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ABSTRACT
HIV-1 affects tens of millions of people worldwide. In this work, we extend a novel
three-state model of HIV-1 transcription to study the differences in the transcrip-
tion process of HIV-1 in T-cells and macrophages. In particular, we find that the
activation of the HIV-1 promoter in macrophages appears to take place rapidly
as the Tat protein approaches a critical threshold. In contrast, the same process
occurs smoother in T-cells. By examining the self-feedback loop of Tat, we ob-
serve distinct characteristic differences of the transcriptional feedback loop between
macrophages and T-cells. A systematic analysis shows the stability of the positive
steady state in limiting cases, with the global stability in the general case remaining
an open question. Moreover, our numerical simulations and analysis demonstrate
that the transcription-inhibitor’s effect can be enhanced by synchronizing with stan-
dard treatments, such as combination antiretroviral therapy, to reduce the total
dosages and toxicity.
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1 Introduction
The Human Immunodeficiency Virus Type I (HIV-1) is the causative agent of acquired immune deficiency syndrome (AIDS).
Since the advent of combination antiretroviral therapy (cART) in the early 1990s, infected individuals live longer, healthier
lives, and transmission rates have slowed down. However, of the 36.9 million infected worldwide, only 21.7 million people were
reported to be accessing cART, and even fewer were maintaining the strict adherence required by the therapy (UNAIDSDate,
2019). Current cART regimens have been developed to target HIV-1 at almost every stage of the viral life cycle. These include fu-
sion/entry inhibitors, which target HIV-1 cellular receptors and associated viral proteins, reverse transcriptase inhibitors, which
prevent the production of viral DNA from RNA, integrase inhibitors that function to mitigate integration of the virus into
host DNA, and protease inhibitors which block maturation of viral proteins. The combination of several inhibitors is effective
in lowering viral titers and reducing morbidity and mortality in infected individuals (Heaton et al., 2010; Deeks et al., 2013;
Mothobi and Brew, 2012). However, to date, there are no FDA-approved antiretrovirals that target HIV-1 transcription. This
therapeutic gap leads to persistent, low-level viral transcription despite suppressive treatment, a concept which has been termed
“leaky latency”, resulting in approximately 1 × 103 copies of cell-associated viral RNA in infected cells (Furtado et al., 1999;
Hatano et al., 2012; Kumar et al., 2007). While viremia is adequately controlled (< 50 viral RNA/mL), cell-associated viral
RNA can contribute to chronic inflammation, rapid viral rebound, immune dysfunction via direct mechanisms, stochastic
production of viral proteins, or via the release of viral RNA in extracellular vesicles (McCauley et al., 2018; Akiyama et al., 2018;
Ferdin et al., 2018; Narayanan et al., 2013; Sampey et al., 2016; DeMarino et al., 2018; Hladnik et al., 2017; J. Z. Li et al., 2016;
Henderson et al., 2019).

Despite the presence of cART, HIV-1 can persist in viral reservoirs including long-lived memory CD4+ T-cells, blood-brain
barrier protected myeloid cells of the central nervous system (CNS), and low cART penetration lymphoid tissues such as lymph
nodes and gut-associated lymphoid tissue (GALT) (Sengupta and Siliciano, 2018; G.-H. Li et al., 2016; Garrido and Margolis,
2015; Dave et al., 2018; Hatano et al., 2013). These reservoirs can be maintained through several mechanisms, including chro-
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matin modifications and blocks in viral transcription initiation and elongation. Although HIV-1 can persist in a latent state for
long periods, activation of latently infected cells through antigen stimulation or cytokine activation can lead to the induction of
HIV-1 transcription factors such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) or nuclear factor of
activated T-cells (NFAT). Production of these transcription factors can, in turn, cause viral reactivation of the latent provirus
leading to transcription of the HIV-1 genome and subsequent production of viral proteins (Chou et al., 2013; Mbonye and
Karn, 2014; Kumar et al., 2014). Importantly, activation of the virus elicits cytolysis and immune-mediated responses to clear
the virus. This mechanism has led to the development of a therapeutic strategy termed “shock and kill”, an approach which
takes aim at latency-mediating mechanisms, such as histone deacetylases (HDACs) (Archin et al., 2009; Lehrman et al., 2005;
Wei et al., 2014), using latency-reversing agents (LRAs) to reactivate and promote immune clearance of the virus. Conversely,
others have proposed an opposite strategy known as “lock and block,” which focuses on promoting an inactive state of the HIV-
1 LTR to inhibit viral transcription and virion production through the use of latency promoting agents (LPAs). These studies
have led to the identification of several HIV-1 transcription inhibitors, which have shown success in vitro, in vivo, and in clinical
trials (Mousseau et al., 2012, 2015; Kim et al., 2016; Jean et al., 2017; Kessing et al., 2017; Rutsaert et al., 2019; Hayashi et al.,
2017)

While there is a rich literature of mathematical modeling for HIV-1 transmission at the population level (Eaton et al., 2012;
Omondi et al., 2018; Velasco-Hernandez et al., 2002; Li et al., 2018) and its interaction with the immune system with or without
treatments (Perelson and Nelson, 1999; Wodarz and Nowak, 2002; Wang et al., 2016; Adak and Bairagi, 2018), mathematical
models at the molecular level for HIV-1 are few and far between. More recently, Chavali et al. (2015) developed and showed
that a multi-state promoter HIV-1 model is perhaps better at capturing the heterogeneous reactivation of HIV-1 in response
to treatments (e.g., “shock and kill” therapy) compared to the single-state promoter model. Ke et al. (2015) used a multi-state
delayed activation model to study the effect of Vorinostat, a drug used in the activation of HIV-1 transcription, with experimental
data. Additionally, Gupta and Dixit (2018) utilized a multi-state promoter model to study the synergy in a combination of
latency-reversing therapies using stochastic simulation. Furthermore, stochastic models of HIV have also been used to provide
insights into the viral rebound or eradication event of the latent reservoir (Chavali et al., 2015; Conway et al., 2019; Hill et al.,
2014). Moreover, mathematical modelings have also been used to examine novel therapeutic strategies such as the effects of
pulsatile verse continuous exposures to latency reversing agents (Ke et al., 2018).

In prior work, a three-state LTR model of HIV-1 transcription was developed (DeMarino et al., 2020). This model eval-
uates various states of the HIV-1 LTR, repressed (LTRR), intermediate (LTRI ), and activated (LTRA) in response to various
stimuli, including transcription inducers. Furthermore, they modeled the transcription of two viral RNAs; a short non-coding
RNA trans-activation response (TAR) element and genomic RNA (env), as well as levels of viral proteins Tat (trans-activator of
transcription), Pr55, and p24 in response to changes in the LTR state. This model has been supported in two types of immune
cells, T-cells, and myeloids, using biochemical assays that assess each parameter and model predictions at extended time frames.
The model takes into account that the production of Tat, an early HIV-1 protein, only occurs during the intermediate activa-
tion state, while genomic RNA produced during the activated state is used to facilitate the production of viral particles. The
simple structure of the model allows for direct incorporation of various therapies, which potentially serves as a valuable tool in
evaluating viral transcription in response to various stimuli, including LRAs and LPAs.

In this work, we carry out systematic mathematical analyses of the previous model to show its biological and mathemat-
ical validity. The original model formulation utilizes a switching function to model the Tat-dependent functional responses,
which limits the ability of the model to characterize differences in the transcriptional behaviors in T-cells and macrophages.
Additionally, it leads to a discontinuity, which may not be biologically relevant. To address this issue, we extend the model
to consider continuous Tat-dependent functional responses. To distinguish between the two model iterations, we will call the
original model with the piece-wise switch model 1 and the continuous version model 2. Similarly, we carry out mathematical
analyses and data fitting for the new model. We provide stability results in several limiting cases; however, the global stability of
the positive steady state in the general case is still an open question. By comparing the two models (switching vs. continuous
response), we find observations that provide insights into the transcription process of HIV-1. Specifically, there is a clear dis-
tinction in the transcriptional behaviors between T-cells and macrophages, which is dependent on the amount of Tat protein.
Finally, we use the model to study the effectiveness of an experimental transcription-inhibitor drug. Our results suggest that the
Tat peptide mimetic transcriptional inhibitor (F07#13) is synchronous with standard treatment. Thus, by combining F07#13
with standard treatment such as cART, the total dosage, and the potential side effects may be reduced.

The remainder of this paper is organized as follows. In Section 2, we briefly introduce the mathematical model and describe
how some treatments of HIV-1 are incorporated into the model. In Section 3, we carry out the study of the properties of the
model and its extension. The main goal is to demonstrate that the model exhibits the expected biological dynamics, which entails
the analyses of positive invariance, boundedness, and stability of solutions. Utilizing experimental data from DeMarino et al.
(2020), we carry out parameter estimation to differentiate the dynamics between T-cells and macrophages in Section 4. An
important novelty of the model is its ability to incorporate multiple treatments of HIV-1. Therefore, in Section 5, we study the
effect of the transcriptional inhibitor F07#13 in combination with other drugs. Our model structure shows that Tat is involved
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Figure 1: HIV-1 transcription model. Three States of LTR, e.g. repressed (LTRR), intermediate (LTRI ), activated (LTRA).
The long and short RNA (envI , envA and TAR), Tat, Pr 55 and p24 interactions. The figure is adapted from DeMarino et al.
(2020) under a Creative Commons Attribution (CC BY) license.

in a self-feedback loop. To better understand its properties, we numerically characterize it in Section 6. Finally, we discuss our
results in Section 7. Derivation of closed-form solution of model 1 and details of numerical parameter estimation are provided
in the Appendix.

2 Mathematical Model
In DeMarino et al. (2020), the following three-state HIV-1 model (model 1) of the transcription process was derived and sup-
ported with experimental data in T-cells and macrophages.

d
dt

LTRR = kOFFLTRI − kONLTRR (1)

d
dt

LTRI = −
[
w3w4

w5
kA (Tat) + kOFF

]
LTRI + w1kILTRA + kONLTRR (2)

d
dt

LTRA =
w3w4

w5
kA (Tat) LTRI − w1kILTRA (3)

d
dt

Tat = αp1envI − γp1Tat (4)

d
dt

TAR = αm1,RLTRR + αm1,ILTRI + αm1,ALTRA − γm1TAR (5)

d
dt

envI = αm2,ILTRI − γm,2envI (6)

d
dt

envA = fm2 (Tat)LTRA − γm,2envA (7)

d
dt

Pr 55 = αp2envI + αp2envA − (αp3/w2)Pr55 (8)

d
dt

p24 = (αp3/w2)Pr55 − γp2p24 (9)

The model incorporates important features of the basal and activated transcription of the HIV-1 genome. The Long Terminal
Repeat (LTR) is categorized into three stages, suppressed (LTRR), intermediate (LTRI ) and activated (LTRA), similar to that
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Table 1: Table of parameters adopted from DeMarino et al. (2020). The unit of our model parameters is [copies/ml], except
for LTR, which is in percentage. We assume the experimental rates are good approximations of the true rates. DeMarino and
colleagues assumed the degradation rates for Tat and p24 are taken to be 0∗ for a short period of time, but for our analytical
purpose, we will assume they are strictly positive.

Unit definition T-Cell macrophages

kON [1/hr] LTRR → LTRI 5.785% 9.245%
kOFF [1/hr] LTRI → LTRR 1.220% 1.228%
kA (Tat) [1/hr] LTRI → LTRA 3.409% 9.010%
kI [1/hr] LTRA → LTRI 0.0% 2.451%
αm1,R [copies/ml/hr] LTRR → TAR 2.50 × 104 2.90 × 104

αm1,I [copies/ml/hr] LTRI → TAR 2.80 × 108 7.54 × 104

αm1,A [copies/ml/hr] LTRA → TAR 1.37 × 107 4.51 × 105

αm2,I [copies/ml/hr] LTRI → envI 3.63 × 105 8.13 × 103

αm2,A [copies/ml/hr] LTRA → envI 2.47 × 106 4.00 × 104

αp1 [1/hr] envI → Tat 4.00 × 10−4 3.80 × 10−4

αp2 [1/hr] env → Pr 55 1.54 × 10−3 1.94 × 10−3

αp3 [1/hr] Pr 55 → p24 1.36 × 10−3 8.10 × 10−4

γp1 [1/hr] Tat degradation 0∗ 0∗

γp2 [1/hr] p24 degradation 0∗ 0∗

γm,1 [1/hr] TAR degradation 1.17 × 104 2.68 × 104

γm,2 [1/hr] env degradation 2.24 × 103 5.91 × 102

Tatcrit [copies/ml] switching limit 3001 3001
va unitless folds of increasing 150 150

of the model in Chavali et al. (2015). The ‘OFF’ states refer to the repressed and intermediate HIV-1 promoters, while the
‘ON’ state refers to the activated HIV-1 promoter. Here, kON , kOFF , kA (Tat) and kI are transition rates from one state of LTR
to another as indicated in Figure 1. The total LTR is assumed to be conserved, so each LTR state in the model represents the
proportion of LTR in the respective state.

Another key feature of the model is the division of viral RNA into short-non-coding RNA and long-genomic RNA, char-
acterized by the amount of TAR and env, respectively. The model further divides the env according to its promoter LTR state,
or envI and envA corresponding to LTRI and LTRA, respectively. Additionally, TAR is produced by all three states of LTR,
but generally at different rates. Tat is produced via the translation of a multiply-spliced mRNA, which is represented in the
model as the transition from envI to Tat. The presence of Tat directly affects the activation rate of the intermediate LTR state.
Hence, The coefficient kA (Tat) is expected to depend on the level of Tat. Due to a quick transition to the active state, this can be
approximated as a step function or a Hill function (see Section 3). The value of Tatcrit is the estimated number of Tat required
to overcome potential sequestration by TAR in the cytoplasm to allow for efficient Tat-activated transcription. Tat further en-
hances the transcription rate of activated LTR to produce envA. This rate can also be represented by a Hill function with the
same Tatcrit value as kA (Tat).

Both envI and envA are used to produce the HIV-1 gag polyprotein, Pr 55. Following its production, Pr 55 is cleaved into
smaller proteins, one of which is p24, which forms the capsid and is tractable experimentally. We note that each LTR state rep-
resents the fraction of LTR in the respective state. On the other hand, the unit of all other variables is [copies/ml]. Furthermore,
we take the experimentally derived rates by DeMarino et al. (2020) to be the initial approximations of the parameter values for
our model. Additional details on the parameter values are listed in Table 1. One of the novel usages of this model is its ability to
incorporate and study the effects of different drugs (DeMarino et al., 2020). In the model, the parameter wi (i = 1,2,3,4,5) refers
to the effect of different drugs on the transcriptional dynamics of HIV-1. The current form of the model shows a possibility
of incorporating multiple drugs to study their effect in combination with each other (w2 - cART, w3 - IR, w4 PMA/PHA);
however, for this work, we will focus on a particular drug F07#13. The drug F07#13, a Tat peptide mimetic, was developed
to inhibit the transcription of HIV-1 virus by inhibiting Tat transactivation of the HIV-1 promoter, thereby encouraging the
reverse direction from LTRA to LTRI and suppressing the activation of LTRI (Lin et al., 2017; Van Duyne et al., 2013). In the
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model, these effects are represented by the parameters w1 and w5, respectively.
The model is used with the following initial conditions: LTRR = 1 (or 100%) and LTRI = LTRA = 0, which means that we

assume that all LTRs are in the repressed state initially. In addition, RNA1 = 0, RNA2I = 0, RNA2A = 0, Tat = 0, Pr 55 = 0
and p24 = 0 at t = 0.

3 Dynamical System Analysis

3.1 Global stability in case of piecewise constant switching and activation rates
In DeMarino et al. (2020), the following assumptions were made for activation rate kA and switching rate fm2 (Tat):

fm2 (Tat) =
{
αm2,A/va if Tat < Tatcrit
αm2,A if Tat ≥ Tatcrit

(10)

kA = const. (11)

In this section we study stability of model 1, which is composed of equations (1)–(9). The assumption of LTR conservation
in model 1 implies the zero steady state is always unstable given at least one of the LTRs is initially positive. Model 1 allows for
the zero steady state, which is always unstable assuming at least one of the LTRs is initially positive. Additionally, all negative
terms in each variable’s rate equation is proportional to the variable itself. This implies that since the model starts out with at
least one positive initial state (and no negative initials), no variable can become negative. Now, we shift the focus to the positive
steady state of the system.

Theorem 1. The system (1)–(9) under assumptions (10)–(11) has a unique positive equilibrium that is globally asymptotically
stable.

Proof. We prove stability in two steps. First, we decouple the system and use Bendixon-Dulac criterion to show that the isolated
(decoupled) system of LTRs has a unique positive steady state that is globally asymptotically stable. It then follows directly that
the entire system shares the same property.

Note that d
dt [LTRR + LTRI + LTRA] = 0, so the system of LTRs decoupled from the rest of the equations has a conserva-

tion law and the boundedness of LTRR,LTRI ,LTRA follows immediately. We consider the reduced two-dimensional system:

d
dt

[LTRI ] = kON − (kA + kOFF + kON )LTRI + (kI − kON )LTRA (12)

d
dt

[LTRA] = kALTRI − kILTRA. (13)

The nullclines of LTRI and LTRA are lines that intersect in the first quadrant, thus the system has a unique positive fixed point.
Let f (·) = d

dt [LTRI ] and g(·) = d
dt [LTRA]. Observe that

𝜕f
𝜕 (LTRI )

+
𝜕g

𝜕 (LTRA)
= −(kA + kOFF + kON ) − kI < 0. (14)

By Bendixson-Dulac criterion, the system does not have a periodic orbit. Therefore the unique positive steady state is globally
asymptotically stable, by Poincaré - Bendixson theorem. Stability of the original system follows by simply substituting equi-
librium values of LTRs into the rest of the equations. For instance, consider the rate equation for TAR. Let NLTR denote
αm1,RLTR∗

R + αm1,ILTR∗
I + αm1,ALTR∗

A. Then in the limit as t → ∞, the rate of change of TAR becomes:

d
dt

(TAR) = NLTR − γm1TAR (15)

This implies the unique positive steady state TAR∗ = NLTR/γm1 is globally stable. Similar argument holds for the remaining
variables. Note that the steady state of envA takes the form of a step function

env∗A =

αm2,ALTR∗

A
vaγm2

if Tat∗ < Tatcrit ,
αm2,ALTR∗

A
γm2

if Tat∗ ≥ Tatcrit ,
(16)

where Tat∗ = (αp1env∗I )/γp1 . □
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Figure 2: The shapes for the Hill function in Equation (17) for different values of n. The smooth curves of fm2 (Tat) quickly
converge to a switch function between 0 and 1 (at Tatcrit = 1) for increasing value of n. A similar observation is seen for the Hill
function in Equation (18).

The existence of the globally asymptotically stable positive steady state of the system implies that the amount of virus would
increase to a stable level once the activation of HIV-1 takes place. For model 1, it is straightforward to describe the steady-state’s
dependence on each of the parameters by obtaining the corresponding eigenvalues of the Jacobian matrix. This can provide
useful information on the rate of growth/decay of each variable to further analyze the system and its potential modifications.
On the other hand, a detailed examination of the sensitivity to each of the parameters is outside of this work scope.

3.2 Stability in case of switching and activation rates continuously depending on Tat
The model described above contains discontinuities due to the switching of the fm2 regimes based on Tat level, which may not
be biologically valid. Furthermore, the switching function limits the model’s ability to distinguish the transcriptional dynamics
as Tat approaches the critical threshold Tatcrit for T-cells and macrophages. In what follows, we introduce a continuous version
of the existing model by modifying the switches to the following form of Hill function:

fm2 (Tat) =
αm2,A

va
1 + va (Tat/Tatcrit)n
1 + (Tat/Tatcrit)n

, va > 1 (17)

kA (Tat) =
βm2,A

vb
1 + vb (Tat/Tatcrit)m
1 + (Tat/Tatcrit)m

, vb > 1 (18)

Figure 2 shows that fm2 converges to the Heaviside step function as n increases, asymptotycally approaching the form considered
in the previous section, to characterize the Tat-dependent rates in the transcription process. Not to impose additional assump-
tions, we reserve two different Hill constants n and m for fm2 (Tat) and kA (Tat). While n often takes value between 2 and 3 in
literature, or 1 in Chavali et al. (2015), the possible biologically relevant ranges of n and m are all real numbers greater than or
equal to 1. For n < 1, the activation starts rapidly at Tat = 0, which is not what we would expect biologically, so we would only
consider n ≥ 1. In this case, model 2 is the system (1)–(9) with the modification in equations (17) and (18). This modification
does not change the fact that all negative terms in the rate of change of a variable are still associated with the corresponding
variable, so similar to model 1, model 2 is also positively invariant.

The introduction of the continuous functional responses allows for a more interesting coupling of the dynamics between
different variables; however, the system’s overall dynamics still do not rely on TAR, Pr55, and p24. Additionally, within the
remaining six equations, envA does not contribute to the dynamics of the other five, and LTR is conserved. Thus, we start our
analysis on the reduced system of four differential equations (2), (3), (4), (6).

Define x = LTRI , y = LTRA, s = envI , v = Tat, a1 = kON , a2 = kI − kON , a3 = kON + kOFF , a4 = kI , a5 = αp1 , a6 = γp1 ,
a7 = αm2,I , a8 = γm2 , a9 = βm2,A/vb, a10 = vb/(Tatcrit)n and a11 = 1/(Tatcrit)n. Note that a10 = vba11, so since we take vb to be
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strictly larger than 1, a10 > a11. With these notations, the system takes on the form:

x′ = a1 + (a4 − a1)y −
(
a3 + a9

1 + a10vm

1 + a11vm

)
x (19)

y′ = a9
1 + a10vm

1 + a11vm
x − a4y (20)

s′ = a7x − a8s (21)
v′ = a5s − a6v. (22)

Similar to model 1, model 2 contains a zero steady-state that is always unstable, given at least one of the initial conditions for
LTR stages is positive. Thus, we focus our analysis on the positive steady state. Note that for m < 1, the Hill function exhibits
dynamics that are unexpected for our biological system, see Figure 2, so we discard that case. For m ≥ 1, we show that the
system contains a unique positive steady state (see Proposition 1 in the Supplementary Materials). The positivity of the unique
nontrivial steady state of our system helps establish its biological validity. However, it does not rule out the possibility of finding
a steady-state arbitrarily close to 0, which is unrealistic when HIV-1 viral load stays low but away from 0. For this reason, we
establish a proposition that establishes lower bounds (and upper bounds) on all system variables.

Recall that the system described in Equations (19)–(22) is permanent if there are positive constant M and N such that

lim sup
t→∞

max{x(t), y(t), s(t), v(t)} < M,

and
lim inf
t→∞

min{x(t), y(t), s(t), v(t)} > N .

We will show that the system in Equations (19)–(22) is permanent in the above sense for m ≥ 1. By construction, x and y are
bounded above by 1, so we only need to show they also have a positive lower bound. This results in the following proposition
(proof in Section A.2 of the Supplementary Materials).

Proposition 1. Define mx = min{a1,a4 }
a3+a9vb and my = a9

a4mx , then 0 < mx ≤ lim inf t→∞ x and 0 < my ≤ lim inf t→∞ y.

From Proposition 1, it is straightforward to show that s and v also have positive lower and upper bounds. Thus we state
the following Lemma, which also guarantees that model 2 with kA (Tat) and fm2 (Tat) continuously dependent on Tat is also
permanent.

Lemma 1. The system in Equations (19)–(22) is permanent.

3.3 Two alternative 3-dimensional approximations
Even with the previous reduction, the asymptotic dynamics of the reduced system (19)–(22) is still difficult to study. Thus,
we examine two alternative models that capture the asymptotic behavior of the reduced system. Consider the following QSS
system:

x′ = a1 + (a4 − a1)y −
(
a3 + a9

1 + a10vm

1 + a11vm

)
x (23)

y′ = a9
1 + a10vm

1 + a11vm
x − a4y (24)

v′ = a5
a7
a8

x − a6v. (25)

Alternatively, one can treat the s compartment as a delay factor in the link between x and v. In other words, we assume s(t) ≈
a7
a8 x(t − τ), where τ is a pre-determined time delay (τ ≈ 1/a8). This leads to the following Delay system:

x′ = a1 + (a4 − a1)y −
(
a3 + a9

1 + a10vm

1 + a11vm

)
x (26)

y′ = a9
1 + a10vm

1 + a11vm
x − a4y (27)

v′ = a5
a7
a8

x(t − τ) − a6v. (28)
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Figure 3: Numerical comparison of the 4-dimensional model (19)–(22), QSS model (23)–(25) and Delay model (26)–(28).
The y-axis shows the new variables and what it stands for in the original model. Parameter values are for T-cells. While all models
show similar behavior for x and y dynamics, reduced models underestimate the growth of v variable and there are differences in
transient behavior for the s variable. Nonetheless, asymptotic behaviors of all models are similar.

In Figure 3, we provide a computational comparison of these two models against the original one. Both approximations are able
to capture the asymptotic behavior of the system, but there are noticeable differences in transient dynamics, as expected. Since
the Delay model does not offer significant advantages over the QSS model in capturing long-term system behavior based on this
calculation, we will focus on the QSS model in our stability analysis. We note that the Delayed model might be useful if a more
careful analysis of the transient mode is of interest.

3.4 Stability of the QSS model
For the quasi-steady state model (23)–(25), its boundedness, positive invariance and the existence of a unique positive steady
state are direct consequences of the results we established earlier for the original 4-dimensional model. Thus, we only need
show local asymptotic stability for the positive steady state. We apply the Routh-Hurwitz criterion to arrive at the following
proposition (proof in Section A.3 of the Supplementary Materials).

Proposition 2. The positive steady state of the QSS system is locally asymptotically stable.

The complete global stability result is difficult to obtain even for the quasi-steady state system (using standard Lyapunov
functions) and may not yield additional insights. Instead, we observe that Tatcrit is several orders of magnitude smaller than the
value of Tat shortly after the experiment starts. This means model 2 is quickly reduced to model 1 unless Tatcrit is significantly
larger. Qualitatively, this means that if the production rate of Tat is high enough, then we can expect the new model to show
similar dynamical behavior to the original system (e.g., the positive steady state is globally asymptotically stable). A similar
observation should hold for a very low production rate of Tat.

In Figure 4 we numerically study the dependence of steady-state on varying parameters over a reasonable range. The follow-
ing results are representative of the study. They show that under reasonable parameter ranges, the positive steady state is always
stable. These observations suggest that the unique fixed point is expected to be global stable for model 2.

4 Qualitative Comparison of Model 1 and Model 2
DeMarino et al. (2020) collected time series data for TAR and total env RNA. Previously, standard least squares method was used
to fit model 1 given by (1)–(9) under assumptions (10)–(11) to all the data points simultaneously. We utilize the same method for
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Figure 4: Effects of varying parametermon the asymptotic behaviors of the QSS system (23)-(25). Note that the positive steady
state for x is very small but positive. The figure is representative of simulation results for all other parameters of the model. We
observe no changes to the stability of positive steady state of the system with respect to biologically realistic variations of all
parameters.

direct comparison with the behavior of model 2 specified by (1)–(9) under assumptions (17)–(18). We use the estimated values
of the parameters presented in Table 1 as our base line for the fitting procedure. Our main goal is to evaluate the capability of
model 2 to fit the data in comparison to model 1.

The function fmincon in MATLAB, which uses the interior point algorithm, is used to estimate these parameters. Addi-
tionally, the range for vb is taken to be [1, 200] (i.e. around the value of va) and the ranges for n and m are taken to be [1,∞)
since there are no known biological constraints for their upper bound. Further details of the fitting procedure and estimated
values are presented in Section A.4 of the Supplementary Materials.

Figures 5 and 6 show that both models produce similar fits for T-cells; however, model 2 gives superior fit to the macrophages
data. Specifically, model 2 can capture the downward trend near the end of the experiment. In Figure 7, we note that the effect of
Tat on the dynamics of the system quickly saturates similarly in both models. However, compared to model 1, model 2 predicts
a lower level of Tat in both cases, especially in T-cells. Based on model 2, Tat’s level is similar in both T-cells and macrophages,
whereas model 1 predicts a higher level of Tat.

5 Combining F07#13 with Standard Treatments for HIV-1

Concerning the drug F07#13, when administered, the values of w1,w5 increase higher than 1. This leads to an increase in the
steady states LTR∗

I and LTR∗
R, while LTR∗

A will decrease. Consequently, the value of env∗I will increase, while env∗A will decrease.
These effects eventually affect the production of Pr 55. Since Pr 55 can be used as a tracker for viral protein production, the
effect of F07#13 may potentially be studied by looking at how it affects the dynamics of Pr 55. Recall that model 1 is globally
asymptotically stable; thus, we can use the steady states to analyze drug effectiveness.

First, we demonstrate that it is not trivial that treatment using F07#13 will reduce the production ofPr 55. Note that F07#13
reduces the activation rate of LTR, so it negatively affects the proportion of LTRA and consequentially the production of envA
and the corresponding production of Pr 55 from envA. However, this comes at the cost of increasing the proportion of LTRI ,
which increases the production of envI that also contributes to the production of Pr 55 at an equal rate to that of envA. The
contributions of envI and envA are reflected in the final state Pr 55∗ at an equal rate of αp2w2

αp3
. In other words, it is not obvious

whether or not F07#13 effectively decreases Pr 55. For instance, consider their ratio when w2 = w3 = w4 = 1 (only F07#13 is
present) and Tat∗ ≥ Tatcrit :

env∗I
env∗A

= w1w5
αm2,I

αm2,A

kI
kA

.

This shows that F07#13 affects the relative concentration of env∗I and env∗A; however, the actual amount of increasing/decreasing
due to F07#13 is not clear. For the above reasons, we take a different approach to derive the following condition for F07#13 to
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Figure 5: Comparison of model 1 and model 2 fitted to env data in both T-cells and macrophages. (a) env data and the fitted
models’ behavior in macrophages. (b) env data and the fitted models’ behavior in T-cells.

Figure 6: Comparison of model 1 and model 2 fitted to TAR data in both T-cells and macrophages. (a) TAR data and the
fitted models’ behavior in macrophages. (b) TAR data and the fitted models’ behavior in T-cells.

Figure 7: The comparison of Tat (log scale for the y-axis) resulted from the fitting of model 1 and model 2 to TAR data and
env data in both T-cells and macrophages. The dashed horizontal line denotes the Tat-critical threshold. (a) Tat dynamics in
macrophages. (b) Tat dynamics in T-cells.
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be effective in reducing the amount of Pr 55 (for details see subsection A.5 of the Supplementary Materials).

αm2,I

αm2,A
< 1 +

kOFF
kON

. (29)

Alternatively, it can be rearranged as
αm2,A

αm2,I
>

kON
kON + kOFF

. (30)

This suggests that for the drug F07#13 to be effective in reducing the equilibrium value of Pr 55, the ratio between the rates
of production αm2,A and αm2,I must be greater than the contribution of kON in the sum kON + kOFF . It is surprising that the
effectiveness of F07#13 does not depend on the transition rates between LTRI and LTRA. We remark that this condition is
necessary because even though F07#13 may appear to be effective initially, it may not decrease the equilibrium value of Pr 55, see
Figure 9.e in DeMarino et al. (2020). Furthermore, this result is only valid close to w = 1, where w = 1

w1w5
(or for small dose), so

it may not be applicable in general. However, the idea is the same in the general case, so for the drug to be effective eventually,
we require d

dw Pr 55∗ (w) > 0 for 0 < w ≤ 1, or equivalently,[
1 − kON kA

kI (kON + kOFF ) + kON kAw

(
w +

αm2,I

αm2,A

kI
kA

)]
> 0. (31)

If this inequality holds, then we can expect the F07#13 to be effective in decreasing Pr 55, which will subsequently decrease the
production of p24. Similar analysis holds when Tat∗ < Tatcrit . Additionally, if all drugs are considered, e.g. w2,w3,w4 > 1, then
the condition becomes: [

1 − kON kAw∗

kI (kON + kOFF ) + kON kAw∗w

(
w
w∗ +

αm2,I

αm2,A

kI
kA

)]
> 0 (32)

where w∗ ≔ w3w4. This suggests the effect of the F07#13 drug can be enhanced by the other drugs. Equation (32) represents
the generalization of (29), accounting for other drugs and including all values of w ∈ (0, 1). Figure 8 demonstrates an example
of the condition (29).

The maturation of Pr 55 to p24 is targeted by the standard HIV-1 treatment cART (recall that this is represented by the
parameter w2 in the model). In Figure 9, we show the possible effects of combining F07#13 and cART. Figure 9(a) shows that
while both cART and F07#13 are effective in reducing the number of p24 at 200 hours, when used in combination, the level
of p24 is reduced further. Additionally, we provide a sample synergy map between F07#13 and cART (without accounting for
toxicity) in Figure 9(b). In that figure, an arbitrary p24 level (e.g., 1.2×106) is used to emphasize the synergistic effect between the
two treatments. The light grey area represents p24 level above the threshold, while the dark grey area represents p24 level below
the threshold. Since the boundary leans toward a higher dosage of F07#13, this shows that there is some synergetic interaction
between the two drugs.

However, because we do not consider the toxicity level and there is some lack of confidence in the exact values of the drug
effect/amount, further study with more comprehensive data is required to validate our results and estimate the specific value
of the synergy between F07#13 and cART. Finally, we remark that while we do not have the global asymptotic stability for
model 2, our previous mathematical and computational analyses suggest that it is also globally asymptotically stable. Since both
models’ asymptotic behaviors are similar (if converged), we expect the drug effectiveness study in this section to hold similarly
for model 2.

6 Feedback Loop Characterization
The previous section implies the existence of non-trivial behaviors involving Tat in a feedback loop. Hence, we examine this feed-
back loop further in this section by characterizing whether it is a self-activating or self-inhibiting loop. For the characterization
of the feedback loop involving Tat, we define

α ≔
𝜕

𝜕Tat
dTat
dt

(33)

= αp1
αm2,ILTRI − γm2envI

αp1envI − γp1Tat
− γp1 . (34)

Tat is involved in a self-activating feedback loop if α > 0. On the other hand, if α < 0, then Tat is involved in a self-inhibiting
feedback loop.

In Figure 10, we attempt to numerically characterize the feedback loop involving Tat using model 2. Both characterizations
of the self-feedback loop of Tat share a similar shape but describe two different phenomena. In macrophages, the feedback loop
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Figure 8: Using the parameters for model 1 for T-cells given in Table 1, we compare the effect of F07#13 on the dynamics
of Pr 55 for different levels of αp1 . (a) Without modification to the parameter, the condition (29) is satisfied and F07#13 is
effective in reducing the level of Pr 55. (b) By reducing the parameter αp1 1000 folds, we break the condition (29), leading to the
ineffectiveness of F07#13 in reducing the level of Pr 55.

Figure 9: Using the parameters for model 1 for T-cells given in Table 1, we compare the effect of F07#13 and cART on the
dynamics of p24. The effect of cART is set at 3 (w3 = 3), meaning it reduces the production of p24 from Pr 55 to a third. (a)
The combination of F07#13 and cART reduces the level of p24 lower than either treatment alone. (b) Level of p24 at 200 hours
with varying amounts of F07#13 and cART. Both axes represent the fold change in the drug level of F07#13 and cART. We use
an arbitrary threshold of 1.2 × 106 to emphasize the effect in varying F07#13 and cART with respect to one another. The light
grey area represents p24 level above the threshold, while the dark grey area represents p24 level below the threshold.

Figure 10: Characterization of the feedback loop involving Tat using model 2 with parameters presented in Table 1 in the
Supplementary Materials. (a) In macrophages, Tat is in a self-activating feedback loop from 0 to 120. (b) In T-cells, the self-
feedback loop of Tat is initially self-inhibiting but quickly becomes self-activating and remains so briefly before regressing to a
self-inhibiting feedback loop.
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Table 2: Characterization of Tat feedback loop in HIV-1 as observed from Figure 10.

Duration Initial time Near the critical threshold Final time

Macrophages neutral → self-activating (decreasing strength) self-activating self-activating → neutral
T-cells self-inhibiting → self-activating self-activating → self-inhibiting self-inhibiting

is entirely self-activating for the 120-hour duration of the simulation. The strength of the self-feedback loop rapidly increases
initially, then after reaching a peak around the 20-hour mark, its strength drops in a biphasic fashion toward 0. On the other
hand, the Tat self-feedback loop in T-cells starts as a self-inhibiting loop, then rapidly becomes a self-activating loop briefly before
returning to a self-inhibiting loop. The observations in Figure 10 are summarized in Table 2.

7 Discussion
HIV-1 continues to be a serious problem worldwide. Despite tremendous efforts, the ultimate cure for HIV-1 is yet to be dis-
covered. Standard treatments, such as cART, target multiple key points in the production of HIV; however, a low level of viral
products persists during latency partially due to the lack of an FDA-approved drug to inhibit the viral transcription process.
This chronic state of HIV-1 is often accompanied by neurocognitive disorders in many patients using cART (Heaton et al.,
2010; Mothobi and Brew, 2012). Additionally, experimental drugs often fail during the phase of clinical trials (Khanna, 2012;
Hwang et al., 2016). This is partially due to a lack of quantitative methods to predict the drug’s efficacy and toxicity, espe-
cially in combination with other drugs. Thus, a basic understanding of these mechanisms for HIV-1 is crucial for the successful
development of new therapies.

In this work, we carry out systematic analyses of the properties of a model of the HIV-1 transcription process that incorpo-
rates three distinct promoter states (repressed, intermediate, and activated), introduced in DeMarino et al. (2020). We propose
a smooth version of the model to address the discontinuity in the original model formulation’s functional response. Comparing
the two versions of the model reveals interesting biological insights into the transcription process for HIV-1. We also carry out a
theoretical study of the effectiveness of the experimentally-driven drug F07#13 and characterization of the dynamics of Tat. We
summarize and further discuss our findings below.

The basic biological properties and stability results of both models. We show that both models are positively
invariant, given at least one of the LTR states is initially positive. Additionally, all solutions in model 1 tend to a positive steady
state. The steady state’s closed-form allows for direct quantification of the expected viral level and its exponential transcriptional
rates, allowing us to assess their effect on the transcription process. Model 2 shares many similarities with model 1. We also show
that its solutions are permanent, and the system also exhibits a unique positive steady state. However, the complete stability
analysis is difficult due to the nonlinear functional form of Tat-dependent activation. Thus, we approximate the asymptotic
behavior of model 2 using a QSS model, which allows us to show that the unique positive steady state is locally asymptotically
stable. Furthermore, we remark that the dynamics of model 2 approaches that of model 1 in the limit when the production of
Tat is either very high or very low. Thus, we conjecture that the positive steady state is globally stable in the general case.

Qualitative comparison between T-cells and macrophages. To test the capability to capture the transcriptional
dynamics of HIV-1, we carry out a standard data fitting procedure using both models. Figures 5 and 6 show that overall model
2 is better at describing the qualitative trend in the data. Now, recall that the larger the values of n and m are, the more alike to a
switching function ka (Tat) and fm2 (Tat) become, see Figure 2. Additionally, va and vb represent the folds of increase in the rate
of activation and envA production, respectively. We note a significant difference between these values in macrophages and T-cells
for model 2. In macrophages, the values of n,m, va, vb are about one order of magnitude larger than their respective in T-cells
(see Table 1 in the Supplementary Materials). This suggests more abrupt changes in the level of transcriptional dynamics as Tat
approaches the critical threshold Tatcrit in macrophages than T-cells. Meaning, it may be more difficult to detect and monitor
the activation of HIV-1 in macrophages until the amount of Tat has passed the critical threshold. Furthermore, since the rates
of transcriptional activation are different between T-cells and macrophages, drugs that target each specific cell type can be used
together in a way that minimizes the overall toxicity and maximizes effectiveness.

Understanding the dynamics of Tat is crucial to a complete picture of the transcriptional dynamics of HIV-1, especially with
the regards to the contribution of Tat to the latency reversing event (Weinberger et al., 2005; Weinberger and Shenk, 2006).
Thus, we attempt to define and numerically characterize the self-loop of Tat (see Figure 10). Tat is part of a transcriptional
feedback loop which is often considered to be a strongly positive transcriptional feedback loop that also involved the positive
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transcription elongation factor b (P-TEFb) (Weinberger et al., 2005; Kim and Sharp, 2001; Karn, 2000), but the specific circum-
stances and the properties of the feedback loop are not well-understood. Thus, we numerically examine the characteristics of
the self-loop of Tat, which directly impacts the properties of the overall loop. In macrophages, Tat is involved in a self-activating
loop for the entirety of the 120-hour experiment, while Tat switches between a self-inhibiting to a self-activating and back to a
self-inhibiting loop in T-cells. This qualitative characterization of the self-loop of Tat is consistent in both models. The surge ob-
served in Figure 10 is perhaps due to the drugs used to induce the transcription activation. However, the end behaviors (around
the 0- and 120-hour marks) suggest that without transcription inducers or once a sufficient amount of Tat is produced to reach
efficient viral replication, the self-feedback loop of Tat becomes neutral in macrophages or self-inhibiting in T-cells, see Table 2.
This finding is biologically sensible because we would expect a decrease in the production of Tat once efficient viral production is
reached, otherwise, additional production of Tat would result in more burden in the viral production with diminishing return.

Biologically, the Hill coefficients m and n with a value greater than 1 represent Tat cooperativity in the activation of HIV-1.
While there is a lack of evidence to support Tat cooperativity in literature, the assumptions of our model formulation and
numerical simulations suggest that this is the case. Recall that in our model, Tat is needed to overcome the potential sequestration
by TAR for faster transcription. For this reason, our model incorporates Tat in a self-feedback loop. Indeed, our characterization
suggests that in both macrophages and T-cells, this self-feedback behavior can quickly become positive (at least initially) or
self-activating, see Figure 10. Thus, it means that initially, the more Tat there is, the faster Tat accumulates, leading to a more
disruptive change (e.g., switch function). As a consequence, the Hill coefficients are estimated to be greater than 1 (e.g., recall
that the Hill function only produces this phenomenon for n > 1, see Figure 2). The idea that cooperativity can arise from
positive feedback loop can also be found in other study (Andreu-Moreno et al., 2020). Additionally, it is worth pointing out
that the cumulative value of α over 120 hours is more prominent in macrophages than in T-cells, which corresponds to the larger
values of m and n in macrophages compared to T-cells.

The effectiveness of the transcriptional inhibitor F07#13 and its interaction with standard treatments.
Previous simulations in Figure 9(e) in DeMarino et al. (2020) shows that while a drug (e.g., F07#13) may appear to be ineffective
(or effective) initially, the result may differ. This leads to our study of the potential effect of the HIV-1 transcription inhibitor
drug F07#13 based on the steady-state’s closed-form expression for model 1. We establish a condition that ensures the overall
effectiveness of F07#13 – that can be carried out similarly for other drugs. Furthermore, we generalize this condition to include
the effect of other drugs, which allows a study of combination therapy to be carried out naturally.

Our simulation and analyses suggest that the incorporation of HIV-1 transcription inhibitors, such as F07#13, in combi-
nation with other HIV-1 treatments may improve their efficacy due to their potential synergy with one another, see Figure 9.
Furthermore, we observe that the condition in equation 30 implies that the effectiveness of F07#13 only depends on the transi-
tion rates between LTRR and LTRI (and not the activation rate from LTRI to LTRA). This means a drug that suppresses the
transition from LTRR to LTRI (or enhances the reverse transition) would work well with F07#13.

Limitation and future work. Using a combination of mathematical analysis and computational simulations, we show
interesting observations in the transcriptional dynamics of HIV-1, especially the differentiation in behaviors in T-cells and
macrophages. While our model is constructed based on current biological knowledge and supported with experimental data, it
has some strong assumptions and limitations. The model is constructed for the analysis of short term transcriptional dynamics
of HIV-1. Thus, many of the rate parameters are linear, making it unsuitable for studying the long term dynamics of HIV-1.
Furthermore, certain parameters are difficult to observe or estimate from experimental data alone, which necessitates our data
fitting process. Additionally, the model does not account for the difference between degradation and exit rates of certain vari-
ables. While the model can be modified to account for the extracellular contents to distinguish between degradation and exit
rates, this would further increase the model’s complexity.

Regarding numerical aspects, we carry out basic data fitting and simulations to show the capability of the model to capture
the transcriptional dynamics in the data and demonstrate the theoretical results. Extensive sensitivity analysis and perhaps more
sophisticated data fitting schemes should be carried out in the future for better uncertainty quantification of the estimated pa-
rameter values and model findings. Finally, while we consider the primary effect of the transcriptional inhibitor F07#13 to reduce
the activation rate of LTR, other secondary effects of F07#13 are not taken into account. Thus, a direct extension would be to
account for all known effects of F07#13 and cART (along with their potential toxicity) in the study of treatment combination.
Such a study may prove useful in drug development for clinical application.
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