beyond state-of-the-art methods in this area and utilizes a
scale-invariant vector-space embedding of heterogeneous socio-technical networks, commit-based sliding
windows, and early project phases to mitigate confounding factors associated with project scale and time.
• We conduct an empirical study of 32 open-source projects from diverse application areas and demonstrate
that socio-technical developer networks contain early indicators that can accurately discriminate successful
from unsuccessful project outcomes.
• We show that a joint socio-technical perspective is superior to a developer-centric perspective when it
comes to predicting project success, even generalizing across projects. Additionally, we conduct a qualitative
study to explore the model’s relationship to a key intervention (e.g., change in development process) that
improves project outcomes.
• We identify and discuss socio-technical properties that are strongly associated with project success.
• We show that our model is capable of generalizing to previously unseen test networks in three distinct
circumstances of increasing diiculty: (1) random hold-out, (2) time hold-out, and (3) project hold-out.
• We propose two hypotheses based on our results that we believe represent valuable research directions to
explore in future work.

2 BACKGROUND & RELATED WORK

Network Models and Analysis. A network is a mathematical object consisting of a set of nodes and a set of binary
relations or links between elements of the node set. The most common type of network is the homogenous,
undirected, and unweighted network that consists of only one type of node, links imply a symmetric relationship,
and each link is deined to have equivalent magnitude. Networks with two node types are often referred to as
two-mode networks or as heterogeneous networks if more than two node types are present. Given a network,
there exists a suite of analysis metrics useful for studying its structural properties. Two fundamental node-level
metrics are the degree and clustering coeicient. A node’s degree is deined as the number of links it appears
in. While the node degree captures information between a node and its immediate neighbourhood, the node
clustering coeicient captures information about how members of a node’s neighbourhood are connected to each
other. More speciically, the cluster coeicient is the ratio of existing links and all possible links among a node’s
direct neighbors. The cluster coeicient ci is deined as 2 · ni/(ki · (ki − 1)), with ni being the number of links
between the ki neighbors of node i . A fully connected subgraph has a clustering coeicient of 1. If a node has
neighbors with no links between them, the clustering coeicient is zero.
Depending on the underlying organizational principles that inluence the formation of links in a network,

the types of structural features that a network posses can difer signiicantly. For example, if the existence of
each link is determined purely by chance (i.e., by lipping an unbiased coin where heads corresponds to a link
and tails does not) then an Erdős and Rényi (ER) random network is generated [10]. Due to the independent
formation of each link, these networks lack higher order structure (e.g., communities or hierarchy). To have
structures that departure from these purely random network structures, an underlying organizing principle

ACM Trans. Softw. Eng. Methodol.



1:4 • Mitchell Joblin and Sven Apel

must induce a dependence between the links. For example, if groups of nodes exist such that forming links
among members of the same group is more likely than forming links with members of diferent groups, then
higher-order structure in the form of communities arises [11]. Another example seen in many real-world networks
(e.g., social networks, Internet backbone, citation networks) is the scale-free property, which implies that the
degree distribution of nodes follows a power-law distribution [12]. One way that scale-free networks emerge
is by introducing a dependence between degree and the probability of link formation such that nodes with a
higher degree are more likely to gain new links than a node with a lower degree, which is known as preferential
attachment [12]. A third example of non-random structure is hierarchy. Hierarchical structure in networks can
emerge by inducing a dependence between the node clustering coeicient and the degree [13].

Developer Networks. Developer networks constructed from version control system data was irst done by López-
Fernández et al. [14], where developers were linked based on contributions to a common module. Several
approaches explored iner-grained information by linking developers to iles [15], and then to functions [7].
Joblin et al. [7] showed that by linking developers to functions more hidden structure (in the form of developer
communities) could be identiied than by linking developers to iles. In these approaches, one-mode networks
were generated by connecting two developers if they contributed to the same artifacts (e.g., module, ile, or
function). While our work leverages techniques for constructing developer networks at the ine-grained function
level, it difers by examining the native two-mode network and compares the expressiveness to that of one-mode
developer networks.

Studying the structural properties of developer networks has received considerable attention. Multiple studies
have shown that developer networks can contain rich non-random structural properties by exhibiting: the scale-
free property, high-clustering coeicient, community structures, hierarchy, and a core-periphery structure [3, 6ś
8, 15, 16]. Meneely andWilliams [2] explored the validity of developer networks and found that they largely relect
the perception of developers but sufer from some false positive and false negative links between developers. With
a similar result, Joblin et al. [7] explored network validity from the perspective of communities and found that
developers largely agreed that they work closely with developers found in common communities. With the goal
of more deeply understanding the dynamic properties of developer networks, Bock et al. [17] developed a tensor
decomposition to operate on multi-relational (version control and communication links) temporal developer
networks. They found that OSS typically contain temporally stable group structures and this property can be
used to predict the future interactions between individual developers and groups.

Applications. Prior research has explored the use of developer networks in prediction tasks, primarily regarding
code quality. Meneely et al. [1] found that there is a signiicant correlation between developer network metrics
and failures at the level of iles. Similarly, Bird et al. [4] used socio-technical networks that include developer
contribution in addition to software dependency data to predict fault proneness at the level of components. They
found precision and recall rates of up to 85% and that a joint socio-technical perspective was more indicative
of fault proneness than contribution or dependency information alone. Mauerer et al. [18] investigated socio-
technical congruence in terms of alignment between the structural properties of developer networks and technical
networks representing the system architecture. Despite the long standing conjecture that alignment and software
quality are associated, they found no such association. Our research builds on these results by also exploring
developer networks for prediction but difers in that our prediction task is at the project level rather than iles or
components. Additionally, we strive to identify whether there are network structural features that can generalize
between projects.

Project State. Several researchers have explored factors related to the state of a project. Cerpa et al. [19] used
responses from a questionnaire to discriminate successful and failed projects resulting in up to 85% accuracy.
Crowston et al. [20], explored success factors based on numbers of developers, bugs, downloads, and bug ix time,

ACM Trans. Softw. Eng. Methodol.



How Do Successful and Failed Projects Difer?

A Socio-Technical Analysis • 1:5

unsurprisingly, inding the strongest correlations with developer counts (a factor our study controls for). Surian et
al. [21] explored socio-technical patterns associated with project success where failures are deined based on few
downloads; unfortunately no code was made available for comparison to our approach. A shortcoming of prior
work is that, without proper treatment of the time dimension, it is likely trivial to diferentiate between success
and failure (e.g., success is correlated with developer count). It is also of less practical value to make accurate
predictions at the point in time when the outcome is already known. In our study, we adopt a diferent notion of
project success (see Section 4) and achieve of strong predictive performance for early development phases before
the outcome is known (see Section 3.2.1). Since questionnaires, bug reports, and e-mails are very sparse at the
early phases or unavailable, our study could not included these sources. Furthermore, it’s surprising that simple
networks based solely on commits show promising results in terms of explaining complex phenomena and we
wish to explore these simple network representations further in terms of project outcomes.

Project Failure. To better understand why open-source projects fail, Coelho and Valente [9] studied projects hosted
on GitHub that have been deprecated and found a set of nine reasons for failure including both technical and
social issues. The authors performed both a quantitative and qualitative analysis of the projects and determined
that becoming obsolete, being overtaking by a competitor project, and issues with team commitment are the
most signiicant threats to a projects success. The scope of project failure captured by Coelho and Valente is
closely related to that of project abandonment. Ewusi-Mensah and Przasnyski [22] conducted an exploratory
study on the relationship between organizational practices and project abandonment. More speciically, the
study investigates łsystem abandonmentž, which characterized by the situation where an existing system in
operation is decided by management to be temporarily or permanently retired. They found that abandonment
does not appear more prevalent among complex or high risk systems, but rather all types appear vulnerable.
Furthermore, both practices in the organisation and technical realm are inluential, but the factors contributing
primarily to abandonment are those stemming from łorganizational behavioural/politicalž issues and to a lesser
extent łeconomic and technicalž issues. More speciically, 87% of study participants stated factors involving
organizational behavioural/political issues compared to 52ś56% for economic and technical issues, respectively.

File

Function

File 1

Function 1

Function 2

Dev 2

commit

commit

commit

commit

Dev 3

Dev 1

(a) Developer Activity

(b) Two-mode Network

Fig. 1. Developer activity (a) recorded in a version control system at the granularity of functions is abstracted as a two-mode

network (b).

3 DATASET AND ANALYSIS METHODS

Our study consists of the following stages described in detail below: selection of subject projects, extracting raw
commit data from the version control system, constructing a sequence of networks from each project’s history,
extracting statistical features from the networks, and constructing a statistical model to learn the relationship
between network features and project outcomes.

ACM Trans. Softw. Eng. Methodol.



1:6 • Mitchell Joblin and Sven Apel

3.1 Subject Projects

We selected a total of 32 subject projects, 18 failed and 14 successful projects (see Table 1). The projects are
diverse in their application area (e.g., compilers, operating systems, runtime environments, etc.) and programming
languages (e.g., C/C++, python, Go, and Ruby). We took the failed projects from an empirical study of GitHub [9],
which identiied projects by keyword search (e.g., łdeprecatedž or łunmaintainedž) in the README ile followed
by interviews with project maintainers to verify and understand why the project was abandoned. We selected
successful projects on the basis of having long-term popularity and highly active development histories with tens
of thousands of commits, a large development community with hundreds to thousands of contributors, an active
user base, and recently solved bugs. To search for suitable projects, we utilised OpenHub1 and randomly selected
projects that matched our criteria above. In Table 1, one can see a marked distinction between the two classes in
terms of the commit count and total contributor count.

3.2 Socio-technical Network Construction

The analysis begins with raw data in the form of atomic change units called commits. A commit contains
information about the author of the code, a timestamp, and the lines of code added and deleted. For each commit,
we localize the edited lines of code to a particular function (or method) using the parser from Doxygen2. If
code exists outside of a function deinition (e.g., import statements), the code is collected in a dummy function.
In Figure 1a, three developers commit to a single ile and their changes can be seen localized in two separate
functions within the ile. Using this information, we construct a temporally ordered list of commits made to the
master branch of each project [23]. To extract the commit activity, we used the framework Codeface3, which
also resolves aliases of developers to a single author.

Fig. 2. A time-ordered sequence of nine commits is segmented according to a sliding window with a three commit step size

and a six commit window size. The ordered list of commits for two subsequent windows is shown.

Raw commit data naturally form an asynchronous event sequence, which makes it challenging to handle. As
others have done before, we transform the asynchronous commits to a synchronous sequence of time stamped

1www.openhub.net
2https://www.doxygen.nl
3Codeface is a framework for analyzing socio-technical aspects of software development: http://siemens.github.io/codeface/.

ACM Trans. Softw. Eng. Methodol.

http://siemens.github.io/codeface/


How Do Successful and Failed Projects Difer?

A Socio-Technical Analysis • 1:7

Table 1. Overview of subject projects including the project class and basic statistics about the number of developers

contributing to each development window considered by our study.

Developer counts

Project Class Commits Total Mean Median SD

ActionBarSherlock Failure 1480 67 8.8 8.0 4.9
Baker Failure 942 29 8.0 8.0 1.6
Calipso Failure 1086 35 8.2 9.0 2.8
Component Failure 766 57 19.0 19.0 2.8
Django-social-auth. Failure 1613 167 28.4 30.0 9.3
Docker-registry Failure 1205 116 21.4 21.0 3.1
Famous Failure 932 74 27.0 28.0 2.9
Forem Failure 1492 108 13.6 11.0 5.4
Generator-gulp-ang. Failure 1032 96 19.2 18.0 7.8
Inherited-resources Failure 904 105 28.0 26.0 19.7
Kissy Failure 5056 30 5.4 4.0 2.5
Meteor-up Failure 1179 57 12.4 11.0 5.4
Mojito Failure 4046 35 14.0 13.0 2.4
Neocomplcache.vim Failure 1947 33 3.6 3.0 1.3
Scripted Failure 1130 12 6.4 7.0 1.3
Shairport Failure 476 56 17.3 14.0 11.4
SSToolkit Failure 851 39 12.0 11.0 8.7
Three20 Failure 1778 63 6.8 5.0 4.4
Airlow Success 13538 1729 7.2 7.0 2.5
Busybox Success 16443 363 3.8 4.0 0.8
Git Success 64057 1948 15.0 14.0 2.8
Gitlab Success 106741 2828 13.8 13.0 1.3
httpd Success 32669 45 13.2 13.0 1.9
Linux Success 1042665 23713 54.4 54.0 4.0
LLVM Success 383354 2480 3.0 3.0 0.0
Node.js Success 34559 3506 11.4 9.0 9.0
QEMU Success 90235 2024 3.6 3.0 0.9
Tensorlow Success 117884 3584 17.4 15.0 3.9
U-boot Success 74981 2460 6.8 9.0 3.5
Wine Success 150225 1753 33.4 31.0 3.3
Heat Success 18050 391 9.4 9.0 1.1
Social-app-django Success 2197 281 24.2 16.0 18.3

networks so that simpler models with greater interpretability can be applied [2, 8, 24, 25]. We achieve this by
segmenting the commits using a ixed-size sliding window similar to prior work as shown in Figure 2. First,
all commits in a project are temporally ordered according to the commit time. The nth observation window is
deined as a setWn of commits, such thatWn = {committ | t ∈ [t0 + n · ∆step, t0 + n · ∆step + ∆window]}. Where
committ is the commit occurring at time t , t0 is the time of the initial commit, ∆window is the window size, and
∆step is the step size. We deine ∆window as an integer representing the number of subsequent commits included
in the window. To explore the efect of windows sizes, we run diferent experiments setting ∆window from 25
up to 150 commits with increments of 25. We parameterize the windows using number of commits instead of
calendar time to avoid introducing confounding factors stemming from difering commit frequency. This way,

ACM Trans. Softw. Eng. Methodol.



1:8 • Mitchell Joblin and Sven Apel

we place the successful and unsuccessful projects on comparable foundation since all networks contain the same
magnitude of change activity during each window. We select the upper limit of 150 commits, because the total
number of commits in failed projects is not large enough to support larger windows without compromising the
signiicance of results due to having fewer development windows.

3.2.1 Selection of Early Project Phases. Our goal is to explore early indicators of success before the outcome is
obvious. For this reason, we select the earliest 5 development windows from each project. We deine the initial
development window to start at the irst instant when, at least, 3 developers contributed to the project within a
30 day window. Typically, a project begins with few and infrequent contributions by a single developer or small
number of developers [3]. This initial phase is particularly challenging to apply any statistical method because
the sample sizes are extremely small. For this reason, we choose to remove this initial period from our analysis
where often only a single developer is active. By only selecting the subsequent 5 development windows for each
project instead of all subsequent windows, we avoid some confounding factors that arise from a diference in
project scale. For example, successful projects have a longer time to develop and therefore the scale of the project
is fundamentally diferent from a project’s initial phases [3]. In principle, we compare successful and failure
projects only during their initial phases when the projects are most similar when it comes to scale. This way, we
avoid the problem that we simply learn to discriminate between early stage and late stage projects instead of
successful and failure projects. As shown in Table 1, we can see that the statistics regarding developer counts are
not signiicantly diferent between successful and failed projects, thus confounding factors arising from scale
diferences between the projects are not present. Furthermore, we include a baseline model that only takes the
project scale into account.

3.2.2 Network Model. For each development window,Wn , we construct one socio-technical network,Gn . Initially,
we construct a two-mode network comprised of developer nodes and function nodes as shown in Figure 1b. At
this point, edges appear only between developer nodes and function nodes. An edge between a developer node
and a function node indicates that the developer has committed to the function within the deined development
window,Wn . More than one edge is permitted to exist between a developer and function node such that the edge
count relects the number of commits made. Each link is given a weight of one and all edges are interpreted as
bi-directional.

3.3 Scale-Invariant Network Feature Extractor

Node Feature Matrix Graph Feature MatrixAggregatorsFeature Extractor

Nodes

Bipartite Developer Network
FunctionsDevelopers

F1

F2

F3

F4

F5

F6

F7

Median

Mean

Variance

Skewness

Kurtosis

F1 F2 F3 F4 F5 F6 F7

F1 F2 F3 F4 F5 F6 F7

F1 F2 F3 F4 F5 F6 F7

F1 F2 F3 F4 F5 F6 F7

F1 F2 F3 F4 F5 F6 F7

Fig. 3. Graph-level features are calculated using a two step process: (1) the two-mode network is operated on by a node-level

feature extractor that computes 7 features per node, (2) the node-level features are aggregated using 5 statistical moments.

Due to the aggregation, the dimensionality of the feature representation for a graph is independent of the number of nodes.

ACM Trans. Softw. Eng. Methodol.



How Do Successful and Failed Projects Difer?

A Socio-Technical Analysis • 1:9

The inherent lexibility of graphs make them well suited for modeling the structure of socio-technical systems.
However, most statistical methods are incapable of operating directly on graphs. For this reason, we designed a
feature extraction method inspired by NetSimile, a network similarity measure that exhibits a number of useful
properties for our study [26]. The primary goal of the feature extractor is to embed a graph (that naturally exists
in a non-euclidean space) in a euclidean space so that standard statistical tools can be applied. NetSimile was
original designed for measuring network similarity on one-mode networks of potentially diferent sizes and
exhibits the important property of scale invariance. The method is based on the concept of extracting structural
features from local sub-graphs centered on each node (i.e., ego-nets) and then computing statistical moments
to aggregate the local features to obtain a global graph-level representation. We make use of the foundational
concepts established by the original method and extend the feature extractor to operate on two-mode graphs.
Below we describe the seven local features that our approach computes at the node level.

3.3.1 Independent Variables. The general low of operations applied to a graph is shown in Figure 3. The process
begins with a two-mode graph comprised of developer nodes, function nodes, and links between. In the irst
stage, a feature extractor operates on each node in the graph to extract seven local features. For each node ni , the
following seven features are calculated:

• F1: number of neighbors of ni
• F2: clustering coeicient of ni
• F3: average number of ni ’s two hop neighbors
• F4: average clustering coeicient of neighbors of ni
• F5: number of edges in ni ’s ego-net ego(ni )
• F6: number of outgoing edges from ego(ni )
• F7: number of neighbors of ego(ni )

The node clustering coeicient intuitively captures the local connectivity and is deined as the ratio of edges
existing among a node’s neighbors divided by the total number of possible edges. Since the clustering coeicient
is deined for one-mode networks, we extend the original approach by substituting F2 and F4 with the two-mode
network analog of clustering coeicient by using the subgraph patterns shown in Figure 4. More speciically,
we compute the ratio between the local count of subgraphs where two developers and two functions that are
fully connected (see Figure 4a), and the local count of subgraphs where a single edge is missing from the fully
connected subgraph (see Figure 4b) [27].

Dev 2Dev 1

Function 1 Function 2

(a) Fully connected two-mode subgraph

Dev 2Dev 1

Function 1 Function 2

(b) Single missing edge two-mode subgraph

Fig. 4. Subgraph paterns used to compute the two-mode network analog to the node clustering coeficient.

ACM Trans. Softw. Eng. Methodol.



1:10 • Mitchell Joblin and Sven Apel

After the node level feature extraction stage, each node is represented by a seven dimensional feature vector
of numeric values and the total graph is represented by a node feature matrix Z ∈ IRN×7, where N denotes the
number of nodes in the graph. Following the node-level feature extraction, we use the statistical moments from
the original NetSimile approach to aggregate the node-level feature vectors across the nodes dimension N and
compute a graph-level vector representation X ∈ IR1×d , where d = |node features| · ��aggregators�� · ��node types��.
In the case of a one-mode network, d = 35 and for the two-mode network d = 70. The aggregators are as follows:

• A1: Median, a robust measure of central tendency
• A2: Mean, a measure of central tendency
• A3: Variance, a measure of dispersion
• A4: Skewness, a measure of asymmetry
• A5: Kurtosis, a measure of tail heaviness

These aggregators capture the irst four statistical moments of the distribution of features plus an order statistic
(median) for a more robust measure of central tendency than mean. The result is a summarized distribution
vector capturing the general properties of each feature’s distribution.

The two-mode nature of our developer network allows us to compute separate vector representations for each
node type (e.g. developer nodes and function nodes) for amore expressivemodel.We extend again uponNetSimile,
by applying the feature extractor and aggregators to each node type (developer and function) separately and
concatenating the vectors to construct a joint socio-technical representation.

In our empirical study, we compare diferent perspectives, namely developer centric and joint socio-technical.

• One-mode Developer-centric Perspective. We apply the one-mode projection to reduce the two-mode
developer network to a one-mode network using G = BB

T. Where B ∈ IRd×f is the bi-adjacency matrix
with d developers and f functions. The one-mode network G contains only developer nodes and when
passed to the feature extractor results in a 35 dimensional vector for each network.
• Two-mode Socio-technical Perspective. The two-mode network is passed immediately to the feature
extractor without any projection. We apply aggregators separately to each node type resulting in two 35
dimensional feature vectors Xdeveloper and Xfunction, one for each type of node. We then concatenate the
vectors, X = [Xdeveloper∥Xfunction] such that X ∈ IR1×70, for each two-mode network.

3.3.2 Dependent Variable. The dependent variable is represented by a binary variable that indicates whether
a project is abandoned. We assign the value of 0 to abandoned (failed) projects and 1 to those which are not
abandoned (success). The granularity of the variable is assigned at project level as relected in Table 1.

3.4 Prediction Model

We pose the problem of estimating the probability of future project success given a developer network as a binary
classiication problem. More speciically, the target variable of our analysis represents the binary future state of a
software project, success or failure. Furthermore, we deine the discriminator to be a linear combination of the
graph-level features introduced in Section 3.3, followed by a sigmoid function4. Formally the model is deined as,

ŷ =
exp(w0 +w1 · x1 +w2 · x2 + · · · )

1 + exp(w0 +w1 · x1 +w2 · x2 + · · · )
(1)

where ŷ denotes the predicted probability of project success,wi denotes the model parameters that are learned
from training examples, and xi denote the features computed by the network embedding method introduced in

4The sigmoid function, f (x ) = exp(x )
1+exp(x ) , is monotonic and maps the real numbers to the range between 0 and 1.

ACM Trans. Softw. Eng. Methodol.



How Do Successful and Failed Projects Difer?

A Socio-Technical Analysis • 1:11

Section 3.3. Clearly, this model captures only linear dependence and this limitation is explored further in the
experiments by investigating a non-linear model.

3.4.1 Optimization. To determine the model coeicientswi , we minimize the error determined by a loss function.
Following best practices for dealing with sparse data, we formulate the loss function as the binary cross entropy
between the actual and predicted values plus a regularization term consisting of the L1 norm of the linear model
weights [28]. Formally, we ind the model coeicients that minimize the following loss function:

L = −
1

n

n∑

i=1

yi · log(ŷi ) + (1 − yi ) · log(1 − ŷi ) + λ
d∑

i=1

|wi | , (2)

where n is the number of observations, yi denotes the ground truth outcome (success or failure) for the ith
observation and ŷi denotes the predicted outcome according the equation 1. The second summand in the loss
function produces a sparse model where only important features have non-zero coeicients and is known as a
least absolute shrinkage and selection operator (lasso). When a particular feature is not useful for predicting the
dependent variable, it cannot contribute to shrinking the irst summand and therefore will result in a minimization
of the correspondingwi instead. One reason for choosing lasso is because the number of observations in our
study (160) is relatively small compared to the maximum number of coeicients (70). Lasso helps to avoid
issues associated with data scarcity by producing a parsimonious model [28]. Secondly, we use lasso to ease
interpretation of model coeicients, which is described next.

3.4.2 Model Coeficient Interpretation. The logistic model coeicients (i.e.,wi in Section 3.4) encode information
about structural features of developer networks and the odds of future project success. However, auditing the
coeicients requires careful consideration of several details. We standardize the input features prior to itting each
model with zero mean and unit standard deviation. By unifying the scale, we can compare features according to
the magnitude of their coeicients. Naturally, the coeicient’s sign indicates whether an increase in the feature
corresponds with an increase or decrease in odds of project success. In our case, a positive coeicient indicates
that an increase in that feature increases the odds that the project is successful. The magnitude of a coeicient in a
logistic regression model represents how much a unit increase of an independent variable (e.g., average clustering
coeicient) changes the odds of success. We prioritize our exploration based on the coeicient magnitude since
larger coeicients afect the odds of success greater than smaller coeicients. In light of recent shifts in statistical
analysis [29, 30], we explore the results according the size of efect for coeicients (in terms of log-odds), in
addition, we evaluate generalization capabilities via cross validation [31]. If the model is capable of generalizing
to unseen data, then one can conclude the coeicients are meaningful. It should also be noted that signiicance
testing is incompatible with lasso regression models due the feature selection step and coeicient shrinkage
induced by the regularization term [28].
The lasso model introduced in Section 3.4 leads to a parsimonious model where unimportant or redundant

coeicients become zero and multicollinearity issues are eliminated. We interpret the features corresponding to
non-zero coeicients as a subset that represents a selection of features associated with project success. In the
project hold-out scenario, in which a train and test split is generated for each project, we it multiple models
using cross-validation. We can then explore the distribution of coeicients to see whether they vary signiicantly
across the diferent training sets or are generally stable. To explore the coeicient values across experiments, we
audit the distribution of coeicient values across the diferent data sets. To determine the general signiicance of
a coeicient, we check whether the highest density interval (HDI) includes the zero axis. The HDI summarizes a
distribution using an interval (frequently done in Bayesian analysis to summarize posterior distributions), where
the interval spans a set amount of the probability density, and every point in the interval is more probable than
any point outside. A coeicient with an HDI that does not contain zero is therefore signiicant across all the

ACM Trans. Softw. Eng. Methodol.



1:12 • Mitchell Joblin and Sven Apel

projects. While some features may be more or less signiicant depending on the project, these features are the
most project-agnostic and thus interesting since they should apply in general.

4 EMPIRICAL STUDY

4.1 Research uestions

Discriminating Success and Failure. Although developer networks are known to contain rich structural properties
that are a trustworthy representation of reality, we have yet to conirm that these networks provide insights
regarding early indications of future project outcomes [2, 3, 7]. Our irst research question takes a irst attempt at
addressing this unknown.

RQ1: To what extent are structural properties of developer networks associated with long-term project
outcomes?

In particular, we are interested in learning whether the association between network properties and project
outcomes exceeds that of simple predictors such as the size of the development community and level of activity.
If our classiication model based on developer networks most accurately predicts project outcomes on the test
data, then we have evidence that the model coeicients learned are meaningful because they generalize well.
Subsequently, we can conclude that the networks contain structural properties that are strongly associated with
future project outcomes.

Developer Centric vs. Socio-technical Perspective. Our second research question explores the potential beneit of
heterogeneous network models to capture additional socio-technical factors.

RQ2: Which perspective on software projects, (1) a developer centric one-mode network or (2) a joint socio-
technical two-mode network is more accurate for predicting project success?

Constructing a network from raw version-control system data requires one to make decisions about how domain
concepts should be mapped to nodes and edges in the network. These modelling decisions can have important
implications for the expressiveness of the network model and what kinds of questions the model can reasonably
address. Furthermore, many network analysis methods are only suitable for particular classes of network models.
A compromise exists between the advantages of modelling increasingly complex aspects of a domain and the
disadvantages of complicating downstream operations on the network. While evidence suggests that more
expressive network models in the space of developer networks are useful [4], we concretely address this question
in the scope of predicting project success. If the more expressive two-mode network can signiicantly outperform
the simpler one-mode developer network, then this would provide important practical evidence that justiies the
increased complexity of working with heterogeneous developer networks.

Important Network Features. An important consideration we made during the development of our approach
was ensure that the results of the prediction model are interpretable. We achieved this by using a feature extractor
inspired by commonly used metrics from complex network analysis that is also inline with prior analysis
performed on developer networks and by using linear models [4, 26, 32]. Our third research question explores
the distributions of coeicients in the linear model to identify the structural properties that generalize between
diferent projects.

RQ3: What general structural properties of developer networks are associated with project success or failure?

ACM Trans. Softw. Eng. Methodol.



How Do Successful and Failed Projects Difer?

A Socio-Technical Analysis • 1:13

4.2 Experiment Setup and Validation Strategy

We now introduce our experiment setup, including a description of the diferent prediction scenarios, metrics
used to evaluate model performance, and prediction models.

4.2.1 Prediction Scenarios. To explore diferent prediction scenarios of varying diiculty, we apply diferent
criteria for splitting the data into testing (hold out) and training data sets. We then it the models using the training
data, and all evaluation metrics are reported for the test set performance. In total we deine three scenarios of
increasing diiculty:

• Random Hold-out. Data is split with 20% randomly held out for testing and the remaining 80% for
training. This scenario is expected to be the least challenging because it is likely that the training set
contains observations from all projects (albeit at diferent time points) that occur both before and after the
observations in the hold-out set.
• Time Hold-out. Data is split such that 20% of the most recent observations for each project is held out
for testing. The remaining 80% historical data is used for training. This is more diicult than the random
hold-out scenario because the model must generalize to the unseen future observations but the training set
still contains observations from all projects.
• Project Hold-out. For each project, a data set is prepared by holding out all observations for one project
as the test set and all other observations comprise the training set. This is likely the most challenging
scenario because the test set contains projects not appearing in the training set and the model is required
to generalize to completely unseen projects.

4.2.2 Evaluation Metrics. To evaluate the performance of the models on the hold-out data, we report accuracy
(ACC),

ACC =
TP + TN

P + N
(3)

and F1-Score (F1),

F1 =
TP

TP + 0.5(FP + FN )
. (4)

Where TP and TN denote the count of true positives and true negatives, while P and N denote the count of
positives and negatives. In our case, a positive corresponds to successful project and a negative to an unsuccessful
project. A true positive (negative) occurs when both the ground truth and prediction are positive (negative).
A false positive (FP) occurs when the ground truth is negative but the prediction is positive. Likewise, a false
negative (FN ) occurs when the ground truth is positive but the prediction is negative. We chose two metrics to
establish a more complete view on the prediction performance since accuracy alone does not capture performance
with respect to false negatives or false positives.

4.2.3 Prediction Models. Our experiments involve a total of six prediction models, two baseline models and four
models that consider network features. The baseline models are included to provide a clear demonstration of
what prediction performance can be explained by chance and provide intuitive context for determining whether
the alternative network-based models exhibit signiicant statistical dependence with project success.

• Baseline Majority exploits class imbalance by predicting the majority class based on the training set.
• Baseline Author makes predictions using the logistic regression model (see Section 3.4), but uses the
number of developers and the number of artifacts changed as input features.

ACM Trans. Softw. Eng. Methodol.



1:14 • Mitchell Joblin and Sven Apel

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Time Hold−out

Random Hold−out

Project Hold−out

40 80 120

40 80 120

40 80 120

0.2

0.4

0.6

0.8

0.4

0.5

0.6

0.7

0.8

0.4

0.5

0.6

0.7

0.8

0.9

Commit Window Size

A
c
c
u
ra

c
y

Network Type
●

●

●

Baseline
One−mode
Two−mode

Model
● Author Baseline

Class Majority Baseline
Logistic One−mode
Logistic Two−mode
RF One−mode
RF Two−mode

Fig. 5. Accuracy on test set for prediction models in all prediction scenarios. The x-axis represents the number of commits

included in each development period (range 25 to 150), the y-axis represents the prediction performance (higher is beter).

With the network-based data, we apply the logistic regression model described in Section 3.4 and a non-linear
model (random forest classiier). All models are trained and tested on the same commit data extracted from the
version control system and difer only in the input representation and prediction model.

• Logistic One-Mode is based on the feature vector, x ∈ IR35, computed using the One-mode Developer-
centric Perspective described in Section 3.3. The prediction model corresponds to the logistic model
described in Section 3.4.
• RF One-Mode uses the same input feature vector and target variable as in Logistic One-Mode but uses
a non-linear model (random forest) to predict the outcome. A random forest is based on learning a set
decisions trees then a voting scheme is applied to determine the prediction [33].
• Logistic Two-Mode is based on the feature vector, x ∈ IR70, computed using the Two-mode Socio-technical
Perspective described in Section 3.3. The prediction model corresponds to the logistic model described in
Section 3.4.
• RF Two-Mode is based on the same feature vector as Logistic Two-Mode but uses the non-linear model
(random forest) from RF One-Mode.

ACM Trans. Softw. Eng. Methodol.



How Do Successful and Failed Projects Difer?

A Socio-Technical Analysis • 1:15

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

Time Hold−out

Random Hold−out

Project Hold−out

40 80 120

40 80 120

40 80 120

0.3

0.4

0.5

0.6

0.7

0.8

0.3

0.4

0.5

0.6

0.7

0.8

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Commit Window Size

F
1
 S

c
o
re

Network Type
●

●

●

Baseline
One−mode
Two−mode

Model
● Author Baseline

Class Majority Baseline
Logistic One−mode
Logistic Two−mode
RF One−mode
RF Two−mode

Fig. 6. F1 Score on test set for prediction models in all prediction scenarios. The x-axis represents the number of commits

included in each development period (range 25 to 150), the y-axis represents the prediction performance (higher is beter).

5 RESULTS

5.1 RQ1: Discriminating Failure from Success

We present the performance metrics for predicting project failure under the three distinct prediction scenarios of
Section 4.2.1. In Figure 5 and Figure 6, the accuracy and F1 score calculated on the hold-out (test) set is shown for
all three prediction scenarios. The x-axis represents the size of the window (see Section 3.2) used to construct the
network; the y-axis indicates the performance over all predictions performed on the hold-out (test) set. Each
model can be seen as a separate line on the plot.

In general, we see that there is a notable diference between the prediction performance of the baseline models
and the socio-technical (two-mode) network models regardless of the evaluation metric or commit window
size. This is visible by the red lines always appearing below the blue lines (by as much as 57% in the case of
the project hold-out scenario). This result indicates that socio-technical developer networks are associated with
project success factors, which leads to increased predictive accuracy beyond what is achievable by chance (50%
accuracy), by simpler scale of activity predictors (i.e., baseline author), or by exploiting class imbalance (i.e.,
baseline majority). Regarding window size efects (x-axis variation), we ind that windows that include 75 commits

ACM Trans. Softw. Eng. Methodol.



1:16 • Mitchell Joblin and Sven Apel

generally lead the best performance. Still, the stability of the overall result with respect to the window size is
indicative of the robustness of the network model and overall approach. Since the feature extraction method is
invariant to network size, we would also not expect the results to vary dramatically with the window size, as
long as the local structural properties of the networks remain consistent. Considering the linear models versus
the non-linear random forest, the two models tend to have similar performance.

Ranking the prediction scenarios according to performance, the random hold-out and time hold-out scenarios
have the highest prediction accuracy. We expected this because the hold-out set in this scenario contains networks
from projects seen at training time and it is likely that project windows prior to and following the hold-out
networks are also seen during training. The time hold-out scenarios is similar to the random hold-out in that
the all projects are seen during training but is slightly more diicult, though, due to the need to generalize to
future observations. Finally, the most diicult project hold-out scenario has the lowest accuracy, as this scenario
requires the model trained on one set of projects to generalize to entirely novel projects. Nonetheless, we still see
high accuracy for this scenario that signiicantly exceeds the baseline models.

In summary, the local structural properties of developer networks encode early indicators associated with
the project success, but the network representation plays a signiicant role. The accuracy and F1-score for
the socio-technical (two-mode) network logistic model is always greater than any baseline models. Even
in the most challenging prediction scenario (project hold-out), the network-based model achieved over 80%
accuracy compared to that of 30ś60% for the baselines. In response toRQ1, the evidence suggests that developer
networks are able to encode valuable information that is strongly associated with long-term project success.

5.2 RQ2: Developer-Centric vs. Socio-Technical

Thus far, the results indicate that developer networks contain information associated with future project outcomes.
Our focus turns to addressing RQ2 concerning which network representation is more informative. We compare
the one-mode network representation to the socio-technical (two-mode) representation. In Figure 5 and 6, there
is a signiicant separation between the performance of the two network representations for all commit window
sizes and all prediction scenarios. The socio-technical (two-mode) network representation has a clear advantage
as it signiicantly and consistently outperforms the developer-centric (one-mode) representation in all experiment
settings. In the case of the most challenging project hold-out scenario, the diference in accuracy is up to 30%.
Regardless of the experimental setting or the metric of choice, the socio-technical representation is superior to
the developer-centric representation.
While it is true that the two-mode network is a more rich network representation, the number of model

parameters is double that of the one-mode network. It is surprising that, despite the relatively small number of
observations, the two-mode network does not lead to overitting and reduce the generalization performance. This
result provides a justiication for richer network representations as it appears that the drawbacks associated with
additional model parameters and the well known curse of dimensionality are outweighed by the beneits [34].

Comparing the two network representations, the socio-technical network consistently and signiicantly achieves
higher prediction performance than the developer-centric network. With reference to RQ2, the results suggest
evidence that the richer joint socio-technical perspective captured by the two-mode network is more expressive
than the developer centric one-mode network and the disadvantages of a richer representation (e.g., increase
number of model parameters) are outweighed by the advantages.

ACM Trans. Softw. Eng. Methodol.



How Do Successful and Failed Projects Difer?

A Socio-Technical Analysis • 1:17

Node Feature

• F1: number of neighbors of ni
• F2: clustering coeicient of ni
• F3: average number of ni ’s two hop neighbors
• F4: average clustering coeicient of neighbors of ni
• F5: number of edges in ni ’s ego-net ego(ni )
• F6: number of outgoing edges from ego(ni )
• F7: number of neighbors of ego(ni )

Aggregator

• A1: Median
• A2: Mean
• A3: Variance
• A4: Skewness
• A5: Kurtosis

Fig. 7. Violin plot of the socio-technical (two-mode) logistic model coeficients. The y-axis represents the coeficient value

(larger indicates greater impact on project outcome). The x-axis denotes the feature name according to the mapping table

below the plot. Features distributed around zero indicate no efect. Several coeficients related to the authors (red) and the

functions (blue) are significantly diferent from zero indicating that both dimensions are strongly associated with project

outcome.

5.3 RQ3: Feature Importance

The logistic model coeicients express the relationship between the network features and the odds of project
success (see Section 3.4.2). The results for all models from the project hold-out scenario as a distribution over each
coeicient are shown in Figure 7. These coeicients are particularly general and project agnostic because they
correspond to features that generalize best across projects. Due to the high prediction accuracy on the unseen
test data (see Figure 5), over-itting does not appear to be an issue. In Figure 7, the violin plot shows the features
on the x-axis and the coeicient value on the y-axis. The width of the violin indicates the probability density
(wider indicates greater probability), and the color indicates whether the coeicient is related to developers or
functions. The x-axis uses the coding scheme where the irst term indicates the feature and the second indicates
the aggregator (see Section 3.3, for deinitions). For example, F1-A1 indicates the median (i.e. A1) of the number
of neighbors (i.e., F1).

A general observation in Figure 7 regarding the coeicient distributions is that several coeicients are signii-
cantly diferent from zero. This insight is supported by the numerous coeicients that have the majority or their
distribution signiicantly above or below the zero line (e.g., F6-A1 and F1-A3). This indicates that the networks
have statistically signiicant structural properties for discriminating between failed and successful projects since
the lasso model would otherwise set these coeicients to zero. Comparing the developer coeicients to the
function coeicients, it is clear that both node types are highly relevant. This result suggests both the developer
and function perspective are important by containing complementary information.

By exploring the HDI of each coeicient (see Section 3.4.2), we can focus on coeicients that most consistently
contain signiicant information. In Figure 8, we see the coeicients as they relate to the model features as a matrix
with the x-axis representing the node feature, and the y-axis representing the aggregator. The cell text contains

ACM Trans. Softw. Eng. Methodol.



1:18 • Mitchell Joblin and Sven Apel

Fig. 8. Matrix of the logistic two-mode (socio-technical) model coeficients. The x-axis shows the aggregator and y-axis

the node feature. The cell text indicates the median coeficient value. The cell color represents whether the coeficient is

significant (blue) or not (gray) based on whether the 90% highest density interval contains zero.

the median coeicient value, and the ill color indicates whether the coeicient is signiicant based on whether
the 90% HDI excludes zero. We see that the features corresponding to the developer nodes and the function nodes
contain seven and six signiicant features, repectively. Interestingly the median and mean aggregators (i.e., rows
A1 and A2) contain only three of thirteen signiicant coeicients. In this case, the results indicate that variance,
skewness, and kurtosis more often contain important information as they account for ten signiicant coeicients.
Comparing developer and function features, the sets of signiicant coeicients are mutually exclusive. Once again,
these results support the narrative that the diferent node types contain complementary information, but we now
see that the relevant network structural features are unique to each perspective. Surprisingly, variance, skew,
and kurtosis account for the vast majority of signiicant coeicients. The interpretation is that the spread of the
distribution and its shape contains the most important information rather than the central tendency.

In summary, the distribution of coeicients clearly emphasizes the importance of both features stemming
from developers and from functions. Regarding RQ3, the most inluential features are F6 (number of outgoing
edges from the nodes ego net) for developers and F1 (number of neighbors) for functions. The most important
aggregators tends to be variance, skew and kurtosis, suggesting that the variation of local network structure is
an important factor in the odds of project success.

5.4 ualitative Analysis

To gain a better understanding of the two-mode logistic model behavior on projects not appearing in the training
data, we analyzed two systems in depth with deeply related histories. We selected django-social-auth to
perform this analysis because it is by far the largest failed project in terms of contributors (167 in total), and its
history is unique and particularly useful for our study. The development of django-social-auth5 began in 2010
to create a framework enabling users to easily setup social authentication mechanisms in Django applications.
The project attracted interest over its three year long active development period and attracted 167 contributors
and 5000 users. However, the project was deprecated in 2013, and the maintainers primary reason for this decision
was that the framework’s support was too restricted. With an improved technical vision, development started in

5https://github.com/omab/django-social-auth

ACM Trans. Softw. Eng. Methodol.



How Do Successful and Failed Projects Difer?

A Socio-Technical Analysis • 1:19

●

●

●

●

●

0.0

0.2

0.4

0.6

1 2 3 4 5

Development Window

P
ro

b
a
b
ili

ty
 o

f 
S

u
c
c
e
s
s

project

● django−social−auth

social−app−django

Fig. 9. Predicted probability of success for two projects not appearing in the training data. The x-axes represents the

development window used as input to the prediction model. The y-axis represents the output of the prediction model. The

project django-social-auth was deprecated in 2013. The project continued as social-app-django ater migrating to another

group with a more organized development process. The migration has appeared to increase the probability of success

python-social-auth6, which was again deprecated in 2016. The deprecation notice implies that the primary
reason for deprecation was due to insuiciently organized development practices. In the deprecation notice, the
maintainers wrote, łAs for Dec 03 2016, this library is now deprecated, the codebase was split and migrated into
the python-social-auth organization, where a more organized development process is expected to take place.ž
The project continued development in the new organization under the name social-app-django7. The project
is still under active development today with the latest release occurring on 05-08-2021. Currently, it has 287
contributors with more than 15000 users. The history of this project is particularly valuable because it constitutes
a natural experiment in a domain where controlled experiments are practically infeasible. In particular, we are
able to observe the conditions where many variables are ixed (e.g., implementation language, application domain,
project scale) but an interesting intervention occurs (change in development process).
We applied the trained two-mode logistic model to the project before and after the migration where a more

organized development process was introduced. In Figure 9, we see the irst ive development windows of
django-social-auth (pre-migration) in red and social-app-django (post-migration) in blue as well as the
corresponding predicted probability of success according to the two-mode logistic model. The probability of
success for django-social-auth (pre-migration) is below 20% for all development windows except one. Looking
now at the post migration curve of social-app-django, we see that initially the project also has a low probability
of success. This matches our intuition that a project does not change instantly after migration, but instead takes
time for the intervention of a more organized development process to increase the chances of successful outcomes.
In the second development window after migration, we see the probability begin to trend upwards and then once
again in the third development window. These predictions regarding the long-term project success appear to be
in agreement with the fact that, in the long-term, the post-migration project achieved several improvements over
the pre-migration project in terms of a 72% increase in contributors, a 200% increase in users, and has exceeded
the development lifetime of the prior two deprecated incarnations by at least 2 years.

6https://github.com/omab/python-social-auth
7https://github.com/python-social-auth/social-app-django

ACM Trans. Softw. Eng. Methodol.



1:20 • Mitchell Joblin and Sven Apel

6 DISCUSSION

Our results provide evidence that project outcomes are strongly associated with factors in both the social realm
(the people or developer entity) and the technical realm (the function entity). Surprisingly, even a simple socio-
technical network based purely on version control system data provides accurate predictions and is signiicantly
more accurate than the more common developer-centric model. Our results are in line with previous indings that
heterogeneous developer networks exhibit associations with software defects [4, 35]. Similarly, tools integrating
a social and technical perspective have shown beneit to developers’ understanding of a project [36]. Our results
are also consistent with the indings of Ewusi-Mensah and Przasnyski [22], in particular, in that organizational
factors are strongly associated with project abandonment.

Our quantitative analysis indicates a strong relationship between socio-technical network features and project
outcomes. While these are encouraging results, purely on this quantitative basis it is diicult to know how the
model behaves with respect to interventions that are designed to increase the chances of a successful outcome.
For this reason, we conducted a qualitative analysis. We found that our model was able to predict a low chance
of success of our sample project prior to a change in the development process followed by an increase in
predicted success afterwards. The combination of the qualitative and quantitive analysis suggests that our model’s
relationship to project outcomes is not a result of spurious correlations, but appears sensitive to factors that are
causally related to project outcomes. Further studies are necessary to establish greater conidence in this inding.
We envision that future work could apply our model to identify key structural socio-technical issues, establish
a corrective intervention, then monitor both the socio-technical features and key indicators of project success.
With this proposed worklow, we would begin to acquire more data to reason about causal implications in more
depth.

Data sparsity issues are particularly challenging in this problem setting because only project data from early
phases can be used. We have shown how using a two-mode network representation can alleviate data sparsity
issues by preserving more information than the more commonly use one-mode network. Another challenge is that
the scale of projects can vary dramatically (e.g., number of contributors, number of functions, and the frequency of
commits) making sound comparisons between projects diicult. Our approach addresses this challenge by using
a sliding window approach, parameterized by the number of commits, using only the earliest ive development
windows from each project, and by using a method based on local feature extractors and statistical moment
aggregators. To our surprise, the methodology proposed here even shows evidence of being able to generalize to
entirely novel (project hold-out set) software projects reaching predication accuracies up over 80%, which is a
further testament to the eicacy of our approach and beyond what has been possible so far.
Throughout the development of our study, we prioritized interpretability of results over predictive perfor-

mance [37]. Due to the novelty of the prediction task, we believe that a irst step should be achieved using simple
models that have less risk of overitting and greater interpretability. We draw inspiration from prior work on
network analysis to deine intuitive features for the classiier and to use linear models to aid in the interpretation
of feature importance. Interestingly, our results indicate that characteristics of the variation in the socio-technical
environment consistently plays a highly inluential role while central tendency is much less inluential (see
Figure 8). The kurtosis of a distribution, a measure of the weight in the tails of the distribution, accounts for four
of the thirteen signiicant features, skewness accounts for another three, and variance yet another three. Further
research is needed to explore further how sources of variance enter the socio-technical environment, the speciic
consequences they have on a project, and whether there are strategies that can inluence these sources.
Considering the author coeicients, the largest coeicient is A1-F6, the mean number of co-developers. The

second largest coeicient is A4-F4, skewness in the average clustering coeicient of the functions the developers
contributed to. An interpretation is that co-development has a cost (A1-F6 has a negative coeicient) but this cost
can be compensated by co-developers forming densely connected communities around co-developed artifacts

ACM Trans. Softw. Eng. Methodol.



How Do Successful and Failed Projects Difer?

A Socio-Technical Analysis • 1:21

(A4-F4 has a positive coeicient). This insight is inline with prior work about the so called ‘too many cooks’
principle that applies to software quality [5]. At the same time, there exists a multiple observers principle that
ofers beneits to code peer review (also related to Linus’ Law) [38, 39]. An interesting future direction is to
explore strategies successful projects use to reconcile the principles of too few and too many under a Goldilocks
principle for co-development of artifacts, for which there is already some supporting evidence [40]. Based on
these insights, we propose the following hypothesis.

H1: For developers to coordinate efectively, the number of co-developers must be low and clustered around
a common set of functions. If the mean number of co-developers is not low and clustering is not achieved,
developers will be unable to satisfy their coordination requirements and long-term growth in the number of
developers working on the project is not possible.

Considering the function coeicients, the two largest coeicients are associated with F1, the number of
neighbors (i.e., developers contributing to the function). The interpretation is that successful projects tend to
have artifacts changed by a relatively constant number of developers without heavy skew or heavy tails in the
distribution. The regularity in the number of developers could arise from general stability of the development
group and strong code ownership practices that encourage regularity in which developers are responsible for
which artifacts. We encourage future work to more deeply explore the types of changes that introduce skew and
heavy tailed distributions into the socio-technical environment to further understand the mechanisms at play.
Based on these insights, we propose the following hypothesis.

H2: Artifacts developed by a small and relatively consistent group of developers have higher quality than those
developed by a large developer groups with high turnover.

7 THREATS TO VALIDITY

Construct Validity. Project failures are fundamentallymultifaceted and the deinitionwe have adopted ultimately
focuses on abandonment. This threatens validity as it is certainly plausible that many other valid dimensions of a
project outcome are not captured by this notion. We consider project outcome, the dependent variable, to be
binary in nature because the available observational data does not support any other interpretation. We ind
this a necessary and valid simpliication because there is no consensus within the community nor empirical
evidence for a continuous measure of project success. Furthermore, the abandoned projects were qualitatively
evaluated to verify their status and the reasons for abandonment ranging from conlicts among developers to
a competitor project overtook the market. By introducing an arbitrary and unproven continuous measure, we
would most likely introduce an even greater threat to validity. Our model, once itted using the binary outcome,
is capable of predicting continuous values, but we have not been able to test whether or not they agree with a
more ine-grained notion of project success.

Conclusion Validity. To avoid confounding factors explaining the diference between successful and failed
projects, we used only the initial phases of all projects (see Section 3.2.1), since we expect, once a project is at a
late stage of failure or success, it is trivial to discriminate between outcomes. We ixed the number of commits
used to construct each network, to avoid having the size of the networks or magnitude of activity play a role. The
embedding method we use is designed to be invariant to network size by using only local structure to further
reduce biases arising from network scale (see Section 3.3). To rule out the possibility for chance or exploitation
of class imbalance explaining the outcome, we included results for two baseline methods in addition to our
proposed approach (see Section 4.2.3). Regarding subject project selection, we relied on a validated third-party
study for determining the unsuccessful projects; for the successful project set, we took a random sample that met
a commonly used criteria for success [9].

ACM Trans. Softw. Eng. Methodol.



1:22 • Mitchell Joblin and Sven Apel

External Validity. Since our study is conducted on a selection of OSS projects, there is a risk that the results
do not generalize to other software projects. Due to the relatively small sample size (32 projects), our results
may not generalize to all kinds of OSS projects. Furthermore, our study is primarily focused of two extreme
project states (success and failure), and we have not deeply investigated the spectrum between these extremes.
Generalizing beyond OSS projects carries potential risks since it is possible that the dynamics within commercial
closed-source software projects difers substantially. For the prediction model to perform adequately, at least a few
hundred commits should be made by more than three developers. With any less data, the features may not contain
suicient structure to produce accurate predictions. To reduce risks to generalization, we intentionally selected
the subject projects to cover a broad range of application domains and programming languages (see Section 3.1).
Still, the structural properties of some projects may be very diferent and lead to poor prediction performance.
We employed a standard technique of using hold-out data to evaluate generalization performance and conceived
of one prediction scenario where entire projects are held out (see Section 4.2.1). The results indicated that the
approach does generalize well to unseen OSS projects, which is highly encouraging.

8 CONCLUSION

Early indications of future project success have both practical and research value. Surprisingly, we found that
even a simple socio-technical network model purely based on version control system data contains accurate
and generalizable indicators about the odds of future project success. While our study is primarily exploratory,
the prediction accuracy is a testament to the importance of the socio-technical factors that we found to be
associated with project success. Our decision to use linear models allows us to identify factors with the greatest
inluence on the odds of project success. Among other indings, we found that statistical variance in the local
socio-technical environment plays a key role in project success. Furthermore, our results demonstrate that a
richer socio-technical view captures more general properties than the more common developer-centric view.
Remarkably, a model trained on one set of projects can generalize to a completely new project and only the early
phases of a project are needed to achieve this. By means of a qualitative study, we also found evidence that our
model is sensitive to a key corrective action (change in development process) taken to improve the likelihood
of project success. Our approach proposes promising strategies for analyzing heterogeneous socio-technical
networks in the context of software engineering. For example, our two-mode network feature extractor based on
intuitive network metrics coupled with a sparse linear model. Furthermore, our novel methodological approach
and the insights we obtained so far provide a foundation for future work to more deeply explore how such a
simple model that neglects many other data sources is still so accurate.

Acknowledgements

This work has been funded by DFG Grant AP 206/14-1 as well as DFG grant 389792660 as part of TRR 248 ś
CPEC.

REFERENCES

[1] A. Meneely, L. Williams, W. Snipes, and J. Osborne, łPredicting failures with developer networks and social network analysis,ž in
Proceedings of the International Symposium on Foundations of Software Engineering (FSE). ACM, 2008, pp. 13ś23.

[2] A. Meneely and L. Williams, łSocio-technical developer networks: Should we trust our measurements?ž in Proceedings of the International

Conference on Software Engineering. ACM, 2011, pp. 281ś290.
[3] M. Joblin, S. Apel, C. Hunsen, and W. Mauerer, łClassifying developers into core and peripheral: An empirical study on count and

network metrics,ž in Proceedings of the International Conference on Software Engineering (ICSE). IEEE, 2017.
[4] C. Bird, N. Nagappan, H. Gall, B. Murphy, and P. Devanbu, łPutting it all together: Using socio-technical networks to predict failures,ž in

Proceedings of the International Symposium on Software Reliability Engineering (ISSRE), 2009, pp. 109ś119.
[5] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu, łDon’t touch my code!: Examining the efects of ownership on software

quality,ž in Proceedings of the European Software Engineering Conference and the International Symposium on the Foundations of Software

ACM Trans. Softw. Eng. Methodol.

https://perspicuous-computing.science
https://perspicuous-computing.science


How Do Successful and Failed Projects Difer?

A Socio-Technical Analysis • 1:23

Engineering (ESEC/FSE). ACM, 2011, pp. 4ś14.

[6] L. López-Fernández, G. Robles, J. M. Gonzalez-Barahona, and I. Herraiz, łApplying social network analysis techniques to community-
driven libre software projects,ž Integrated Approaches in Information Technology and Web Engineering: Advancing Organizational

Knowledge Sharing, vol. 1, pp. 28ś50, 2009.
[7] M. Joblin, W. Mauerer, S. Apel, J. Siegmund, and D. Riehle, łFrom developer networks to veriied communities: A ine-grained approach,ž

in Proceedings of the International Conference on Software Engineering (ICSE). IEEE, 2015, pp. 563ś573.
[8] M. Joblin, S. Apel, and W. Mauerer, łEvolutionary trends of developer coordination: A network approach,ž Empirical Software Engineering,

pp. 1ś45, 2017.
[9] J. Coelho and M. T. Valente, łWhy modern open source projects fail,ž in Proceedings of the International Symposium on Foundations of

Software Engineering (FSE). ACM, 2017, p. 186âĂŞ196.
[10] P. Erdős and A. Rényi, łOn random graphs,ž Publicationes Mathematicae, vol. 6, pp. 290ś297, 1959.
[11] M. Girvan and M. E. J. Newman, łCommunity structure in social and biological networks,ž Proceedings of the National Academy of

Sciences, vol. 99, no. 12, pp. 7821ś7826, 2002. [Online]. Available: https://www.pnas.org/content/99/12/7821
[12] M. Newman, łPower laws, pareto distributions and zipf’s law,ž Contemporary Physics, vol. 46, no. 5, pp. 323ś351, 2005.
[13] E. Ravasz and A.-L. Barabási, łHierarchical organization in complex networks,ž Physical Review E, vol. 67, no. 2, p. 026112, 2003.
[14] L. López-Fernández, G. Robles, J. M. Gonzalez-Barahona et al., łApplying social network analysis to the information in CVS repositories,ž

in Proceedings of the International Workshop on Mining Software Repositories, 2004, pp. 101ś105.
[15] A. Jermakovics, A. Sillitti, and G. Succi, łMining and visualizing developer networks from version control systems,ž in Proceedings of the

International Workshop on Cooperative and Human Aspects of Software Engineering. ACM, 2011, pp. 24ś31.
[16] A. Terceiro, L. R. Rios, and C. Chavez, łAn empirical study on the structural complexity introduced by core and peripheral developers in

free software projects,ž in Proceeding of the Brazilian Symposium on Software Engineering. IEEE, 2010, pp. 21ś29.
[17] T. Bock, A. Schmid, and S. Apel, łMeasuring andmodeling group dynamics in open-source software development: A tensor decomposition

approach,ž Transactions on Software Engineering and Methodology (TOSEM), vol. 31, no. 2, 2021.
[18] W. Mauerer, M. Joblin, D. A. A. Tamburri, C. Paradis, R. Kazman, and S. Apel, łIn search of socio-technical congruence: A large-scale

longitudinal study,ž IEEE Transactions on Software Engineering, pp. 1ś1, 2021.
[19] N. Cerpa, M. Bardeen, B. Kitchenham, and J. Verner, łEvaluating logistic regression models to estimate software project outcomes,ž

Information and Software Technolology, vol. 52, no. 9, p. 934âĂŞ944, 2010.
[20] K. Crowston, J. Howison, and H. Annabi, łInformation systems success in free and open source software development: theory and

measures,ž Software Process: Improvement and Practice, vol. 11, no. 2, pp. 123ś148, 2006.
[21] D. Surian, Y. Tian, D. Lo, H. Cheng, and E. Lim, łPredicting project outcome leveraging socio-technical network patterns,ž in European

Conference on Software Maintenance and Reengineering, 2013, pp. 47ś56.
[22] K. Ewusi-Mensah and Z. H. Przasnyski, łOn information systems project abandonment: an exploratory study of organizational practices,ž

MIS quarterly, pp. 67ś86, 1991.
[23] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and P. Devanbu, łThe promises and perils of mining git,ž in Proceedings of

the IEEE International Working Conference on Mining Software Repositories. IEEE Computer Society, 2009, pp. 1ś10.
[24] M. Pohl and S. Diehl, łWhat dynamic network metrics can tell us about developer roles,ž in Proceedings of the International Workshop on

Cooperative and Human Aspects of Software Engineering. ACM, 2008, pp. 81ś84.
[25] Q. Hong, S. Kim, S. C. Cheung, and C. Bird, łUnderstanding a developer social network and its evolution,ž in Proceedings of the

International Conference on Software Maintenance (ICSM), 2011, pp. 323ś332.
[26] M. Berlingerio, D. Koutra, T. Eliassi-Rad, and C. Faloutsos, łNetwork similarity via multiple social theories,ž in Proceedings of the

International Conference on Advances in Social Networks Analysis and Mining. ACM, 2013.
[27] G. Robins and M. Alexander, łSmall worlds among interlocking directors: Network structure and distance in bipartite graphs,ž Computa-

tional & Mathematical Organization Theory, p. 69âĂŞ94, May 2004.
[28] T. Hastie, R. Tibshirani, and M. Wainwright, Statistical Learning with Sparsity: The Lasso and Generalizations, 2015.
[29] J. Gill, łThe insigniicance of null hypothesis signiicance testing,ž Political Research Quarterly, vol. 52, no. 3, pp. 647ś674, 1999.
[30] M. Baker, łStatisticians issue warning over misuse of p values,ž Nature, vol. 531, p. 151, 2016.
[31] B. B. McShane, D. Gal, A. Gelman, C. Robert, and J. L. Tackett, łAbandon statistical signiicance,ž The American Statistician, vol. 73, pp.

235ś245, 2019.
[32] U. Brandes and T. Erlebach, Network Analysis: Methodological Foundations. Springer, 2005.
[33] L. Breiman, łRandom forests,ž Machine learning, vol. 45, no. 1, pp. 5ś32, 2001.
[34] R. Bellman, łDynamic programming,ž Science, vol. 153, no. 3731, pp. 34ś37, 1966.
[35] W. Hu and K. Wong, łUsing citation inluence to predict software defects,ž in Proceedings of the Conference on Mining Software Repositories

(MSR). IEEE Press, 2013.
[36] A. Sarma, L. Maccherone, P. Wagstrom, and J. Herbsleb, łTesseract: Interactive visual exploration of socio-technical relationships in

software development,ž in Proceedings of the International Conference on Software Engineering (ICSE), 2009, pp. 23ś33.

ACM Trans. Softw. Eng. Methodol.

https://www.pnas.org/content/99/12/7821


1:24 • Mitchell Joblin and Sven Apel

[37] G. Shmueli, łTo explain or to predict?ž Statistical Science, vol. 25, no. 3, pp. 289ś310, 2010.
[38] A. Bacchelli and C. Bird, łExpectations, outcomes, and challenges of modern code review,ž in Proceedings of the International Conference

on Software Engineering (ICSE), 2013, pp. 712ś721.
[39] E. Raymond, łThe cathedral and the bazaar,ž Knowledge, Technology & Policy, vol. 12, no. 3, pp. 23ś49, 1999.
[40] J. Wang, P. Shih, and J. Carroll, łRevisiting linusâĂŹs law: Beneits and challenges of open source software peer review,ž International

Journal of Human-Computer Studies, vol. 77, pp. 52ś65, 2015.

ACM Trans. Softw. Eng. Methodol.


	Abstract
	1 Introduction
	2 Background & Related Work
	3 Dataset and Analysis Methods
	3.1 Subject Projects
	3.2 Socio-technical Network Construction
	3.3 Scale-Invariant Network Feature Extractor
	3.4 Prediction Model

	4 Empirical Study
	4.1 Research Questions
	4.2 Experiment Setup and Validation Strategy

	5 Results
	5.1 RQ1: Discriminating Failure from Success
	5.2 RQ2: Developer-Centric vs. Socio-Technical
	5.3 RQ3: Feature Importance
	5.4 Qualitative Analysis

	6 Discussion
	7 Threats To Validity
	8 Conclusion
	References

