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Abstract

This chapter is concerned with the identification and estimation of models of labor
supply. The focus is on the key issues that arise from unobserved heterogeneity, non-
participation and dynamics. We examine the simple “static” labor supply model with
proportional taxes and highlight the problems surrounding nonparticipation and miss-
ing wages. The difference-in-differences approach to estimation and identification is
developed within the context of the labor supply model. We also consider the impact of
incorporating nonlinear taxation and welfare program participation. Family labor sup-
ply is looked at from both the unitary and collective perspectives. Finally we consider
intertemporal models focusing on the difficulties that arise with participation and het-
erogeneity.

Keywords

labor supply, consumption, taxation, microeconometrics

JEL classification: D1, D9, J2



Ch. 69: Labor Supply Models 4671

1. Introduction

This chapter is concerned with the identification and estimation of labor supply mod-
els. The specification and estimation of such models has already been the subject of
numerous studies and surveys.1 So why this one? The overall objective of this chapter
is to consider models that allow policy evaluation and simulation allowing for individ-
ual heterogeneity. Evaluation concerns the assessment of reforms that have taken place.
Policy simulation concerns the assessment of proposed reforms. For the most part it is
the latter that has been the central concern of empirical researchers. That is to construct
a model that can reliably be used for the assessment of proposed reforms. Since many
policy proposals involve the reform of highly nonlinear budget constraints and impact
decisions that are discrete and cover the whole life-cycle, we argue that a fully specified
dynamic structural model is the ideal. In particular, it is of central importance to con-
sider how labor supply and saving decisions interact and how policy affects labor supply
decisions within a period as well as intertemporally. However, this ideal has a number
of practical and theoretical difficulties. In certain situations, the evaluation of existing
reforms can be analyzed using much simpler and potentially more robust techniques.

To best convey the set of issues surrounding estimation of labor supply models we
start with the simplest static framework and build up to the more complete dynamic
models, adding important elements such as nonlinear budget sets on the way. Thus,
the layout of the chapter is as follows. Section 2 presents an assessment of the estima-
tion issues underlying the simple ‘static’ labor supply model with proportional taxes
and highlights the problems surrounding nonparticipation and missing wages. In Sec-
tion 3 we consider the natural experiment and difference-in-differences approaches to
estimation and evaluation of reforms, laying out the identifying assumptions underlying
interpretation of the results. We consider estimation of a simple discrete policy response
parameter as well as the estimation of income and substitution effects. In Section 4 we
examine the impact of incorporating nonlinear taxation and welfare program participa-
tion. Section 5 considers some of the specific issues that relate to family labor supply,
including the development of the collective approach and welfare program participa-
tion as previously articulated. Section 6 discusses intertemporal labor supply models.
This section reviews the various approaches taken to dynamic modeling and examines
the difficulties that arise with participation and heterogeneity. Section 7 concludes the
chapter.

2. Estimation and identification with participation with proportional taxes

We begin by considering the simple static model of hours and consumption choices. We
leave the discussion of nonlinear budget sets to Section 4.

1 For overall evaluations and surveys see Killingsworth (1983), MaCurdy (1985), Killingsworth and Heck-
man (1986), Heckman (1993), Mroz (1987), Hausman (1985a, 1985b), Pencavel (1986), Blundell and
MaCurdy (1999) to mention a few.
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2.1. Static specifications

2.1.1. The allocation of hours and consumption

Utility is defined over hours of work h and consumption c, both of which are restricted
to be nonnegative and h is restricted to be below a maximal amount of an available time
endowment. Formally, this discussion is easily extended to the case of family labor sup-
ply decisions where h is a vector of household labor supplies. However, there are many
specific issues relating to joint participation decisions and to the allocation of resources
within the family that are central to any study of family labor supply; we leave our
discussion of family labor supply models to Section 5. Equally, consumption decisions
can be disaggregated. This disaggregation is central to the analysis of nonseparability
of goods and leisure. We turn to this below.

If we let y represent the total unearned income available for consumption, and w the
real wage rate, then the optimal choices for c and h are given by the solution to

(2.1)max
c,h

{
U(c, h)

∣∣ c − wh = y; c � 0; h � 0
}

where U(c, h) is a quasiconcave utility index defined increasing in c and −h. The re-
sulting labor supply has the form

(2.2)h = h(w, y).

In the static model y is taken to be income from other sources. However it turns out
that the precise definition of y is crucial: If y is measured as the difference between
total consumption expenditure and earnings, c − wh = y, it is consistent both with
intertemporal two-stage budgeting both in the absence of liquidity constraints and with
the presence of liquidity constraints that are unrelated to labor supply. This is discussed
in a subsection below.

The indirect utility representation of preferences is given by

(2.3)V (w, y) ≡ U
(
wh(w, y) + y, h(w, y)

)
which is linear homogeneous, quasiconcave in prices p, w and y, decreasing in p and w

and increasing in y. The various representations of preferences (direct or indirect utility)
detailed below are going to be particularly useful in specifying empirical models and
defining the likelihood function.

2.1.2. Two-stage budgeting specifications and within-period allocations

Labor supply and consumption models are frequently analyzed in a two-good frame-
work. Such modeling is less restrictive than it sounds because under Gorman’s (1959,
1968) two-stage budgeting, this labor supply model can be seen as the top stage where
“full income” is shared between consumption and leisure and then the consumption
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budget is split among goods. However, for such an interpretation with all goods being
represented by one or two price indices, we require some conditions on preferences.

Suppose utility is defined over hours of work h and a vector of goods q. Assume the
individual has a within-period utility function of the form

(2.4)υt = v(ct , ht , pt ) = max
q,h

{
u(qt , ht )

∣∣ p′
tqt = ct

}
where pt is a vector of prices corresponding to the disaggregated commodity vector qt .
The function υt is a conditional indirect utility function which is increasing in total
consumption expenditure ct , decreasing and concave in prices and decreasing in hours
of work ht .

We say that qt is weakly separable from ht if the marginal rate of substitution be-
tween goods qt does not depend on ht . In this case the utility function can be written as
u(u1(qt ), ht ) where u1 is a sub-utility function. If in addition the marginal utilities of
qt and ht do not depend on each other then we say that the utility function is additively
separable, in which case the utility function can be written as u1(qt ) + u2(ht ). Blacko-
rby, Primont and Russell (1978) have a detailed analysis of the concepts of separability
and Deaton (1974) analyzes the empirical implications of the additive separability as-
sumption.

Gorman (1959) has shown that if a set of goods x1 is separable from goods x2 then
it is possible to express the demands for goods x1 simply as a function of the total
expenditure allocated to this group (x1) and the prices of these goods alone (say p1).
In addition, if preferences can be expressed in the generalized Gorman polar form, then
it is possible to express the overall expenditure allocations to each group as a function
of the price indices for each group. This theorem can justify considering the allocation
of total expenditure to overall consumption and leisure separately from the problem of
how expenditure is allocated to goods. However, it has to be borne in mind that the
justification which allows us to write labor supply as a function of the real wage alone
(rather than of all relative prices) does imply restrictions on preferences.

These results offer a justification of the static model within an intertemporal context
since the concept of separability can extend both over goods and over time.2 Typically
we impose additive separability over time in which case the marginal utility of con-
sumption or hours of work in one period is unaffected by consumption and hours in any
other time period. Additive intertemporal separability has the implication that we can
use two-stage budgeting to characterize consumption choices: given the level of con-
sumption and separability, the within-period demands for goods qt only depend on the
prices of those goods and on wages (if the goods are not separable from hours). The in-
direct utility function defined by (2.4) then becomes the criterion function for allocating
consumption (and hours) over the life-cycle.3

2 See Gorman (1959), MaCurdy (1983), Altonji (1986), Blundell and Walker (1986) and Arellano and
Meghir (1992).
3 Utility (2.4) implicitly assumes separability over time thus ruling out habits and/or adjustment costs [see

Hotz, Kydland and Sedlacek (1988) and Meghir and Weber (1996)].
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It is well known that taking a monotonic transformation of the utility function does
not change the observed within-period allocations. In an intertemporal context this is-
sue acquires a special importance: taking a monotonic transformation does not alter the
way that consumption and hours are allocated within period, under intertemporal sepa-
rability. However, it does potentially change the marginal rate of substitution between
periods. Hence, as we will discuss further below, estimating intertemporal preferences
generally requires intertemporal data.

Noting that modeling the monotonic transformation is modeling intertemporal pref-
erences, we use the slightly more elaborate notation

(2.5)υt = ψ
[
U(ct , ht |z1t ), z2t

]
where ψ[·] is a monotonic function of its first argument U and where z1 and z2 are
variables (observed or otherwise) that affect preferences over consumption and hours
of work. In particular, z2t affects intertemporal allocations but not within-period ones
(unless it contains common elements with z1t ). Our focus in this section is on within-
period allocations. The discussion here should make it clear that one can work with the
utility function (2.1) to represent within-period allocations of consumption and hours of
work consistent with life-cycle choices.

2.1.3. Empirical labor supply specifications

Preferences can be represented by direct utility functions, indirect utility functions or by
the labor supply equation itself. In each case the function has to satisfy some basic prop-
erties to be consistent with theory. Here we briefly review some standard specifications
of the static labor supply model (2.2) and relate them to their indirect utility function.
Such specifications are usually chosen for ease of estimation and here we simply con-
sider the specifications and their underlying model of preferences. With unobserved
heterogeneity and nonparticipation it is useful, if not essential, to have some relatively
simple parametric specification in mind.

The linear labor supply model

(2.6)h = α + βw + γy

has indirect utility

(2.7)V (w, y) = eγw

(
y + β

γ
w − β

γ 2
+ α

γ

)
with γ � 0 and β � 0.

Although popular [see Hausman (1981, 1985a, 1985b), for example], it is arguable that
this linear specification allows too little curvature with wages.

Alternative semilog specifications and their generalizations are also popular in em-
pirical work. For example, the semilog specification

(2.8)h = α + β ln w + γy



Ch. 69: Labor Supply Models 4675

with indirect utility

V (w, y) = eγw

γ

(
γy + α

β

γ
+ β ln w

)
− β

γ

∫
γy

eγy

γy
d(γy)

(2.9)with γ � 0 and β � 0.

Moreover, the linearity of (2.8) in α and ln w makes it particularly amenable to an empir-
ical analysis with unobserved heterogeneity, endogenous wages and nonparticipation as
discussed below. Consequently, this specification is used extensively in our discussion
of estimation that follows.

Neither (2.6) nor (2.8) allows backward-bending labor supply behavior although it
is easy to generalize (2.8) by including a quadratic term in ln w. Note that imposing
integrability conditions at zero hours for either (2.6) or (2.8) implies positive wage and
negative income parameters. A simple specification that does allow backward-bending
behavior, while retaining a three-parameter linear-in-variables form, is that used in
Blundell, Duncan and Meghir (1992):

(2.10)h = α + β ln w + γ
y

w

with indirect utility

(2.11)

V (w, y) = wβ+1

β + 1

(
y

w
(1 + γ )2 + β ln w + α − β

1 + γ

)
with γ � 0 and β � 0.

This form has similar properties to the MRS specification of Heckman (1974c).
Generalizations of the Linear Expenditure System or Stone–Geary preferences are

also attractive from certain points of view. For example suppose the indirect utility func-
tion for individual i in period t takes the form

(2.12)Vit =
[
wH + y − a(w)

b(w)

]
where H is the maximum amount of hours available to be allocated between hours
and leisure. This is the quasi-homothetic “Gorman polar form”. The linear expenditure
system belongs to this class. However, there is no need to impose additive separability
between consumption and hours of work as would be the case under Stone–Geary/LES
preferences. Indeed, such separability assumptions severely constrain the time path of
consumption and hours of work and can lead to the impression that the life-cycle model
is unable to explain a number of observed phenomena, see Heckman (1974b). In partic-
ular we may specify

(2.13)a(w) = a0 + a1w + 2a2w
1
2

and

(2.14)b(w) = wβ
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which is a Generalized Leontief model. Preferences are additive and reduce to LES if
a2 = 0.

The implied labor supply function using (2.12)–(2.14) can be derived using Roy’s
identity and takes the form

(2.15)hit = (H − a1) − a2w
− 1

2 − β

w

(
M − a0 + a1w + 2a2w

1
2
)

where M = wH + y. Unobserved heterogeneity can also easily be allowed for, as well
as measurement error in hours of work (but not in hourly wages) and/or consumption.
For example, we can allow a1 to be heterogeneous across individuals and time, i.e.
a1 = a1 +ε. Under the simplifying assumption that a1 is the only source of heterogene-
ity the error term in the earnings equation now becomes ν = −ε(1 + β).

2.2. Estimation of the static labor supply model

The main estimation issue, ignoring problems related to participation and nonlinear
taxation (discussed below), is the endogeneity of wages w and unearned income y.
Wages may well be endogenous because unobservables affecting preferences for work
may well be correlated with unobservables affecting productivity and hence wages.
Unearned income may be endogenous for a number of reasons: If y represents asset in-
come, then individuals who work harder (because of unobserved preferences for work)
are also likely to have accumulated more assets.4

Take as a simple example the semilog model of labor supply as above, i.e.

(2.16)hi = α′xi + β ln wi + γyi + ui.

The subscript i denotes an individual. The variables x denote observables which deter-
mine preferences. We avoid using the log of y because it is conceivable that it is zero
and, in some cases, even negative. We add to this system a wage equation

ln wi = δ′
1xi + δ′

2zi + vi

and a reduced form equation for unearned income

yi = ζ ′
1xi + ζ ′

2zi + εi .

Identification requires that the dimension of the variables excluded from the labor sup-
ply equation, zi , is at least two. It also requires that the matrix [δ′

2ζ
′
2] has rank 2. In

this linear framework, estimation is straightforward – two-stage least squares is the ob-
vious choice. However, we will see below that it is convenient to estimate the three
reduced forms first and then impose the parametric restrictions to recover the structural

4 If μ also represents income from spouses, positive assortative mating will imply that hard-working individ-
uals will tend to marry. Hence unobserved preferences for work will correlate with spousal income reflected
in μ.



Ch. 69: Labor Supply Models 4677

coefficients using minimum distance. The reduced form labor supply model is

hi = (α + βδ1 + γ ζ1)
′xi + (βδ2 + γ ζ2)

′zi + ui.

Given estimates of all the reduced form coefficients the restrictions can then be imposed
using minimum distance. Thus let

α1 = (α + βδ1 + γ ζ1), α2 = (βδ2 + γ ζ2), α3 = [δ′
1δ

′
2ζ

′
1ζ

′
2

]′
,

and let Ω represent the covariance matrix of the OLS estimator of the three-equation
reduced form system. Finally let α(θ) = [α1α2α3]′ where θ represents the set of para-
meters in the labor supply model, the wage equation and the unearned income equation.
Then the optimal minimum distance estimator is

θ̂ = arg min
θ

{(
α̂ − α(θ)

)′
Ω−1(α̂ − α(θ)

)}
.

The resulting estimator is efficient, to the extent that the first-step estimator is efficient.
When the labor supply model is nonlinear this straightforward procedure is no longer

available. In this case an alternative approach is maximum likelihood or semiparametric
instrumental variables. Maximum likelihood will be discussed below in the context of
the labor supply model with corner solutions and nonlinear taxation. Hence we avoid
duplication by deferring discussion until then.

In the absence of censoring, one can use nonparametric instrumental variables as in
Newey and Powell (2003) and Darolles, Florens and Renault (2000). Consider the case
where the labor supply is an unknown function of w and y

hi = h(wi, yi) + ui.

The object is to estimate the function h. Suppose we have a set of instruments z (at
least two if we are to treat both the wage and other income as endogenous). We assume
that the error in the labor supply function satisfies the rank condition, E(ui |zi) = 0. In
addition one needs a strong identification assumption ensuring that any function of w,
y can be explained by the instruments z. Under these conditions solving the moment
condition

E
(
hi − h(wi, yi)|zi

) = 0

for the function h(wi, yi) provides a nonparametric estimator.
In the context of censoring due to nonparticipation a control function approach turns

out to be more useful. However, it is important to note that the assumptions underlying
the control function are different from those underlying the IV approach above, unless
the instruments are independent of the unobservables.5 A form of the control function
approach relies on the assumption that

E(ui |z, x,w, y) = g(vi, εi)

5 Florens et al. (2007).
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where vi and εi are the error terms from the wage and unearned income equations re-
spectively.6 With unknown h, identification also requires measurable separability which
ensures that the functions g and h vary independently and is the equivalent of the rank
condition. In a parametric framework the requirements are less stringent since we are re-
stricting attention to specific functional forms. One approach to estimation would be to
take a series expansion of g. Alternatively we could use some kernel estimator. The pro-
cedure works under a generalized rank condition; however the important point to note is
that even under nonlinearity we do not require explicit distributional assumptions, other
than the restriction on the conditional expectation of u.7 Nevertheless it should be noted
that in practice it may be difficult to motivate the control function assumption, which
contrasts with the orthogonality conditions above that are often derived from economic
theory.

2.3. The censored regression model

Labor market participation raises two key questions for modeling labor supply. First,
what market wage distribution should be used for nonparticipants? Second, are there
features of the labor market that make labor supply behavior on the extensive margin
(participation) fundamentally different from behavior on the intensive margin (hours
of work)? These questions are not wholly unrelated since, without further restrictions
on the distribution of offered wages among nonparticipants, it is difficult to separately
identify a process for nonparticipation and for hours of work.

Among the most compelling reasons for separating these two margins is fixed costs
of work – either monetary or time. We take up the issue of fixed costs in Section 2.5, and
begin by working through a model without fixed costs. We consider first semiparametric
estimation in a model with missing wages.

Suppose individual heterogeneity in tastes for work is represented by the random vari-
able v. Observed hours of work (2.2) in the censored regression case can be represented
by

(2.17)h = max
{
f (w, y, x, v), 0

}
where f (w, y, x, v) represents desired hours of work

(2.18)f (w, y, x, v) ≡ h∗

and where y represents some measure of current period unearned income.
The censored labor supply model implies the reservation wage condition

(2.19)h > 0 ⇔ w > w∗(y, x, v)

6 For a more general case with unknown h see Newey, Powell and Vella (1999) or Florens et al. (2007) who
derive conditions for identification.
7 Two functions g(e) and h(v) are measurably separable iff whenever g(e) − h(v) = 0 a.s. implies g(e) and

h(v) are constant functions.
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where w∗ is defined implicitly by

(2.20)0 = f (w∗, y, x, v).

The existence and uniqueness of the reservation wage in this simple world is guaran-
teed by revealed preference arguments. Given the market wage w, (2.17) also defines a
threshold condition on the unobservable heterogeneity term v given by

h > 0 ⇔ v � v∗(w, y, x) ⇒ Pr(h > 0) =
∫

v�v∗
g(v) dv

where g(v) is the density function for v.
To implement this censored regression specification we define the index Ii as an in-

dicator variable that is unity if individual i participates8 and zero otherwise. Observable
hours of work then follow the rule

(2.21)hi =
{

h∗
i if Ii = 1,

0 otherwise.

That is

Ii = 1 ⇔ h∗
i > 0

(2.22)= 1
{
h∗

i > 0
}
.

This implies that participation in work follows a simple corner-solution framework and
is equivalent to assuming there are no fixed costs.9

The log likelihood for an independently distributed random sample of n individuals
in the censored model is given by

(2.23)ln L(θ) =
n∑

i=1

(
Ii ln g(ν; θ) + (1 − Ii) ln

∫
v�v∗

g(v; θ) dv

)
where θ are the unknown parameters of preferences and g is the distribution of v. In
a linear specification with a normal iid assumption on v, this is equivalent to the Tobit
censored regression specification.

The likelihood specification (2.23) makes two implicit assumptions on the wage dis-
tribution. First, that wages are observed for all individuals irrespective of their labor
market status. Second, that wages are exogenous for labor supply. Neither of these is
a priori reasonable.

8 By participation we mean participation in paid work.
9 By contrast, the fixed costs framework retains

Ii = 1 ⇒ h∗
i > 0

but not the reverse. As Cogan (1980) shows, fixed costs are equivalent to a positive reservation hours of work.
We elaborate on this in Section 2.5 below.
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2.4. Missing wages

Wages are not observed if h = 0. Suppose the model for wages can be written as

(2.24)ln w = γ1x + γ2q + η

where q are a set of variables that are exclusive to the determination of real wages and
where η is an iid error term with distribution gw(η). The likelihood contribution for
h = 0 becomes

h > 0, �0 = g(v)gw(η),

(2.25)h = 0, �0 =
∫ ∞ ∫ v∗

g(v)gw(η) dv dη.

By writing the joint distribution of ν and η as a product of the two marginals we
have implicitly maintained that wages are exogenous for labor supply. This implies that
the density of wages can be estimated separately; in a labor supply model linear in log
wages this further implies that we can simply impute wages for all nonworkers and
estimate the model as if wages are observed (correcting the standard errors of course
for generated regressor bias). However, if we wish to relax this assumption and permit
w to be endogenous in the hours equation, the sample likelihood becomes

(2.26)ln L(φ) =
n∑

i=1

(
Ii ln ghw(v, η) + (1 − Ii) ln

∫ ∞ ∫ v∗
ghw(v, η) dv dη

)
where ghw(v, η; φ) is the joint distribution of ν and η.

The resulting estimator simplifies enormously if we assume a parametric specification
that permits an explicit reduced form for desired hours of work. A popular example of
such a specification is the semilog labor supply model to which we now turn.

2.4.1. A semilog specification

Suppose we write the optimal labor supply choice for individual i as

(2.27)h∗
i = β1 ln wi + β2yi + β3xi + vi

where β1, β2 and β3 are unknown parameters of labor supply. Labor supply and wages
are now completely described by the triangular system consisting of (2.24) and the
following reduced form for desired hours of work:

h∗
i = (β1γ1 + β3)xi + β1γ2qi + β2yi + β1ηi + vi

= π1xi + π2qi + π3yi + ωi

(2.28)= πzi + ωi.
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2.4.2. Semiparametric estimation

If it can be assumed that vi and ηi are distributed independently of the explanatory
variables x, q and y then semiparametric identification and estimation can take the
following simple stepwise procedure.

The π coefficients in (2.28) can be estimated from a standard censored regression
estimation procedure. If gω(ω) describes the density of ω, then the sample likelihood
for a random sample of i = 1, . . . , n individuals is given by

(2.29)L(π) =
n∏

i=1

{
gω(ω|π)

}Ii

{
1 −

∫
−π ′zi

gω(ω|π) dω

}1−Ii

which is equivalent to the sample likelihood for the Tobit model when ω is homoskedas-
tic normal. Root-n consistent and asymptotically normal estimators of π can be derived
under much weaker assumptions on gω, see Powell (1987).

Given π , the conditional mean of (2.24) for participants can be used to estimate the
wage equation parameters. This is the Heckman (1976, 1979) selectivity framework.
Suppose we assume

(2.30)E(ηi |Ii > 0) = λη(π
′zi),

then the conditional mean of (2.24) given Ii > 0 is simply written as

(2.31)E(ln wi |z, Ii > 0) = γ ′
1xi + γ ′

2qi + λη(π
′zi).

If a joint normal distribution is assumed for vi and ηi then estimation can follow
the two-step selectivity estimation approach developed by Heckman (1979). Alterna-
tively, a

√
N consistent and asymptotically normal semiparametric estimator can be

constructed.
To consider the semiparametric estimator, notice that the conditional expectation of

(2.31) for participants given πzi is

(2.32)E(ln wi |π ′zi, Ii > 0) = γ1E(xi |π ′zi) + γ2E(qi |π ′zi) + λη(π
′zi).

Subtracting this from (2.31) eliminates the λη(π
′zi) term yielding

E(ln wi |z, Ii > 0) − E(ln wi |π ′zi, I > 0)

(2.33)= γ ′
1

(
xi − E(xi |π ′zi)

)+ γ ′
2

(
qi − E(qi |π ′zi)

)
.

The conditional expectation terms E(ln wi |πzi), E(xi |πzi) and E(qi |πzi) in (2.33)
can then be replaced by their unrestricted Nadaraya–Watson kernel regression estima-
tors.10

10 E.g.

̂E(qi |π ′zi ) = q̂h(πz) = r̂(π ′z)
f̂ (π ′z)
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The parameters of (2.31) can then be recovered by an instrumental variable re-
gression. Robinson (1988) suggests regressing ln w − l̂n wh(πz) on x − x̂h(πz) and
q − q̂h(πz) using I [f̂ (πz) > bN ]x and I [f̂ (πz) > bN ]q as the respective instrumental
variables, where I [f̂ (ln x) > bN ] is an indicator function that trims out observations
for which f̂ (ln x) < bN , for some sequence of trimming constants bN which tend to
zero with the sample size at some appropriate rate. An alternative estimator, due to Pow-
ell (1987), is to use f̂ (πz).x and f̂ (πz).q as instruments. This effectively removes the
random denominators from the kernel regression estimators.

Finally, given the γ1, γ2, π1, π2 and π3 parameters, the structural labor supply pa-
rameters β1, β2 and β3 can be recovered by minimum distance. In general, these steps
can be combined to improve efficiency. Provided a suitable instrumental variable is
available, this procedure can also be extended to control for the endogeneity of other
income yi . We consider this in more detail below.

2.5. Fixed costs

2.5.1. A structural model of fixed costs

Fixed costs imply that participation does not simply follow the corner-solution con-
dition (2.22). Instead participation will depend on the determinants of fixed costs as
well as the determinants of h∗

i . For example, suppose there is a fixed monetary cost of
working S; this implies that nonlabor income in the budget constraint becomes

y − S if h > 0,

y if h = 0,

and the distribution of S is only partially observable. If we denote utility in work at the
optimal hours point by the indirect utility level: ν(w, y, v) and utility at h = 0 by the
direct utility at h = 0: U(Y, 0, v), the decision to work follows from

ν(w, y, v) � U(Y, 0, v).

Note that if S > S 	 0 then there will be a discontinuity in the hours distribution at low
wages which should reflect itself as a “hole” at the low end of the hours distribution.11

in which

r̂(πz) = 1

n

∑
i

Kh(πz − πzi)qi and f̂ (πz) = 1

n

∑
i

Kh(πz − πzi ),

where Kh(·) = h−1k(·/h) for some symmetric kernel weight function k(·) which integrates to one. The
bandwidth h is assumed to satisfy h → 0 and nh → ∞ as n → ∞. Under standard conditions the estimator
is consistent and asymptotically normal, see Härdle and Linton (1994).
11 This may not be visible since heterogeneity in fixed costs and in unobserved tastes may imply a different
position for the discontinuity for different individuals, smoothing out the unconditional distribution. Hence
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This model is further developed in Section 4; here we analyze empirical models that are
motivated by the presence of fixed costs of work.

Cogan (1981) defines reservation hours h0 such that

U1(T − h0, y − S + wh0, x, v) = U0(T , y),

(2.34)h0 = h0(y − S,w, x, v) � 0

and the participation decision becomes

(2.35)Pr(work) = Pr
(
h > h0).

For any v and η, nonparticipation will occur if fixed costs are sufficiently high:
S > S∗(v, η).

Suppose we continue to assume wage equation (2.24) and also assume the specifica-
tion of fixed costs to be

(2.36)S = θ1x + θ2m + s

where m are a set of variables exclusive to the determination of fixed costs and s

represents unobserved heterogeneity in the distribution of fixed costs. In terms of the
likelihood contributions we have for the “no work” regime:

(2.37)�0 =
∫ ∞

−∞

∫ v∗

−∞

∫ ∞

S∗
g(v, η, s) ds dv dη;

and for the work regime:

(2.38)�1 =
∫ ∞

v∗

∫ S∗

0
g(ε, v, η, s) ds dv.

Given some parametric specification of direct (and indirect) utility, all the structural
parameters of fixed costs, preferences and wage determination are identified from a
likelihood based on the contributions (2.37) and (2.38).

Finally note that if we specify a model on the basis of the indirect utility or cost
function we may not have an analytical expression for the direct utility function. Conse-
quently this has to be obtained numerically. One way of doing this is to find the standard
reservation wage when hours are zero and the fixed costs have not been incurred. Eval-
uating the indirect utility function at that reservation wage and nonlabor income then
provides us with the utility value of not working. Another important difficulty is then to
derive the probability of participation given that the direct utility function at zero hours
of work will depend on unobserved heterogeneity both directly and via the reservation
wage – hence it is likely to be a highly nonlinear function of the underlying error term.
In practice, as we argue later, it may be easier to work with a direct utility specification
when we have to deal with such nonconvexities.

looking for such “odd” features in the hours distribution may not be a very good empirical strategy for detect-
ing fixed costs. However such features can be seen in the distribution of relatively homogeneous groups, e.g.
single women with no children or single men.
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2.5.2. Semiparametric estimation in the fixed costs model

Although the (semiparametric) censored regression approach to the estimation of the
hours equation described above is no longer valid in this fixed costs case, a semipara-
metric procedure applied to hours of work among the participants can be used as an
approximation to the fixed costs model. The optimal choice of hours of work among
those individuals who decide to join the labor market will have the form

h∗
i = β1 ln wi + β2(yi − Si) + β3xi + vi

= (β1γ1 + β2θ1 + β3)xi + β1γ2qi + β2yi + β2θ2mi + β1ηi + β2si + vi

= π̃1xi + π̃2qi + π̃3yi + π̃4mi + ui

(2.39)= π̃ z̃i + ui

where again the β1, β2 and β3 are unknown parameters of labor supply. Labor supply
and wages are now completely described by the triangular system consisting of (2.24)
and (2.39).

Assume that the participation condition (2.35) can be well approximated by the dis-
crete index model

(2.40)Ii = 1 ⇔ φz̃i + ei > 0

where z̃i contains all the exogenous variables determining reservation hours, log wages
and desired hours of work. The term ei is a random unobservable whose distribution Fe

is normalized up to scale and assumed to be independent of z̃i . Parameters φ will be a
convolution of parameters of fixed costs, the wage equation and preferences. They can
be identified through the condition

(2.41)E(Ii = 1|z̃i ) =
∫

−φz̃i

dFe(e).

The φ coefficients in (2.40) can be estimated up to scale from a standard binary choice
estimation procedure which replaces the censored regression rule (2.21) in this fixed
costs model. The sample likelihood for a random sample of i = 1, . . . , n individuals is
given by

(2.42)�(φ) =
n∏

i=1

{∫
−φz̃i

dF (e)

}Ii
{

1 −
∫

−φz̃i

dF (e)

}1−Ii

which is equivalent to the probit likelihood when e is homoskedastic normal.
√

N con-
sistent and asymptotically normal estimators of φ up to scale can be derived under much
weaker index assumptions on f , see Klein and Spady (1993) for example.

Given φ, the conditional mean of (2.24) for participants can be used to estimate
the wage and hours equation parameters. This is the Heckman (1976, 1979) selectiv-
ity framework. Suppose we assume the single index framework

(2.43)E(ηi |Ii > 0, z̃i ) = λη(φz̃i)
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and

(2.44)E(ui |Ii > 0, z̃i ) = λu(φz̃i),

then the conditional mean of (2.24) and (2.39) given Ii > 0 are simply written

(2.45)E(ln wi |Ii > 0) = γ1xi + γ2qi + λη(φz̃i)

and

E(hi |Ii > 0, z̃i )

(2.46)= (β1γ1 + β2θ1 + β3)xi + β1γ2qi + β2yi + β2θ2mi + λu(φz̃i),

where z̃i is taken to include all exogenous variables. If a joint normal distribution is
assumed for vi , ηi and si then estimation can follow the two-step selectivity estimation
approach developed by Heckman (1979).

Notice that (2.45) and (2.46) together only identify γ1, γ2, β1 and β2; the parame-
ters of fixed costs and β3 are not identified without more information on fixed costs.
A

√
N consistent and asymptotically normal semiparametric estimator of these para-

meters can be constructed from a natural extension of the procedures described above
for the censored labor supply model.

For participants we have

E(hi |φz̃i, Ii > 0) = π̃1E(xi |φz̃i, Ii > 0) + π̃2E(qi |φz̃i, Ii > 0)

+ π̃3E(yi |φz̃i , Ii > 0) + π̃4E(mi |φz̃i, Ii > 0)

(2.47)+ λu(φz̃i).

The nonparametric term describing the selection of participants can be eliminated as
in (2.33) and root-n estimation of the unknown index parameters can also follow the
same semiparametric techniques.12

Finally, we should note that endogeneity of yi can be handled in a similar fashion.
Suppose a reduced form for y is given by

(2.48)yi = ϑ ′di + ζi;
since yi is continuously observed for all individuals, ϑ can be estimated by least squares.
Now suppose we also assume that

(2.49)E(ui |Ii > 0, yi, z̃i ) = δyζi + λu(φz̃i).

Then adding the estimated residual from the regression (2.48) into the selection model
(2.46) appropriately corrects for the endogeneity of yi . This is an important considera-
tion given the consumption-based definition of yi in the life-cycle consistent specifica-
tion.

12 See Newey, Powell and Walker (1990) for some empirical results using semiparametric selection methods.
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3. Difference-in-differences, natural experiments and grouping methods

One of the central issues in labor supply is the endogeneity of marginal (post-tax) wages
and other incomes. The work incentives facing individuals are usually endogenous.
Consider as an example a world with a progressive tax system, as will be examined
in detail in the next section. In this case individuals earning more face a higher rate of
tax and hence a lower marginal incentive to work. Now take two individuals both of
whom have the same pre-tax wage but different tastes for work. The person working
longer hours will earn more and will face a higher tax rate, which translates to a lower
post-tax marginal wage. In a simple regression framework we would estimate a nega-
tive effect of the wage on hours of work since the person with higher hours (because of
tastes) will be facing a lower wage. This kind of endogeneity has prompted researchers
to seek exogenous sources of variation in policy that resemble experimental situations
with a “treatment” group affected by the policy and a “control” or “comparison” group
which is unaffected. The impact of incentives is then estimated by comparing the change
in hours between the two groups before and after the policy is implemented.

Using this basic idea one can attempt to estimate a “causal” impact of the policy on
labor supply, ignoring any structural considerations.13 Alternatively one can think of the
policy changes as an attempt to obtain quasi-experimental conditions for estimating the
structural parameters themselves. The former approach attempts to ignore the underly-
ing theory and wishes to go straight to the effects of the particular policy. The latter is
after structural parameters that can be used for extrapolation to other policy situations,
assuming the theory is a good approximation of reality.

In the following sections we describe this approach to estimating the impact of in-
centives on labor supply drawing in part from Blundell, Duncan and Meghir (1998). We
also discuss the validity of the approach under different circumstances.14 As one may
expect, even the “atheoretical” approach which seeks to estimate the impacts of policy
without reference to a model does implicitly make strong assumptions about behavior
and/or the environment, and we discuss this. We also discuss conditions under which
the quasi-experimental approach, which is a form of instrumental variables, can provide
estimates of structural parameters. We go through the difference-in-differences estima-
tor and a more general grouping estimator considering also the effects of selection due
to nonparticipation.

3.1. Difference-in-differences and fixed effects models

Suppose one is interested in estimating the influence of a policy instrument on an out-
come for a group, say outcome hit measuring hours of work or participation. The group
consists of individuals i = 1, . . . , N , with these individuals observed over a sample

13 See Eissa and Liebman (1995) as an example.
14 See also Blundell and MaCurdy (1999).
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horizon t = 1, 2, . . . . Suppose further that a policy instrument of interest changes in a
particular period t for only a segment of the individuals. Let δit be a zero-one indicator
that equals unity if the policy change was operative for individual i in period t . Mem-
bers of the group who experience the policy change react according to a parameter γ .
A framework for estimating expressed in terms of a conventional fixed effect model
takes the form

(3.1)hit = γ δit + ηi + mt + εit

where i is a time-invariant effect unique to individual i, mt is a time effect common
to all individuals in period t , and εit is an individual time-varying error distributed
independently across individuals and independently of all ηi and mt .

The least squares estimator of γ in (3.1), which regresses hit on δit and a set of in-
dividual and time dummy variables, is precisely the difference-in-differences estimator
for the impact of the reform. It can be given the interpretation of a causal impact of the
reform if E(εit |ηi,mt , δit ) = 0. In a heterogeneous response model

(3.2)hit = γiδit + ηi + mt + εit

the least squares dummy variable estimator recovers the average of the response para-
meters γi for those affected by the policy. Since the error term εit may be correlated both
over time and across individuals, this should be taken into account when constructing
standard errors.

Now suppose that the policy does not affect everyone in a treatment group, but that the
chance of being affected is higher among them (g = T ) than it is among a control group
(g = C). The error structure can be more general than above. Consider a specification
in which

(3.3)hit = γ δit + uit ,

where uit represents an individual-level heterogeneity term which may be fixed for
that individual over time or may vary over time. Moreover it may be correlated across
individuals and may have a cross-section mean that is nonzero. The implicit macro
component and the average group characteristics to which the individual belongs may be
correlated with δit . Suppose that limited time-series data is available across individuals,
either in terms of repeated cross-sections or as a panel data source. Under the following
assumption, and the presumption that the policy is introduced only for one group, the
impact of the policy may be identified by using two time periods of data, one before the
reform and one after. The assumption we require is that

(3.4)A1: E[uit |g, t] = ag + mt

which can be interpreted as saying that in the absence of the reform the changes in group
means are the same across the two groups. Then with two groups and two time periods
the slope coefficient γ can be written as

γ = �E(hit |T , t) − �E(hit |C, t)

�E(δit |T , t) − �E(δit |C, t)
,
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the difference-in-differences estimator is the sample analog given by

(3.5)γ̂ = �hT
t − �hC

t

� Pr(δit = 1|T , t) − �E(δit = 1|C, t)

where the “bar” denotes sample average, � the first difference and the superscript the
group for which first differences are taken. γ̂ is consistent for γ . This estimator is an
instrumental variables estimator with excluded instruments the group–time interactions.
If the effect of the treatment is heterogeneous and if the policy does not decrease the
chance of obtaining the treatment δ for anyone (monotonicity) then the difference-
in-differences estimator above identifies the impact of the policy for those obtaining
treatment as a result of the policy [Imbens and Angrist (1994)].

Assumption A1 is very strong indeed. Failure will result if there is a change in group
composition of unobservable individual effects over time or if there is a differential
impact of macro shocks across groups. Again it will depend critically on the choice of
groups which is a key issue in this framework. A1 implies:

(i) time-invariant composition for each group, and
(ii) common time effects across groups.

3.2. Estimating a structural parameter

Here we consider the use of this method in the estimation of a simple labor supply
model (ignoring income effects for notational simplicity; we return to this below)

(3.6)hit = α + β ln wit + uit .

Again uit represents an individual-level heterogeneity term which may be fixed for that
individual over time or may vary over time. Moreover it may be correlated across indi-
viduals and may have a cross-section mean that is nonzero. This represents the impact
of macro shocks to preferences on individual i’s labor supply. Both the implicit macro
component and the idiosyncratic heterogeneity may be correlated with the log wage
(ln wit ).

Make the following assumptions:

(3.7)A1: E[uit |g, t] = ag + mt,

A2:
[
E[ln wit |g = T , t] − E[ln wit |g = C, t]]

(3.8)− [E[ln wit |g = T , t − 1] − E[ln wit |g = C, t − 1]] �= 0.

Then with two groups and two time periods the slope coefficient β can be written as

β = �E(hit |T , t) − �E(hit |C, t)

�E(ln wit |T , t) − �E(ln wit |C, t)
.

The difference-in-differences estimator is the sample analog given by

(3.9)β̂ = �hT
t − �hC

t

�ln wT
it − �ln wC

it

and is consistent for β.
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Assumption A2 is simply analogous to a rank condition and should hold if the groups
are chosen to reflect some systematic reason for a differential growth in ln wit across
groups. The choice of groups in this difference-in-differences approach usually reflects
some policy change which affects the real wage – a tax change, for example, can be
argued to be incident on individuals in one group i ∈ [g = T ] but not on individuals
in another i ∈ [g = C]. It is clear, however, that the assumption A1 may be strong in
some circumstances. However note the big difference with the previous section. In the
previous section the policy was assumed to have no effect on wages of the treatment
group relative to the control group; this is the assumption implicit in the fact that we
only need to condition on time and group effects. Here we are conditioning on wages
and we are adding the assumption from economic theory, that log wages and taxes share
the same coefficient. Hence if the policy implicitly affecting incentives changes pre-tax
wages as well, this is allowed for; this in itself makes the assumptions underlying the
difference-in-differences approach more credible (see more on this below).

This method has some attractive features. It allows for correlated heterogeneity and
for general common time effects. Although for many choices of grouping, often pre-
cisely those associated with some policy reform, assumption A1 is likely to be invalid,
there are possible grouping procedures for estimating labor supply models that are more
convincing. This approach is also closely related to the natural experiment or quasi-
experimental estimators that typically employ before and after comparisons relating
directly to a policy reform.

Before moving on to consider these developments, we first simply outline how this
approach can be extended to allow for many groups, for many time periods (or many
reforms), for participation and for the inclusion of income terms and other regressors.

3.3. Grouping estimators

Suppose individuals can be categorized in one of a finite number of groups g each
sampled for at least two time periods. For any variable xit , define D

gt
x as the residual

from the following regression

(3.10)E(xit |Pit , g, t) =
G∑

g=1

ζgdg +
T∑

t=1

ξtdt + D
gt
x ,

where Pit indicates that the individual is observed working, that is Pit ≡ {Iit = 1} and
where dg and dt are group and time dummies respectively. Analogously with A1 and
A2 we make assumptions

(3.11)A1.1: E(uit |Pit , g, t) = ag + mt,

(3.12)A2.1: E
[
Dgt

w

]2 �= 0.

Assumption A1.1 summarizes the exclusion restrictions for identification; it states that
the unobserved differences in average labor supply across groups can be summarized by
a permanent group effect ag and an additive time effect mt . In other words differences
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in average labor supply across groups, given the observables, remain unchanged over
time. It also says that any self-selection into employment (the conditioning on Pit ) can
be controlled for by group effects and time effects additively. Assumption A2.1 is again
equivalent to the rank condition for identification; it states that wages grow differentially
across groups; this is because the assumption requires that after we have taken away
time and group effects there is still some variance of wages left. For example, if there
is a tax reform between two periods, affecting the post-tax wages of the two groups in
different ways, and assuming that tax incidence does not fully counteract the effects of
the reforms, identification of the wage elasticity will be guaranteed.15

With these assumptions we can implement a generalized Wald estimator [see
Heckman and Robb (1985)]. Defining the sample counterpart of D

gt
x as x̃gt , i.e. the

residual from regressing the time-group cell mean on time and group dummies, we can
write the estimator as

(3.13)β̂ =
∑

g

∑
t [h̃gt ][l̃n wgt ]ngt∑

g

∑
t (l̃n wgt )2ngt

where ngt is the number of observations in cell (g, t). The implementation of this esti-
mator is simple; group the data for workers by g and by time and regress by weighted
least squares the group average of hours of work on the group average of the log wage,
including a set of time dummies and group dummies. An alternative that gives numer-
ically identical results is as follows: regress using OLS the log after-tax wage rate on
time dummies interacted with the group dummies, over the sample of workers only and
compute the residual from this regression. Then use the original data to regress hours of
work on the individual wage, a set of time dummies and group dummies and the wage
residual. The t-value on the coefficient of the latter is a test of exogeneity, once the
standard errors have been corrected for generated regressor bias and intra-group depen-
dence. It is also important to allow for the possibility of serial correlation and correlation
of idiosyncratic shocks across individuals when computing the standard errors.

3.3.1. Controlling for participation

A potential problem with the approach above is that it assumes that the composition
effects from changes in participation can be fully accounted for by the additive group
and time effects, ag + mt . First, changes in mt will cause individuals to enter and leave
the labor market. Second, with nonconvexities, a tax policy reform may lead to changes
in participation. This will be particularly true if fixed costs are large relative to the
nontaxable allowance. The presence of composition effects is equivalent to saying that
E(uit |Pit , g, t) is some general function of time and group and does not have the addi-
tive structure assumed in A1.1.

To control for the possibility that E(uit |Pit , g, t) may vary over time requires struc-
tural restrictions. A parsimonious specification is to make the assumption of linear

15 See Bound, Jaeger and Baker (1995) for the implications of weak instruments in empirical models.
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conditional expectation. For example, we may extend A1.1 and A2.1 by assuming that

(3.14)A1.2: E(uit |Pit , g, t) = ag + mt + δλgt ,

(3.15)A2.2: E
[
Dgtλ

w

]2 �= 0

where λgt is the inverse Mills’ ratio evaluated at Φ−1(Lgt ), Φ−1 being the inverse
function of the normal distribution and Lgt being the proportion of group g working in

period t .16 Finally D
gtλ
w is defined by the population regression

(3.16)E(wit |Pit , g, t) =
G∑

g=1

ζgdg +
T∑

t=1

ξtdt + δwλgt + Dgtλ
w .

Assumption A1.2 models the way that composition changes affect differences in the
observed labor supplies across groups. It implies that

(3.17)E(hit |Pit , g, t) = βE(ln wit |Pit , g, t) + ag + mt + δλgt

where all expectations are over workers only. Assumption A2.2 states that wages must
vary differentially across groups over time, over and above any observed variation
induced by changes in sample composition. We have also implicitly assumed that
E[Dgt

λ ]2 �= 0. If this is not the case, there is no selection bias on the coefficients of
interest (here the wage effect) because composition effects can be accounted for by the
linear time and group effects. In this case we can use (3.13).

We can now estimate the wage effect using a generalization of (3.13), i.e.

(3.18)β̂ =
∑

g

∑
t [h̃gtλ][l̃n wgtλ]ngt∑

g

∑
t (l̃n wgtλ)2ngt

.

As before, this estimator can be implemented using a residual addition technique. We
can add an estimate of λgt as well as the residual of the wage equation estimated on the
sample of workers (with no correction for sample selection bias as implied by (3.17))
to an OLS regression of individual hours on individual wages, time dummies and group
dummies.

To determine whether (3.18) or (3.13) should best be used we can test the null hy-
pothesis that E[Dgt

λ ]2 = 0 which implies that the group effects ag and the time effects
mt adequately control for any composition changes (given our choice of groups). If we
do not reject this we can use (3.13).

The assumption in A1.2 is worth some discussion. First note that where all regres-
sors are discrete and a full set of interactions are included in the selection equation, use
of the normal distribution to compute λ̂gt imposes no restrictions. However, the linear
conditional expectation assumption implies that a term linear in λ̂gt is sufficient to con-
trol for selection effects and is potentially restrictive. Using the results in Lee (1984) in
general we have that

16 See Gronau (1974) and Heckman (1974a, 1979).
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(3.19)E(uit |Pit , g, t) = ag + mt +
K∑

k=1

δkλ
(k)
gt

where λ
(k)
gt are generalized residuals of order k. The linearity reduces the number of

parameters to be estimated and hence the number of periods over which we require ex-
ogenous variability in wages. If it is found that E[Dgt

λ ]2 �= 0 then one can experiment by
including higher-order generalized residuals after checking that they display sufficient
independent variability.

3.3.2. Income effects

Income effects are important for labor supply and we need to take them into account
for at least two reasons. First, the wage elasticity cannot in general be interpreted as
an uncompensated wage elasticity, unless we control for other income. Second, income
effects are important if we wish to compute compensated wage elasticities for the pur-
pose of evaluating the welfare effects of tax reforms. It is straightforward to extend the
estimator in (3.18) to allow for extra regressors, such as other income. This involves
regressing h̃gtλ on l̃n wgtλ and ỹgtλ where y is household other income. The rank con-
dition for identification is now more stringent: It requires that the covariance matrix
V = Ezgtλz

′
gtλ is full rank, where zgtλ = [Dgtλ

w ,D
gtλ
y ]′.

This is equivalent to requiring that the matrix of coefficients on the excluded ex-
ogenous variables in the reduced forms of log wage and other income, after taking
account of composition effects, is rank 2. A necessary but not sufficient condition for
this to be true is that these coefficients are nonzero in each of the reduced forms – i.e.
that E(D

gtλ
w )2 and E(D

gtλ
y )2 are nonzero. As before if we accept the hypothesis that

E(D
gt
λ )2 = 0 we need to consider whether the rank of V ∗ = Ez∗

gt z
∗′
gt is two, where

z∗
gt = [Dgt

w ,D
gt
y ]′. In this case we estimate the model using the sample counterparts

of z∗
gt as regressors.17

3.4. The difference-in-differences estimator and behavioral responses

As we have seen the simplest implementation of the difference-in-differences approach
simply includes a policy reform dummy. This avoids directly specifying a structural
model in the sense that the effect of the policy is not tied to a wage or income effect.
The idea is that the policy should be evaluated directly without the intermediation of an
economic model.

Suppose again there are simply two periods and two groups. Suppose the policy
reform is a tax change in which τ is the change in the marginal tax rate for the
treatment group. The natural experiment approach simply includes a policy dummy

17 Blundell, Duncand and Meghir use the changes in the distribution of wages, as documented in Gosling,
Machin and Meghir (2000) as a source of exogenous variation in wages.
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δ
g
t = 1{g = T , t = A} in the hours regression

(3.20)hi = α + βδ
g
t + ζit .

The quasi-experimental estimator in this case is just the difference-in-differences esti-
mator applied to (3.20).

To interpret this estimator suppose the hours equation has the simple form (3.6).
Suppose that pre- and post-reform wages are defined by

Before reform After reform
i ∈ Treated ln wiB ln

(
(1 − τ)wiA

)
i ∈ Control ln wiB ln wiA

Assuming A1 and A2, taking group means, we find

(3.21)h
g
t = α + β ln(1 − τ)δ

g
t + βln w

g
t + ag + mt .

If δ
g
t = 1{g = T , t = A} is all that is included in the regression then the difference-in-

differences estimator will only recover β if log wages have the group and common time
effect form

(3.22)ln w
g
t = ãg + m̃t .

This seems a particularly strong assumption given empirical knowledge about the dif-
ferential trends in wage rates across different groups in the economy. Clearly, the cost
of including simply the policy reform dummy δ

g
t = 1{g = T , t = A} alone is that the

common time effects and time-invariant composition effects assumptions become even
more difficult to satisfy.

4. Estimation with nonlinear budget constraints

A problem encountered in many analyses of consumption and labor supply involves
the presence of intricate nonlinearities in budget sets arising from wages and prices that
vary as a function of quantities. Tax and welfare programs constitute a prominent source
of such functional relationships in analyses of labor supply, for these programs induce
net wages to vary with the number of hours worked even when the gross wages remain
constant. Hedonic environments and price schedules dependent upon quantities give
rise to comparable sources of distortions in budget sets in many consumption settings.

To address the issues encountered with nonlinear budget sets, there has been steady
expansion in the use of sophisticated statistical models characterizing distributions
of discrete-continuous variables that jointly describe both interior choices and corner
solutions in demand systems. These models offer a natural framework for capturing ir-
regularities in budget constraints, including those induced by the institutional features
of tax and welfare programs.18

18 Some of the references include Heckman (1974c), Arrufat and Zabalza (1986), Keane and Moffitt
(1998), Hausman (1980, 1981, 1985a, 1985b), Moffitt (1983, 1986), Blomquist (1983, 1996), Blomquist and
Hansson-Brusewitz (1990), Blomquist and Newey (2002), MaCurdy, Green and Paarsch (1990), MaCurdy
(1992).
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This section briefly describes approaches for estimating models incorporating such
features, keeping the context general enough to illustrate how these models can read-
ily accommodate a wide variety of nonlinearities in price and wage structures. The
discussion begins with a brief overview of the methods implemented to model budget
constraints involving nonlinearities, and then goes on to survey instrumental variable
procedures applied in the literature to estimate behavioral relationships in the presence
of such constraints. We summarize the general approach for using maximum likelihood
procedures to estimate the more sophisticated variants of these models with either con-
vex or nonconvex budget sets. We provide simple illustrations of maximum likelihood
methods to estimate familiar specifications of labor supply with convex constraints. We
outline why the implementation of maximum likelihood procedures imposes interest-
ing and important restrictions on behavioral parameters in the presence of nonlinear
budget constraints. We then integrate the analysis of nonparticipation into our analysis
of nonlinear budget constraints and discuss estimation when the availability of welfare
programs affects the shapes of budget sets, which induces not only nonconvexities but
also opportunities for participating in multiple programs. Finally, we consider computa-
tional simplifications adopted in the literature to render maximum likelihood estimation
feasible.

4.1. Modeling nonlinear features of budget constraints

A general formulation for the economic problem considered in the subsequent discus-
sion specifies an agent as solving the following optimization problem:

(4.1)Max U(c, h, z, ν) subject to b(c, h,W, Y ) = 0

where U( ) delineates the utility function, c and h measure consumption and hours of
work, the quantities z and ν represent respectively the observed and unobserved fac-
tors influencing choices beyond those incorporated in budget sets, and the function b( )

specifies the budget constraint with W and Y designating the real gross wage per hour
and nonlabor income (note that we use upper case to distinguish from marginal wage
and virtual nonlabor income). For the moment, we restrict the economic framework to
be static and the quantities c and h to be single goods rather than multidimensional vec-
tors. In many applications the budget function, b, is not differentiable, and in some it is
not even continuous.

For the familiar linear specification of the budget constraint, b takes the form

(4.2)b(c, h,W, Y ) = Wh + Y − c.

Solving (4.1) for this form of b yields the following labor supply and consumption
functions:

h = �(W, Y, z, ν),

(4.3)c = c(W, Y, z, ν),



Ch. 69: Labor Supply Models 4695

which correspond to the standard demand functions for nonmarket time (i.e., leisure)
and consumption. (The subsequent analysis often suppresses the z argument in the func-
tions U( ), �( ) and c( ) to simplify notation.)

Another popular specification of b( ) incorporates income or sales taxes in character-
izing choices, with the budget constraint written as some variant of

(4.4)b(c, h,W, Y ) = Wh + Y − c − τ(Wh, Y ),

where the function τ( ) gives the amount paid in taxes. This formulation for b admits
different tax rates on earnings (Wh) and nonlabor income (Y ). If these income sources
are instead taxed the same, then (4.4) further simplifies to

(4.5)b(c, h,W, Y ) = Wh + Y − c − τ(I ),

where tax payments τ(I ) = τ(I (h)) where I (h) = taxable income = Wh+Y −D with
D designating allowable deductions. Different marginal tax rates in the various income
brackets combined with the existence of nonlabor income create inherent nonlinearities
in budget sets.

The literature relies on two approaches for modeling nonlinearities in budget sets:
piecewise-linear characterizations and smooth differentiable functions. To illustrate
these approaches, the subsequent discussion principally focuses on the income-tax for-
mulation of b given by (4.4) and (4.5) to illustrate central concepts.

4.1.1. Piecewise linear constraints

As a simple characterization of piecewise budget sets, Figure 4.1 shows a hypo-
thetical budget constraint for an individual faced with a typical progressive income
tax schedule defined by a series of income brackets. In this diagram, h denotes
hours of work, and the vertical axis measures total after-tax income or the con-
sumption of market goods. The budget constraint is composed of several segments
corresponding to the different marginal tax rates that an individual faces. In par-
ticular, he faces a tax rate of t1 between H0 hours and H1 hours (segment 1 of
his constraint) and tax rates of t2 and t3 respectively in the intervals (H1,H2) and
(H2,H ) (segments 2 and 3 in the figure). Thus, with the variable W denoting the
individual’s gross wage rate, the net wages associated with each segment are: w1 =
(1 − t1)W for segment 1; w2 = (1 − t2)W for segment 2; and w3 = (1 − t3)W

for segment 3. Also, each segment has associated with it a virtual income (i.e.,
income associated with a linear extrapolation of the budget constraint) calculated
as:

y1 = Y − τ(0, Y );
(4.6)yj = yj−2 + W(tj−2 − tj )hj−1 for j = 2, 3, . . . .

So, y3 = y1 + (w1 −w3)H2 and similarly for y. Changes in tax brackets create the kink
points at H1 and H2.
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Figure 4.1. Budget constraint with income taxes.

Figure 4.2. Budget constraint with EITC.

Figure 4.2 illustrates stylized features of a budget constraint modified to incorporate
an earned income tax credit (EITC) in conjunction with an income tax,19 and Figure 4.3

19 An earned income tax credit (EITC) constitutes a negative income tax scheme, which induces two kinks
in a person’s constraint in the simplest case: one where the proportional credit reached its maximum (H1 in
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Figure 4.3. Budget constraint with welfare.

shows a prototype budget set induced by a conventional welfare program (or social
security tax).20 In Figure 4.2, the EITC increases benefits until an individual reaches h1
hours of work, and then benefits decline until hours attain h2 when the regular income
tax schedule applies. In Figure 4.3, welfare benefits start at y1 − y2 when a family does
not work, they steadily decline as the family increases its hours of work until its earnings
reach the value implied at H1 hours when the family becomes disqualified for welfare.
Each of these low-income support programs introduces regressive features in the overall
tax schedule faced by a family, which in turn induces nonconvex portions in the budget
sets.

In real world applications of piecewise budget constraints, the combination of vari-
ous tax and public assistance programs faced by families implies budget sets have two
noteworthy features. First, the constraint faced by a typical individual includes a large
number of different rates. Translated into the hours-consumption space, this implies a
large number of kink points in the budget constraint. Second, for most individuals the
tax schedule contains nonconvex portions, arising from four potential sources. The first
arises from the EITC program, as illustrated in Figure 4.2. A second source arises if a

Figure 4.2), and one at the break-even point where the credit was fully taxed away (H2 in the figure). The tax
rates associated with the first two segments are tA, which is negative, and tB , which is positive. Thereafter,
the EITC imposed no further tax.
20 A welfare program pays a family some level of benefits at zero hours of work, and then “taxes” this
nonlabor income at some benefit reduction rate until all benefits are gone. Figure 4.3 assumes a proportional
benefit reduction rate applies on earnings until benefits decline to zero, after which the family pays normal
income tax which here too is assumed to be at a proportional rate. Thus, Figure 4.3 shows a constraint with
a single interior kink (given by H1 in the figure) corresponding to the level of earning when welfare benefits
first become zero. The Social Security system induces a similar effect on the budget constraint.
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worker’s family participates in any welfare program, wherein nonconvexities arise as
benefits are withdrawn as earnings increase as illustrated in Figure 4.3. Third, social
security taxes phase out after a fixed level of earnings, so they too induce a budget set
similar in structure to that given by Figure 4.3. Finally, the standard deduction present
in most income tax programs, wherein no taxes are paid on sufficiently low levels of
income, creates yet another source of regressivity in the tax schedule and corresponding
nonconvexities in the budget constraint.

4.1.2. Constructing differentiable constraints

Several approaches exist for approximating the piecewise-linear tax schedules by a dif-
ferentiable function. A convenient method for constructing this function is to fit the
marginal tax rate schedule – a step function – by a differentiable function. This ap-
proximation must itself be easily integrable to obtain a simple closed form for the tax
function.

An elementary candidate for constructing a differentiable approximation that can be
made as close as one desires to the piecewise-linear tax schedule has been applied in
MaCurdy, Green and Paarsch (1990). To understand the nature of the approximation,
return to Figure 4.1. One can represent the underlying schedule as follows:

τe(Wh, Y ) = t1 from I (H0) to I (H1)

= t2 from I (H1) to I (H2)

(4.7)= t3 above I (H2),

where τe(Wh, Y ) = the marginal tax rate on earnings,

I (h) = taxable income at h hours of work, and

ti = marginal tax rate, i = 1, 2, 3.

For expositional simplicity, suppose that t1 = 0. Consider the following approximation
of this schedule:

(4.8)τ̂e(Wh, Y ) = t2
{
Φ1
(
I (h)

)− Φ2
(
I (h)

)}+ t3Φ2
(
I (h)

)
.

This formulation for the marginal tax rate switches among three flat lines at the heights
t1 (= 0), t2 and t3. The weight functions Φi(I (h)) determine the rate at which the shift
occurs from one line to another, along with the points at which the switches take place.
Candidate weight functions are given by Φi(I (h)) = the cumulative distribution func-
tion with mean yi and variance σ 2

i , i = 1, 3. The middle segment of the tax schedule
has height t3 and runs from taxable income I (H1) to I (H2). To capture this feature,
parameterize Φ1(·) and Φ2(·) with means y1 = I (H1) and y3 = I (H2), respectively,
with both variances set small. The first distribution function, Φ1(·) takes a value close
to zero for taxable income levels below I (H1) and then switches quickly to take a value
of one for higher values. Similarly, Φ2(·) takes a value of zero until near I (H2) and one
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thereafter. The difference between the two equals zero until I (H1), one from I (H1) to
I (H2) and zero thereafter. Thus, the difference takes a value of one just over the range
where t2 is relevant. Notice that we can control when that value of one begins and ends
by adjusting the values y and y3. Also, one can control how quickly this branch of the
estimated schedule turns on and off by adjusting the variances of the cumulative distrib-
ution functions, trading off a more gradual, smoother transition against more precision.
In general, adjusting the mean and variance parameters allows one to fit each segment
of a schedule virtually exactly, switch quickly between segments, and still maintain
differentiability at the switch points.

A generalization of this approximation takes the form

(4.9)τ̂e(Wh, Y ) =
∑

i=1,3,...

[
Φi−2

(
I (h)

)− Φi

(
I (h)

)]
ti
(
I (h)

)
where the functions ti (I (h)) permit tax schedules to be nonconstant functions of taxable
income within brackets. With the Φi denoting many cdfs associated with conventional
continuously distributed distributions, function (4.9) yields closed form solutions when
it is either integrated or differentiated.21 Integrating (4.9) yields a formulation for the
budget constraint b(c, h,W, Y ). The resulting approximation can be made to look arbi-
trarily close to the budget set boundary drawn in Figure 4.1, 4.2 or 4.3, except that the
kink points are rounded.

Formula (4.9) can be extended to approximate virtually any specification of
b(c, h,W, Y ). One can readily allow for distinct relationships describing the deriva-
tives for each of the arguments of this function, and nonconvexities in budget sets cause
no particular problems.

4.2. Simple characterizations of labor supply and consumption with differentiable
constraints

A useful solution exists for the hours-of-work and consumption choices associated with
utility maximization when budget constraints form a set with a twice-differentiable

21 Total taxes are given by τ(I ) = ∫
τ ′(I ) dI . The following relations enable one to calculate an explicit

form for τ(X):∫
Φ dI = IΦ + ϕ,∫
IΦ dI = 1

2
I2Φ − 1

2
Φ + 1

2
Iϕ,∫

I2Φ dI = 1

3
I3Φ + 2

3
ϕ + 1

3
I2ϕ,∫

I3Φ dI = 1

4
I4Φ − 3

4
Φ + 3

4
IΦ + 1

4
I3ϕ.

In this expression, Φ refers to any Φi ’s, and ϕ designates the density function associated with Φi .
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boundary. Specify the marginal wage rate as

(4.10)ω = ω(h) = bh(c, h,W, Y ) = bh

and “virtual” income as

(4.11)y = y(h) which solves the equation b(hbh + y, h,W, Y ) = 0.

This solution for y satisfies

y = y(h) = c − ωh.

For the familiar specification given by b(c, h,W, Y ) = Wh+Y − c − τ(Wh+Y) with
the function τ constituting the amount paid in taxes at before-tax income Wh + Y , the
expressions for marginal wage and virtual income y simplify to

ω = ω(h) = (1 − τ ′)W,

(4.12)y = y(h) = Wh + Y − ωh − τ = Y + τ ′Wh − τ,

where τ and τ ′ (the derivative of the tax function with respect to income) are evaluated
at income level I = I (h) = Y + Wh which directly depends on the value of h.

Utility maximization implies solutions for hours of work and consumption that obey
the implicit equations:

h = �(ω, y, z, v) = �
(
ω(h), y(h), z, v

)
,

(4.13)c = c(ω, y, z, v) = c
(
ω(h), y(h), z, v

)
,

where � and c represent the same conventional forms for labor supply and consumption
demand functions given by (4.3). Figures 4.1 and 4.3 illustrate this representation of the
solution for optimal hours of work and consumption. The characterization portrays an
individual as facing a linear budget constraint in the presence of nonlinear tax programs.
This linear constraint is constructed in a way to make it tangent to the actual nonlinear
opportunity set at the optimal solution for hours of work. The implied slope of this
linearized constraint is ω(h) and the corresponding value of virtual income is y(h).

Relationships (4.13) constitute structural equations that determine hours of work and
consumption. By applying the Implicit Function Theorem to specification (4.13), we
can solve this implicit equation for h in terms of W,Y , and other variables and para-
meters entering the functions b and U . This operation produces the labor supply and
consumption functions applicable with general forms of nonlinear budget sets.

4.3. Instrumental variable estimation

The inclusion of taxes provides an additional reason for allowing for the endogeneity of
(after-tax) wages and other income. Writing the labor supply function as

(4.14)h = �
(
ω(h), y(h), z, υ

) = �∗(ω(h), y(h), z
)+ v
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makes the point explicitly. The instrumental variable approach described earlier can be
applied as well as the grouping method (which of course is just an application of IV).
The implementation of IV procedures imposes no parametric restrictions and it allows
one to consider a wide variety of exogeneity assumptions. The fact that the error term
does not interact with the wage and other income is critical for the interpretation of IV
as identifying the structural parameters of the model.

4.3.1. Including measurement error

In many data sets there are serious suspicions that hours of work and wages are reported
with error. This issue acquires added importance when we are dealing with nonlinear
tax schedules since this creates a problem of observability of the correct tax rate, which
is the reason we introduce the issue here.

Suppose H denotes measured hours of work and that the function

(4.15)H = H(h, ε)

relates H to actual hours h and to a randomly distributed error ε. Typically, analyses
presume that the state h = 0 is observed without error.

Measurement errors in hours often induce errors in observed wage rates since re-
searchers construct wages by dividing total labor earnings, E, by hours worked in the
period. Whereas W = E/h defines the true hourly wage rate, W̃ = E/H designates
the data available on wages. Measured wages W̃ are contaminated by reporting errors
even when E provides accurate quantities for each individual’s total labor earnings and
wages are indeed constant for hours worked over the period. This formulation presumes
a reciprocal relation in the measurement error linking data on hours and wages. More
generally, suppose W̃ links to the true wage rate according to the relationship

(4.16)W̃ = W̃ (W, h, ε).

In the reciprocal measurement error example, W̃ = W/H(h, ε) where H(h, ε) comes
from (4.15).

The presence of measurement errors in hours typically invalidates use of nonlinear IV
procedures to estimate the structural labor supply equation given by (4.14). Expressing
this equation in terms of H rather than h involves merely substituting (4.15) into (4.14);
and if measurement error also carries over to wages, then substitutions must be made
for wages as well. These replacements typically result in a variant of structural equation
(4.14) that cannot be transformed into a form that is linear in disturbances. Measure-
ment errors in hours invariably render the marginal tax rate unobservable, which in
turn makes both the marginal wage (ω(h)) and virtual income (y(h)) also unobserv-
able. Sophisticated adjustments must be included to account for such factors. These
complications motivate many researchers to turn to maximum likelihood procedures to
estimate hours-of-work specifications as we do below. However with some additional
assumptions IV procedures are still possible, at least when the issue of censoring does
not arise.
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Suppose measurement error is of the multiplicative kind

(4.17)H = H(h, ε) = heε with W̃ = E/H.

In the presence of such error, specifications can also be found that allow for use of
IV procedures to estimate substitution and income parameters. Incorporating the mul-
tiplicative measurement error model (4.17) into the semilog functional form of labor
supply given in relation (2.8) yields the empirical specification:

(4.18)H = u + Zγ + α ln ωm + βy + u

where

ln ωm = ln(E/H) + ln(1 − τ ′),
ỹ = y − ασ 2

ε /2,

u = ν + α
(
ε − E(ε)

)+ (H − h) = ν + α
(
ε − E(ε)

)+ h
(
eε − 1

)
.

The disturbance u possesses a zero mean since E(eε) = 1. Virtual income y(h) and
the marginal tax rate τ ′ are not contaminated by measurement error because they are
only functions of Y and hW = HW̃ , quantities which are both perfectly observed (by
assumption). The variable ln ωm represents the natural logarithm of the after-tax wage
rate evaluated at observed hours, which differs from the actual marginal wage due to the
presence of reporting error in hours. Assuming the error ε is distributed independently of
all endogenous components determining h, including the heterogeneity disturbance v,
the instrumental variables X applicable for estimation of the original specification can
also serve as the instrumental variables in estimating the coefficients of (4.18) by famil-
iar IV methods.

4.3.2. Sources of unobservables in budget sets

An important class of models not widely recognized in the literature involves budget
constraints that vary across individuals in ways that depend on unobserved factors. The
modification required in the above analysis to account for such factors replaces budget
function b( ) appearing in (4.1) by

(4.19)b(c, h,W, Y, z, ξ) = 0.

The quantity z captures the influence of measured characteristics on budget sets. Classic
examples include family characteristics that alter the form of the tax function relevant
for families. The error component ξ represents unobserved factors shifting budget sets.
Classic examples here include unmeasured components of fixed costs, prices, and ele-
ments determining tax obligations.

The presence of ξ in b( ) typically renders IV methods inappropriate for estimating
parameters of the labor supply function �. The usual problem comes about since struc-
tural variants of � cannot be found that are linear in disturbances, and this is especially
true when nonlinearities exist in tax schedules. When ξ appears as a component of b( ),



Ch. 69: Labor Supply Models 4703

researchers typically rely on the maximum likelihood methods summarized in the sub-
sequent discussion to conduct estimation of behavioral models of hours of work and
consumption.

4.3.3. Complications of IV estimation with piecewise-linear constraints

Naive application of instrumental variable methods with piecewise-linear budget con-
straints generally produces inconsistent estimates of behavioral parameters, even ig-
noring the potential presence of measurement error. Section 4.6 below presents the
structural specification – see (4.69) – implied for hours of work when Figure 4.1 des-
ignates the budget set and everyone works. As noted in Section 4.1, this budget set is
convex and consists of three segments. Inspection of structural equation (4.69) reveals
that the structural error is

∑
j=1,2,3 djv where dj represents an indicator variable sig-

nifying whether an individual selects segment j = 1, 2, or 3. If the individual occupies
any kink, then

∑
j=1,2,3 djv = 0. Suppose X includes the set of instrumental vari-

ables presumed to satisfy E(ν|X) = 0. The corresponding conditional expectation of
the structural error implied by Equation (4.69) is

∑
j=1,2,3 Pr(dj |X)E(v|dj = 1, X).

This expectation is typically not zero, a condition required to implement IV techniques.
To use IV procedures in the estimation of Equation (4.69) necessitates the inclusion of
sample selection terms adjusting for the nonzero expectation of

∑
j=1,2,3 djv.

4.3.4. Nonparticipation and missing wages

In the earlier sections we discussed how the estimation approach needs to be general-
ized so as to allow for nonparticipation and for missing wages, which present further
complications for estimation. We argued that standard instrumental variables are not ap-
propriate in this context. We now turn to maximum likelihood estimation which we set
up to deal with the problems introduced above, namely nonlinear taxes, measurement er-
ror, missing and/or endogenous wages and other income and of course nonparticipation.

4.4. Maximum likelihood estimation: A general representation

The instrumental variable estimator, developed in the last section, required exclusion
restrictions to consistently estimate the parameters of the labor supply and consumption
models involving nonlinear budget sets. In contrast, maximum likelihood estimation
exploits the precise structure of the budget constraint and need not rely on exclusion
restrictions to identify parameters. Even though marginal wages and virtual incomes
are endogenous, nonlinearities introduced through distributional assumptions provide
a valuable source of identification. However, exclusion restrictions are only avoided in
this approach if gross wages and incomes are assumed to be exogenous and in many ap-
plications of maximum likelihood researchers also impose stringent distributional and
independence assumptions on sources of errors capturing heterogeneity and measure-
ment error. Nonetheless, one can entertain a wide array of nonlinearities in budget sets
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and decision processes, along with rich specifications for heterogeneity and mismea-
surement of variables.

The following discussion begins with a general presentation describing the appli-
cation of maximum likelihood methods in hours of work and consumption analyses
allowing for flexible distributional assumptions and intricate forms of nonlinearities in
both preferences and budget constraints. This analysis draws heavily upon Appendix A.
Later subsections cover simple illustration of techniques, many of which have been im-
plemented in the empirical literature.

4.4.1. Dividing the budget constraint into sets

Irrespective of whether one considers differentiable or piecewise-linear formulations for
budget constraints, the essential idea underlying development of likelihood functions in
the presence of nonlinear constraints involves defining a set of “states of the world”.
Each state designates a particular segment of the budget set boundary, with states be-
ing mutually exclusive and states jointly covering all parts of budget constraints. One
interprets individuals as being endowed with a set of attributes determining their tastes,
resources and constraints, with these attributes viewed as random variables continu-
ously distributed across the population. Based on the realizations of these variables, an
individual selects consumption and hours of work to optimize utility.

Regarding the distribution of these variables in the previous discussion, suppose un-
observed heterogeneity influencing preferences, ν, the unmeasured factors determining
wages, η, and the unobservables incorporating budget sets, ξ , possess the following
joint density:

(4.20)ϕ(v, η, ξ) ≡ ϕ(v, η, ξ |X) for (v, η, ξ) ∈ Ω.

When errors, ε, contaminate the measurement of hours, the relevant joint distribution
becomes:

(4.21)ϕ(v, η, ξ, ε) ≡ ϕ(v, η, ξ, ε|X) for (v, η, ξ, ε) ∈ Ω.

Both these expressions admit conditioning on a set of exogenous variables X, but the
subsequent analysis suppresses X to simplify the notation. The set Ω designates the
domain of these random variables.

In this setting, n states of the world can occur. The discrete random variable δi sig-
nifies whether state i happens, with δi = 1 indicating realization of state i and δi = 0
implying that some state other than i occurred. A state refers to locations on boundaries
of budget sets, to be explained further below. Consequently, the value of δi depends on
where (v, η, ξ) falls in its domain determined by the rule:

(4.22)δi =
{

1 if (v, η, ξ) ∈ Ωi,

0 otherwise,

where the set Ωi constitutes that subset of the sample space Ω for which utility max-
imization yields a solution for consumption and hours that lies within the δi = 1
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portion of the budget. The mutually exclusive and exhaustive feature of the sets Ωi

for i = 1, . . . , n implies
⋃n

i=1 Ωi = Ω and Ωi ∩ Ωj = ∅ for i �= j .
A central requirement invoked in dividing a budget constraint into its various sec-

tions involves ensuring that unique solutions exist for c and h for any (v, η, ξ) ∈ Ωi .
Consumption and hours of work may take on discrete values when (v, η, ξ) ∈ Ωi . Al-
ternatively, there may be a continuous mapping relating c and h to (v, η, ξ) within the
set Ωi , but inverses must exist for the consumption and labor supply functions

h = �(ω, y, z, v) = �
(
ω(h), y(h), z, v

)
,

c = c(ω, y, z, v) = c
(
ω(h), y(h), z, v

)
expressed in terms of components of v. (These functions correspond directly to those in
(4.13) except that marginal wage ω and virtual income y now are functions of ξ , the un-
observable components of b.) Considering the labor supply function �, this requirement
implies existence of the inverse function

(4.23)v = vh
(
h, ω(h), y(h), z

) ≡ �−1(h, ω(h), y(h), z
)

for values of v within the set Ωi . If v is in fact multidimensional (i.e., v′ is a vector),
then an inverse must exist of the form

(4.24)v1 = vh
(
h, ω(h), y(h), z, v′

2

) ≡ �−1(h, ω(h), y(h), z, v2
)

for some decomposition v′ = (v1, v
′
2).

Division of the budget constraint into the events δi = 1 for i = 1, . . . , n generally
creates two varieties of sets: First, differentiable segments of the budget constraint over
which consumption and hours vary continuously in response to variation in preferences
and constraint variables; second, kink points at which consumption and hours of work
take fixed discrete values implied by the location of the kink.

4.4.2. Maximum utility determines placement on budget constraint

The portion of a budget constraint selected by an individual depends on the level of util-
ity assigned to this state. The following discussion first characterizes maximum utility
attainable on differentiable segments, and then considers evaluations at kink points.

For the differentiable segments of the constraint, utility is determined by function

V = U
(
c(ω, y, z, ν), �(ω, y, z, ν), z, ν

)
= U

(
c
(
ω(h, ξ), y(h, ξ), z, ν, ξ

)
, �
(
ω(h, ξ), y(h, ξ), z, ν, ξ

)
, z, ν

)
≡ V

(
ω(h, ξ), y(h, ξ), z, v

)
(4.25)= V (ω, y, z, v)

evaluated at optimal points in the specified set. The function V (W, Y, z, v) represents
the conventional indirect utility function associated with maximizing U(C, h, z, ν) in
(4.1) subject to the linear form of the budget constraint given by (4.2). Roy’s identity



4706 R. Blundell et al.

specifies that the labor supply function � can be written as

(4.26)�(ω, y, z, ν) ≡ Vω(ω, y, z, ν)

Vy(ω, y, z, ν)

with Vω and Vy denoting the partial derivatives of V . Suppose the interval (hi−1, hi+1)

identifies the differential segment under consideration. The subsequent discussion refers
to this segment as state i. Then the utility assigned to state i corresponds to the maxi-
mum value of V achievable for hours falling in the interval (hi−1, hi+1).

Difficulty in determining the achievable value of V depends on characteristics of
the budget function b(c, h,W, Y ). For the most general specifications of b, inspection
of relations (4.10) and (4.11) defining ω and y reveals that each depends on both c

and h through the derivative bh. If utility maximization occurs at an interior point of
(hi−1, hi+1) given the realization of (v, η, ξ), then the implied values of c and h solve
the system

h = �(ω, y, z, υ) ∈ (hi−1, hi+1),

(4.27)b(c, h,W, Y, ξ) = 0.

Consequently, the maximum utility attainable on the interval (hi−1, hi+1) is V (or U )
evaluated at these solutions for c and h. Define this maximum utility as V(i), where
the (i) subscript on V signifies utility assigned to state i. If one extends state i to
include either of the exterior points hi−1 or hi+1, and uniqueness and differentiability
continue to hold at these points, then the above procedure still applies in assigning
a value for V(i). The subsequent discussion ignores such easily-handled extensions to
simplify the exposition.

Use of indicator functions provides an expression for V(i). One can characterize the
set of values of c and h satisfying Equations (4.27) as

(4.28)
{
(c, h)

∣∣ I [h = �(ω, y, z, υ) ∈ (hi−1, hi+1); b(c, h,W, Y, ξ) = 0
] = 1

}
,

where I denotes the indicator function defined by

I [conditions] =
{

1 if [all conditions] are true,

0 if [any condition] is false.

The indicator function I in (4.28) depends on satisfaction of 2 conditions. Using I ,
a simple expression for the maximum utility attainable in state i is given by

(4.29)

V(i) = V (ω, y, z, v) ∗ I
[
h = �(ω, y, z, υ) ∈ (hi−1, hi+1); b(c, h,W, Y, ξ) = 0

]
.

For values of v, η and ξ not yielding a solution in state i, V(i) = 0. It is possi-
ble in this analysis for V(i) = 0 for all values of admissible values of (v, η, ξ) (i.e.,
Ωi = ∅). Throughout this discussion, we assume a utility function normalized so that
U(c, h, z, ν) > 0 for all admissible values of variables. So the event V(i) = 0 always
means that some state other than i has a higher assigned utility.
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The most popular specifications of the budget function b(c, h,W, Y ) have derivatives
bh that depend on h but not on c. Examples include those specifications incorporat-
ing income or sales taxes given by (4.4). Under these circumstances, the first equation
in (4.27) alone can be solved for h. Thus, V(i) simplifies to

(4.30)V(i) = V (ω, y, z, v) ∗ I
[
h = �(ω, y, z, υ) ∈ (hi−1, hi+1)

]
.

This expression serves as the principal formulation used in the subsequent discussion.
The portion of a budget constraint selected by an individual depends on the level of

utility assigned to this state. At kink points, utility takes the value

(4.31)V(i) = U(Ci, hi, z, ν),

where Ci and hi designate the values of consumption and hours at the kink point asso-
ciated with state i.

An individual occupies that portion of the budget constraint corresponding to state
i if the assigned utility is highest for this state. According to (4.22), the subspace of
(v, η, ξ) yielding this realization is the set Ωi . Correspondingly, one can represent Ωi

as

(4.32)Ωi = {(v, η, ξ)
∣∣V(i) > V(j) for all j �= i

}
.

Relationships (4.29) (or (4.30)) and (4.31) define V(i) depending on characteristics of
the state. For expositional simplicity, without loss of generality, the subsequent discus-
sion ignores equalities V(i) = V(j) in defining the sets Ωi since these events are zero
probability events.

4.4.3. Density functions for hours and wages

The distribution of consumption and hours of work depends on where individuals locate
on the budget constraints. The probability that an individual makes selections falling
within the state i portion of the budget equals:

P(δi = 1) = P
(
(v, η, ξ) ∈ Ωi

)
=
∫

· · ·
∫

Ωi

ϕ(v, η, ξ) dv dη dξ

(4.33)≡
∫

Ωi

ϕ(v, η, ξ) dv dη dξ.

The notation
∫ · · · ∫

Ωi
denotes integration over the set Ωi , which the third line of this

equation expresses in the shorthand notation
∫
Ωi

. The joint distribution of the δi’s takes
the form

P(δ1, . . . , δm) =
∏
i∈M

[
P(δi = 1)

]δi
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where the set M refers to the set of all possible states i that comprise the entire budget
constraint. As noted previously, the events δi = 1 may refer to either kinks or differen-
tiable constraints.

When an optimum occurs at a kink point, the distribution of hours conditional on this
event is

(4.34)P(h = hi | δi = 1) = 1.

This distribution is, of course, discrete.
On differentiable segments of the constraint, the distribution for hours is continuous.

Performing a conventional change of variables yields the density

(4.35)f (h, η, ξ) = dvh

dh
ϕ
(
vh, η, ξ

) = dvh

dh
ϕ
(
vh(h, ω, y, z), η, ξ

)
where

(4.36)vh = vh
(
h, ω(h), y(h), z

) = �−1(h, ω(h), y(h), z
)

refers to the inverse of labor supply function (4.3), and the quantity

(4.37)
dvh

dh
=
(

∂�

∂ω

∂ω

∂h
− ∂�

∂y

∂y

∂h

)(
∂�

∂v

)−1

represents the Jacobian associated with this inverse. The terms ∂�
∂ω

and ∂�
∂y

correspond

to the economic concepts of substitution and income effects, and the quantity ∂�
∂v

deter-
mines how unobserved components of preferences influence labor supply. (In applying
the change-of-variables formula, Jacobians must be constructed to be uniquely signed
for densities to be properly defined. This result follows here because the selection of
budget-set partitions ensures a unique solution exists for c and h for each partition com-
bined with the innocuous assumption that unobserved components enter preferences
such that ∂�

∂v
> 0.) For the remaining terms in (4.37), differentiation of the budget con-

straint implies:

(4.38)
∂ω

∂h
= bhh

and

(4.39)
∂y

∂h
= −bh

bc

− bh − bhhh

where the subscripts on the budget function b signify partial derivatives.22 Assuming the
popular tax form for the budget function given by (4.5), expressions (4.38) and (4.39)

22 Derivation of the expression for ∂y
∂h

follows from total differentiation of the relation (4.11) defining y

which yields

bc

(
bh + bhhh + ∂y

∂h

)
+ bh = 0

and solving this equation.
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simplify to

(4.40)
∂ω

∂h
= (1 − τ ′)W

and

(4.41)
∂y

∂h
= τ ′′W 2h

where τ ′ and τ ′′ denote the marginal tax rate and its derivative. Division of the budget set
into states ensures that inverse (4.36) and its Jacobian (4.37) exist in the space defined
by each state.

The implied density of h conditional on δi is

(4.42)f (h | δi = 1) =
∫
Φi|h f (h, η, ξ) dη dξ

P (δi = 1)
for h ∈ Θi· h

where the set Θi· h = (hi−1, hi+1) designates the domain of h given occurrence of
δi = 1 and the notation

∫
Φi|h denotes integration of (η, ξ) over the set

(4.43)Φi|h = {(η, ξ)
∣∣ I [h = �(ω, y, z, v); (v, η, ξ) ∈ Ωi

] = 1
}
.

The set Φi|h treats h as fixed and, therefore, is a function of h.
Performing a further change of variables for wages yields the following joint density

for hours and wages

(4.44)f (h,W, ξ) = dηw

dW
f
(
h, ηw, ξ

) = dηw

dW
f
(
h, ηw(W,Q), ξ

)
where

(4.45)ηw = ηw(W,Q) = W−1(W,Q)

denotes the inverse of the wage function, and the quantity

(4.46)
dηw

dW
=
[
∂W

∂η

]−1

represents the Jacobian associated with this inverse. (For expositional convenience, and
without loss of generality, this analysis assumes that a monotonically increasing rela-
tionship links W to η; so, (4.46) is positive.)

The density of h and W conditional on δi is

(4.47)f (h,W | δi = 1) =
∫
Φi|h,W

f (h,W, ξ) dξ

P (δi = 1)
for (h,W) ∈ Θi· h,W

where the notation
∫
Φi|h,W

denotes integration of ξ over the set

(4.48)

Φi|h,W = {(ξ)
∣∣ I [h = �(ω, y, z, υ); W = W(Q, η); (v, η, ξ) ∈ Ωi

] = 1
}
.



4710 R. Blundell et al.

The set Φi|h,W is a function of h and W . One can express the set Θi· h,W appearing in
(4.47) as

Θi· h,W = {(h,W)
∣∣ ξ ∈ Φi|h,W

}
,

which specifies the domain of h and W assuming occupancy of the state i part of the
budget constraint.

If v is multi-dimensional as specified in labor supply function (4.13), then (4.47)
becomes

(4.49)f (h,W | δi = 1) =
∫
Φi|h,W

f (h, v2,W, ξ) dv2 dξ

P (δi = 1)
for (h,W) ∈ Θi· h,W

where f (h, v2,W, ξ) has a form analogous to (4.44), and the notation
∫
Φi|h,W

now de-
notes integration of (v2, ξ) over the set

Φi|h,W = {(v2, ξ)
∣∣ I [h = �(ω, y, z, v); W = W(Q, η); (v, η, ξ) ∈ Ωi

] = 1
}
.

The set Φi|h,W still remains a function of h and W .
Finally, when an individual selects an optimum at a kink point and h = h is discrete,

then the distribution of wages takes the form

(4.50)f (h,W | δi = 1) =
∫
Φi|h,W

f (ν,W, ξ) dν dξ

P (δi = 1)
for W ∈ Θi· W

where the density f (ν,W, ξ) is specified analogous to (4.44), and the set Φi|h,W is a

function of h and W defined by

(4.51)Φi|h,W = {(ν, ξ)
∣∣ h = hi; W = W(Q, η); (v, η, ξ) ∈ Ωi

}
.

The domain Θi· W of W in (4.50) corresponds to that part of the overall range of W

consistent with being at kink hi .

4.4.4. Likelihood functions for hours and wages

Appendix A presents the results required to develop a complete specification of the
joint likelihood function for hours (h) and wages (W ). Suppose the state δ0 = 1 refers
to an individual choosing not to work; the states δi = 1 for i ∈ Mc designate those
circumstances when the person works and selects optimums on differentiable segments
of budget constraints; and the states δi = 1 for i ∈ Md denote those events when an
individual chooses hours located at a kink point. Hours (h) are continuously distributed
for states in the set i ∈ Mc, and h is discretely distributed in the no-work state and for
states in the set i ∈ Md . Hours possess a combined continuous/discrete distribution.
Knowledge of the value of h entirely determines the values of δ0, . . . , δn where n + 1
designates the total number of states.
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Formula (A.26) of Appendix A implies that the following specification delimits the
joint likelihood function of (h,W):

L(h,W) = L(h,W, δ0, . . . , δn)

= [P ((v, η, ξ) ∈ Ω0
)]δ0 ∗

∏
i∈Mc

[ ∫
Φi|h,W

f (h, v2,W, ξ) dv2 dξ

]δi

(4.52)∗
∏

i∈Md

[ ∫
Φi|h,W

f (ν,W, ξ) dν dξ

]δi

.

The first term of this expression delineates the probability of not working; the second
term – comprised of the numerators of (4.49) – designates the densities of (h,W) un-
conditional on δi = 1; and the third term – encompassing the numerators of (4.50) –
demarcates the probability that h = hi combined with the density of W unconditional
on δi = 1.

4.4.5. Density functions accounting for measurement error

With measurement error contaminating hours of work, h is no longer observed and
one instead has data on measured hours H specified by relation (4.15). Without loss of
generality, suppose (4.15) constitutes a monotonically increasing relationship that links
H to the measurement error component ε. The joint density function (4.21) relates the
distribution of ε to the distributions of the structural errors ν, η, and ξ .

On differentiable segments of the budget constraint, the density function for true
hours and wages is f (h,W, ξ, ε) which has a form entirely analogous to (4.44). Per-
forming a conventional change of variables yields the density

(4.53)f (h,W, ξ,H) = ∂εH

∂H
f
(
h,W, ξ, εH

) = ∂εH

∂H
f
(
h,W, ξ, εH (H, h)

)
where

(4.54)εH = εH (H, h) = H−1(H, h)

refers to the inverse of measurement error function (4.15), and the quantity

(4.55)
∂εH

∂H
=
[
∂H

∂h

]−1

designates the Jacobian associated with this inverse. The corresponding density of H

and W conditional on δi = 1 is

f (H,W | δi = 1) =
∫
Θi· h

∫
Φi|h,W̃

f (h,W, ξ,H) dξ dh

P (δi = 1)

(4.56)for (H,W) ∈ Θi· H,W
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where
∫
Θi· h

denotes integration over the set Θi· h which corresponds to the domain of
h conditional on δi = 1.

When wages are also measured with error through mismeasurement of hours as char-
acterized by relation (4.16), then (4.53) is replaced by

(4.57)f (h, W̃ , ξ,H) = f
(
h, W̃−1(W̃ , h,H), ξ,H

)
where

W = W̃−1(W̃ , h, εH (H, h)
) ≡ W̃−1(W̃ , h,H)

refers to the inverse of measurement error function (4.16). The corresponding density
of H and W̃ conditional on δi = 1 becomes

f (H, W̃ | δi = 1) =
∫
Θi· h

∫
Φi|h,W

f (h, W̃ , ξ,H) dξ dh

P (δi = 1)

(4.58)for (H, W̃ ) ∈ Θi· H,W̃ .

No change of variables occurs in deriving this expression since W̃ is fully known given
values for h, W and H .

A similar situation applies to incorporating measurement error when an individual
selects an optimum at a kink point of the budget set. Conditional on realization of the
state δi = 1, the value of ε is known since one sees H and h = hi with probability one.
Defining the f (ν,W, ξ, ε) as the generalization of the joint density function appearing
in (4.50) incorporating measurement error, then substitution of the inverse functions
W̃−1(W̃ , hi,H) and εH (H, hi) introduced above into this joint density yields

(4.59)f (ν, W̃ , ξ,H) = f
(
ν, W̃−1(W̃ , hi,H), ξ, εH (H, hi)

)
.

Following the steps above, one can readily verify that the density of (H, W̃ ) conditional
on δi = 1 takes the form

(4.60)f (H, W̃ | δi = 1) =
∫
Φi|h,W̃

f (ν, W̃ , ξ,H) dν dξ

P (δi = 1)
for W̃ ∈ Θi· W̃ .

Clearly, both specifications (4.59) and (4.60) depend directly on hi , but as in repre-
sentation of other specifications, the only arguments included in the function are those
variables that are random in the state; hi is fixed and known given δi = 1.

4.4.6. Likelihood functions for measured hours and wages

Formulating the likelihood function for (H, W̃ ) is complicated by the fact that a re-
searcher does not observe precisely which portion of the budget constraint an individual
selects since this decision reveals h and this quantity is unknown. Thus, when a per-
son works, one cannot distinguish which individual state i occurs. On the other hand,
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a researcher does observe when a person does not work. Expressed in terms of the en-
dogenous dummy variables δi , these circumstances imply that the data reveal the event
δ0 = 1 but not the individual events δi = 1 for i ∈ M = Mc ∪ Md . Instead, one merely
observes whether δ1 ≡∑i∈M δi = 1 or δ1 = 0.

Appealing to formula (A.34) of Appendix A, the following specification represents
the joint likelihood function of (h,W):

L(H, W̃ ) = [P ((v, η, ξ) ∈ Ω0
)]δ0

∗
[ ∑

i∈Mt

∫
Θi

[ ∫
Φi|h,W

f (h, v2, W̃ , ξ,H) dv2 dξ

]
dh

(4.61)+
∑
i∈Mt

∫
Φi|h,W

f (ν, W̃ , ξ,H) dν dξ

]δt

.

The first term of this expression delineates the probability of not working; and the sec-
ond term designates the density of (H, W̃ ) unconditional on δ1. Accordingly, both H

and W̃ are continuously distributed throughout the range on H > 0.

4.5. Maximum likelihood: Convex differentiable constraints with full participation

Developing specifications for likelihood functions when budget sets are convex and have
differentiable boundaries is straightforward, especially assuming labor force participa-
tion is not a factor for the population under investigation. The following discussion
presents two examples of such specifications to illustrate elementary versions of the
general formulas presented above.

4.5.1. Specifications for linear parameterizations of labor supply

Derivation of likelihood functions assuming a linear specification for hours of work
when (4.5) describes the budget constraint – wherein tax payments depend only on a
single taxable income quantity – follows directly from the previous results. Assuming
no measurement error (i.e., H = h), a change in variables from the heterogeneity error
ν to actual hours h yields the likelihood function for h:

(4.62)fh(h) = dν

dh
ϕν(h − yν − zγ − αω − βy)

where ϕv(ν) denotes the density of the heterogeneity component ν, and the Jacobian
term is

(4.63)
dν

dh
= 1 + (α − βh)W 2 ∂τ ′

∂I
.

This Jacobian term is restricted to be nonnegative over the admissible range. Maximiz-
ing (4.62) yields maximum likelihood estimates for the parameters of the labor supply
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function, �, which provide the information needed to infer the work disincentive effects
of taxation.

If hours are indeed contaminated by additive measurement error, then the likelihood
function for observed hours H = h + ε is given by

(4.64)fH (H) =
∫ max hours

0
ϕε(H − h)ϕh(h) dh

where ϕε(ε) denotes the density of the heterogeneity component ε. This expression
resembles relation (4.62) except that integration occurs over hours to account for
the existence of reporting error, and H replaces actual hours h in the Jacobian term
in (4.63).

4.5.2. Specifications for multiplicative measurement error

Now consider maximum likelihood estimation of the semilog specification of labor sup-
ply. Suppose the heterogeneity error component ν in the structural labor supply equation
and the disturbance ε in the measurement error equation for hours of work possess the
joint distribution ϕνε(ν, ε), where ϕνε designates a density function. For the moment,
suppose (ν, ε) are distributed independently of the gross wage and other income. Using
relations (4.35) and (4.44) to perform a standard change in variables from the errors
ν and ε to the variables h and H produces the likelihood function needed to compute
maximum likelihood estimates. The transformation from (ν, ε) to (h, H ) is monotonic
for a wide range of functional forms for � as long as the underlying preferences satisfy
quasiconcavity and budget sets are convex.

Without measurement error, the likelihood function for hours of work, h, takes the
form

(4.65)fh(h) = dν

dh
ϕν

(
h − y − zγ − α ln W − α ln(1 − τ ′) − βy

)
where ϕν is the marginal density for ν, and the Jacobian term is

(4.66)
dν

dh
= 1 +

((
α

W(1 − τ ′)
− βh

)
W 2 ∂τ ′

∂I

)
which is required to be nonnegative. In these expressions, the derivative τ ′ is evaluated
at I = Wh + Y − τ(Wh + Y).

With multiplicative measurement error, the likelihood function for observed hours H

becomes

L =
∫ max wage

0

∫ max hours

0

dν

dh

(4.67)× fνεw(h − y − zγ − α ln ω − βy, ln H − ln h,W) dh dW

where integration occurs over the hourly wage, which is unobserved, using the joint
density fνεw(ν, ε,W). The nonnegativity of the Jacobian term clearly places restrictions
on the behavioral parameters and we discuss these restrictions further below.
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4.6. Maximum likelihood: Convex piecewise-linear constraints with full participation

The majority of empirical labor supply studies incorporating taxes treat the tax sched-
ule as a series of brackets implying a piecewise-linear budget set. With such a tax
function, the familiar change-in-variables techniques implemented in conventional max-
imum likelihood do not apply due to the nonexistence of the Jacobian over measurable
segments of the sample space arising from nondifferentiability of functional relation-
ships characterizing hours-of-work choices. Moreover, a piecewise-linear budget set
creates endogenous variables (hours and after-tax wages) that are both discrete and con-
tinuous in character. Section 4.4 covers specifications for likelihood functions for such
endogenous variables.

4.6.1. Characterization of labor supply with piecewise-linear constraints

To illustrate the derivation of an estimable labor supply model using the piecewise-
linear approach assuming the linear structural specification for hours of work, consider
the simple case of a budget set with only three segments as presented in Figure 4.1.
The preceding discussion defines the variables yj , ωj and hj appearing in this figure.
To locate the kinks and slopes of the budget constraint for an individual, a researcher
must know the individual’s level of nonlabor income, gross wage rate, hours of work,
and the structure of the tax system. The hours of work at which kinks occur are given
by hj = (Ij − Y + D)/W , where Y and D, respectively, represent taxable nonlabor in-
come and deductions, and Ij is the maximum taxable income for segment j . The slope
of each segment is given by the marginal wage rate for that segment: ωj = W(1 − tj ),
where j denotes the segment, tj signifies the marginal tax rate for that segment, and W

is the gross wage rate per hour. Finally, the nonlabor income at zero hours of work –
the intercept of the budget line – is y1 = Y − τ(Y − D), where τ(·) is the tax func-
tion evaluated at the individual’s taxable income at zero earnings. Given this intercept
value, virtual incomes or the intercepts associated with successive budget segments are
computed by repeated application of the formula: yj = yj−1 + (ωj−1 − ωj )hj−1.

Given a convex budget constraint, an individual’s optimization problem amounts to
maximizing U(c, h) subject to

(4.68)c =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y1 if h = 0,

ω1h + y1 if H0 < h � h1,

ω2h + y2 if h1 < h � H1,

ω3h + y3 if H1 < h � h3,

ω3h3 + y3 if h = h3.

The solution of this maximization problem decomposes into two steps. First, determine
the choice of h conditional on locating on a particular segment or a kink. This step
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yields the solution:

(4.69)h =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if h = 0 (lower limit),
�(ω1, y1, ν) if 0 < h < h1 (segment 1),
h1 if h = h1 (kink 1),
�(ω2, y2, ν) if h1 < h < H1 (segment 2),
H1 if h = H1 (kink 2),
�(ω3, y3, ν) if H1 < h < h3 (segment 3),
h3 if h = h3 (kink 3 = upper limit).

Second, determine the segment or the kink on which the person locates. The following
relations characterize this solution: choose

(4.70)

0 if �(ω1, y1, ν) � 0,

(Segment 1) if H0 < �(ω1, y1, ν) < h1,

(Kink 1) if �(ω2, y2, ν) � h1 < �(ω1, y1, ν),

(Segment 2) if h1 < �(ω2, y2, ν) < H1,

(Kink 2) if �(ω3, y3, ν) � h2 < �(ω2, y2, ν),

(Segment 3) if H1 < �(ω3, y3, ν) < h3,

(Kink 3) if �(ω3, y3, ν) � h3.

Combined, these two steps imply the values of h and C that represent the utility-
maximizing solution for labor supply and consumption.

All studies implementing the piecewise-linear approach assume the existence of mea-
surement error in hours of work. With the linear measurement error model observed
hours H = h + ε. As long as the measurement error component ε is continuously
distributed, so is H . In contrast to information on h, knowledge of H suffices neither
to allocate individuals to the correct branch of the budget constraint nor to identify
the marginal tax rate faced by individuals, other than at zero hours of work. The state
of the world an individual occupies can no longer be directly observed, and one con-
fronts a discrete-data version of an errors-in-variables problem. The interpretation of
measurement error maintained in this analysis is that ε represents reporting error that
contaminates the observation on h for persons who work.23

23 Note that expected hours of work, in this convex piecewise-linear case, is additive in each hours choice
weighted by the probability of each segment or kink, each term in this sum being at most a function of two
marginal wages and two virtual incomes. Blomquist and Newey (2002) exploit this observation to develop a
semiparametric estimator for hours of work imposing the additivity through a series estimator.
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With measurement error, the linear specification of labor supply with ĥj ≡ μ+αωj +
βyj + Zγ implies the following stochastic specification:

(4.71)H =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ĥ1 + ν + ε if 0 < ĥ1 + ν � h1 (segment 1),
h1 + ε if ĥ2 + ν < h1 < ĥ1 + ν (kink 1),
ĥ2 + ν + ε if h1 < ĥ2 + ν � H1 (segment 2),
H1 + ε if ĥ3 + ν < h2 < ĥ2 + ν (kink 2),
ĥ3 + ν + ε if H1 < ĥ3 + ν � h3 (segment 3),
h3 + ε if ĥ3 + ν � h3 (upper limit).

This represents a sophisticated variant of an econometric model that combines discrete
and continuous choice elements.

4.6.2. Likelihood function with measurement error when all work

The log-likelihood function for this model is given by
∑

i ln fH (H), where i indexes
observations. Defining νj = hj−1 − ĥj and vj = hj − ĥj , the components fH (H) are
given by

fH (H) =
3∑

j=1

∫ vj

νj

ϕ2(H − ĥj , ν) dν (segments 1, 2, 3)

+
2∑

j=1

∫ νj+1

vj

ϕ1(H − hj , ν) dν (kinks 1, 2)

(4.72)+
∫ ∞

v3

ϕ1(H − h3, ν) dν (upper limit)

where ϕ1(·,·) and ϕ2(·,·) are the bivariate density functions of (ε, ν) and (ε + ν, ν),
respectively. Maximizing the log-likelihood function produces estimates of the coeffi-
cients of the labor supply function �. These estimates provide the information used to
infer both substitution and income responses, which in turn provide the basis for calcu-
lating the work disincentive effects of income taxation.

4.6.3. Shortcomings of conventional piecewise-linear analyses

The piecewise-linear approach for estimating the work disincentive effects of taxes
offers both advantages and disadvantages relative to other methods. Concerning the
attractive features of this approach, piecewise-linear analyses recognize that institu-
tional features of tax systems induce budget sets with linear segments and kinks. This
is important if one believes that a smooth tax function does not provide a reasonably
accurate description of the tax schedule. The piecewise-linear approach admits random-
ness in hours of work arising from both measurement error and variation in individual
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preferences and it explicitly accounts for endogeneity of the marginal tax rate in estima-
tion, but so do the instrumental variable and differentiable likelihood methods discussed
above. As we will see below, the piecewise-linear approach more readily incorporates
fixed costs of holding a job, regressive features of the tax code, and multiple program
participation than other procedures due to the discrete-continuous character of hours-
of-work choices induced in these environments. These features of the piecewise-linear
method make it a vital approach in empirical analyses of labor supply.

On the other hand, the following shortcomings of the piecewise-linear procedure raise
serious doubts about the reliability of its estimates of work disincentive effects. First,
the piecewise-linear methodology assumes that both the econometrician and each in-
dividual in the sample have perfect knowledge of the entire budget constraint that is
relevant for the worker in question. Errors are permitted neither in perceptions nor in
measuring budget constraints. Taken literally, this means that: all income and wage
variables used to compute each sample member’s taxes are observed perfectly by the
econometrician; individuals making labor supply choices know these variables exactly
prior to deciding on hours of work; each individual and the econometrician know
when the taxpayer will itemize deductions and the amount of these itemizations; and
each taxpayer’s understanding of the tax system is equivalent to that of the econome-
trician (e.g., the operation of such features as earned-income credits). Clearly, given
virtual certainty that most of these assumptions are violated in empirical analyses of
labor supply, the estimates produced by methods relying on these assumptions must
be interpreted very cautiously. The differentiable likelihood methods rely on the same
assumptions. The instrumental variable methods do not, so they are likely to be more
robust.

Second, measurement error plays an artificial role in econometric models based on
the piecewise-linear approach. Its presence is needed to avoid implausible predictions
of the model. The statistical framework induced by the piecewise-linear approach im-
plies that bunching in hours of work should occur at kink points if hours precisely
measure h. However, for the vast majority of data sources currently used in the litera-
ture, only a trivial number of individuals, if indeed any at all, report hours of work at
interior kink points. Unless one presumes that the data on hours do not directly rep-
resent h, such evidence provides the basis for immediately rejecting the distributional
implications of the above specifications. Considering, for example, the labor-supply
characterization proposed in Equation (4.69), almost any test of the distributional as-
sumptions implied by this specification would be readily rejected because observed
hours would take the values H0, h1, h2 and h3 with only a trivial or zero probability.
Instead, observed hours essentially look as if they are distributed according to a con-
tinuous distribution. When a continuously-distributed measurement error ε is added to
the model, observed hours H are continuously distributed. This provides an essential
reason for introducing measurement error in the data, for without it, the piecewise-
linear structure provides a framework that is grossly inconsistent with the data. Of
course, several sound reasons exist for admitting measurement error in a labor sup-
ply model, including the widespread suspicion that reporting error contaminates data
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on hours of work. However, measurement error in hours of work implies measure-
ment error in wages, since they are typically computed as average hourly earnings.
Current applications of the piecewise-linear analysis mistakenly ignore this by assum-
ing perfectly measured budget constraints.24 The unnatural role played by measurement
error raises questions about the credibility of findings derived from the piecewise-linear
approach. In contrast to the piecewise-linear approach, it is not essential to introduce
measurement error in either the differentiable likelihood or the instrumental variable
approach because hours in the distribution of h are continuous without measurement
error.

Third, existing research implementing the piecewise-linear methodology relies on
very strong exogeneity assumptions. Other than hours of work, all variables involved
in the calculation of taxes are presumed to be exogenous determinants of labor supply
behavior, both from a statistical and from an economic perspective. These variables in-
clude gross wages, the various components of nonlabor income, and deductions. In light
of the evidence supporting the view that wages and income are endogenous variables
in labor supply analyses, particularly in the case of wages, suspicions arise regarding
the dependability of estimated substitution and income effects based on procedures that
ignore such possibilities. Most of the exogeneity assumptions are also maintained in the
differentiable likelihood approach, but are easily relaxed when applying instrumental
variable procedures (given the availability of a sufficient number of other instrumental
variables).

Fourth, some concerns about the reliability of estimates produced by the piecewise-
linear approach ensue due to the static behavioral framework maintained in the for-
mulation of empirical relations. Piecewise-linear studies invariably rely on the textbook
one-period model of labor supply as a description of hours-of-work choices, and impose
it to estimate parameters. Existing implementations of the differentiable likelihood ap-
proach suffer from the same problem. Everyone acknowledges that individuals are not
simply myopic optimizers; they transfer income across periods to achieve consump-
tion plans that are infeasible without savings. A serious question arises concerning the
relevance of such considerations in estimating substitution and income effects used to
predict responses to tax policy.

4.7. Maximum likelihood estimation imposes restrictions on behavioral responses

The implementation of maximum likelihood procedures imposes interesting and im-
portant restrictions on behavioral parameters in the presence of nonlinear budget con-
straints. These restrictions come about in defining the statistical model to be coherent,
requiring probabilities to fall in the [0, 1] interval and densities to be nonnegative.

24 It is possible to argue that this error does not result in measurement error in the hourly wage, if the mea-
surement error is interpreted as an “optimization” error.
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4.7.1. Restrictions imposed under piecewise-linear constraints

The econometric model produced by the piecewise-linear formulation given by (4.72)
implicitly imposes parametric restrictions that constrain the signs of estimated sub-
stitution and income effects. As developed in MaCurdy, Green and Paarsch (1990),
particular inequality restrictions must hold in the application of estimation procedures
with piecewise-linear budget constraints for likelihood functions to be defined (i.e., to
ensure that the components of these functions are nonnegative). More specifically, in
applications of such procedures, the Slutsky condition must be locally satisfied at all
interior kink points of budget sets that represent feasible options for any individual in
the sample such that the compensated substitution effect must be positive. For the linear
specification of the labor supply function considered in the preceding discussion, the
specific inequality constraints imposed are

(4.73)α − βhjk � 0, ∀j, k,

where the quantities hjk represent the hours-of-work values that correspond to interior
kink points j on a sample member k’s budget set. Because many values of hjk exist in
most analyses of piecewise-linear constraints, fulfillment of relations (4.73) essentially
requires global satisfaction of the Slutsky condition by the labor supply function. Such
a requirement, in essence, globally dictates that the uncompensated substitution effect
of a wage change on hours of work must be positive for the labor supply specification
considered in the preceding discussion, and the income effect for hours of work must
be negative. The imposition of these restrictions, especially for men, is highly suspect
given the available evidence from other studies. These restrictions carry over to more
general labor supply functions.

4.7.2. Restrictions imposed under differentiable constraints

Maximum likelihood estimation with differentiable constraints induces comparable re-
strictions. Consider, for example, likelihood function (4.62). For this specification to be
a properly-defined likelihood function, the Jacobian dν

dh
must be nonnegative. Violation

of this condition implies that the density function for h is negative, which obviously
cannot occur. Nonnegativity of dν

dh
translates into the property

(4.74)
∂�

∂ω
− ∂�

∂y
h � −

(
∂τ

∂I
W 2
)−1

� 0,

where � refers to the labor supply function. The left-hand side of this inequality is the
Slutsky term. This inequality result does not require compensated substitution effects to
be positive as quasiconcave preferences mandate, only that these effects cannot become
too negative.

Maximum likelihood procedures yield nonsensical results unless Equation (4.74)
holds. Without measurement error, estimated parameter values cannot imply a violation
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of Equation (4.74) at any of the data combinations (h, ω(h), y(h)) actually observed
in the sample. If a violation occurs, then the evaluation of (4.62) for the observation
associated with this combination would result in a nonpositive value which causes the
overall log likelihood function to approach minus infinity which clearly cannot repre-
sent a maximum.

With measurement error, maximum likelihood estimation applied to function (4.64)
ensures that a weighted average of density functions appearing in (4.64) holds, with
weighting occurring over all combinations of hours, marginal wages, and virtual income
lying in the feasible range of the budget constraint of any individual included in the
sample. Since maximum likelihood procedures assume the validity of such restrictions
when calculating estimates of the coefficients of �, the resulting estimated labor supply
function can be expected to exhibit compensated substitution effects that obey inequality
(4.74) over a very wide range of hours, wages, and incomes.25

4.8. Maximum likelihood: Accounting for participation and missing wages

As mentioned in previous sections, some applications of the piecewise-linear approach
incorporate fixed costs to working – costs such as transportation that must be paid for
any amount of work but which may vary across individuals. This significantly com-
plicates the analysis because the optimized level of work under the budget constraint
while working may not represent the optimal choice overall; one must explicitly con-
sider the option of not working and thus avoiding the fixed cost. For any level of fixed
costs, a minimum number of hours worked is implied creating an attainable range in
the observable hours of work distribution; individuals will not work unless the gain
is large enough to overcome the fixed costs. In essence, these complications arise
because the budget constraint is not convex, invalidating simple maximization proce-
dures.

4.8.1. Fixed costs of working

If an individual must pay fixed monetary costs, F , to work, then nonlabor income, Y , in
the above budget constraints is replaced by

Y − F if h > 0,

(4.75)Y if h = 0.

F is partially unobservable and, thus, modeled as a stochastic element, varying across
individuals. Hence, we see that the budget constraint discontinuously jumps down by F

when the individual chooses to work.

25 It is, of course, computationally feasible to use (4.64) in estimation and not require fh to be defined over the
entire range of its support. Computationally one merely requires fh to be nonnegative over a sufficiently large
region to ensure (4.64) > 0. Of course, not requiring fh � 0 over its relevant range produces a nonsensical
statistical model.
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To solve for the optimum when faced with this budget constraint, two regimes must
explicitly be considered: working and not working. Estimation proceeds by finding the
maximum utility under each regime and then comparing these to determine which op-
tion is chosen. In neither regime, the utility function U(c, h, ν) – where we explicitly
note the unobserved component, ν – is maximized subject to optimization problem (4.1)
with (4.4) modified by (4.75).

In the no-work regime, the solution is simple. We know h is 0, so utility is given by
U(Y − τ(Y − D), 0, ν).

The solution in the work regime closely follows the solution presented in Section 4.6.
Again utilizing the labor supply function, �(ω, y, ν) yields the solution for h given in
(4.69), where the virtual income y now subtracts fixed costs F . However, to compute
maximum utility in this regime requires associating a utility level with each possible
hours choice. Utility along any segment, j , is given by the indirect utility function,
V (ωj , yj , ν). At kinks, the direct utility function must be used, so the utility at kink j

is given by U(ωjhj + yj , hj , ν). Hence, utilizing exactly the same solution procedure
exploited in Section 4.6, we can define maximized utility when working, V ∗:

(4.76)V ∗(w, y, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∞, �1 � 0,

V (ω1, y1, ν), 0 < �1 < h1,

U(ω1h1 + y1, h1, ν), �2 < h1 � �1,

V (ω2, y2, ν), h1 < �2 < H1,

U(ω2H1 + y2,H1, ν) �3 < H1 � �2,

V (ω3, y3, ν), H1 < �3 < h3,

U(ω3hm + y3, hm, ν), �3 � hm,

where

(4.77)�j ≡ �(ωj , yj , ν) ≡ Vω(ωj , yj , ν)

Vy(ωj , yj , ν)

with Vω and Vy denoting the partial derivatives of V ; relation (4.77) is, of course, Roy’s
identity defining the labor supply function, �, evaluated at wage and income levels ωj

and yj . The use of −∞ for h = 0 simply indicates that h = 0 is not included in
this regime and, thus, selecting it indicates that the no-work regime is preferred. Given
functional forms for V and U , finding V ∗ is straightforward.

Given maximized utility under each regime, the final step in the solution is to compare
the two regimes. An individual chooses to work at the hours specified by the solution
in (4.69) if

(4.78)V ∗(ω, y, ν) � U
(
Y − τ(Y − D), 0, ν

)
and chooses not to work otherwise. For any level of ν, treating Equation (4.78) as an
equality implies a critical level of fixed costs, F ∗(ν) above which the individual will
choose not to work; F enters this relation through the virtual income variable y. Because
desired hours of work increase with ν, this critical value will generally be increasing in
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ν – greater propensity to work implies that higher fixed costs are required to prefer the
no-work option. If restrictions are placed on the support of F , such as F > F , there
will be values of ν low enough to rule out the work regime, thus implying a hole at the
low end of the h distribution.

As a final step before deriving the likelihood function, note that in the no-work
regime, gross wage, W , is not observed and, thus, the budget constraint cannot be de-
rived. Hence, W must be endogenized. Such a step amounts to modeling the offered
gross wage rate as being generated by a variant of Equation (2.24) which presumes that
W is randomly distributed across the population depending on measured characteristics
Q = (x, q) and unobservable components η i.e., W = W ∗(Q) + η.

4.8.2. Likelihood function incorporating fixed costs

To derive the likelihood function, first consider the likelihood contribution of an indi-
vidual who does not work. We assume this no-work decision can be observed, so there
is no measurement error. In the no-work case, one of two situations applies: (i) fixed
costs are sufficiently high with F > F ∗ ≡ F ∗(ν, η) for any given ν and η, or (ii) if this
fixed-cost threshold falls below the lowest admissible value for F (i.e. F ∗ � F ), then
desired hours are sufficiently low with ν < ν∗ ≡ ν∗(η) for any η.26 The probability of
this event is

(4.79)L0 =
∫ ∞

−∞

∫ ν∗

−∞

∫ ∞

F ∗
ϕνηF (ν, η, F ) dF dη dν

where ϕνηF is the joint density of (ν, η, F ).
For the work regime, the likelihood contribution looks very much like that derived in

specification (4.72), as we continue to assume the linear hours of work function and the
form of measurement error assumed there. The only changes are the addition of terms
for δ and F (accounting for the fact that F < F ∗(ν)) and the removal of the term for
the lower limit which is no longer part of that regime and is now perfectly observable.
Using ϕ1 and ϕ2 to denote the distribution of (ε, ν, η, F ) and (ε + ν, ν, η, F ) yields:

L1 =
3∑

j=1

∫ νj

νj

∫ F ∗

0
ϕ2
(
H − ĥj , ν,W − W ∗(Q), F

)
dF dν

+
2∑

j=1

∫ νj+1

νj

∫ F ∗

0
ϕ1
(
H − hj , ν,W − W ∗(Q), F

)
dF dν

(4.80)+
∫ ∞

ν3

∫ F ∗

0
ϕ1
(
H − h3, ν,W − W ∗(Q), F

)
dF dν

26 The critical value υ∗ solves relation (4.78) treated as an equality with virtual income y evaluated at F .
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where

νj solves the equation �(ωj , yj , νj ) = hj−1,

(4.81)νj solves the equation �(ωj , yj , νj ) = hj .

All variables appearing in these expressions are defined as in Section 4.6.
The likelihood function for an individual is given by

(4.82)L = (L1)
δE (L0)

1−δE

where δE = 1 if the individual works and δE = 0 otherwise. Estimation proceeds
by maximizing the sum of log likelihoods across individuals, as always. This is quite
complex in this case, requiring knowledge of both the direct utility U and the indi-
rect utility V , and also requiring comparisons across regimes for all individuals and all
parameter values.

4.9. Welfare participation: Maximum likelihood with nonconvex constraints

A common source of nonlinearity in budget constraints involves participation in wel-
fare programs. To illustrate this situation, consider the simplest case in which the only
taxes faced by an individual result from benefit reduction on a single welfare program.
Figure 4.3 presents this scenario. Under most welfare programs, individuals face very
high effective tax rates when they initially work due to large reductions in their benefits
occurring when earnings increase. Once benefits reach 0, the tax rate drops to a lower
level, creating a nonconvex kink in the budget constraint. This nonconvexity invalidates
the simple procedures exploited in Section 4.6 implemented to divide sample spaces
into locations on budget sets.

4.9.1. Simple nonconvex constraints with no welfare stigma

Following the picture portrayed in Figure 4.3, an individual maximizes U(c, h, ν) sub-
ject to the budget constraint

(4.83)c = Wh + Y + b
(
I (h)

)
,

where benefits are given by the simple benefit schedule:

(4.84)b
(
I (h)

) =
{

G − ρWh if G − ρWh > 0,

0 otherwise.

G gives the guarantee amount which is reduced at the benefit reduction rate ρ as the
earnings, Wh, increase. This implies a kink point at H1 = G/ρW where benefits reach
0 and, thus, the marginal wage rises to W . So, the individual faces two segments: seg-
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ment 1 has h < h1 with net wage ω1 = (1 − ρ)W and virtual income y1 = Y + G; and
segment 2 has h > h1 with net wage ω2 = W and virtual income y2 = Y .27

Because the budget constraint is nonconvex, the solution cannot be characterized
simply by finding a tangency with the budget constraint as it was in Section 4.6. Multiple
tangencies are possible and these must be directly compared to determine the optimum.
Hence, one requires the regime shift approach summarized in Section 4.4.

Consider first the regime in which positive benefits are received; that is, h < h1.
Maximization, given the effective wage and income, on this linear segment follows
the approach of Section 4.4. We can characterize the optimal choice according to the
function �(ω1, y1, ν). Denote the value of ν which implies �(ω1, y1, ν) = 0 as ν0. Then
the optimal hours choice along that segment is given by

(4.85)h = �1 = �(ω1, y1, ν), ν > ν0; h = 0, ν � ν0.

The optimized value on this segment (including the zero work option), accounting
for the fact that h > h1 is not allowed, is given by

(4.86)V ∗
1 (ω1, y1, ν) =

⎧⎨⎩
V (ω1, y1, ν), 0 < �1 � h1,

U(y1, 0, ν), �1 � 0,

−∞, �1 > h1,

where Equation (4.85) defines �1.
Next, consider the regime without benefits, that is with h � h1. Again the optimal

choice, given the wage and income, on this segment is given by the labor supply function
�2 = �(ω2, y2, ν). The optimized value, accounting for the fact that h < h1 is not
admissible, is given by28

(4.87)V ∗
2 (ω2, y2, ν) =

{
V (ω2, y2, ν), �2 � h1,

−∞, �2 < h1.

Hence, the individual selects regime 1, with welfare receipt, if V ∗
1 > V ∗

2 , and
regime 2 otherwise. Since work propensity increases with ν, this can be characterized
by a cutoff value, ν∗, defined by

(4.88)V ∗
1

(
ω1, y1, ν

∗) = V ∗
2

(
ω2, y2, ν

∗).
For values of ν above ν∗, regime 2 is chosen; and for values below ν∗, regime 1 is
realized.

We can define three sets, Ω0, Ω1, and Ω2, such that for ν ∈ Ω0 the individual chooses
not to work, for ν ∈ Ω1 the individual locates on segment 1 receiving benefits with
positive hours of work, and for ν ∈ Ω2 the individual locates on segment 2. We must
consider two cases to define these sets exactly. First, suppose ν∗ > ν0. Then we have

Ω0 = {ν | ν � ν0},

27 We ignore any upper bound on hours worked for simplicity.
28 In the following formulation, we implicitly assume that the event �2 � H occurs with zero probability.
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Ω1 = {ν | ν0 < ν � ν∗},
(4.89)Ω2 = {ν | ν > ν∗}.

Alternatively, if ν∗ � ν0, then the switch to regime 2 occurs before positive hours are
worked in regime 1, that is

Ω0 = {ν | ν � ν∗},
Ω1 = ∅,

(4.90)Ω2 = {ν | ν > ν∗}.
Hence, for certain individuals and parameter values, no value of ν exists such that they
will locate on segment 1 with positive hours of work.

To characterize the likelihood function we again need a functional form for the gross
wage of the form W = W(Z) + η. We ignore measurement error here for simplicity,
and because there is no problem with individuals failing to locate at the kink in this
nonconvex case. Define δB = 1 if the individual receives benefits, and δE = 1 if the
individual works, both 0 otherwise. The likelihood function is given as follows, incor-
porating ϕην(η, υ) and the general inverse function ν = ν(h):

δB = 1, δE = 1, L11 = ∂ν

∂h
ϕνη

(
ν(h),W − W(Z)

)
I (ν ∈ Ω1),

δB = 0, δE = 1, L01 = ∂ν

∂h
ϕνη

(
ν(h),W − W(Z)

)
I (ν ∈ Ω2),

(4.91)δB = 1, δE = 0, L10 =
∫

Ω0

ϕνη(ν, η) dν dη,

where I (·) represents an indicator function equal to 1 if the condition in the parentheses
is true. Because the value of ν implied by the hours choice may be inconsistent with the
value implied by the regime choice, it is possible to have “holes” in the hours distribu-
tion around the kink point. For example, an individual on segment 1 must have ν � ν∗.
If his hours choice is too close to the kink, this may imply a value of ν > ν∗ and thus
an observation with zero likelihood.

The overall likelihood function is given by

(4.92)L = (L11)
(δB)(δE)(L01)

(1−δB)(δE)(L10)
(δB)(1−δE).

Estimation proceeds by maximizing the sum of log likelihoods across individuals, as
always. This is quite complex in this case, requiring knowledge of both the direct util-
ity U and the indirect utility V , and also requiring comparisons across regimes for all
individuals and all parameter values.

4.9.2. Welfare stigma implies selection of budget constraint

The above analysis assumes that all individuals eligible for welfare are on welfare. In-
dividuals working less than h0 but failing to receive welfare are operating below the
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implied budget constraint, a possibility not permitted in the analysis. Yet, many individ-
uals are in exactly this situation. This is generally explained by assuming the existence
of some utility loss or stigma associated with welfare.

To capture welfare stigma the utility function is modified to take the form

(4.93)U = U(c, h, ν) − δBζ,

where ζ is the level of welfare stigma which is greater than 0 and varies across individ-
uals.29 Two unobserved components now enter preferences, ν and ζ . Such cases were
considered in the general analysis of Section 4.4. With this modification we again con-
sider the welfare and nonwelfare regimes. Since the welfare stigma term does not affect
the marginal decisions, given that the individual is on welfare, the discussion of hours
of work presented above for regime 1 is still valid. The optimal utility is now given by

(4.94)V ∗(ω1, y1, ν) =
⎧⎨⎩

V1(ω1, y1, ν) − ζ, 0 < �1 � h1,

U(y1, 0, ν) − ζ, �1 � 0,

−∞, �1 > h1.

The analysis for regime 2 is altered in this case, because an individual can be observed
not receiving welfare for any value of h – that is, given welfare stigma, it is possible to
observe an individual with h < h1, but δB = 0. So regime 2 is now defined solely by
δB = 0. Optimal hours of work, given ω2 and y2, are given by �(ω2, y2, ν). Defining
the value of ν for which �(ω2, y2, ν) = 0 as ν+, hours of work under this regime are
now given by

h = �2 = �(ω2, y2, ν), ν > ν+,

(4.95)h = 0, ν � ν+.

Optimized utility is now

(4.96)V ∗
2 (ω2, y2, ν) =

{
V (ω2, y2, ν), �2 > 0,

U(y2, 0, ν), �2 � 0.

Choice of regime still proceeds by comparing V ∗
1 and V ∗

2 , as done in relationship
(4.88). For any ν in the sets Ω0 or Ω1 defined by expressions (4.89) or (4.90), there
is now some critical level of ζ ∗ = ζ ∗(ν), which depends on ν, such that regime 2 is
chosen when ζ > ζ ∗; regime 1 is chosen otherwise.

Given this characterization, we can derive the likelihood function for each combina-
tion of δB and δE , using the joint densities ϕνζη(ν, ζ, η) and ϕνη(ν, η):

δB = 1, δE = 1, L11 = ∂ν

∂h

∫ ζ ∗

0
ϕνζη

(
ν(h), ζ,W − W(z)

)
I (ν ∈ Ω1) dζ,

29 This additive form is used for simplicity. More general forms can be used, but change none of the substan-
tive points presented here.
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δB = 0, δE = 1, L01 = ∂ν

∂h
ϕνη

(
ν(h),W − W ∗(Z)

)
I (ν ∈ Ω1)

+ ∂ν

∂h

∫ ∞

ζ ∗
ϕνζη

(
ν(h), ζW − W ∗(Z)

)
I (ν ∈ Ω1) dζ,

δB = 1, δE = 0, L10 =
∫ ∞

−∞

∫
Ω0

∫ ζ ∗

0
ϕνζη(ν, ζ, η) dζ dν dη,

(4.97)δB = 0, δE = 0, L00 =
∫ ∞

−∞

∫ ν∗

−∞

∫ ζ ∗

0
ϕνζη(ν, ζη) dζ dν dη.

Estimation proceeds as in the nonstigma case by selecting the appropriate likelihood
branch for each individual and then maximizing the sum of the log likelihoods.

As with the fixed cost case, the likelihood function is complex even in this extremely
simplified welfare case. For each possible set of parameter values, the maximum must
be computed for each regime and then compared to compute ζ ∗. Adding the tax codes,
with their implied kinks, increases computational complexity. As a result, the literature
has adopted a simplifying methodology which we present in Section 4.10 below.

4.9.3. Multiple program participation

In principle, the extension to the case of multiple program participation is straightfor-
ward. For simplicity, we consider a case in which the individual can choose between
participating in no welfare programs, participating in welfare program 1, participating
only in program 2, or participating in both welfare programs 1 and 2. We extend the
utility function as follows:

(4.98)U = U(c, h, ν) − δ1ζ − δ2χ

where δ1 = 1 if the individual participates in program 1, and δ2 = 1 if the individual
participates in program 2.30 Benefits from program j , bj (I (h)), are given:

(4.99)bj

(
I (h)

) =
{

Gj − ρjWh if Gj − ρjWh > 0,

0 otherwise.

Benefits from both together are given as

b1
(
I (h)

)+ b2
(
I (h)

)
(4.100)=

{
G1 + G2 − ρ1Wh − ρ2Wh = G − ρWh if G − ρWh > 0,

0 otherwise,

where G = G1 + G2 and ρ = ρ1 + ρ2. In general, the benefit functions for programs 1
and 2 will have different breakeven points, implying the values of hours defining kinks
(H1 in Figure 4.3) will not be the same.

30 The use of two additive errors is a simplifying assumption which ensures that the stigma from both pro-
grams is higher than stigma from program 1 alone.
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This formulation expands the model considered in Sections 4.6 and 4.9.2. To adapt
this earlier model, one must designate three distinct regimes in place of regime 1 speci-
fied above: regime 1a indicating an individual participates only in program 1, regime 1b

signifying this person collects benefits only from welfare program 2, and regime 1c des-
ignating participation in both programs. Optimal hours and utility for participation in a
regime are given by (4.85), (4.86), (4.94), (4.95), and (4.96), with net wages and vir-
tual income in these formulations specified as ωj = W(1 − ρj ) and yj = Y + Gj ,
with j = 1a, 1b, or 1c. In particular, relations analogous to (4.85) and (4.86) define the
labor supply and utility functions for each of the new regimes for the “on-welfare” seg-
ments associated with the relevant combination of welfare programs. Relations (4.95)
and (4.96) still define the labor supply and utility functions for the nonwelfare regime.
The set of relations define thresholds for ν demarcating the regions of unobserved tastes
determining when a person works (ν0 in (4.85) and ν+ in (4.95)). Maximization again
requires selection of a regime. Relations analogous to (4.94) and (4.96) characterize
utilities corresponding to the various regimes. Conditional on values ν, these relations
in turn imply thresholds for the stigma errors ζ , χ , and ζ + χ that determine individu-
als’ welfare participation. The likelihood function for this model takes a form similar to
Equation (4.97), with more branches appearing in the function reflecting the additional
regimes analyzed in this formulation.

Again, note the complexity of these extremely simplified welfare cases; even these
involve a significant computational burden. For each possible set of parameter values,
one must compute the maximum for each regime, account for the benefit structure,
and then compare these to compute the error ranges for the likelihood function. When
the individual is unemployed, one must perform these calculations for all possible
wage values and all values of ν consistent with the no-work decision. Adding the tax
code, with its implied kinks, increases computational difficulties. Introducing additional
sources of unobserved heterogeneity enlarges the number of dimensions over which one
must calculate integrals, requiring sophisticated numerical procedures and considerable
computer resources. As a result, the literature has adopted simplifying methodologies,
a topic to which we now turn.

4.10. Computational simplification by making hours choices discrete

To make estimation problems manageable, a popular method is to presume that con-
sumers face only a limited set of hours choices. For example, a worker may choose only
full-time work, part-time work, or no work, with each of these options implying a pre-
scribed number of hours. Formally, this is done by assuming that unobservable tastes
components, ν, possess a discrete distribution, usually characterized as a multinomial
distribution conditional on covariates. Combined with a 0/1 welfare decision, this finite
set of hours choices yields a relatively small set of discrete states, say a set of S states,
over which the utility function must be maximized.

Given a specific form for the preference function, utility can be readily evaluated at
each of the hours choices and the maximum can be determined. Given an assumed joint
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distribution for unobservable taste components, ν, for the error component determining
wages, η, and for welfare stigma, ζ , one can compute a probability that a family selects
alternative j . This in turn defines a sample log likelihood of the form

(4.101)L =
∑
j∈S

dj ln P(j |X, θ)

where dj is an indicator for whether individual i chooses alternative j , X is a vector
of observable characteristics, and P(j |X, θ) is the probability of choosing alternative j

with θ the set of unknown parameters. Such formulations are substantially less compli-
cated than the specifications considered above because one avoids the intricate process
of calculating thresholds and dealing with combined continuous-discrete endogenous
variables; only discrete choices are allowed for here.

This formulation requires each individual to be placed into a limited set of preas-
signed work states, even though observed hours worked take many more values, making
hours look as if they were continuously distributed. To overcome this issue, analyses ap-
plying this approach necessarily introduce measurement error in hours of work to admit
hours to deviate from the discrete values assumed for the choice set. Hence, conditional
on ν, each alternative j contributes some positive probability P(j |X, θ, ν) which now
depends on the value of the unobservable measurement error variables.

We illustrate this approach by considering the linear measurement error model given
in Section 4.3.1 where the reporting error ε ∼ ϕε, with ε and ν independent. Further,
as typically assumed, we specify that hours are not subject to measurement error in
no-work states. The likelihood function for hours now takes the form

(4.102)L =
(∑

j∈S0

dj ln P(j |X, θ)

)1−δE
(∑

j∈S1

dj ln
(
ϕε(H − hj )P (j |X, θ)

))δE

where δE denotes a 0/1 variable with 1 indicating that the individual works, S0 desig-
nates the set of all states associated with the individual not working, the set S1 includes
all states in which the individual works, and hj denotes the admissible values of true
hours. Earnings depend on the values of hj and wages. In (4.102), observed hours (H )
are continuously distributed among workers.

5. Family labor supply

The study of family labor supply is motivated by a need to understand how a couple
responds to tax and welfare benefit incentives when the benefit rules create links in the
incentive structure as well as the need to understand how welfare is distributed within
the household, so as to design the targeting of benefits appropriately. Indeed the struc-
ture of family labor supply has changed quite substantially and this may be partly due
to changes in the benefit structure as well as a result of changes in relative wages. For
example, in the UK there has been a large increase in the participation rate of married
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women and a decrease in the participation of men. These changes have been accom-
panied by an increase in the number of families where no one works. This is perhaps
predictable given the structure of the benefit system. However the design of income
maintenance programs that target the right households and offer the right incentive sys-
tem is of course important and crucially relies on our knowing the way that family labor
supply is determined.

The basic family labor supply model for a married couple is the unitary model where
the household is seen as maximizing one (household) utility function whose arguments
are male and female labor supply and consumption. Applying demand analysis one can
derive the implications of changes in wages and unearned income for behavior. Since
taxes can be viewed as changes in wages and unearned income, such models can be used
to simulate the labor market effects of changes in the tax system or welfare benefits.
However in this model intra-household distribution has little meaning and of course the
model has nothing to say about this. In addition it is unclear how the household utility
function can come about from the interaction of two individuals with incentives that are
not necessarily perfectly aligned. This has led to the recognition that even when dealing
with households we need to account for individuals within households and we need to
model the way they share resources. This leads to potentially richer models of behavior
that are capable of explaining much more than the standard household model.

In the sections that follow we outline the two models and some of their implications
in greater detail.

5.1. The standard ‘unitary’ family labor supply model

Consider the family labor supply and consumption problem

max U(c, h1, h2, x)

such that c = y + w1h1 + w2h2

where U is a strictly quasiconcave function of consumption c and the two labor sup-
plies hi . The budget constraint equates household consumption to total income, consist-
ing of unearned income (y) and the two earnings (wihi), T being total time available
for market work and wi the two wages. In addition to the budget constraint, leisure can-
not exceed T and hence labor supply must be positive or zero (hi). This is a standard
demand analysis problem with the complication that there may be corner solutions and
wages being individual specific are not observed when the individual is working.

The first-order conditions for an interior solution simply state that the marginal rate
of substitution between the two leisures will equal the ratio of wages

(5.1)
Uh1

Uh2

= w1

w2
.

An implication of this model is that behavior is neutral to within-household lump-
sum redistributions of income. Thus paying a benefit to the male or the female will
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have exactly the same effect, so long as it does not distort wages. This is often termed
the income pooling hypothesis and we revisit the issue when we discuss the collective
model. Here it suffices to note that the symmetry condition and the income pooling
hypothesis are properties of the unitary model and may not be satisfied in the collective
one.

5.1.1. Nonparticipation

In this subsection we show how to deal with nonparticipation and missing wages in the
family labor supply context. The issues are very similar to those already discussed in
the single-person labor supply model.

The first issue to be addressed is allowing for unobserved heterogeneity in the pa-
rameters of the utility function. Typically this can be addressed in a number of ways.
One way would be to assume that the marginal rate of substitution for each of the two
leisures with consumption includes a multiplicative error term [see Heckman (1974a,
1974b, 1974c) for example]. In this case we could write the first-order conditions as

ln

(
−Uh1

Uc

)
= ln(w1) + ε1,

(5.2)ln

(
−Uh2

Uc

)
= ln(w2) + ε2.

We can also assume a (bivariate) density for the wage rates, say f (w1, w2|z) where
z are the observable characteristics that drive wages and ε1 and ε2 will be taken to
be independent of them. Typically one would assume a distribution function for ε =
[ε1, ε2]′, for example N(0,Ω).

The functions (5.2) together with the distributional assumption for the unobserved
heterogeneity define the distribution of hours of work. Hence the likelihood contribution
for a couple where both are participating is simply the joint density of hours of work
and wages for the two of them:

�(h1, h2, w1, w2)

= |J |g
(

ln

(
−Uh1

Uc

)
− ln(w1), ln

(
Uh2

Uc

)
− ln(w2)|w1, w2, x

)
× f (w1, w2|z),

J = ∂ε

∂h′ [Jacobian]
where x are observables affecting individual preferences and h = [h1, h2]′. When one
or both partners are not working, hours of work are censored and the respective wage is
unobserved. Take as an example the case where one of the two is not working (say 1).

In this case note that ε1 < ln(−Uh1
Uc

) − ln(w1), where −Uh1
Uc

is the marginal rate of
substitution evaluated at hours h1 = 0. The likelihood contribution must be written
taking this censoring into account. We will write this in terms of the joint density of
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hours and wages given above. Thus the likelihood contribution for this case is

�(h1 = 0, h2, w1, w2) =
∫

w1

∫
h1�0

�(h1, h2, w1, w2) dh1 dw1.

The integration with respect to the wage takes place over the entire range of wages.
The contributions to the likelihood for the case of the other partner not working or
both not working can similarly be derived. The sample likelihood is then the product of
all contributions. In a similar fashion one can construct the likelihood contribution for
the case where neither member of the household is working. The sample likelihood is
then the product of the contributions for each observation. This is the basic likelihood
structure. We next discuss issues relating to introducing taxation in this framework.

5.2. Discrete hours of work and program participation

It is straightforward to allow for proportionate taxes, or even piecewise-linear taxes, so
long as these lead to a budget constraint that is convex and so long as the endogeneity
of the tax rate is taken into account. However, most welfare programs are designed in
such a way that they define a nonconvex budget set: Implicit marginal tax rates are
higher at low hours of work, where increases in earnings lead to a rapid withdrawal of
benefits, and lower at higher hours where the individual pays the usual taxes. As we
showed earlier, this is a complex problem itself and in the family labor supply context
even more so because the benefits may be interdependent.

To simplify the problem it has now become almost standard to discretize hours of
work. Then the problem of utility maximization becomes one of choosing packages of
consumption and earnings – consumption is defined by the earnings of the individual,
the tax system and the benefit system. Within this context we can also account for fixed
costs of work (another nonconvexity) and for the decision to participate (or not) in a
welfare program [Hoynes (1996) and Keane and Moffitt (1998)].

We start with a utility function defined over hours of work H1 and H2 and we
discretize the distribution of hours. For example hours can take the discrete values
H ={0, 20, 40}. Suppose we write family utility at hours H1 = hi , H2 = hj where
hi and hj are the ith and j th point of the discrete hours distribution respectively:

Uhihj
= U(H1 = hi,H2 = hj , c, ε) − ηPB + uhihj

where PB is a 0–1 program participation dummy. The term ηPB reflects the utility costs
of program participation such as “stigma”. This may be randomly distributed over the
population. The term ε reflects unobserved heterogeneity in preferences and the term
uhihj

hours-specific unobserved heterogeneity. Given the associated wage, the discrete
hours imply a corresponding set of earnings for each individual.

The budget constraint incorporates all relevant aspects of the tax and benefit system
to define the resulting level of consumption

c = w1H1 + w2H2 + y − T (y,w1H1, w2H2) + B(y,w1H1, w2H2)PB

where T is the tax function and B is the program benefit function.
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The likelihood is derived taking into account program participation. First note that
the observation on whether an individual is participating in welfare programs or not is
informative about the range in which the participation cost η lies. Note also that for any
given η the utility function and the budget constraint define whether the person will be a
participant or not. At each observation we can derive the probability pr(Uhihj

> Uhkhs ,
∀k �= i and s �= j |w1, w2, η, ε) that the chosen point is optimal, conditional on η and
the heterogeneity terms ε. If the person is eligible for a welfare program at the observed
point and he does actually participate (i.e. receives benefits) then the range in which η

lies is defined by the fact that the utility gain from participating is higher than the cost η.
For the nonparticipants η lies in the complement of this set. This allows us to integrate
out η over the relevant range. When the person is ineligible at the observed point no
information is available for η and we integrate over its entire range. In this case as we
move over different values of η the probabilities change not only because of the direct
effect of η through the utility function but also because it induces different potential
participation decisions at each discrete hours point, thus changing both optimal hours
and consumption. Thus consider the likelihood contribution for a couple where both
work and participate in a welfare program (in-work benefits). This will take the form{∫

ηεQ

∫
ε

pr(Uhihj
> Uhkhs , ∀k �= i and s �= j |w1, w2, η, ε) dε dη

}
f (w1, w2|z)

where Q is the set of η such that program participation is optimal at the point of ob-
servation. The form of the probability is defined by Uhihj

. Imposing a logistic is not
restrictive if we allow for unobserved heterogeneity through the ε [Manski and Mc-
Fadden (1981)]. The contribution to the likelihood for a nonworker must also take into
account the fact that the wage will not be observed in that case. This is done as before
by integrating over all possible wages. Of course the practical difficulty is that the prob-
ability of participation is a complicated function of the wage rate through the formulae
of the tax and welfare benefit system.

The models estimated in this way have the great attraction that they allow us to sim-
ulate policies allowing for possible changes in the take-up of means-tested benefits. To
the extent that there is sufficient genuine exogenous variation in the data to allow us
to identify the factors that determine take-up these can be very useful for the ex ante
evaluation of welfare policies.

5.3. Collective models of family labor supply

The family labor supply model presented above treats the household as a single op-
timizing decision unit, and has nothing to say about within-household allocations. It
also imposes stronger restrictions than necessary, such as symmetry. An alternative ap-
proach, the collective model, looks upon the household as a set of individuals with their
own preferences, who have to decide how to share the overall set of resources available
to them. Within this framework we can have private goods (enjoyed by the members
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separately), public goods and household production.31 The main empirical issue is that
of identification: What can we learn about individual preferences and the sharing rule
when we observe aggregate household consumption. This has led to a number of im-
portant theoretical results by Chiappori (1988, 1992) recently extended by Blundell et
al. (2007) to allow for corner solutions and to discuss identification in the presence of
unobserved heterogeneity.

The framework we describe here is the collective model with two household mem-
bers and no public goods or household production.32 Each member supplies labor hi

(i = m, f ) and consumes a private good (Ci). A critical assumption in the collective ap-
proach as introduced by Chiappori is that the household only takes Pareto-efficient deci-
sions. That is, for any set of male and female wages and unearned income (wf ,wm, y),
there exists some level of male utility um(wf ,wm, y) such that labor supply and con-
sumption for each household member (hi, Ci) is a solution to the program:

max
hf ,hm,Cf ,Cm

Uf
[
1 − hf , Cf

]
,

Um
[
1 − hm,Cm

]
� um(wf ,wm, y),

C = wf .hf + wm.hm + y,

(5.3)0 � hi � 1, i = m, f,

where the labor supply has been normalized to lie between 0 and 1. The function
um(wf ,wm, y) defines the level of utility that member m can command when the rele-
vant exogenous variables take the values wf , wm, y. Underlying the determination of um

is some allocation mechanism (such as a bargaining model) that leads to Pareto-efficient
allocations. The nice thing about the collective approach is that there is no need to be
explicit about such a mechanism; identification does not rely on specific assumptions
about the precise way that couples share resources.

Suppose first that preferences are such that there are never any corner solutions. It is
assumed that we observe aggregate household consumption C = Cm + Cf and that we
know the locus of labor supplies as a function of (wf ,wm, y). Then Chiappori (1988)
proves the following:

PROPOSITION 5.1. [See Chiappori (1988).] Assume that hm and hf are twice differ-
entiable functions of wages and nonlabor income. Generically, the observation of hm

and hf allows us to recover individual preferences and individual consumptions of the
private good up to an additive constant.

31 There have also been a number of tests of the unitary model, typically rejecting it and motivating work on
collective models. These papers include Thomas (1990), Fortin and Lacroix (1997), Browning and Chiappori
(1998).
32 Blundell, Chiappori and Meghir (2005) further extend the model to discuss identification conditions with
public goods.
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There are two critical issues to be resolved following this proposition: One is what
happens with corner solutions and with discrete labor supply. The other is what happens
with unobserved heterogeneity in preferences, i.e. when we do not know the exact loci
hm and hf .

Blundell et al. (2007) set up a framework where the male decision is discrete (work or
not) and the female is continuous – however she can choose not to work. The framework
underlying the proposition above exploits the fact that the marginal rates of substitu-
tion between consumption and labor supply for each agent will be equalized within the
household, under efficiency. This result cannot help when one of the labor supplies is
discrete. Define the participation frontier to be the set of male and female wages and
unearned income y so that member m is indifferent between working and not working.
Blundell et al. (2007) then exploit the following implication of efficiency:

DEFINITION AND LEMMA DI (double indifference). The participation frontier L is
such that member m is indifferent between participating or not. Pareto efficiency then
implies that f is indifferent as well about whether m participates or not.

Technically, this amounts to assuming that in the program above, um is a continuous
function of both wages and nonlabor income. This will imply that the behavior of the fe-
male will depend on the male market wage even when he is not working. This continuity
assumption restricts the set of possible behavior and plays a key role for identification.
We will not go through the technical details, all of which are available in the paper
referenced above. However, identification of preferences and the consumption sharing
rule (up to an additive constant) follows from the assumption that all goods are private
(no public goods and no household production) as well as from the assumption above.
Blundell, Chiappori and Meghir (2005) discuss results in the presence of public goods.
The essence of the results there is that full identification of preferences over private and
public goods and the sharing rule follows when preferences over private consumption
and labor supply are weakly separable from the public good. In any case it is shown that
some aspects of the public good must be observable.

The next important obstacle for identification here is unobserved heterogeneity. The
results outlined above relate to the case where we know the locus of the observable
endogenous variables (labor supplies, the public good, etc.) as functions of wages and
unearned income. However for empirical purposes we need to establish identification in
the presence of unobserved heterogeneity in preferences. This is generally complicated
by the fact that any unobserved components affecting individual preferences are likely
to affect the sharing rule. Since this can take any form (more or less) we may well end
up with error terms that are nonseparable, which of course may lead to lack of identi-
fication in general. Identification problems are compounded by the specific context of
labor supply where wages are only observed for workers. Blundell et al. (2007) have es-
tablished identification in the special case where the labor supplies and the sharing rule
are linear in log wages and all have additive unobservables. Even in this case the proof
is not trivial because they do not rely on distributional assumptions. One conclusion of
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this study is that identification in more complex preference structures will have to be
established on a case-by-case basis. Nevertheless, the dividends of such an exercise are
probably very high. Blundell et al. (2007) reject the unitary model, while the collec-
tive model is not rejected and gives interesting insights into the way that resources are
split up within the household. Further empirical work needs to include public goods and
household production. This will allow an extension of this analysis to households with
children. Finally, this framework needs to be extended to deal explicitly with the is-
sues of taxation and means-tested benefits, which the previous analysis of the collective
model has not developed.

6. Intertemporal models of labor supply

The models discussed up to now focused on the work decision within a period. The
life-cycle and dynamic issues have not been addressed. However, studying dynamics
is of critical importance because of the numerous intertemporal dependencies in labor
supply and their implications for the design of policy.

The most obvious intertemporal dependence comes through borrowing and saving.
In this framework the credit market is used to shift labor income across periods of the
life-cycle so that labor supply can be concentrated in periods when the relative benefit
of supplying labor is highest or costs are lowest. This allows a reduction in labor supply
during college, during childrearing and during retirement while consumption can be
maintained at a level consistent with expectations and overall uncertainty. An additional
reason for changes in labor supply over the life-cycle is the precautionary motive, which
implies more labor supply when one is young and less when one is older and some of
the uncertainty has been resolved [Low (1999)].

However, intertemporal dependence may be more direct. Labor supply preferences
may depend on past actions (habit formation); current work may improve future wages
through learning by doing; current work may increase a future pension entitlement.
Since a rational individual will take into account the impact of current actions on fu-
ture budgets or preferences, the standard static labor supply model does not tell the
complete story and may in fact be misleading. With intertemporal dependencies the
individual may find it rational to work in circumstances where the static model would
exclude such a possibility. For example, it may still be worth working when welfare
benefits are reduced one for one with earnings, because work offers future returns in the
form of higher wages.

The recent intertemporal labor supply literature has developed along two lines. This
is reflected in these two intertemporal aspects of labor supply – through credit markets
and saving, and through intertemporal nonseparabilities. In the former case applications
exploit the continuity of consumption and saving to derive Euler equation conditions
for intertemporal labor supply. In the latter case the focus is more on participation and
intertemporal nonseparabilities, largely ignoring saving decisions.

This classification of approaches is necessarily too restrictive. There are intertemporal
substitution applications that allow nonseparability over time, but these are few and
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typically do not account for fixed costs and nonparticipation. Also there are examples
of dynamic programing models that account for saving decisions but to date these have
been quite rare and based on very specific assumptions concerning preferences and
markets.

This section presents dynamic models of labor supply and consumption and discusses
their estimation. We start by presenting the standard dynamic framework, followed by
the empirical models of MaCurdy (1981) and Heckman and MaCurdy (1980). We then
discuss issues to do with intertemporal nonseparability, and unobserved heterogeneity
in the context of incomplete insurance markets. We conclude with the presentation of a
framework in which all these aspects are taken into account in a theoretically coherent
fashion.

6.1. Intertemporal labor supply with saving

As we have mentioned in Section 2, the “static” labor supply model can be made consis-
tent with an additively separable life-cycle model under uncertainty using the two-stage
budgeting framework. However, this does not recover all of the parameters necessary for
intertemporal analysis and for that we need to look directly at the first-order conditions
for intertemporal optimization. Before moving to consider the problems of unobserved
heterogeneity in the context of uncertainty and with the possibility of corner solutions
we consider a simpler model.

Using the framework of Heckman and MaCurdy (1980) and MaCurdy (1981) we dis-
cuss estimation of life-cycle labor supply models in a complete markets setting, i.e. with
no uninsurable uncertainty and no aggregate shocks. We start by exposing the case of no
corner solutions, where all individuals work. We then allow for nonparticipation. Next
we introduce uncertainty, first by considering the no corners case and later allowing
for corners as well. Finally we discuss the issue of unobserved heterogeneity in models
with uncertainty and corner solutions and present an estimation framework based on the
complete dynamic programing characterization of the problem.

6.1.1. The life-cycle model

Before discussing the identification and estimation issues in the dynamic models of
labor supply and consumption we present the standard life-cycle model.33

The individual maximizes expected lifetime utility subject to an intertemporal budget
constraint. We assume that future wage rates, prices and interest rates are uncertain and
that labor market risk is uninsurable. Define At to be the assets, denominated in the
same units as consumption. Letting it denote the nominal interest rate and pt the price
level, we define the real rate of return on assets to be 1 + rt = pt

pt+1
(1 + it ). Thus rt is

to be taken as uncertain in period t . The real wage rate is denoted by wt .

33 We draw from Browning, Deaton and Irish (1985) and Blundell, Browning and Meghir (1994).
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Denote by Et the expectations operator with respect to the distribution of uncertain
future variables conditional on information in period t . These include interest rates,
wages, the price level, possible preference shocks and other variables which affect
choices either through their impact on expectations or directly. Denote the collection
of such state variables by St . The state variables contain all the information that is
needed to summarize the individual’s position at any point in time. Thus, conditional on
the state variables the past otherwise is irrelevant. We can also think of the taste shifter
variables z1t and z2t as being uncertain in future periods, in which case expectations are
taken with respect to their distribution as well. We abstract from issues relating to un-
certain date of death and the presence or absence of perfect annuity markets. Hence we
take the personal discount factor β to be constant over time as a simplifying assumption.

We can write the intertemporal optimization problem as

V0 = max
ht ,ct

{
E0

T∑
t=0

βtψ
[
U(ct , ht |z1t ), z2t

] ∣∣∣ T∑
t=0

1∏t
s=0(1 + rs)

(ct − wtht ) � 0

}
where the second part in the expression is the intertemporal budget constraint. The way
it is written implies that the individual can borrow and lend freely at a market rate of
interest rt .

The additive structure of this problem is viewed from the perspective of period 0.
However, since there exists uninsurable uncertainty the individual will replan in each
period as news arrives. In this context and since the problem is recursive (trivially since
it is additive over time) it is more convenient to use the Bellman equation formulation

(6.1)Vt(At |St ) = max
ht ,ct

{
ψ
[
U(ct , ht |z1t ), z2t

]+ EtβVt+1(At+1|St+1)
}

where Vt(At |St ) is the optimum value function given information up to period t and
St are relevant state variables which help predict future uncertain income, interest rates
and characteristics.

In the absence of credit market restrictions the intertemporal budget constraint im-
plies that

At+1 = (1 + rt )(At + wtht − ct )

with the terminal value of assets fixed at some value (say zero).34 This implies that the
revenues and expenditures need to balance over the entire life-cycle but not necessarily
at any point in time.

The first-order conditions for labor supply and consumption can be written as

−u′
h � λtwt , ht � 0,

u′
c � λt , ct � 0.

34 We abstract from issues relating to portfolio choices and rt is the return to the market portfolio.
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Usually an Inada condition is imposed which ensures that optimal consumption will
always be strictly positive. However, optimal labor supply may be zero which leads to
a corner solution.

For individuals with an interior solution the optimal allocation between consumption
and hours of work within a period equates the marginal rate of substitution to the real
wage rate. The important point is that even in this dynamic context the marginal rate of
substitution is the ratio of within-period marginal utilities. Thus consumption and labor
supply satisfy

(6.2)−u′
h

u′
c

= wt

where u′
x is the marginal utility of x. The important point to note is that the within-

period marginal rate of substitution between consumption and hours of work does not
depend directly on any expectations about the future, nor does it depend on interest
rates.35 Crucially, it does not depend on the monotonic transformation of the utility
function ψ . This is important because it implies that in general we cannot estimate
the parameters governing intertemporal allocations just by using within-period ones.
Condition (6.2) is the basis of the life-cycle consistent “static” labor supply model of
the earlier sections.

We can apply the envelope condition for assets on (6.1) to characterize the link be-
tween decisions over time. This gives

V ′
t = Et

{
β(1 + rt )V

′
t+1

}
.

Since the first-order conditions also imply that

ψ ′
tU

′
ct = Et

{
β(1 + rt )V

′
t+1

}
and

ψ ′
tU

′
ht = −Et

{
β(1 + rt )wtV

′
t+1

}
we can characterize the intertemporal rates of substitution for consumption and hours
of work for interior solutions as

(6.3)ψ ′
tU

′
ct = Et

{
β(1 + rt )ψ

′
t+1U

′
ct+1

}
,

(6.4)ψ ′
tU

′
ht = Et

{
β(1 + rt )

wt

wt+1
ψ ′

t+1U
′
ht+1

}
.

The object of the exercise is to estimate the parameters of ψ[U(ct , ht |z1), z2] from
observations of consumption and labor supply over time. It turns out that we need to use
two of the three conditions (6.2), (6.3) and (6.4). At this point note that the variables in

35 This important point has been made by among others MaCurdy (1983), Blundell and Walker (1986),
Altonji (1986) and Arellano and Meghir (1992).
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z1 affect both the within-period marginal rate of substitution and intertemporal alloca-
tions. The z2 variables only affect directly intertemporal allocations because they cancel
out of the monotonic transformation. Of course they do affect within-period allocations
indirectly and in a full solution the consumption and labor supply functions will depend
on all variables affecting tastes, expectations and the budget.

6.1.2. A simplification: A model with full participation

Before complicating matters with nonparticipation we consider the estimation problem
in a simpler model presented by MaCurdy (1981) where everybody works. The utility
specification he used does not allow for corner solutions and takes the form

(6.5)Ut = Btc
γ
t − AtH

α
t , 0 < γ < 1, α > 1,

where Ht corresponds to hours of work (rather than leisure) and Ct to consumption. The
range of parameters ensures positive marginal utility of consumption, negative marginal
utility of hours of work and concavity in both arguments. Applying exactly the same
analysis as above the implied intertemporal Frisch labor supply becomes

(6.6)ln Ht = A∗
t + 1

α − 1
ln λ + 1

α − 1
ln wt + ρ − r

α − 1
t

where the use of log hours of work presumes that all individuals work and hence H > 0.
In (6.6) λ is the shadow value of the lifetime budget constraint and t is the age of the
individual. Finally A∗

t reflects preferences and is defined by A∗
t = − 1

α−1 log At .
This equation is the Frisch labor supply equation. The important insight is that under

certainty (complete markets – no aggregate shocks) all relevant future variables, such
as wages are summarized by the fixed effect λ. So this equation has a simple message:
Hours of work are higher at the points of the life-cycle when wages are high ( 1

α−1 > 0).
Moreover if the personal discount rate is lower than the interest rate, hours of work
decline over the life-cycle. Finally, hours of work will vary over the life-cycle with A∗

t ,
which could be a function of demographic composition or other taste shifter variables.

Specifying A∗
t = γ ′xt + η1 + ut we obtain an econometric equation of the form

(6.7)ln Ht = γ ′xt + 1

α − 1
ln wt + ρ − r

α − 1
t +
[

1

α − 1
ln λ + η1

]
+ ut

where [ 1
α−1 ln λ + η1] is a fixed unobservable individual effect consisting of the mar-

ginal utility of wealth and of a permanent unobserved preference component. ut is an
idiosyncratic shock to individual preference. For simplicity we take this as serially un-
correlated.

As it is, this equation presents a problem for estimation to the extent that the fixed
unobservable effect (or the idiosyncratic shock ut ) is correlated with the hourly wage
rate wt . Because λ is a function of all wages over the life-cycle and because wages are
highly persistent it is not tenable to assume that the fixed unobservable is not correlated
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with wages. The simplest case here is to assume that all right-hand-side variables, in-
cluding wages, are strictly exogenous, namely that E(ut |xs, ln ws,∀s = 1, . . . , T ) = 0
in which case the model can be estimated using within-groups estimation: variables are
transformed into deviations from their individual-specific time mean and OLS is applied
on

(6.8)l̃n Ht = γ ′x̃t + 1

α − 1
l̃n wt + ρ − r

α − 1
t̃ + ũt

where z̃t = zt − z represents the deviation of an individual-specific variable from the
time mean for this individual. This model is estimable using panel data with a relatively
small number of repeated observations for each of many individuals.36 Here Ordinary
Least Squares on the transformed model is consistent and fully efficient.

This empirical strategy is sensitive to measurement error for the right-hand-side vari-
ables. Suppose that log wages are measured with additive and serially uncorrelated
(classical) measurement error. In this case the strict exogeneity assumption is violated
and (6.7) cannot be estimated by within groups. An alternative approach in this case
would be to take first differences, thus eliminating the fixed effect and then using in-
strumental variables to estimate the parameters based on the transformed equation. The
instruments would have to be dated t–2 or earlier because the error in the first dif-
ference equation will have an MA(1) structure. Thus, under the assumptions made,
valid instruments would be hours and wages lagged at least two periods. However,
these instruments will only be valid if they are able to explain future growth in wages
(� log wt); hence this rank condition needs to be tested.

6.1.3. The Heckman and MaCurdy study

The MaCurdy (1981) paper set out the first clear analysis of issues to do with estimating
intertemporal labor supply relationships. However the approach did not deal with corner
solutions, which is particularly relevant for women. The first attempt to do so in the
context of a life-cycle model of labor supply and consumption is the paper by Heckman
and MaCurdy (1980). In this model women are endowed with an explicitly additive
utility function for leisure L and consumption c in period t , of the form37:

(6.9)Ut = At

Lα
t − 1

α
+ Bt

c
γ
t − 1

γ
, α, γ < 1.

Consumers are assumed to maximize life-cycle utility

Vt =
T∑

t=1

βtUt

36 Fixed T and large N asymptotics.
37 See also Altonji (1982).
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subject to the lifetime budget constraint
T∑

t=1

1

(1 + r)t
[wtht − ct ] � 0

where ht = L − Lt , L being maximal time available for work, and where wt is the
hourly wage rate. Note that now utility depends on leisure and is well defined at the
point where hours are zero since there one obtains maximum leisure.

Optimization is assumed to take place under perfect foresight. Solving for the first-
order conditions we obtain the following equation for leisure:

(6.10)ln Lt =
{

A∗
t + 1

α−1 ln wt + ρ−r
α−1 t + λ∗ when the woman works,

ln L otherwise,

where

(6.11)λ∗ = 1

α − 1
ln λ and A∗

t = − 1

α − 1
ln At

and where we have approximated ln 1+ρ
1+r

≈ ρ − r . Note that in contrast to specification
(6.6), the parameter α is defined to be less than unity. As before in (6.11) λ is the
shadow value of the lifetime budget constraint which again is a fixed effect because of
the complete markets assumption and t is the age of the individual.

6.1.3.1. Estimation with nonparticipation To estimate the model, Heckman and
MaCurdy specify A∗

t = γ ′xt + η1 +u1t where u1t is normally distributed and where η1
is a fixed effect reflecting permanent unobserved differences in tastes across individuals.

Given λ∗, η1 and wages wt this gives rise to a Tobit model, with censoring whenever
the interior solution requires more hours of leisure than are available (Lt > L). There
are two main difficulties with this however. First, hourly wage rates are not observed
for nonworkers. Second, λ∗ and η1 are unobserved and cannot be differenced out in a
conventional manner since the Tobit model is essentially nonlinear. Finally, a problem
addressed only indirectly before (through the treatment of measurement error) is that of
the endogeneity of wages. To solve these problems and to take into account that wages
may be endogenous we may specify a wage equation of the form

ln wt = z′
t β2 + η2 + u2t

with η2 being an unobserved fixed effect reflecting permanent productivity character-
istics of the individual and u2t being normally distributed. Endogeneity may arise if
either the fixed effects in the wage and labor supply equations are correlated or if the
idiosyncratic components are correlated (or both). In the former case (correlated fixed
effects) treating the problem of fixed effects will also solve the endogeneity problem. In
this sense we can think of wages as being endogenous in the case where we dealt with
no corner solutions.

To proceed we can use the approach described earlier in the context of the static
labor supply models. The wage equation is substituted into the structural labor supply
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equation and the conditions for an interior solution or otherwise are given in terms of
the reduced form, i.e. not conditional on the wage rate. Hence we get

ln Lt =

⎧⎪⎨⎪⎩
γ ′xt + 1

α−1z′
t β2 + ρ−r

a−1 t + f + υt

when υt < ln L − (γ ′xt + 1
α−1z′

t β2 + ρ−r
a−1 t + f

)
,

ln L otherwise,

where f = λ∗ +η1 + 1
α−1η2, υ = u1t + 1

α−1u2t . This gives rise to a Tobit model for the
reduced form parameters. However, two important difficulties need to be addressed. The
first relates to estimating this reduced form and the second to recovering the structural
parameters characterizing labor supply.

The reduced form labor supply includes a fixed effect f . In a linear model and with
strict exogeneity the within-groups estimator is consistent and efficient. The model here
is nonlinear because of censoring. Heckman and MaCurdy (1980) treated the fixed ef-
fects as parameters to be estimated. Formally speaking, when the model is nonlinear,
this estimator is not consistent as the number of individuals N grows, while the number
of time periods per individual T remains fixed. This is because the number of (inci-
dental) parameters grows with the sample size. In practice the estimator is likely to
work well with strictly exogenous regressors for moderate to large T . Heckman and
MaCurdy provide Monte Carlo evidence showing that in their context the bias involved
when using this approach is likely to be minimal for moderate T . However, this is not
a general result and it depends very much on the model, the data and the number of
time periods available. For example with lagged endogenous variables the biases could
be substantial. Such lagged endogenous variables could appear in time nonseparable
models and in models with incomplete insurance markets as we will see subsequently.
Thus the complete markets assumption turns out to be particularly powerful as far as
identification is concerned.

An alternative approach is to use a semiparametric LAD estimator introduced by
Honore (1992). This estimator relies on symmetry of the difference of the errors
(uit − uit−1) conditional on the sum of the errors (uit + uit−1) and on the regressors,
which is weaker than the assumption of normality combined with iid errors.

We have described how the reduced form labor supply equation can be estimated.
This does not provide the parameters of the structural model because they are a func-
tion of the parameters of the wage equation. The next step is to recover the structural
parameters. The difficulty here is that we first need to identify the parameters of the
wage equation. This is not a simple problem because wages are observed for workers
only, who are endogenously selected. In addition both the selection mechanism and
probably the wage equation depend on fixed effects. Before we discuss estimation first
we need to ensure that the parameters are identified. A necessary condition is that the
wage equation includes variables that are excluded from the structural labor supply
equation. Under normality no further restrictions are required. However, if one applies
a semiparametric estimation framework that relaxes the normality assumption one also
requires variables included in the labor supply equation that are excluded from the wage
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equation. One approach to completing estimation is to apply the Kyriazidou (1997) es-
timator to the wage equation. This controls for selection allowing for fixed effects in
both the wage and the participation equations. Once the parameters of the wage equa-
tion have been recovered, one can use minimum distance to back out the parameters of
the labor supply equation, which were estimated as above.

An alternative approach, and one followed by Heckman and MaCurdy, is to use
maximum likelihood treating the fixed effects as parameters to be estimated jointly (as
discussed above). We turn to this approach now.

6.1.3.2. Maximum likelihood estimation The first step is to specify the joint distrib-
ution of hours of work and wages, conditional on the observables and the fixed unob-
served effects. This is denoted by

(6.12)ghw(h,w|z, f, η) = gh(h|x, f,w)gw(w|z, η1)

where z are the observed variables in the wage equation, which include all those in the
labor supply equation (x) and more for identification purposes. In the above equation
gh(h|x, f,w) is the conditional density of hours of work given wages, x, and f and
gw(w|z, η1) is the conditional distribution of wages given z and η1. Thus the model
likelihood is bivariate including that of wages.

The likelihood has the general form

L =
∏

workers

gh(h|x, f,w)gw(w|z, η1)

(6.13)·
∏

nonworkers

∫
h<0

∫
w

gh(h|x, f,w)gw(w|z, η1) dw dh.

The first part of the likelihood relates to workers, where both wages and hours are
jointly observed. The second part of the likelihood refers to nonworkers where all we
know is that desired hours are negative. Hence we integrate over h < 0 and over the
entire support of the wage distribution, since for any wage rate there is a configuration
of unobservables that would make the person a nonparticipant – being a nonworker
conveys no information about wages. This likelihood can recover the parameters in the
reduced form labor supply equation and in the wage equation.

As mentioned above, to identify the structural parameters of labor supply and the
wage equation it is necessary to impose exclusion restrictions or some other form of
parametric restrictions. Moreover, note that any variables that are fixed cannot be used
for identification since they will be absorbed by the fixed effect. Heckman and MaCurdy
exclude education/age interactions and aggregate unemployment from the labor supply
equation and husband’s labor market behavior from the wage equation. The former re-
striction effectively implies that differences in tastes across education groups vis à vis
labor supply do not change with age. Consequently any change in observed behavior
across education groups at different ages is attributed to education-specific changes in
individual productivity and hence to wages. The business-cycle indicator (the unem-
ployment rate) serves to identify wages for the nonworkers through the aggregate price
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of human capital. Note, however, that given the functional form assumptions the model
is then overidentified.

The Heckman and MaCurdy model presented above offers a way of handling unob-
served heterogeneity and corner solutions and even allows for persistent heterogeneity
and endogenous wages. These properties have been delivered at a cost. Preferences
between consumption and female hours are explicitly additively separable and no un-
certainty is allowed for. The explicit additivity implies that, given consumption data, all
parameters could be identified in principle using just within-period allocations. This is
worrying since it implies that intertemporal allocations are tied to the way that resources
are allocated within period – an implication that does not come from economic theory.
However, this assumption is testable since we can compare the estimates obtained from
data on within-period and data on intertemporal allocations. Finally, the perfect fore-
sight assumption which is equivalent to complete markets with no aggregate shocks is
also strong given the available evidence.

However, easy as it may be to criticize such an approach, it turns out that it is very
hard to generalize. In what follows we discuss how the existing literature has attempted
to build on this and what are the successes and shortcomings of these attempts. We
start by describing an estimation strategy for a model of consumption and labor sup-
ply with corner solutions but with no explicit treatment of unobserved heterogeneity.
As we argue below, an explicit treatment of unobserved heterogeneity places extensive
requirements on data and an approach based on the complete solution of the life-cycle
model, rather than on Euler equations.

6.1.4. Estimating the intertemporal substitution elasticity and other preference
parameters under uncertainty

We now consider explicitly estimation in the presence of uninsurable uncertainty.38

Estimation will be based on two marginal conditions: One defines the within-period
allocations and the other the intertemporal allocation. Combining these two conditions
in a suitable way can allow us to identify all parameters while accounting for corner
solutions.

We start by characterizing within-period preferences using the indirect utility func-
tion and appealing to two-stage budgeting. The within-period indirect utility function is
defined by

(6.14)ψ
[
vt (w, y)|zt

] = max
h,c

{
ψ
[
Ut(h, c)|zt

] ∣∣ ct = wtht + yt

}
where the variables zt are shown explicitly to emphasize that intertemporal allocations
will typically depend on taste shifter variables. As explained earlier in the chapter, the
variable yt reflects net saving or dissaving. Because ct is realized consumption and
wtht are actual earnings this amount (yt ) will only equal unearned income (e.g. from

38 See Blundell, Browning and Meghir (1994).
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transfers or income from investments) if there is neither borrowing nor saving by the
individual. Based on Roy’s identity it is possible to derive the implied within-period (or
Marshallian) labor supply function, i.e.

(6.15)h(w, y) = ∂v/∂w

∂v/∂y
.

This labor supply function is conditional on yt which reflects intertemporal decisions.
The labor supply function originating from (6.15) can be estimated using the methods

described in earlier sections. The estimation of the within-period labor supply function
allows us to estimate all the parameters characterizing within-period preferences, i.e. the
function vt (w, y) in (6.14) but not the parameters of the function ψ . The latter affects
intertemporal allocations only.

Thus we now need data on intertemporal allocations to estimate the parameters im-
plicit in the monotonic transformation ψ , which characterizes saving behavior and
intertemporal substitution in labor supply.

Consider again the Euler equation in an environment with uninsurable risk. This
equates the marginal utility of consumption today with the expected marginal utility
of consumption tomorrow:

ψ ′
t v

′
yt = Et

{
β(1 + rt )ψ

′
t+1v

′
yt+1

}
.

The term v′
yt = ∂v

∂y
is the marginal utility of money, and ψ ′

t = ∂ψ[vt (w,y)|zt ]
∂vt

reflects the
monotonic transformation of the utility function, which determines the intertemporal
substitution. The marginal utility of money v′

yt can be estimated as a first step based
on observations relating to within-period allocations. We denote the estimated quan-
tity by v̂′

yt . The next step is to parameterize the function ψ which can then be estimated
using the Euler condition. To write the Euler condition based on the indirect utility func-
tion we can use the envelope theorem to see that U ′

ct = v′
yt where U ′

ct is the marginal
utility of consumption which appears in the Euler condition (6.3). Based on this we can
estimate the parameters characterizing ψ ′

t using the following equation:

(6.16)ψ ′
t v̂

′
yt = β(1 + rt )ψ

′
t+1v̂

′
yt+1 + uit+1 + εit

where εit represents the estimation error due to the fact we are replacing v′
yt with its

estimated value. Under the hypothesis of rational expectations any variable dated t or
earlier will be orthogonal to uit+1. This observation can serve as a basis for estimation
using GMM [see Hansen (1982) and Hansen and Singleton (1982)]. Asymptotically εit

will become irrelevant if the first-step estimator is consistent, but it can have serious
implications in small samples.

With uninsurable uncertainty and in the presence of aggregate shocks it is impera-
tive to estimate (6.16) using long enough time series. The innovation to the marginal
utility of wealth uit+1 reflects uninsurable idiosyncratic risk and aggregate uncertainty.
As Altug and Miller (1990, 1998) have shown, the moment conditions do not hold in
the cross section. In fact, the conditional expectation E(uit+1|t, zit ) = m(zit ) where
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zit represents the vector of instruments. Consequently with idiosyncratic uninsurable
risk and aggregate uncertainty the model is not identifiable using methods that rely on
fixed T ; we require methods that rely on large T asymptotics and in practice we need
long enough time series of data that allow the aggregate shocks to average out. The suit-
able time series dimension depends on the variance of such shocks, with longer series
required the higher the variance. However, we do not require to observe the same indi-
vidual for a large number of time periods; just that the data covers long T .39 Moreover,
aggregate shocks cannot be accounted for using time dummies as emphasized by Altug
and Miller (1990) unless there is no idiosyncratic uncertainty.

6.1.4.1. Linearizing the Euler equation A simpler way to go about estimation is to
loglinearize (6.16):

(6.17)−� ln v̂′
iyt+1 − ln(1 + rt ) = dit + ln β + � ln ψ ′

t+1 + εit

where

dit = ln
[
Et

{
β(1 + rt )ψ

′
t+1v̂

′
yt+1

}]− Et ln
[
β(1 + rt )ψ

′
t+1v̂

′
yt+1

]
.

In the simplest case where the discounted marginal utility of consumption muit+1 =
β(1+ rt )ψ

′
t+1v̂

′
yt+1 is a log-normal random variable, dit will be proportional to its vari-

ance conditional on information in period t , i.e. dit = k Vart {muit+1}. It is precisely this
point that gives rise to the identification issue since the conditional variance will depend
on variables relevant for predicting future income or wage realizations. However, if we
are willing to restrict what the conditional variance depends on (and hence the stochas-
tic process governing wages), this linearization offers a great simplification and often
makes it easier to deal with measurement error in the underlying variables forming the
marginal utility. Under nonnormality dit will also depend on higher-order moments of
the marginal utility of consumption muit+1.

Loglinearization has been widely used in the empirical analysis of consumption.
However, identification in this case requires more restrictions than those implied by the
theory. Its usage has been controversial [see Carroll (1997) and Ludvigson and Pax-
son (2001)] precisely because the basic exclusion restrictions used for identification
in (6.16) may no longer be valid in (6.17). Implicitly linearization imposes restrictions
on expectation formation and on the underlying process of uncertainty. Attanasio and
Low (2002) examine these issues using Monte Carlo analysis in a wide variety of set-
tings and conclude that in practice linearization is unlikely to bias the results in a serious
way.

6.1.4.2. Accounting for corner solutions with no fixed costs When hours of work are
at a corner solution the Euler condition (6.16) does not hold when evaluated at market
prices. However, we can use the results of Heckman (1974a) and Neary and Roberts

39 Meghir and Weber (1996) discuss this point in relation to estimating Euler equations.
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(1980) to keep the Euler equation representation evaluated at shadow prices. Here we
assume that there are no fixed costs of work and no search frictions and consequently
that the participation decision is fully characterized by the standard reservation wage
condition [Heckman (1974a)]. In particular nonworkers have a negative desired labor
supply at the market wage corresponding to their skills, while workers have a positive
desired labor supply, which is observed. It is easy to show that the intertemporal first-
order conditions still hold, so long as we evaluate the indirect utility function at the
shadow (reservation) wage wR

it defined by

(6.18)h
(
wR

it , yit

) = 0.

Estimating the ‘static’ within-period labor supply function as described in earlier sec-
tions allows us to obtain a labor supply model that can then be solved for the reservation
wage as in (6.18). In the next step the consumption Euler equation can be estimated us-
ing observed market wages for workers and shadow wages for nonworkers.40

6.1.4.3. An example Consider the labor supply model

(6.19)hit = α(zit ) + β ln wit + γ
yit

wit

where zit are preference shifters such as household characteristics. This corresponds to
a particular form of the indirect utility function presented in an earlier section. The term
y is defined by y = c−wh, where w is the after tax wage and c is total household (non-
durable) consumption, and hence is endogenous. The utility index can be computed by
using the formula in (2.11). This gives the value of ν̂t , from which v̂′

yt can be calculated.
For workers the relevant wage will be the observed wage. For nonworkers the relevant
wage at which to evaluate within-period utility is the reservation wage which is given
by the positive solution for w in Equation (6.19) when h = 0, for given y. This has to
be solved for numerically in this example. Using the reservation wage is equivalent to
computing the direct utility function when hours are zero. This calculation is only valid
if there are no fixed costs of work.

In the next step we can specify the part of the utility function that is not revealed
by within-period choices. This is the monotonic transformation. One simple possi-
bility would be to use a linear transformation; for example ψ[vt (wit , yit )|zit ] =
a(zit )v(cit , hit ), which would be interpretable as saying that characteristics zit af-
fect the discount rate. A more general alternative would be to allow characteristics to
also affect the intertemporal substitution elasticity; for example ψ[vt (wit , y)|zit ] =

a(zit )
1+ρ(zit )

vit (wit , yit )
1+ρ(zit ), for some negative valued function ρ(zit ). The fact that all

or some of the characteristics z affect within-period allocations does not imply that they
will not also affect risk aversion or the way the future is discounted.

To obtain an example specification let a(zit ) = 1 and ρ(zit )= ρ0 + ρ1f sit where
f sit is family size for household i in period t . Using the utility function (2.11) term

40 See Blundell, Meghir and Neves (1993).



4750 R. Blundell et al.

v̂′
yt = (1 + γ̂ )2 wβ̂

β̂+1
can be evaluated at the estimated parameters. In this case the Euler

equation for consumption over time will take the form

(6.20)v̂′
iyt v̂

ρ0+ρ1f sit
it = Et

{
β(1 + rt )v̂

′
iyt+1v̂

ρ0+ρ1f sit
it+1

}
.

This can be estimated using nonlinear GMM treating the estimated marginal utility of
money v̂′

iyt and the within-period utility index v̂t as known [see Hansen (1982) and
Hansen and Singleton (1982)]. The fact that the expression depends on estimated pa-
rameters does not affect consistency because as the sample size goes to infinity the
parameters estimated on the first stage converge to the true values. Inference however
requires us to correct the standard errors for the fact that we are relying on pre-estimated
parameters.

The linearized version of the Euler equation here takes the form

−� ln v̂′
iyt+1 − ln(1 + rt )

= dit + ln β + ρo� ln v̂it+1 + ρ′
1� ln f sit v̂it+1 + εit

which, given the assumptions implied by the loglinearization, can be estimated by linear
GMM.

6.1.4.4. Testing for liquidity constraints One key issue for the interpretation of in-
tertemporal behavior is the extent to which individuals are liquidity constrained which
is defined as being able to borrow and save freely at a constant interest rate. It has
been observed from very early on that consumption seems to track income, which is a
fact often cited as evidence for liquidity constraints. However, this phenomenon can be
explained within the model we have presented.

First, Heckman (1974b) has argued that such income tracking can be induced by
nonseparability of consumption and labor supply: If consumption and leisure are strong
enough substitutes, higher amounts of consumption will be related to higher levels of
labor supply and hence higher income.

Second, family size and demographics, which affect consumption and labor supply
allocations, evolve very much alongside income over the life-cycle, with family size
growing when income grows most and declining when income declines [probably en-
dogenously: see Blundell, Browning and Meghir (1994)]. By allowing for this in our
model we have effectively accounted for another reason for tracking.

Finally, the evolution of the conditional variance of the marginal utility dit also leads
to consumption growth. This variance is likely to decline over the life-cycle as uncer-
tainty is revealed. This is particularly true if shocks to wages are permanent or highly
persistent. Thus a high dit when young and a lower dit when old will imply rapid con-
sumption growth early on declining later, much like the evolution of income over the
life-cycle [Carroll and Samwick (1998), Attanasio et al. (1999)].

The empirical challenge is to find sources of predictable income growth not already
included in the model to account for preferences (e.g. nonseparability) and to test the
hypothesis that they do not affect consumption growth. Browning and Collado (2001)
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use the powerful idea of predictable changes in income due to pre-announced and reg-
ular seasonal bonuses in Spain and establish that consumption growth is not sensitive
to these totally predictable changes in income. However we are not always as fortunate
as that and we need to use other perhaps less compelling sources of predictable growth.
One possibility is to include labor income growth. This is a useful source of variation for
two reasons: Conditional on the wage rate, labor income would have variability because
hours of work may change in a predictable way for other exogenous reasons. Second,
hours should not enter the Euler equation once we also include wages. Nevertheless it
is still an issue of what the exogenous source of hours would be that has not to do with
preferences or changes in wages. Another possibility is to use predictable changes in
other income. The problem is that income from investments, etc. is likely to be positive
only for the wealthier individuals who are unlikely to want to borrow anyway.

Tests of liquidity constraints find no evidence of their importance once nonsepara-
bilities and demographics are allowed for. This should not be interpreted as saying that
anyone can borrow any amount they wish at a fixed rate; after all, the lack of complete
markets is now generally accepted with moral hazard as its most probable source. How-
ever it may well mean that the lack of perfect credit markets is not important because
individuals do not wish to borrow much against future income growth anyway when
they would most need it (i.e. when young) because of uncertainty.

6.2. Further issues in the specification and estimation of dynamic models of labor
supply and consumption

The model we have presented up to now in the context of intertemporal optimization
lacks a number of potentially important features. These include unobserved preference
heterogeneity, fixed costs of work and nonseparability over time. We now discuss these
issues in turn and we complete our chapter by presenting the estimation of a model
containing potentially all these features.

6.2.1. Unobserved heterogeneity

Allowing for unobserved preference heterogeneity seems like a natural step in con-
structing realistic models. Thus, for example, both MaCurdy (1981) and Heckman and
MaCurdy (1980) recognize this and include fixed effects in their models. They recog-
nize that preference heterogeneity could be persistent and may well be correlated with
wages. The question is how to account for unobserved heterogeneity in a model with-
out complete markets. The key difficulty stems from the fact that it is not possible to
specify a model where both the Euler equation and the within-period condition have
additive errors without restricting the structure of intertemporal preferences. Inevitably
a model with unrestricted intertemporal preferences and unobserved heterogeneity will
be nonseparable in unobservables. Standard orthogonality conditions do not suffice for
identification in this case. In the Heckman and MaCurdy study the errors are effectively
nonseparable because of the corner solutions. However, the complete markets assump-
tion meant that a fixed effects Tobit estimator worked well even with moderate T .
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There is a developing literature on the identification and estimation of models with
nonseparable errors and endogenous regressors [e.g. Florens et al. (2007), Imbens and
Newey (2007), Blundell and Powell (2004)], which provide alternative identifying con-
ditions in this case. Even if one is to impose these stronger assumptions there remains
the problem of finding suitable instruments, which are an ingredient of all such meth-
ods. The problem is particularly acute if unobserved heterogeneity is serially correlated,
since the instruments are likely to be predetermined decisions. These difficulties will
lead us to an estimation method based on a complete solution of the dynamic program-
ing model.

6.2.2. Estimating the intertemporal substitution model with fixed costs of work

Fixed costs of work or other nonconvexities in the budget constraint pose a very serious
challenge to the empirical analysis, even within a static framework. In this context the
labor supply function is discontinuous at low hourly wage rates. Moreover as Cogan
(1981) pointed out, the standard reservation wage which sets labor supply to zero does
not generate a participation condition. Generally the participation and hours margins
are explained by different models, which could be the result of the existence of fixed
costs of work or of search frictions. The separation between the intensive and extensive
margins (hours of work) requires extra identifying assumptions.

Within an intertemporal context fixed costs pose additional difficulties for modeling
the participation decision. This involves a comparison between the life-cycle utility of
work and nonwork, which requires solving the life-cycle model conditional on the per-
son working and conditional on the person not working. Such a solution allows one to
evaluate the current and future welfare consequences of the two decisions.

In the presence of fixed costs we can follow two empirical strategies. The first is a
partial one and seeks to estimate the subset of parameters that are identifiable if one
keeps labor supply behavior fixed. As such it cannot be informative for policy questions
whose answer relies on the quantification of the complete labor supply and consumption
response. However, it offers a way of testing some aspects of the life-cycle model in a
relatively general setting and may be a first step in a stepwise approach for identifying
the complete set of preferences.

The second approach specifies a complete structural model of labor supply and par-
ticipation and uses methods from dynamic discrete choice to estimate labor supply
responses. Before moving to a discussion of the full solution approach we briefly outline
the conditional approach.

6.2.3. The conditional Euler equation for consumption

Consider the definition of the indirect utility function within period, based on a vector
of goods qt and prices pt conditional on labor supply behavior ht

(6.21)υt = ψ
[
v(ct |pt , ht ), ht

] = max
q

{
ψ
[
u(qt |ht ), ht

] ∣∣p′
tqt = ct

}
.
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We can then base the analysis of the intertemporal allocations on the utility index
υt = ψ[v(ct |pt , ht ), ht ]. As in the case of the joint labor supply and consumption
model presented earlier, all parameters implicit in v(ct |pt , ht ) can be estimated using a
conditional (on ht ) within-period demand system [see Browning and Meghir (1991)].
This will depend on ht if and only if the goods qt are nonseparable from ht . Under
weak separability ht will not affect demands directly. However, the intertemporal al-
locations can still depend on ht without this having any implications for the structure
of the within-period marginal rate-of-substitution functions between goods. This point
has been noted now in several papers, all of which have demonstrated its empirical
importance.41

The estimation approach is broadly similar to the one described above so we do not
go over it again in detail. Once the within-period demand system characterizing the con-
ditional choice of qt has been estimated, we can construct the utility index v(ct |pt , ht ).
The Euler equation for ct can then be used to estimate the parameters of the function
ψ up to an explicitly additive function of ht . In general, the Euler equation as well as
the demand system will be a function of ht . This can include both hours of work as
a continuous variable and indicators of whether the person is working or not, or other
functions of ht that are considered relevant. The crucial point to recognize however is
that labor supply is endogenous both for within-period and for intertemporal alloca-
tions. Thus estimation requires suitable instruments. One possibility is to use lags in
labor supply for this purpose. In the absence of unobserved heterogeneity the approach
is valid. However, if persistent preference shocks have been ignored this approach could
lead to inconsistent parameter estimates.

The conditional Euler equation for consumption provides a very powerful vehicle
for testing the life-cycle model in relation to consumption behavior and for estimating
some of the parameters in a way that is robust to the specific model of labor supply.
In principle, hours of work can be determined in a number of ways, which we do not
have to specify, subject to the proviso that we can specify instruments that can “predict”
labor supply. However, from a policy perspective, the conditional Euler equation for
consumption is of limited interest because it does not provide the full set of parameters
required to answer even a simple partial equilibrium question. Thus a complete analysis
of intertemporal labor supply and consumption needs to address directly estimation of
a model for the determination of hours of work.

6.2.4. Intertemporal nonseparability

A final issue is whether preferences should be taken as separable over time.42 It is
well documented that labor supply behavior is very persistent which may be interpreted

41 Attanasio and Weber (1993, 1995), Blundell, Browning and Meghir (1994) and Meghir and Weber (1996)
all strongly reject the hypothesis that intertemporal allocations do not depend directly on observed labor
supply.
42 For some studies that relax intertemporal separability see Shaw (1989), Hotz, Kydland and Sedlacek
(1988), Meghir and Weber (1996), Eckstein and Wolpin (1989) and Altug and Miller (1998).
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as being due to nonseparability, although the source of persistence could well be un-
observed heterogeneity. Another source of nonseparability can be the structure of the
intertemporal budget constraint since current behavior may affect eligibility for welfare
programs. Finally, if wages depend on past work experience, current work affects future
earning prospects, which also leads to intertemporal nonseparability. These issues are
considered in the next section.

6.3. Dynamic discrete choice models and intertemporal nonseparability

To address many of the issues presented above in a coherent and unified way we need
to consider a complete model of life-cycle labor supply and consumption. This can be
very complex and demanding on data. Thus in our presentation we start with a simplified
model along these lines which ignores the saving decision but offers a way forward on
the issue of fixed costs and nonseparability. We subsequently build on this to present a
more complete model that includes saving.

One of the first attempts to model the dynamics of participation decisions when
choices are discrete is given by Eckstein and Wolpin (1989). Their model concerns the
labor supply of women. Husband’s income is taken as exogenous. The within-period
utility function, which is nonseparable in consumption ct and participation pt , takes the
form

(6.22)Ut = ct + a1pt + a2ctpt + a3ptKt−1 +
J∑

j=1

a4jNtjpt + a5ptS

where Kt−1 is the number of periods worked in the past; depending on the sign of
a3 this may turn out to reinforce work habits or not. The law of motion of Kt is simply
Kt = Kt−1 +pt . Finally, S represents years of schooling and Ntj represents the number
of children in age group j . This utility function in itself gives rise to intertemporal de-
pendencies since current participation affects future preferences and a forward-looking
individual will take this into account when making participation decisions. Further dy-
namics are induced by the budget constraint. This takes the form

(6.23)yw
t pt + yh

t = ct +
J∑

j=1

κjNtjpt + bpt

where κj are costs relating to children in the j th age group, b is a fixed cost of work and
yh
t is husband’s income, which is taken to be an exogenous stochastic process, affecting

female utility only through total resources. The female wage, yw
t , depends on past work

decisions:

(6.24)ln yw
t = β1 + β2Kt−1 + β3K

2
t−1 + β4S + εt

where εt is an independently and identically distributed normal shock to wages. Hence
the implied dynamics in this model are quite intricate: Past work decisions produce
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human capital and enhance earnings potential. This should lead to increases in partic-
ipation. On the other hand, past work decisions change preferences, either dampening
down or reinforcing the effects due to enhanced human capital.

At this stage the only source of stochastic variation is the iid shock to wages εt . This
formulation has the undesirable feature that the minimum observed wage is a consistent
estimator for the reservation wage; this is because preferences are homogeneous in the
population. To overcome this problem Eckstein and Wolpin allow observed wages to
be measured with error, which turns out to be particularly important empirically. Thus
observed wages satisfy

(6.25)ln yw∗
t = ln yw

t + ut .

Eckstein and Wolpin assume that ut is normally distributed.
In such dynamic discrete choice models estimation is complicated by the fact that

participation in this period confers benefit/costs in future periods. Thus the future impact
of current choices needs to be computed explicitly in order to compute the probability
of participation. Eckstein and Wolpin follow a maximum likelihood approach where the
parameters of the participation decision, of wages and of the measurement error process
are estimated simultaneously.

Their estimation approach can be described as follows: An individual participates if
the utility from doing so is higher than the utility from not working. To illustrate the
approach we simplify further their model by assuming additive separability between
consumption and participation. In this case the husband’s income will not affect female
labor supply. For notational simplicity we also drop the schooling (S) and household
composition terms (Ntj ). In this simplified framework, utility when participating can be
written as

V
(1)
t = yw

t + yh
t − b + a1 + a3Kt−1 + δEtVt+1(Kt−1 + 1)

= exp
(
β1 + β2Kt−1 + β3K

2
t−1 + εt

)
(6.26)+ yh

t − b + a1 + a3Kt−1 + δEtVt+1(Kt−1 + 1)t

while the utility from nonparticipation is given by

(6.27)V
(0)
t = yh

t + δEtVt+1(Kt−1)t ,

where δ is the personal discount factor. Note that when the woman participates in this
period, human capital increases by one; it does not increase otherwise. This is what gives
rise to the difference in the future values associated with the current actions. In the ex-
pressions above the expectation is taken over the uncertain realizations of εt (and of the
husband’s income). This expectation is conditional on information known in period t .
However, since the shock is iid, conditional and unconditional expectations coincide.

A participation rule can be derived now from these two expressions written in terms
of thresholds for the unobserved shock εt . Workers are individuals with wage shocks
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such that43

εt � ln
[
b − a1 − a3Kt−1 + δ

(
EtVt+1(Kt−1) − EtVt+1(Kt−1 + 1)

)]
− (β1 + β2Kt−1 + β3K

2
t−1

)
or

(6.28)εt � ε∗
t (Kt−1).

Given a distributional assumption on εt this leads to a probability of participation. Note,
however that the expression in (6.28) depends on the future expected gain from work-
ing. Hence to estimate the model this gain needs to be computed. This is achieved by
backwards induction.

For a given set of parameters of the utility function and the distribution of the unob-
servable εt the value of participation and nonparticipation is constructed in a terminal
period, given all possible values of the state variables (in this case K). For each K

we then compute EtVT (K)t = E[max(V
(1)
T , V

(0)
T )] where the expectation is over the

realizations εT . Computing the value in period T is very simple since the problem is
essentially static then.

The only way by which past decisions affect the future is through the state variable K .
Hence the future gain from working this period when the current experience stock is K

is simply EtVT (K + 1) − EtVT (K). Whether this is positive or negative will depend
on the effect of an extra unit of human capital on wages and on preferences. Given the
terminal value function we can now compute the values in period T − 1 for all possible
K accumulated by period T − 1 and so on until we reach period t . This computation
is a simple recursion. The procedure requires one to specify a terminal period (age) T .
It also requires us to be specific about what happens beyond that period. In models that
require backwards induction it is often necessary to parameterize separately a terminal
value function. In Eckstein and Wolpin the value beyond the last decision period T is
assumed to be zero.

Given a way to compute EtVt+1(Kt−1) − EtVt+1(Kt−1 + 1) we can now easily
construct the likelihood function. For nonworkers this is simply Pr(εt < ε∗

t (Kt−1)) =
Φ(ε∗

t (Kt−1)) where Φ is the standard normal distribution function. For workers the
contribution to the likelihood function is the joint density of wages (driven by the sum
of the shock εt and the measurement error ut ) and the probability that εt > ε∗

t (Kt−1).
Hence estimation proceeds as follows: For an initial set of parameters the future gains
from work are computed. Then the observed event is computed and the likelihood func-
tion is constructed for each observation. A Newton-type algorithm can then be used
to update the parameters. The value functions need to be recomputed at each iteration
when updated parameters are available – this is what makes dynamic discrete choice
computationally burdensome.

43 In our simplified model the husband’s income plays no role in the wife’s decision. This is not a feature of
the Eckstein and Wolpin model but a result of our simplified exposition in which we have assumed additive
separability.
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Estimation of this model requires observations on Kt−1 and the choice pt as well as
wages. In general retrospective information on periods worked can be used, although
entire work histories constructed over time as events unfold would reduce the chance of
measurement error. Administrative data has now become available which improves the
data situation substantially [see Adda et al. (2006)].

The dynamic discrete choice model described above is a coherent and powerful way
of modeling the dynamics of participation and the evolution in wages. However, it does
not allow for unobserved heterogeneity and thus all dependence on the past is in effect
assumed to be pure state dependence.

The model by Eckstein and Wolpin is a prototype on which other researchers have
built, drawing also from the experience gained in the analysis of discrete choice in
other fields or in labor supply [Rust (1987), Pakes (1986), Hotz and Miller (1988),
Keane and Wolpin (1997)]. One of the most important subsequent contributions in the
field of labor supply is the paper by Rust and Phelan (1997). The crucial aspect of
this paper is that it models explicitly the relationship between work and future social
security entitlements, thus building a model that can be used to evaluate the impact of
policy reforms. An important feature, which complicates the model and makes it much
harder to implement, is that the individual’s choice depends on a large number of state
variables that evolve stochastically. In the Eckstein and Wolpin prototypical model there
was basically only one state variable: the number of periods worked in the past. Here the
state space includes health status, own earnings, spouse’s earnings and social security
income. Some of these variables are affected by past decisions. Hence the intertemporal
nonseparabilities in this model are primarily induced by the structure of the budget set:
Current work decisions affect both future earnings and future social security receipts.

The principle of estimating such a model does not differ fundamentally from that of
estimating the Eckstein and Wolpin model: The stochastic process for the exogenous
state variables is estimated from the data. Then, following the specification of a distri-
bution for the unobservables, the probability of observed choices is constructed, which
depends on the future and current utility gains from this choice. As before, for each set
of parameter values and at each value of the state variables the model has to be solved
and the optimal choice determined. The probabilities at each data point are combined
in the usual way to form the sample likelihood function. However, the problem is more
complicated because of the many sources of uncertainty, originating from the large
number of stochastically evolving state variables. These components are critical addi-
tions because they recognize explicitly that there are events such as the possibility of
death or taste shifter variables such as health that affect behavior but are fundamentally
uncertain. Such uncertainty is very likely to affect labor supply and retirement behavior
of individuals.

6.4. Estimation with saving, participation and unobserved heterogeneity

We conclude our chapter by a brief discussion of estimation of dynamic models with
saving in the absence of complete markets, which brings together the entire set of issues
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we have identified as challenges in estimating labor supply models and takes us right
against the research frontier in this field.

6.4.1. Estimation with complete markets

Altug and Miller (1998) specify a model of consumption and labor supply, where pref-
erences are nonseparable over time and where wages depend on past labor supply (expe-
rience). In a departure from the earlier literature, saving is explicitly taken into account
as are aggregate shocks. Moreover, the estimation methods proposed are relatively sim-
ple since they exploit a modified version of the conditional choice probability estimator
developed in Hotz and Miller (1993). The key assumption that allows them to estimate
such a complex model is that markets are complete. They also assume that preferences
for leisure and consumption are additive. Finally the problem is simplified further by
assuming that preference shocks are independently and identically distributed over time
(and individuals) and there is no source of persistent heterogeneity in preferences.

The complete markets assumption allows them to express consumption allocations
as a function of a fixed effect and an aggregate time effect. This solves at one go the
problem of dealing with aggregate shocks when the time period is short [Chamberlain
(1984)] and the problem of having to simulate alternative consumption paths explicitly
when solving the dynamic programing problem.

In Altug and Miller the complete markets assumption can be viewed as an approx-
imation that allows them to estimate a more general economic model than the ones
considered earlier in the literature. Indeed their model is particularly rich, because it
allows for endogenous human capital accumulation and for nonseparable preferences
as well as saving. However, the complete markets assumption is resoundingly rejected
whenever it is tested [Cochrane (1991) and Attanasio and Davis (1996)]. It is not known
how much bias the assumption would introduce in the parameter estimates. Neverthe-
less, the real empirical challenge is to relax both the complete markets assumption and
the structure of unobserved heterogeneity. In the next section we review the issues sur-
rounding this challenge.

6.4.2. Estimation with uninsurable idiosyncratic risk

We consider an economy where some idiosyncratic risk remains uninsurable. How-
ever we assume that perfect credit markets are available.44 Consider a utility function
depending on hours of work hit , on participation pit (to reflect fixed costs) and on con-
sumption cit :

Uit = U1(cit , hit , pit , fi |zit ) + U2(hit , fi |zit ) + γ (zit )pit + pitν
(1)
it

(6.29)+ (1 − pit )ν
(0)
it

44 Some may view this as a contradiction. However, given uncertainty, most individuals will typically not
want much uncolateralized borrowing, making the modeling of liquidity constraints probably redundant for all
practical purposes. This may be why many tests for liquidity constraints fail to reject the null of no constraints.
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where zit are taste shifter variables and where fi , ν
(1)
it and ν

(0)
it are heterogeneity terms,

the first being time invariant. Assets accumulate according to the difference equation

Ait+1 = (1 + rt )(Ait + withit − cit ).

The terminal condition for assets is

AiT = 0,

where T is the last period of the planning horizon. We do not discuss retirement ex-
plicitly. However, early retirement can be induced by the availability of pensions later
in life, by the accumulation of private assets, by aspects of the welfare system such as
easily available disability insurance and/or by a decline in wages at an older age.

We assume wages take the form

ln wit = de
t + κi + ζ ed ′

xit + eit

where de
t is the log price of human capital for education group e, xit denotes observable

characteristics, some of which may be common with zit , κi is a fixed effect and eit is an
iid shock with a known distribution, say normal.45

Suppose the function U1 in (6.29) is nonadditive in participation p, hours h and con-
sumption c with no components that are additive in p or h. In this case it is possible
to estimate U1 and U2 based on the conditional Euler equation for consumption and
on the within-period labor supply decision as discussed earlier, subject to being able
to deal with unobserved heterogeneity. However, the function γ cannot be identified in
this way. This missing component will be key to simulating counterfactual employment,
hours and consumption paths for individuals. Despite the relative simplicity of prefer-
ences and the wage function, both of which exclude intertemporal dependencies, the
estimation of all relevant parameters requires the full solution of the dynamic optimiza-
tion problem: the probability of working is a function of the utility gain from doing so.
To compute this utility gain one must know the consumption in the counterfactual state.
With incomplete markets and idiosyncratic shocks this is not as straightforward as in
the Altug and Miller case. We outline a possible approach.

We start by simplifying the model and assume a constant interest rate rt = r . Next
specify the conditional distribution governing the evolution of all other state variables,
i.e. gs(Sit |Sit−1, . . . , Sit−p), where S includes all stochastically time-varying charac-
teristics in x and z taken to be exogenous. In general gs can be estimated separately and
we can condition on it during estimation of the rest of the model.

In general heterogeneity in the wage rate κi will be correlated with the heterogeneity
in preferences fi . This implies that wages are endogenous for both labor supply and
consumption and this reflects the idea that unobserved productivity and the tastes for
work are related. A simplifying assumption could be made reducing the dimension of
heterogeneity, e.g. fi ∝ κi .

45 Richer stochastic structures are in principle possible, but they do increase the state space substantially.
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In this model assets are the only endogenous state variable, which in principle
should include all sources of household wealth, including housing and pension wealth.
This causes a very serious measurement problem. Leaving this aside, given suitable
data the model is solved numerically to obtain the value of consumption conditional
on the person’s labor market state. Denote the optimal solutions as follows: workers
c
(1)
it = c

(1)
t (wit , Ait |Sit , fi, pit = 1), nonworkers c

(0)
it = c

(0)
t (Ait |Sit , fi, pit = 0) and

h
(1)
it = ht (wit , Ait |Sit , fi, pit = 1). In general there will be no closed form solutions

to these functions and they will need to be computed numerically during estimation. To
compute these policy functions we need to solve for the future optimal policies. One
approach for this finite horizon problem is to use backwards induction. Starting from
some terminal period, the optimal policies are evaluated for all possible values of the
state variables backwards up until the current period. At this point we have all the ingre-
dients to evaluate the probability of work, including c(1) and c(0) and the future values
conditional on current actions working (EV(1)

it+1) and not working (EV(0)
it+1). The current

value of working and not working are then given by

V
(1)
it = U

(
c
(1)
it , h

(1)
it , pit = 1, fi

)+ ν
(1)
it + βEtV

(1)
it+1,

V
(0)
it = U

(
c
(0)
it , hit = 0, pit = 0, fi

)+ ν
(0)
it + βEtV

(0)
it+1,

which now allows us to specify the probability of working as

Pr(pit = 1|Ait , Sit , fi)

= Pr
(
ν

(1)
it − ν

(0)
it > U

(0)
it − U

(1)
it + β

[
EtV

(0)
it+1 − EtV

(1)
it+1

])
.

The consumption and labor supply as derived above are deterministic given the fixed
effect fi . The reason for this is that the time-varying heterogeneity terms v(1) and v(0)

do not affect the marginal utility of hours (given participation) or consumption. One
simple way to enrich the stochastic specification is to allow for measurement error in
consumption and hours. This will induce a density of observed hours mh among work-
ers and observed consumption m

(1)
c for workers and m

(0)
c for nonworkers. Thus the

likelihood conditional on the heterogeneity term is

L =
N∏

i=1

Ti∏
t=1

{[
mhmcg(wit |κi, Sit ) Pr(pit = 1|wit , Ait , Sit , fi)

]pit

·
[ ∫ [

m(0)
c g(wit |fi, Sit )

(
1 − Pr(pit = 1|wit , Ait , Sit , fi)

)]
dwit

]1−pit
}

·
N∏

i=1

Ti∏
t=1

Lit (fi)

where g(·) is the density of wages, N is the number of individuals, Ti is the number
of time periods over which individual i is observed and Lit (fi) is the likelihood con-
tribution for individual i. The stochastic dependence between the various elements in
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the likelihood is driven by the unobserved component fi , which needs to be integrated
out.

Allowing for persistent unobserved heterogeneity is complicated by the fact that at
any point in time fi will be correlated with assets: these are the outcome of past deci-
sions, themselves a function of fi . Thus in a panel of individual data the initial value
of assets cannot be taken as exogenous in general. To solve this problem we need to
specify a model for the initial value (Ai0), conditional on a set of variables assumed
themselves to be exogenous. Denote the distribution of initial assets by gA(Ai0|ζi, zit )

where zit are a set of instruments explaining initial assets, which are excludable from
the participation probability. Finding such instruments is not straightforward. One pos-
sibility could be to use random shocks that affected wealth at some point, but did not
change preferences, such as, for example, parental health. The unobserved variables ζi

and fi may be correlated, which is the source of endogeneity of initial assets. If these
are exogenous, fi and ζi would be independent of each other.46

Given a model for initial assets and using a discrete mixture as an approximation
to the distribution of the pair (fi, ζi) [see Heckman and Singer (1984)] the likelihood
function now becomes

L =
N∏

i=1

K∑
k=1

S∑
s=1

{
prks gA(Ai0|ζs, zit )

Ti∏
t=1

Lit (fk)

}
where K and S are the number of points of support for the distribution of fi and ζi

respectively and prks is the probability mass at a point of the (fi, ζi) distribution.
The computational burden in these models arises from having to solve the model at

each iteration and each individual type (defined by the observable and unobservable
characteristics) for all values of the state variables. If these are continuous (such as
assets) they need to be discretized.

Macroeconomic shocks The model allows for macroeconomic shocks through wages.
In its simplest form there is just one type of human capital and the time effect on the
wage reflects its value relative to the consumption good. In a richer setting there are
different types of human capital with relative prices that vary. To allow for macro-shocks
in the model we require a model that predicts forward prices as a function of current
observables. In principle, this process will have to be estimated simultaneously with the
model, because of the changes in labor force composition over time, which the model
accounts for.

6.4.3. Why allow for saving?

Allowing for saving is complicated both computationally and empirically. Allowing for
a linear utility in consumption would eliminate the complications. So why should we get

46 See Ham and LaLonde (1996) and Meghir and Whitehouse (1997) for applications in dynamic transition
models.
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into all this trouble? The answer lies in the fact that individuals are risk averse and risk
is not fully insurable. Modeling saving in this context is important for understanding a
number of issues, including self-insurance for events such unemployment [Low (1999)]
and more importantly pensions and retirement. For example, to understand the policy
impact of changes in pension arrangements we need to understand how such policies
interact with saving. The extent to which public policies crowd out private saving can
only be studied in a model that accounts for both. Similar issues will arise when studying
the impact of policies such as taxes and tax credits. The complete labor supply effect
cannot be understood if we do not know how saving behavior will be affected. On
the other hand, there are many questions relating to whether our fully rational forward-
looking model is a good enough representation of reality. Ignoring the issue is, however,
not the way forward.

7. Summary and conclusions

The study of labor supply is valuable from a number of perspectives. The analysis of
the impact of taxes and benefits is perhaps the best-established motivation. Within this
field we are concerned with the impact of taxes on effort as well as the role of taxes and
benefits in affecting education decisions; in this latter case labor supply is seen as an
alternative to school or training for younger individuals. From a more dynamic perspec-
tive, focus recently has also shifted to labor supply as a way of responding to uncertainty
and mitigating the amount of saving as well as for understanding the evolution of con-
sumption over the life-cycle: without allowing for changes in labor supply, it is very
difficult to rationalize the observed behavior of consumption. Finally, the relationship
of consumption and labor supply is critical for understanding issues to do with optimal
taxes and the design of benefits – in-work benefits in particular. For all the above rea-
sons, it is clearly important to understand the way labor supply is determined and how
this relates to intertemporal considerations, such as saving.

This chapter outlines a number of approaches to the study of labor supply beginning
with the original static models and ending with dynamic ones that allow for saving and
possibly intertemporal nonseparabilities. Along the way we have discussed incorpo-
rating taxes and allowing for nonconvex budget sets and the importance of unobserved
heterogeneity. Allowing for the last has proved particularly important empirically for es-
timating reliable models that are capable of fitting the data and accounting for the large
persistence in labor supply patterns. Empirically, labor supply analysis poses significant
challenges not only because of the nonconvexities but also because of the endogeneity
of the main variables whose effect we are attempting to measure. High-effort people are
likely to have invested more in human capital and thus have higher wages. They also
accumulate more wealth, making asset income potentially endogenous as well. Adding
dynamics and allowing for nonconvexities in the budget sets compounds the difficul-
ties. We have attempted to provide a flavor of these difficulties and point to solutions.
However, it is clear that there is more to be done. One relatively new and important area
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of research which we did not touch upon is modeling the entire career, starting with ed-
ucation choice and continuing with labor supply over the life-cycle. This is likely to be
of key importance for understanding the longer-term impact of public policy: programs,
such as tax credits, that encourage labor supply may well discourage education. Trad-
ing off these two margins of adjustment is important and requires reliable models for
both. Thus, considering the dynamics of labor supply and developing reliable modeling
methods will continue to be of key importance for policy purposes.

Appendix A

This appendix reviews general formulations for likelihood functions applicable to
econometric models involving any combination of five types of endogenous variables:
(1) discrete, (2) continuous, (3) censored, (4) truncated, and (5) continuous-discrete.
The subsequent discussion opens with an overview of the statistical framework consid-
ered here. It next considers increasingly complex variants of this framework, starting
with models incorporating just discrete variables, adding in continuous variables, and
then including endogenous variables of a combined continuous-discrete character. The
analysis proceeds to cover specifications appropriate when one does not observe all
states of the world but instead only knows whether various combinations of states have
occurred. The concluding subsection presents alternative representations of likelihood
functions commonly found in the literature comparable to the specifications presented
here, as well as presenting simple extensions of specifications that allow for dependence
on exogenous variables.

A.1. Overview of statistical framework

The basic idea at the foundation of econometric models characterizing distributions of
discrete-continuous variables relies on the notion that all endogenous quantities depend
on the values of an underlying set of continuously-distributed random variables. Specify
these underlying variables by the vector U , assumed to include r linearly-independent
components. This r × 1 vector possesses the joint density function

(A.1)ϕ(U) for U ∈ Ω

where the set Ω designates the sample space or domain of the random variables U .
In this model, m states of the world can occur. The discrete random variable δi sig-

nifies whether state i happens, with δi = 1 indicating realization of state i and δi = 0
implying that some state other than i occurred. The value of δi depends on where U

falls in its sample space; specifically,

(A.2)δi =
{

1 if U ∈ Ωi,

0 otherwise,
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where the set Ωi represents a nontrivial subset of the entire sample space Ω . Without
loss of generality, assume that the sets Ωi for i = 1, . . . , m are mutually exclusive and
exhaustive, meaning

⋃m
i=1 Ωi = Ω and the sets Ωi ∩Ωj = ∅ for i �= j (i.e., the sets Ωi

and Ωj are disjoint). In association with state i, there exist ni continuously distributed
random variables designated Yji , j = 1, . . . , ni . The following equations determine the
values of these continuous variables:

(A.3)Yji = gji(U).

Stacking these individual random variables into a vector yields

(A.4)Yi =
⎛⎜⎝Y1i

...

Yni i

⎞⎟⎠ =
⎛⎜⎝g1i

...

gni i

⎞⎟⎠ = gi.

To avoid introduction of redundant or ill-defined Yji’s, assume there exists an inverse
of gi such that

(A.5)U(i) = g−1
i (Yi, Ui)

for some subvector U(i) comprised of any ni components of U .47 The subvector Ui in-
cludes those elements of U not included in U(i). Designate Φi as the domain of (Yi, Ui)

and Θi as the domain of Yi .
Another interesting class of random variables consists of quantities that take a fixed

single value in some states and a continuous set of values in others. Denote these
discrete-continuous variables as Zji , with the index i signaling the state realized and
j = 1, . . . , ki signifying the particular Z realized in this state. The value of Zji follows
a rule of the form

(A.6)Zji =
{

Yji for j ∈ Kci,

Z∗
ji for j ∈ Kdi,

where the set Kci indexes those Zji taking the form of a continuous variable in state i,
and the set Kdi identifies those Zji equaling a constant value Z∗

ji in state i. Define Zi

as the vector containing the Zji , j = 1, . . . , ki , as elements analogous to Yi specified
in (A.4).

Finally, form all the unique variables appearing in any of the Yi’s into the vector Y ,
assumed to be of dimension n×1, and all the variables making up the Zi’s into the vec-
tor Z, assumed to be of dimension k × 1. For any event δi = 1, Y consists of two sets of
components: the vector Yi incorporating all the continuous random variables registering
in state i, and Y(i) made up of all other continuous variables unobserved in this state but

47 Assuming existence of the inverse of gi in (A.5) is not as restrictive as one might first surmise. If an inverse
does not exist on set Φi , then one can replace Φi with a further segment of this set with inverses defined on
each of these smaller sets. The subsequent analysis can then be carried out for this expanded decomposition
of Φ.
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seen in some other state j �= i. Similarly, Z consists of the vector Zi and Z(i) defined
analogously. In some states i, all of the elements of Y and Z may be observed, and
in others none may be. The subsequent discussion characterizes formulations of con-
ditional and unconditional likelihood functions associated with Y , Z and combinations
of the δi’s. As briefly noted at the end of this appendix, one can readily introduce the
presence of exogenous variables both in specifying the distribution of U and in defining
the regions of definition of δi . An exogenous variable in this analysis must be observed
in all states; otherwise, this variable must be included as a component of Y or Z.

A.2. Discrete variables: All and combinations of states

Initially consider empirical frameworks in which one observes only discrete variables
whose outcomes register the realization of m distinct regimes determined by the relative
values of U .

A common formulation specifies that a researcher sees exactly which state i occurs,
implying that one observes all individual δi , i = 1, . . . , m. From (A.2) we see that the
probability that δi = 1 equals

(A.7)P(δi = 1) = P(U ∈ Ωi) =
∫

· · ·
∫

Ωi

ϕ(U) dU ≡
∫

Ωi

ϕ(U) dU.

The notation
∫ · · · ∫

Ωi
denotes integration over the set Ωi , which the end of this equation

expresses in the shorthand notation
∫
Ωi

. The joint distribution of the δi’s takes the form

(A.8)P(δ1, . . . , δm) =
m∏

i=1

[
P(δi = 1)

]δi =
∏
i∈M

[
P(δi = 1)

]δi .

In the last part of this equation, the notation M = {i: i = 1, . . . , m} refers to the set of
all possible states i.

In other formulations, a researcher does not observe or chooses to ignore each state
individually. Instead, one accounts for only whether some combination of states has
been realized. More specifically, suppose one knows that at least one δi = 1 when
i ∈ Mt ⊂ M , but one does not account for which particular δi in this group actually
occurred. So,

(A.9)if i ∈ Mt, then δt ≡
∑
i∈Mt

δi = 1; otherwise, δt = 0.

The sets Mt , t = 1, . . . , τ , are mutually exclusive and exhaustive (i.e.,
⋃τ

t=1 Mt = M

and Mt ∩ Mj = ∅ for t �= j ). The probability of the occurrence of group state t equals

(A.10)P(δt = 1) =
∑
i∈Mt

P (δi = 1).
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The joint distribution of the δt ’s takes the form

(A.11)P(δ1, . . . , δτ ) =
∏
t∈T

[
P(δt = 1)

]δt

where the notation T = {t : t = 1, . . . , τ } refers to the set of all possible group states t .

A.3. Continuous variables: All states observed

Consider those models in which one observes each individual δi along with vectors Yi

of continuously distributed random variables for states i ∈ My ⊆ M . Conditional on
occurrence of a state, the components of Yi may either be truncated or censored. The
truncated elements of Yi refer to those that lie in a strict subset of their overall domain
given realization of the selection mechanism U ∈ Ωi (or, equivalently, (Yi, Ui) ∈ Φi).
The censored elements consist of those that instead range over their entire domain.
The set Θ = ⋃m

i=1 Θi defines the sample space of Y . So, if Yi includes truncated
components, then Θi ⊂ Θ .

The first step in formulating specifications for the distributions of the Yi’s involves
recognizing that the density of underlying random variables U conditional on the event
δi = 1 takes the form

(A.12)ϕ(U | δi = 1) = ϕ(U)

P (δi = 1)

where relationship (A.7) gives the formula for P(δi = 1). An alternative expression
(A.7) is given by

(A.13)P(δi = 1) = P(U ∈ Ωi) = P
(
(Yi, Ui) ∈ Φi

) =
∫

Φi

hi(Yi, Ui) dYi dUi

where the set Φ =⋃n
i=1 Φi defines the domain of (Y,U1, . . . , Un).

Application of a conventional change-in-variables formula exploiting relations (A.3)
and (A.5) yields the following specification for the density of Yi conditional on δi :

(A.14)f (Yi | δi = 1) =
∫
Φi|Yi

hi(Yi, Ui) dUi

P (δi = 1)
for Yi ∈ Θi

where

(A.15)hi(Yi, Ui) = Jiϕ
(
g−1

i (Yi, Ui), Ui

)
with Ji =

∣∣∣∣∂g−1
i

∂Y ′
i

∣∣∣∣+,

and the notation
∫
Φi|Yi

denotes integration of Ui over the set

(A.16)Φi|Yi
= {Ui : (Yi, Ui) ∈ Φi

}
.

The term Ji in (A.15) represents the Jacobian of the transformation associated with
(A.5) (i.e., Ji is the absolute value of the determinant of the matrix of partial derivatives
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∂g−1
i

∂Y ′
i

). One can express the domain of Yi as

(A.17)Θi = Θi·Yi
= {Yi : Ui ∈ Φi|Yi

},
where the notation Θi·Yi

simply signifies that this set is a subspace of Yi .
A compact expression for the conditional density of Y is

(A.18)f (Y | δi, i ∈ My) =
∏

i∈My

[
f (Yi | δi = 1)

]δi ,

where as defined above My designates the set of states in which one observes at least
one element of Y . An alternative representation for this conditional density takes the
form

(A.19)f (Y | δ1, . . . , δm) =
∏

i∈My

[
f (Yi | δi = 1)

]δi
∏

i∈Mc
y

[1]δi ,

where the set Mc
y denotes the complement of My with respect to M . Realizations of

i ∈ Mc
y mean that all elements of Y are either undefined or unobserved.

The joint density of Y and δ1, . . . , δm is the product of the conditional density of Y

given by (A.19) and the joint probability of δ1, . . . , δm given by (A.8), yielding

f (Y, δ1, . . . , δm)=
∏

i∈My

[
f (Yi | δi = 1)P (δi = 1)

]δi
∏

i∈Mc
y

[
P(δi = 1)

]δi

(A.20)=
∏

i∈My

[ ∫
Φi|Yi

hi(Yi, Ui) dUi

]δi ∏
i∈Mc

y

[ ∫
Ωi

ϕ(U) dU

]δi

.

The second line of this expression follows by substituting relationships from (A.7)
and (A.14).

A.4. Discrete/continuous variables: All states observed

Consider models in which one observes individual δi along with the vectors Zi com-
prised of discrete-continuous random variables for states i ∈ Mz ⊆ M . The components
included in Zi are either distributed continuously or equal to constants according to the
following rule:

(A.21)Zi =
(

Zci

Zdi

)
=
(

Yi

Z∗
di

)
for i ∈ Mz.

Inspection of (A.6) reveals that those individual Zji for j ∈ Kci make up the elements
of the vector Zci ; and those Zji for j ∈ Kdi form the vector Zdi . The set Mz comprises
all states in which any component of Z is realized.

For states i ∈ My , one can express the distribution of Zi conditional on δi = 1 as

f (Zi | δi = 1) = f (Zci, Zdi | δi = 1)
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= f (Zci | Zdi, δi = 1)P (Zdi | δi = 1)

(A.22)= f (Yi | Z∗
di, δi = 1)

where the third line follows from

(A.23)P(Zdi = Z∗
di | δi = 1) = 1.

Formally, the argument Z∗
di in f (Yi | Z∗

di , δi = 1) is redundant since the event δi = 1
already implies Zdi = Z∗

di ; the argument is included merely to remind the reader that
the density appearing in the last line of (A.22) typically depends on Z∗

di . A compact
expression for the conditional density of Z is

(A.24)f (Z | δi, i ∈ Mz) =
∏

i∈My

[
f (Yi | Z∗

di, δi = 1)
]δi
∏

i∈Md

[1]δi .

Realizations of i ∈ My mean that some of the elements of Zi are continuously distrib-
uted, whereas occurrence of i ∈ Md implies that all elements of Zi are discrete. One
can write an alternative representation for this conditional density as

f (Z | δ1, . . . , δm) =
∏

i∈My

[
f
(
Yi | Z∗

di, δi = 1
)]δi

∏
i∈Md

[1]δi
∏

i∈Mu

[1]δi

(A.25)=
∏

i∈My

[
f
(
Yi | Z∗

di, δi = 1
)]δi

∏
i∈Md∪Mu

[1]δi .

Realizations of i ∈ Mu mean that all components of Z are either undefined or un-
known.

The joint density of Z and δ1, . . . , δm is the product of the conditional density of Z

given by (A.25) and the joint probability of δ1, . . . , δm given by (A.8), yielding

f (Z, δ1, . . . , δm) =
∏

i∈My

[
f
(
Yi | Z∗

di, δi = 1
)
P(δi = 1)

]δi
∏

i∈Md∪Mu

[
P(δi = 1)

]δi

(A.26)

=
∏

i∈My

[ ∫
Φi|Yi , Z

∗
di

hi(Yi, Ui) dUi

]δi ∏
i∈Md∪Mu

[ ∫
Ωi

ϕ(U) dU

]δi

.

The second line of this expression follows by substituting relationships from (A.7) and
(A.14), where the notation Φi|Yi ,Z

∗
di

still refers to the set Φi|Yi
defined by (A.16) with

emphasis added to indicate that this set also depends on Z∗
di .

A.5. Discrete/continuous variables: Combinations of states

An important category of models involves characterizing the distribution of continuous
and discrete-continuous variables when one either observes or chooses to distinguish
the occurrence of groups rather than individual states. Define the relevant groups of
states by the δt ’s specified in (A.9) for t ∈ T as outlined in Section A.2.
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Consider the distribution of the continuous random variable

(A.27)Yt =
∑
i∈Mt

δiYi .

Relation (A.27) implicitly assumes that each Yi is defined and of comparable dimension
for i ∈ Mt . Application of the law of iterated expectations yields the following density
for Yt conditional on δt = 1:

f (Yt | δt = 1) =
∑
i∈Mt

f (Yt | δi = 1, δt = 1)P (δi = 1 | δt = 1)

=
∑
i∈Mt

f (Yt | δi = 1)P (δi = 1 | δt = 1)

(A.28)=
∑
i∈Mt

f (Yt | δi = 1)
P (δi = 1)

P (δt = 1)
.

The latter two lines of this relationship follow from the assumptions that the individual
states δi = 1 for i ∈ Mt making up the event δt = 1 are mutually exhaustive and
exclusive.

Discrete-continuous variables are realized according to the following rule:

(A.29)Zt =
(

Zct

Zdt

)
=
(

Yt

Z∗
dt

)
for t ∈ Tz.

The set Tz = Ty ∪ Td comprises all group states in which any component of Z is real-
ized. The set Ty includes those group states t in which Zt incorporates the continuously-
distributed vector Yt specified by (A.27); and the set Td includes those group states
wherein all the components of Zt equal constant values.48

For group states t ∈ Tc, the distribution of Zt conditional on δt = 1 takes the form

f (Zt | δt = 1) = f (Zct , Zdt | δt = 1)

= f (Zct | Zdt , δt = 1)P (Zdt | δt = 1)

(A.30)= f
(
Yi | Z∗

dt , δt = 1
)
,

where this latter expression exploits the relationship

(A.31)P
(
Zdt = Z∗

dt | δt = 1
) = 1 for t ∈ Td.

Analogous to (A.25), a compact expression for the conditional density of Z is

(A.32)f (Z | δ1, . . . , δτ ) =
∏
t∈Ty

[
f
(
Yt | Z∗

dt , δt = 1
)]δt

∏
t∈Td∪Tu

[1]δt

48 For notational simplicity, the specification of the values of Zt when t ∈ Td presumes that Z∗
t is common

across the individual states i ∈ Mt making up group state t . One can instead replace the common value Z∗
t by

a set {Z∗
t } consisting of several discrete values at the expense of introducing some complexity in specifying

likelihood functions.
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where the set Tu includes those state groups in which no Zjt are either undefined or
unknown.

Multiplying the conditional density (A.32) by the joint probability of the events
δ1, . . . , δτ given by (A.8) generates the following joint density for Z and the δt ’s:

f (Z, δ1, . . . , δτ )

=
∏
t∈Ty

[
f
(
Yt | Z∗

dt , δt = 1
)
P(δt = 1)

]δt
∏

t∈Td∪Tu

[
P(δt = 1)

]δt

(A.33)=
∏
t∈Ty

[ ∑
i∈Mt

∫
Φi|Yt Z

∗
dt

hi(Yt , Ui) dUi

]δt ∏
t∈Td∪Tu

[ ∑
i∈Mt

∫
Ωi

ϕ(U) dU

]δt

.

The last line of this expression follows from substitution of relationships from (A.7),
(A.10), (A.14), and (A.28).

A.6. Accounting for unobserved and exogenous variables

Specification (A.33) presents a general formulation for likelihood functions incorporat-
ing discrete, continuous and discrete-continuous variables. One often sees alternative
representations of this specification in the literature that may at first not appear as a
special case of (A.33).

One such representation defines a set of continuous or discrete-continuous variables
Z that are then presumed to be unobserved and, therefore, must be eliminated as ar-
guments of the f ’s in (A.33). In particular, suppose Z consists of two components
Z′

t = (Z′
1t , Z

′
2t ) where the variables Z′

1t are observed and those included in Z′
2t are not.

Correspondingly, decompose Y ′
t = (Y ′

1t , Y
′
2t ) and Z′

dt = (Z′
1dt , Z

′
2dt ), with the random

variables Y ′
2t and Z′

2dt unobserved.
Integrating (or summing) the joint likelihood function (A.33) over Z′

2t produces the
marginal distribution for Z′

1t . This exercise yields

f (Z1, δ1, . . . , δτ )

=
∏
t∈Ty

∫
Θt · Y2t

f
(
Y1t , Y2t | Z∗

dt , δt = 1
)
dY2tP (δt = 1)δt

∏
t∈Td∪Tu

[
P(δt = 1)

]δt

(A.34)=
∏
t∈Ty

f
(
Y1t | Z∗

d1t , δt = 1
)
P(δt = 1)δt

∏
t∈Td∪Tu

[
P(δt = 1)

]δt .

The last line of this expression exploits the relationship∫
Θt · Y2t

f
(
Y1t , Y2t | Z∗

dt , δt = 1
)
dY2t

=
∫

Θt · Y2t

f
(
Y2t | Y1t , Z

∗
dt , δt = 1

)
dY2t f

(
Y1t | Z∗

dt , δt = 1
)
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= f
(
Y1t | Z∗

dt , δt = 1
)
,

which follows since Θt · Y2t
constitutes the domain of Y2t given the event δt = 1. Clearly,

the last line in (A.34) is a special case of (A.33). This merely reflects the fact that an
unobserved Y2t has been reinterpreted as a component of the Ui’s implicit in (A.33).
The variables making up Ui in a state i (or t) may be observed as a Yj in some other
state.

Finally, throughout the above discussion one can readily interpret the distribution
of U as being conditional on a set of exogenous variables X, as well as define the regions
of definition of δi to depend on X (so, Ωi = Ωi(X)). To be deemed exogenous, each
component of X must be observed in all states; otherwise, this variable must be treated
as a component of Y or Z in the previous analysis. Modifying the above formulae to
admit exogenous X merely involves adding X as an argument of f (·) and interpreting
the sample subspaces Ωi , Φi|Yi

, and Θi as functions of X.
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