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Abstract

Prosthetic limbs hold a promise to renew the
quality of life for the amputee. Neural commands are
decoded via a classifier to generate control signals for
the prosthetic devices. In the literature, many
challenges and limitations have been identified that
affect the prosthesis operation. One such drawback is
muscle fatigue which degrades the surface
electromyogram (sEMG) signals, and consequently,
the performance of the deployed classification
algorithm declines from 90% to 50% of average
accuracy. We used a new technique using the Linear
Discrimination Analysis (LDA) algorithm and the
muscle synergy-based task discrimination (MSD)
algorithm to improve the classification accuracy. In
this technique, during muscles contraction/fatigue, we
used the LDA algorithms in the beginning and the
MSD algorithms later. The applied technique exhibited
better movement classification performance during
normal and muscle fatigue conditions. However, more
work needs to be done to effectively solve the muscle
fatigue problem in prosthesis design.

Introduction

Although many research studies have shown
promising results in the performance of myoelectric-
controlled prosthesis, there is still a gap between that
academic success and the real need of the amputee
population in terms of the prosthesis reliability (Jiang
et al. 2012). An internet survey that continued for four
years revealed that many amputees were dissatisfied
with mmyoelectric prosthesis functionality (Pylatiuk,
et al. 2007). A similar study that reviewed 55 subjects
with upper limb impairment found that they wore their
prosthesis only for an average of 7.9 hours/day (Gaine
et al. 1997). In addition, the study stated that most of
the amputees with myoelectric-controlled prosthesis
were not satisfied due to the poor performance of their
prosthesis (Gaine et al. 1997). All these complaints

towards the prosthetic limbs lead us to a discussion
about challenges/factors that cause such limitations in
the operation of the myoelectric-controlled prosthesis.

In the literature, the following factors were stated
that they impact the performance of the prosthesis:

1- Muscle fatigue (Jiang et al. 2012, Scheme and
Englehart 2011).

2- Sweat or perspiration (Jiang et al. 2012).
3- The electrodes’ movement (Jiang et al. 2012,

Scheme and Englehart 2011).
4- Fit of the socket (Scheme and Englehart 2011).
5- Variation of muscles’ force or contraction level

(Scheme and Englehart 2011).
6- sEMG signal’s transient change (Scheme and

Englehart 2011).

The performance of myoelectric prosthesis is
extremely affected by the behavior of the sEMG signal
which represents the electrical activity of muscles. The
sEMG signal can be changed adversely due to the
produced efforts by muscles. When muscles fatigue, a
significant change occurs in the features of the sEMG
signals—both time and frequency domain features are
changed. Accordingly, the change in the sEMG signals
affects the performance of a used classification
algorithm which is utilized for subsequent control of
prosthesis [master thesis].

The myoelectric controlled prosthesis utilizes
supervised machine learning algorithms—classification
algorithms to make a decision about intended tasks or
movements. These algorithms assume the training data
(the data used by a classification algorithm as a
reference to compare with a real-time data or the
validation data) has a static statue which means they
are not changed overtime. In the literature, under such
assumption, the classification accuracy of these
algorithms was reported greater than 90%. However, as
mentioned earlier, these data can be changed due to
muscle fatigue. Therefore, such assumption is no
longer valid when muscles fatigue.
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Problem Statement and Related Work
The most commonly algorithms mentioned in the

literature, which are used for task discrimination, are
linear discriminant analysis (LDA), support vector
machine (SVM), multiplier perceptron (MLP),
artificial neural network (ANN) and hidden Markov
model (HMM) (Scheme and Englehart 2011, Ortiz-
Catalan, Brånemark, and Håkansson 2013, Rasool et
al. 2015, Reaz, et al. 2006). Moreover, two new
classification algorithms based on a muscle synergy
hypothesis were proposed and applied in real time to
discriminate between tasks—one was used for
classification tasks of upper limbs and the other was
used for classification tasks of lower limbs (Rasool et
al. 2015, Afzal et al. 2015). The main difference
between them that the first one was used for lower
limb task classification, and it uses Non-Negative
Least Square (NNLS) approach for neuron estimation.
However, the second one was used for upper limb
tasks classification, and it uses Kalman filter for
neuron estimation. All aforementioned algorithms
showed very high performance. For upper limb task
discrimination, the used algorithm is called muscle
synergy-based task discrimination (MSD). The MSD
algorithm has shown a very promising performance
when compared to 3 pattern recognition algorithms
(SVM, AND, LDA), and indeed it displayed the best
performance (Rasool et al. 2015).

Although, in normal operations, most of the
proposed supervised machine-learning algorithms
work to a sufficient level of accuracy (>90%) to
classify the intended tasks, the performance of these
algorithms declines significantly in muscle fatigue
(Albunashee et al. 2016). The reason behind this
declination belongs to the fact that these algorithms
were tested under normal operation that the sEMG
signals stay unchanged over time.

In our previous work, the impact of muscle fatigue
on the classification accuracy was quantified. The
classification accuracy declined from (>90%) to an
average of 50% during muscle fatigue (Albunashee et
al. 2016). In this study, the performance of two
algorithms (LDA and MSD) during normal and
muscles fatigue was monitored. Then, in order to
improve the overall classification accuracy, we used
both algorithms (instead of using one) during different
periods of time of muscle fatigue. LDA algorithm was
used in the beginning and the MSD algorithms later.

Muscle Synergy Hypothesis
Performing an intended task by a human hand is an

extremely complex process. In order to perform an

intended task, there are 38 muscles and 22 joints in the
human hand and thousands of embedded sensors
facilitating the integration (Ziegler-Graham et al.
2008). No single movement can be performed based
solely on one muscle or one specific neuron signal
(Rasool et al. 2015). This leads us to a discussion of
“how the nervous system overcomes these complexities
to produce movement effortlessly and efficiently”
(Tresch et al. 1999). In human hands, different muscles
cooperate together to perform the intended tasks based
on weighted coefficients (brain/nerve signals) and
muscle synergies (Rasool et al. 2015, Bizzi and
Cheung 2013, Bizzi et al. 2008, d’Avella and Bizzi
2005, Tresch 2005, Rasool et al. 2013). Muscle
synergies have been hypothesized as constant building
blocks which are weighted by an unlimited number of
neuron command signals (activation coefficients) to
recruit the muscles to perform certain tasks/movements
(Bizzi and Cheung 2013, Bizzi et al. 2008, d’Avella
and Bizzi 2005, Tresch 2005).

MSD Framework
The MSD algorithm is explained in details in the

references (Rasool et al. 2013, 2015). In this section, a
breif description for the main components of MSD is
explained.

The mathematical model of muscle synergy
framework is described as follows: Time-varying
weighted coefficients (X (k)), neuron drive, is mapped
to a particular task (Y (k)) through fixed components,
muscle synergies (W) as in (2).

(2)

where m, n and k are numbers of muscles/sensors,
neuron drive coefficients and sample time respectively.
The description of the MSD algorithms is explained as
follows:

During the training session, MSD uses muscle
synergy (W) as the training dataset after extracting
them from the root mean square (RMS) values of the
surface electromyogram signal (sEMG).

W is extracted from the RMS values (y) of sEMG
using a blind source separation algorithm (BSS) such
as non-negative matrix factorization (MNF) algorithm
or probabilistic independent component analysis
(pICA).

In the end of training session, W(s) of all tasks are
saved as training dataset for the MSD algorithm. MSD
algorithm, as any classifier, is based on finding the
similarity between the training dataset and the
validation/testing dataset. Therefore, in real time,
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having a new sEMG signal (y) and j number of
movement, MSD uses (j) of Kalman filters to estimate
the neuron command signal (X) for each possible
movement (j) based in (2).

Kalman filter uses the measured sEMG signals (y)
as the system’s observation and a random walk model
as the state-space model (given in 3)

=
(3)

where are system and measurement noise
respectively. The estimation of Kalman filter is
subjected with a constrain—the neuron drive (x) must
be non-negative which is inherited from physiological
bounds (Rasool et al. 2013).

In the end, after j ( are estimated using j Kalman
filters for each sensor of sEMG signal, the algorithm
will make a decision of which movement is the
intended one, based on measuring the similarity
between the new (y) and all (j) constructed (y) using
(2).

Experiment Protocol
This work is approved by Institutional Review

Board of the University of Arkansas at Little Rock.
Five volunteers (age 35±5 years) participated in this
study.

In the 1st session, the subjects performed normal
tasks, single-degree-of-freedom, 1-DoF (hand open,
hand close, wrist extension, wrist flexion, forearm
pronation and forearm supination). Each task was
performed for five seconds (secs), followed by another
five secs of relaxation (four times). There was rest time
between every two consecutive tasks. In the 2nd

session, the subjects were asked to perform each task
one time with maximum voluntary contraction (100%
MVC) for five minutes. All the participants were
allowed to interrupt this session when they felt
uncomfortable during the five minutes of the
experiment—the average time of the experiment was
2.5 minutes due to participant discomfort.

Electrodes and Hardware Configuration
Seven electrodes were placed on the forearm. The

focus was on the extensor carpi ulnaris (ECU),
extensor carpi radialis longus/brevis (ECRL/B),
extensor digitorum communis (EDC), flexor carpi
radialis (FCR) and flexor carpi ulnaris (FCU), pronator
teres (PT), and supinator (SUP). We used Naraxon
TeleMyo (DTS) to record the sEMG data with a
sampling rate (fs) of 2000 sample/sec. BioPatRec

software was used for data acquisitions (Ortiz-Catalan
et al. 2013).

Preprocessing the sEMG signal
For the LDA algorithm, 4 features were extracted

from the sEMG signal after segmenting the raw sEMG
in the size of 250 milliseconds (ms). The features are
the waveform length (WL), zero crossing (ZC), mean
absolute value (MAV), and slope sign change (SSC)
(Rasool et al. 2015, Ortiz-Catalan et al. 2013). Then
the features were divided into training and testing parts
for evaluation purpose. The same approach was
followed for MSD algorithm using the RMS values of
the sEMG to extract muscle synergies.

Improving the Classification Accuracy
During normal operation, we confirmed that the 2

algorithms introduced a promising performance
(>90%). During muscle fatigue, we used the recorded
data during the first 50 seconds of the 2nd session to
update the LDA algorithm. For the MSD algorithm,
we used the extracted synergies during the 40-50 secs.
The performance of the 2 algorithms was monitored
for 150 seconds during the second session. Each
algorithm was performing better for a period of time
during muscle fatigue, as will be explained in the next
section.

Results

When the MSD and LDA algorithms were updated
with the new training dataset, both algorithms
performed very well as shown in Figure 1. LDA, in
the beginning, showed very good performance but in
the end, the classification accuracy started declining.
On the other hand, MSD showed poor performance in
the beginning but it started getting better with time
progression.

The two algorithms were used simultaneously.
LDA algorithm was used for classification during the
first 60-70 secs because it performed better than MSD
and gave an accuracy of greater than 90% as shown in
Figure 2. After 60 seconds, the MSD was used and it
showed better performance than the LDA (>90%
except in the last 10 secs, it showed 87%) as illustrated
in Figure 2.

Discussion

In the beginning, the classification accuracy of
LDA was higher than MSD not only because the
muscles were not fully fatigued but also because LDA

37

Journal of the Arkansas Academy of Science, Vol. 70 [2016], Art. 9

Published by Arkansas Academy of Science, 2016



H. Albunashee, G. Rasool, K. Iqbal, and G. White

Journal of the Arkansas Academy of Science, Vol. 70, 2016
38

uses more training features than MSD. On the other
hand, when muscle fatigue, the performance of both
algorithms declined (after 40 seconds). However, the
declination in LDA was faster than in MSD, and for
that reason, MSD was used instead of LDA. The fast
declination in the LDA when muscle fully fatigued
could be regarded to the fact that LDA is parametric
classifier and MSD non-parametric classifier.

In order to apply the proposed technique in
myoelectric-controlled prosthesis, the subjects
(amputees) are required to perform an additional
training session similar to the 2nd session (section 2).
However, to avoid this issue, the training dataset which
are used during muscle fatigue, should be generated
from the training dataset which are collected during the
1st session.

Based on our investigation, we believe that using
the MSD algorithm, under same conditions, is more
applicable than the LDA algorithm because MSD
requires updating only one feature instead of five
features (in LDA case).

Conclusion
A new technique for task discrimination to control

myoelectric controlled prosthesis was presented. In this
technique, we used two supervised machine learning
algorithms (LDA and MSD) to work during different
times of muscle fatigue. In the first 60-70 seconds, we
used LDA, and for the rest of the time, MSD was used.
The overall performance of this technique was very
good during muscle fatigue.
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