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The paper addresses problem of designing a robust output feedback model predictive control for uncertain linear systems
over networks with packet-loss. The packet-loss process is arbitrary and bounded by the control horizon of model predictive
control. Networked predictive control systems with packet loss are modeled as switched linear systems. This enables us
to apply the theory of switched systems to establish the stability condition. The stabilizing controller design is based on
sufficient robust stability conditions formulated as a solution of bilinear matrix inequality. Finally, a benchmark numerical
example-double integrator is given to illustrate the effectiveness of the proposed method.
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1 INTRODUCTION

Feedback control systems wherein the loops are closed
through real-time networks are called Networked Con-
trol Systems (NCSs) [16, 18, 26, 29]. Advantages of us-
ing NCSs in the control area include simplicity, cost-
effectiveness, ease of system diagnosis and maintenance,
increased system agility and testability. However, the in-
tegration of communication real-time networks into feed-
back control loops inevitable leads to challenging prob-
lems such as network-induced delays and data packet
losses, which can induce instability or poor performance
of closed-loop control systems. Therefore, packet loss is
one of the most important and special issues of NCSs.

There are two major approaches to accommodate the
issue of packet loss in an NCS design. One way is that
one first designs the control system without regard to the
networks, and then determines a performance level that
the networks should satisfy (for example, maximum al-
lowable transfer interval) so that the closed-loop system
maintains its performance (for example, stability) when
some control and sensor signals are transmitted via the
networks [13, 29]. The other approach is to treat the net-
work protocol and traffic as given conditions and designs
the control strategies that explicitly take the network-
induced issues into account [1, 21, 27, 28]. Under the as-
sumption that the network is modeled as a switch gov-
erned by a Bernoulli process, Zhang et al [29] proposed
a criterion to check whether the NCS is stable at a cer-
tain rate of packet losses, and searched for the maximum
packet-loss rate under which the overall system remains
stable. The method they used derives from the stability
analysis for asynchronous dynamic systems. With packet-
loss rate known and constant, Seiler and Sengupta [21]

formulated the NCS as a Markovian jump system with
two operation modes, and then applied the techniques
developed for Markovian jump systems. A dynamic out-
put feedback controller design method was proposed such
that the NCS is mean square stable and has H∞ gain
below certain value in terms of linear matrix inequalities
(LMIs). Moreover, Yu et al [28] modeled the packet-loss
process as an arbitrary but finite switching signal. This
enables them to apply the theory from switched systems
to stabilize the NCS. However, in the framework consid-
ered in the references mentioned above, the controller is
directly connected to the actuator. That means no pack-
ets are dropped in control signals. A general framework
was considered in [1], where both sampling signals and
control commands are transmitted through the network
and may be dropped during the transmissions. The linear
quadratic Gaussian control problem was studied based
on dynamic programming approach. Xiong and Lam [27]
generalized the procedure in [28] to double-sided packet
loss, as one of the contributions, and established stabil-
ity conditions via a packet-loss dependent Lyapunov ap-
proach, as another contribution.

In the last two decades, model predictive control
(MPC) has been widely adopted in industry as an ef-
fective means to deal with multivariable constrained con-
trol problems [8, 17]. The idea of MPC is stemmed from
employing an explicit model of the plant to be con-
trolled which is used to predict the future state/output
behaviour over the finite time horizon. There are some
researching results that have been presented in MPC for
NCSs. Srinivasaguta et al [22] proposed a time-stamped
model predictive control algorithm for NCS when ran-
dom delay is less than one sample time. Liu et al [10]
proposed using a networked control predictor to take the
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latest control value from the predictive control sequence
available to deal with random communication time de-
lay problem, and then Mu et al [12] presented using a
low pass filter to filter the error produced between the
delayed plant output measurement and its delayed open-
loop model output to improve system robustness. Tang
and de Silva [23] proposed a NCS control strategy based
on generalized predictive control with the buffering of
future control sequence to overcome the transmission de-
lay problems at the controller-to-actuator lines and Tang
and de Silva [23] presented the conditions under which
the stability of the constrained model predictive control
for NCS with random delay can be guaranteed. Li et al [9]
proposed a stabilizing MPC strategy for NCS with data
packet loss between sensor and controller. In [2] the au-
thors presented a packet-based robust MPC approach in
a co-design framework for Wireless Networked Control
Systems (WNCS) with the round-trip delay. Polytopic
description was used to describe uncertainty of system.
In [3, 4] the author proposed an MPC design method
for NCS with double-sided packet loss. A packet-loss de-
pendent Lyapunov function is used for stabilization, and
the result is used for synthesizing model predictive con-
trol by parameterizing the infinite horizon control moves
into a single state feedback law. However, Ding [3] as-
sumes that the actuator information (whether or not the
actuator has received new data) can be sent to the con-
troller and in [4] he investigates the case when the ac-
tuator information cannot be sent to the controller. One
of the ways to overcome the resulting loss-packet prob-
lems is the use of prediction based compensation schemes
[2, 5–7, 14]. For example, in [6], the authors presented
a networked control scheme which uses a model based
prediction and time-stamps in order to compensate for
delays and packet dropouts in the transmission between
sensor and controller and between controller and actua-
tor, respectively. In order to analyze the properties of the
scheme, they introduced the notion of prediction consis-
tency which enables them to precisely state the network
properties needed in order to ensure stability of the closed
loop.

From our vision, it seems that there is no previous
result on design of robust output feedback MPC for un-
certain linear systems over networks with bounded packet
loss. Motivated by the above observation, in this paper,
we consider the implementation of a robust output feed-
back linear model predictive control scheme over a net-
work with double-sided packet loss. The main idea of
this paper is based on the combination of compensation
mechanism in ([2, 5–7] and robust model predictive con-
trol design approach in [15]. As a result, networked pre-
dictive control systems with loss packet are modeled as
switched linear systems. This enables us to apply the the-
ory of switched systems to establish the stability condi-
tion of networked model predictive control. We suppose
that network-induced delays are within the sample time.
Packet loss process is considered as arbitrary but bounded
by the horizon control of MPC and its contribution is
based on [27]. The main goal of this paper is to provide

a robust stability analysis and synthesis robust predic-
tive controller for this scheme with guaranteed cost and
PDQS.

The organization of the paper is as follows. Section 2
gives the problem formulation. In Section 3, the robust
output feedback predictive controller design method with
input constraints using bilinear matrix inequality is pre-
sented. The approach of robust constrained networked
model predictive control design with guaranteed cost and
PDQS is introduced in section 4. In section 5, one bench-
mark example is solved by using Yalmip BMI solvers to
show the effectiveness of the proposed method. Finally,
some conclusions are given.

Hereafter, the following notational conventions will be
adopted: given a symmetric matrix P = PT , the in-
equality P > 0 (P ≥ 0) denotes matrix positive defi-
niteness (semi-definiteness). ”*” denotes a block that is
transposed and complex conjugate to the respective sym-
metrically placed one. Matrices, if not explicitly stated,
are assumed to have compatible dimensions. I denotes
the identity matrix of corresponding dimensions. The no-
tation x(t+k|t) will be used to define, at time t k− steps
ahead, prediction of a system variable x from time t on-
wards under a specified initial state and input scenario.
Note that x(t|t) = x(t).

1 PRELIMINARIES AND

PROBLEM FORMULATION

The framework of NCS considered in the paper is de-
picted in Fig. 1. Let the polytopic model of the plant to
be controlled be described by the following linear discrete
time difference equation

x(t+ 1) = A(ξ)x(t) +B(ξ)u(t) ,

y(t) = Cx(t)
(1)

where x(t) ∈ Rn , u(t) ∈ Rm , and y(t) ∈ Rl denote
the state, control input, and output respectively. The
matrices A(ξ), B(ξ) belong to convex and bounded set
S , which is a polytop with N vertices S1, S2, . . . , SN that
can be formally defined as follows

S :=
{
A(ξ) ∈ Rn×n, B(ξ) ∈ Rn×m : A(ξ) =

N∑

i=1

ξiAi ,

B(ξ) =

N∑

i=1

ξiBi ,

N∑

i=1

ξi = 1 , ξi ≥ 0
}
. (2)

Matrices Ai , Bi and C are known matrices with constant
elements and appropriate dimensions.

Consider the following output feedback predictive con-
trol algorithm as the controller of NCS

u(t+k) = u(t+k|t) =

Nu∑

j=k

Fkj [y(t+ j|t)−w(t+ j|t)] (3)
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Fig. 1. Configuration of considered networked control system
(NCS)

where k ∈ {0, 1, . . . , Nu−1} ; Fkj ∈ Rm×l denotes output
feedback gain matrices; u(t+ k|t), y(t+ k|t), and w(t+

k|t) ∈ Rl for k ≥ 1 denote, respectively, the input,
output and desired reference predictions at time instant
t + k predicted at time t (u(t + k|t) and x(t + k|t) are
initialized by the measurements of the current state x(t)).
The prediction is carried out over control horizon Nu

and prediction horizon Ny = Nu . Input constraints are
assumed to be

‖ui(t+k)‖ ≤ ui; i = 1, 2, . . . ,m, k = 0, 1, . . . , Nu−1 (4)

where ui is the maximum value of the i -th input control
ui(·).

Networks exist between sensor and controller and be-
tween controller and actuator. It is assumed that in net-
work transmission there is negligible network-induced
time delay (time delay is within sampling time of NCS)
or it is treated as a dropout [5, 7], but packet loss may
happen. The sensor and the controller only send data at
each sampling time, as well as the controller and actuator
receive data. If data are lost at one sampling time, at next
sampling time network only transmit new data and old
data are discarded. The data are transmitted in a single
packet. Based on [27], the packet-loss process in this paper
is redefined as follows. Let ℑ = {t1, t2, . . . , ts, ts+1, . . . }
a subsequence of {1, 2, 3, . . .} , denote the sequence of
time points of successful data transmissions from the sen-
sor to the actuator, and lp max = maxs(ts+1 − ts − 1),
s = 1, 2, 3, . . . ; lp max ≤ Nu − 1 be the maximum value
of packet-loss number. Then the following concept and
mathematical models are introduced to capture the na-
ture of packet losses.

Definition 1. Packet-loss process is defined as

ℓ =

{
lp(ts) : lp(ts) = ts+1 − ts − 1, ts ∈ ℑ,

0 ≤ lp(ts) ≤ lp max ≤ Nu − 1

}
(5)

Definition 2. Packet-loss process (5) is said to be arbi-
trary if it takes values in ℓ arbitrarily from (5).

Note that at time instant t ∈ 〈ts, ts+1〉 , if data is not
successfully transmitted from the sensor to the controller,
the controller will not calculate new control signal for the
actuator and as result, the packet-loss occurs.

To overcome the resulting packet-loss problems, we use
prediction based compensation schemes from ([2, 5–7]. In-
stead of a single input, a sequence of predicted future con-
trols Us(ts) = {u(ts), u(ts + 1), . . . , u(ts + lp), . . . , u(ts +
lp max)} is submitted and implemented at a buffer device
with length lp max in the actuator. The buffer device is
used to store the newest control sequence Us(ts) trans-
mitted successfully from MPC to actuator at sampling
time ts ∈ ℑ . At time instant t ∈ 〈ts, ts + lp(ts)〉 , the
packet loss occurs, and control action u(t) correspond-
ing to the current sampling time from control sequence
Us(ts) in the buffer device will be applied to the actua-
tor. The main goal of this paper is to design a predictive
controller (3) with input constraints (4) so that, control
action u(t) from control sequence Us(ts) robustly stabi-
lizes NCS and ensures input constraints and guaranteed
cost of the following cost function (over the infinite opti-

mization horizon) J =
∑∞

t=0 J(t), and where

J(t) =

Ny∑

k=0

x⊤(t+ k|t)Qkx(t+ k|t)+

+

Nu−1∑

k=0

u⊤(t+ k)Rku(t+ k),

(6)

and Qk ∈ Rn×n, Rk ∈ Rm×m are positive semidefi-
nite (definite) and definite matrices, respectively for all
k (Qk = qkI, Rk = rkI; qk ≥ 0, rk > 0). and I – is the
unitary matrix.

3 ROBUST MODEL PREDICTIVE

CONTROL WITH INPUT CONSTRAINTS

In this section, we recall some results of the robust
MPC design with input constraints from papers [15, 25].

At sampling time t := ts ∈ ℑ , the predicted states of
the system (1) for the instant t+k, k = {0, 1, . . . , Nu−1}
are given by

x(t+ k + 1|t) = A(ξ)x(t + k|t) +B(ξ)u(t+ k|t) . (7)

Let us define stacked vectors with future states and de-
sired references in corresponding forms as follows

xf (t) = [x⊤(t) . . . x⊤(t+Ny − 1|t)]⊤,

̟(t) = [w⊤(t) . . . w⊤(t+Ny|t)]
⊤.

(8)

Considering ν(t) = [u⊤(t) u⊤(t+1) ... u⊤(t+Nu − 1)]⊤ ,
state model prediction is obtained as follows

Af (ξ)xf (t+ 1) = Ax(ξ)x(t) +Bf (ξ)ν(t) (9)

where

Af (ξ) =




I 0 0 . . . 0 0
−A(ξ) I 0 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . .−A(ξ) I
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∈ RnNy×nNy

Ax(ξ) = [A⊤(ξ) 0 · · · 0 ]
⊤
∈ RnNy×n

Bf (ξ) = diag
{
B(ξ), . . . , B(ξ)

}⊤
∈ RnNy×mNy

(10)

Using definitions of xf (t) and ̟(t), the predictive con-
trol algorithm (3) is also obtained in the following form

ν(t) = F0xCx(t) + F0fCfxf (t+ 1)− F0̟(t)

= F0Cmη(t)− F0̟(t) (11)

where η⊤(t) = [x⊤(t) x⊤

f (t+1)]⊤, Cf = diag{C, . . . , C} ∈

RlNy×nNy , Cm = diag{C,Cf} and F0 ∈ RmNu×l(Ny+1) :

F0 =














F00

0

0
...

0
︸︷︷︸

F01 F01 · · · F0(Nu−1) F0Nu

F11 F12 · · · F1(Nu−1) F1Nu

0 F22 · · · F2(Nu−1) F2Nu

...
...

. . .
...

...
0 0 · · ·F(Nu−1)(Nu−1)F(Nu−1)Nu

︸ ︷︷ ︸

F0x F0f














(12)

Substituting ν(t) in the form of (11) into the model pre-
diction (9), the closed-loop model prediction is obtained
as follows

Acf (ξ)xf (t+ 1) = Acx(ξ)x(t) −Bcf(ξ)̟(t) (13)

where
Acf (ξ) = Af (ξ)−Bf (ξ)F0fCf

Acx(ξ) = Ax(ξ)−Bf (ξ)F0xC

Bcf(ξ) = Bf (ξ)F0

(14)

Assuming that the current state x(t) is known, the above
equation implies that, the predicted states xf (t+ 1) are
initialized by the current state vector x(t) and known
reference signal ̟(t). Because the vector ̟(t) is inde-
pendent on state vector x(t) and if vectors ̟(t) belong
to the class of ℓ2 , then the stability and robustness prop-
erties of closed-loop system (13) are not affected by ̟(t).
Therefore, due to Lyapunov function approach, it will be
without loss of generality if we set the vector ̟(t) equal
to zero in the case of robust stability analysis or robust
controller synthesis.

The cost function (6) can be rewritten as follows

J(t) = η⊤(t)Qη(t) + ν⊤(t)Rν(t) (15)

where Q = diag{Q0, . . . , QNy
} , R = {R0, . . . , R(Nu−1)} .

Associated with the cost function (15), the guaranteed
cost control law is defined as follows.

Definition 3. Consider the system (9). If there exists
a control law (11) and a positive scalar J0 such that
for all uncertainties (2), the closed-loop system (13) is
asymptotically stable and the closed-loop value of the
cost function (15) satisfies J ≤ J0 , then J0 is said to
be the guaranteed cost and the controller (11) is said to
be the guaranteed cost control law.

Finally we recall the well known results from LQ the-
ory.

Lemma 4 [20]. Consider the discrete-time system (9)

with control algorithm (11). Control algorithm (11) is

the guaranteed cost control law for the closed-loop sys-

tem (13) if and only if there exists a Lyapunov function

V0(t) = x⊤

f (t)P0(ξ)xf (t) such that the following condi-

tion holds

△V0(t) + J(t) ≤ 0 . (16)

Moreover, summarizing (16) from initial time t0 to

t → ∞ , the following inequality is obtained

−V0(t0) + J ≤ 0 . (17)

Definition 3 and inequality (17) imply that J0 = V0(t0).

Theorem. The closed loop system (13) is robustly sta-

ble with guaranteed cost J0 and parameter dependent

quadratic stability if and only if there exist matrices

H0 ∈ RnNy×n(Ny+1) , P0(ξ) = P⊤
0 (ξ) > 0 and gain ma-

trix F0 such that the following bilinear matrix inequality

holds [15].

W (ξ) ≤ 0 (18)

where

W (ξ) = D(ξ)+A⊤
m(ξ)H0+HT

0 Am(ξ)+Q+CT
mFT

0 RF0Cm ,

D(ξ) = diag{−P0(ξ), 0, . . . , 0, P0(ξ)}∈Rn(Ny+1)×n(Ny+1),

Am(ξ) = [Acx(ξ) −Acf (ξ)] ∈ RnNy×n(Ny+1) .

Consider system (9) where the control ν(t) is con-

strained to evolve in the following set

Γ =
{
ν(t) ∈ RmNu : ‖νid‖ ≤ ūi; id = i+ (j − 1)m;

i = 1, . . . ,m; j = 1, . . . , Nu

}
(19)

To derive sufficient stability conditions for input con-

straints for (13), we consider that the positive invariant

region [19], with respect to closed-loop system motion can

be defined by the ellipsoidal Lyapunov function set given

by V0(t) as follows

Ω(P0(ξ)) = {xf (t) ∈ RnNy : x⊤

f (t)P0(ξ)xf (t) ≤ θ} (20)

where θ is a positive real parameter which determines

the size of Ω(P0(ξ)).

Consider DidF0 denotes the id − th row of matrix F0

where Did = [0...0 1 0...0] ∈ Rl×mNu and define

L(F0) =
{
xf (t) ∈ RnNy : ‖DidF0Cfxf (t)‖ ≤ ūi;

id = i+ (j − 1)m; i = 1, . . . ,m; j = 1, ..., Nu

}
(21)

The condition of input constraints reduces to LMI given

by the following theorem [25].
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Fig. 2. Schematic representation of a hybrid automaton

Theorem 6. The inclusion Ω(P0(ξ)) ⊆ L(F0) is for
output feedback control equivalent to [25]

[
P0(ξ) ∗

DidF0Cm λ0
id

]
≥ 0 (22)

for all id = i+(j−1)m ; i = 1, . . . ,m ; j = 1, . . . , Nu and

λ0
id

∈ 〈0,
u2

i

θ
〉 .

Without regard to the networks (the packet-loss prob-
lem is not considered in the controller design), if con-
ditions (18) and (22) hold, then guaranteed MPC con-
troller (3) is robustly stabilizes uncertain system (1) and
guarantees input constraints (4). To fix the packet-loss
problem, the compensation mechanism introduced in Sec-
tion 2 is used. The first lp max elements of vector ν(t) are
encapsulated into one packet so-called control sequence
Us(t) = {u(ts), u(ts+1), . . . , u(ts+lp), . . . , u(ts+lp max)}
and sent to the buffer device in the actuator. However,
control sequence Us(ts) obtained from the above MPC
controller design(without regard to the networks) can in-
duce instability or poor performance (the guaranteed cost
and the input constraints) of the NCS. This problem will
be solved in the next section.

4 ROBUST NETWORKED MODEL

PREDICTIVE CONTROL DESIGN

In this section, a necessary and sufficient robust sta-
bility conditions to robust networked MPC design with
guaranteed cost control law for the case of lost packet are
presented. Main result of this section on robust networked
MPC design can be summarized in Theorem 8.

Due to the compensation mechanism, the control ac-
tion u(t) corresponding to the current sampling time
from control sequence Us(ts) in the buffer device will
be applied to the actuator at every sampling time t ∈
〈ts; ts + lp(ts)〉 ( lp(ts) packets are lost). This process is
considered as a switched system with schematic repre-
sentation of a hybrid automaton in Fig. 2. Hybrid state
of the hybrid automat is xh(t) = (lp(t), xf (t)) in which

number packet loss lp(t) ∈ ℓ is a discrete state, xf (t) is
the state of continuous part. Activity function is defined
by closed-loop output feedback model predictive controls
MPClp in (29).

At sampling time t := ts(lp = 0), model predictive
control MPClp defined in Section 2 is used to compute

control sequence Us(t). If no packet loss at t+1, MPC0

is applied. Otherwise, jump to MPC1 , it means that one
packet lost.

Generally, at sampling time t := ts + lp (1 ≤ lp ≤
lp max), MPClp is applied. If no packet loss at t+1, jump
to MPC0 . Otherwise, if lp < lp max , jump to MPClp+1

and it means that lp + 1 packets are lost. The predicted
states of MPClp for the instant t+k , k = 0, . . . , Nu−1,
are given by

x(t+ k + 1|t) = A(ξ)x(t + k|t) +B(ξ)u(k) ,

u(k) =

{
u(ts + lp + k) if 0 ≤ k ≤ Nu − lp − 1 ,

u(ts +Nu − 1) if Nu − lp ≤ k ≤ Nu − 1 .

(23)

Based on equation (3), u(ts+lp+k) for 0 ≤ k ≤ Nu−lp−1
can be rewritten as follows

u(ts + lp + k) =

Nu∑

j=lp+k

F(lp+k)jCx(ts + j|ts) . (24)

Substituting j by i+ lp to (24), we obtain

u(ts+ lp+k) =

Nu−lp∑

i=k

F(lp+k)(lp+i)Cx(ts + lp+ i|ts) (25)

for 0 ≤ k ≤ Nu − lp − 1.

If the following condition

x(ts + lp + i|ts) = x(ts + lp + i|ts + lp) = x(t+ i|t) (26)

holds for 0 ≤ i ≤ Nu−lp , then the state model of MPClp

is obtained in the form of (9) with the following control
algorithm

ν(t, lp) = FlpCmη(t) = FlpxCx(t)+FlpfCfxf (t+1) (27)

where Flp is created by rearrange elements of gain matrix

F0 and has the following structure

︸ ︷︷ ︸

Flpf

Flp =




















Flplp Flp(lp+1) . . . Flp(Nu−1) FlpNu 0. . . 0

0 F(lp+1)(lp+1) . . . F(lp+1)(Nu−1) F(lp+1)Nu
0. . . 0

...
...

. . .
...

...
...

...
0 0 . . . F(Nu−1)(Nu−1) F(Nu−1)Nu

0. . . 0
0 0 . . . F(Nu−1)(Nu−1) F(Nu−1)Nu

0. . . 0

...
...

...
...

...
...

...
0 0 . . . F(Nu−1)(Nu−1) F(Nu−1)Nu

0. . . 0

︸︷︷︸

Flpx





















(28)
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According to mathematical induction (a method of
mathematical proof), condition (26) holds for all 1 ≤
lp ≤ lp max , if we prove that, (26) holds for the cases
of lp = {1, 2} , and with assumption that (26) holds for
lp − 1, it will hold for lp .

Due to the result of solving difference equation (1),
x(ts+1|ts) = x(ts+1|ts+1) holds for i = 0. Using (7) and
(23) for i = 1, we obtain x(ts +2|ts) = x(ts +2|ts+1) =
A(ξ)x(ts + 1|ts) + B(ξ)u(ts + 1). Sequentially repeating
the previous step for i = 2, . . . , Nu−1, it is easily to show
that x(ts + i + 1) = x(ts + i + 1|ts + 1). Condition (26)
holds for lp = 1.

Repeating all steps and using results in the above proof
for lp = 1, we can prove that, condition (26) holds for
lp = 2.

Now, (26) is supposed to hold for lp − 1. We have to
show that, (26) will hold for lp . Indeed, for i = 0, we
have x(ts+ lp|ts+ lp) = x(ts+ lp|ts+ lp−1) = A(ξ)x(ts+
lp− 1|ts+ lp− 1)+B(ξ)u(ts+ lp− 1). Because (26) holds
for lp−1, then x(ts+ lp−1|ts+ lp−1) = x(ts+ lp−1|ts).
As a result, x(ts+ lp|ts) = x(ts+ lp|ts+ lp) . By the same
way for i = {1, ..., Nu − lp − 1} , (26) is true for lp . The
proof of (26) is obtained.

Applying control algorithm (27) into model prediction
(9), the closed-loopMPC of MPClp is obtained as follows

Acf (ξ, lp)xf (t+ 1) = Acx(ξ, lp)x(t) (29)

where
Acf (ξ, lp) = Af (ξ)−Bf (ξ)FlpfCf ,

Acx(ξ, lp) = Ax(ξ) +Bf (ξ)FlpxC .
(30)

Let us define the following parameter-dependent Lya-
punov functional candidate for the closed-loop feedback
of MPClp .

Vlp(t) = x⊤

f (t)P lp(ξ)xf (t) ,

P lp(ξ) ∈ RnNy×nNy : P lp(ξ) = diag{Plp(ξ), . . . , Plp(ξ)} ,

Plp(ξ)∈R
n×n: Plp(ξ) =

N∑

i=1

ξiPlpi;Plpi = P⊤

lpi
> 0, (31)

ξi ≥ 0,

N∑

i=1

ξi = 1 .

The cost function for closed-loop feedback for NCS is
rewritten as the follows.

J(t) = x⊤(t)Q0x(t) + x⊤

f (t+ 1)Qfxf (t+ 1)+
(
FlpxCx(t) + FlpfCfxf (t+ 1)

)⊤
R×

(
FlpxCx(t) + FlpfCfxf (t+ 1)

)
=

η⊤(t)
(
Q+ C⊤

mF⊤

lp
RFlpCm

)
η(t) (32)

where Qf = diag{Q1, Q2, . . . , QNy
} .

Applying theory of switched system for discrete sys-
tem [11, p.129] and using Lemma 4, the switched system

with the schematic representation of hybrid automaton
in Fig. 2 is robust stable with guaranteed cost if and only
if the following conditions hold

x⊤

f (t+ 1)P ipxf (t+ 1)− x⊤

f (t)P lpxf (t) + J(t) ≤ 0,

ip = {0, lp + 1} (33)

or

J(t)− x⊤(t)Plpx(t) + x⊤(t+Ny|t)Pipx(t+Ny|t)+

+

Ny−1∑

k=1

x⊤(t+ k|t)
(
Pip(ξ) − Plp(ξ)

)
x(t+ k|t) ≤ 0,

ip = {0, lp + 1} (34)

Note the switched control algorithm for the case of lost
packet is given in Fig. 2.

Necessary and sufficient condition for robust stability
with guaranteed cost for the NCS with packet loss is given
by the following Lemma.

Lemma 7. Control sequence Us(ts) is the guaranteed
cost control law for the NCS with packet loss if and only
if the following condition holds

B
ip
lp
(ξ) = A⊤

c (ξ, lp)
(
P̃

ip
lp
(ξ) +Qf

)
Ac(ξ, lp)− Plp(ξ)+

+Q0 +
(
FlpxC + FlpfCfAc(ξ, lp)

)T
R×

×
(
FlpxC + FlpfCfAc(ξ, lp)

)
≤ 0 (35)

where ip = {0, lp + 1} , P̃
ip
lp
(ξ) ∈ RnNy×nNy and

P̃
ip
lp
(ξ) = diag{Pip − Plp , . . . , Pip − Plp , Pip}(ξ) . (36)

Robust stability condition (35) is not directly appli-
cable due to its numerical complexity. In the following
theorem the novel formulation of robust stability condi-
tion is developed, which provide LMI for MPC robust
stability analysis and BMI for MPC robust design.

Theorem 8. Control sequence Us(ts) robustly stabilizes
the NCS with loss packet process ℓ and ensures the guar-
anteed cost J0 , input constraints (4) if and only if there

exist matrices Hlp ∈ RnNy×n(Ny+1), Plp(ξ) = P⊤

lp
(ξ) >

0 , and gain matrices Flp such that the following bilinear

matrix inequality (BMI)

W
ip
lp
(ξ) = D

ip
lp
(ξ) +A⊤

m(ξ, lp)H
ip
lp

+H
ip
lp

⊤

Am(ξ, lp)+

+Q+ C⊤

mF⊤

lp
RFlpCm ≤ 0 ;

ip = {0, lp + 1} (37)

and the following linear matrix inequality (LMI)

[
Plp(ξ) ∗

DidFlpCm λ
lp
id

]
≥ 0 ; λ

lp
id

∈
〈
0,

u2
i

θ

〉
;

id = i+ (j − 1)m, i = 1, . . . ,m ,

j = 1, . . . , Nu − lp

(38)
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hold for all 0 ≤ lp ≤ lp max .

Where D
ip
lp

∈ Rn(Ny+1)×n(Ny+1) and

D
ip
lp
(ξ) = diag{−Plp , Pip − Plp , . . . , Pip − Plp , Pip}(ξ),

Am(ξ, lp) = [Acx(ξ, lp) −Acf (ξ, lp) ] . (39)

P r o o f . Sufficiency. Considering H
ip
lp

= [H
ip
lpx

H
ip
lpf

] ,

where H
ip
lpx

∈ RnNy×n and H
ip
lpf

∈ RnNy×nNy , the in-

equality (37) can be rewritten as

W
ip
lp
(ξ) =

[
W11(ξ) W12(ξ)

W⊤
12(ξ) W22(ξ)

]
≤ 0 (40)

where

W11(ξ) = −Plp(ξ) + H
ip
lpx

⊤

Acx(ξ, lp) + A⊤
cx(ξ, lp)H

ip
lpx

+

Q0 + C⊤F⊤

lpx
RFlpxC , W12(ξ) = −H

ip
lpx

⊤

Acf (ξ, lp) +

A⊤
cx(ξ, lp)H

ip
lpf

+CTF⊤

lpx
RFlpfCf , and W22(ξ) = P̃

ip
lp
(ξ)−

H
ip
lpf

⊤

Acf (ξ, lp)+A⊤

cf (ξ, lp)H
ip
lpf

+Qf +CT
f F

⊤

lpf
RFlpfCf .

Since the matrix L =
[
I A⊤

c (ξ, lp)
]

has full row

rank, multiplying the left of (40) by L and the right

by L⊤ , (35) is obtained. It means that, the sufficiency
is proved.

Necessity. Suppose that there exist symmetric posi-
tive definite matrices Plp(ξ) and Pip(ξ) such that robust

stability condition (35) holds; necessarily, there exists a

scalar β
ip
lp

> 0 such that

A⊤

c (ξ, lp)
(
P̃

ip
lp
(ξ) + β

ip
lp
I
)
Ac(ξ, lp)− Plp(ξ) ≤ 0 . (41)

Applying Schur complement formula to (41), we obtain

[
−Plp(ξ) A⊤

c (ξ, lp)
(
P̃

ip
lp
(ξ) + β

ip
lp
I
)

∗ −
(
P̃

ip
lp
(ξ) + β

ip
lp
I
)

]
] ≤ 0 (42)

Taking Hlpx = − 1
2β

ip
lp

(
A−1

cf (ξ, lp)
)⊤

Ac(ξ, lp) and Hlpf =
(
A−1

cf (ξ, lp)
)⊤(

P̃
ip
lp
(ξ)+ 1

2β
ip
lp
I
)
, after some manipulations

the following inequality is obtained.

[
W11β(ξ) W12β(ξ)

W⊤

12β(ξ) W22β(ξ)

]
≤ 0 (43)

where W12β(ξ) = W12(ξ), W22β(ξ) = W22(ξ) and

W11β(ξ) = W11(ξ) + β
ip
lp
A⊤

c (ξ, lp)Ac(ξ, lp).

Because β
ip
lp
A⊤

c (ξ, lp)Ac(ξ, lp) ≥ 0, then the inequality

(40) resp. the inequality (37) is obtained which proves the
necessity. For guaranteed cost the proof goes the analog-
ical way as given above.

To prove condition (38) for input constraints, see [25].
Theorem 8 is proved.

Note that (37) is affine to ξ . If W
ip
lpj

≤ 0, j =

1, . . . , N , is feasible with respect to unknown Plpj =

P⊤

lpj
> 0, Pipj = P⊤

ipj
> 0, H

ip
lp
, and Flp for all

0 ≤ lp ≤ lp max , ip = {0, lp + 1} , then the control se-
quence Us(ts) guarantees robust stability and guaranteed
cost for NCS with predictive control (3) within the con-
vex set defined by (2). Therefore, BMI robust stability
condition “if and only if” in (37) reduces to sufficient
condition.

5 EXAMPLES

In this section, we present the results of numerical
calculations and simulations for a numerical example to
demonstrate the effectiveness of the proposed method,
namely its ability to cope with robust stability, guaran-
teed cost, and input constraints without complex compu-
tational load. Numerical calculations have been realized
by using PEN-BMI.

The discrete model of double integrator turns to (1)
where

A0 =

[
1 0
1 1

]
, B0 =

[
1
0

]
, C = [ 1 0 ]

and uncertainty matrices are

A1u =

[
0.01 0.01
0.02 0.03

]
, B1u =

[
0.001
0

]

For the case when number of uncertainty is p = 1 the
number of vertices is N = 2p = 2, the matrices (2)
corresponding to two working points 1.wp and 2.wp are
calculated as follows

[
A1 = A0 +A1u B1 = B0 +B1u

A2 = A0 −A1u B2 = B0 −B1u

]
.

Considering with prediction horizon and control horizon
as Nu = Ny = 8. We assume that the packet-loss upper
bound lp max = Nu − 1 = 7, which means that up to
87.5% of the packets, can be lost during the network
transmissions.

Applying Theorem 8 with parameters θ = 30 and
ui = 1 for the input constraints, and (Q = qI;R = rI )

q = {qi}
8
i=0 = {0.001; 0.0025; 0.005; 0.0075; 0.01; 0.01;

0.015; 0.075; 0.1} ,

r = {ri}
7
i=0 = {1; 10; 100; 1000; 104; 105; 106; 107} for

the cost function, the gain matrix F0 of predictive con-
trol algorithm (3) is obtained as follows

10−2

























−1.85−8.00−10.11−9.83−8.33−6.52−4.48−2.37−0.24
0−0.72 −4.38−6.14−6.55 −6.2−5.25−3.97−2.63
0 0 1.35−2.27−4.48−5.55−5.71−5.29−4.78
0 0 0 3.96−0.61−3.66−5.46−6.41−7.24
0 0 0 0 2.70−1.43−4.27−6.18−7.97
0 0 0 0 0 2.17−1.68−4.76−7.55
0 0 0 0 0 0−0.12−0.59−1.06
0 0 0 0 0 0 0 0.03−0.04

























.
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Fig. 3. The status of data transmission in the network

Fig. 4. Simulations of output and input control signals at two
operating points

Fig. 5. Comparison between the case of packet loss and no packet
loss in the network: (a) – no loss packet, (b) – loss packet

Our simulations are based on the framework in Fig. 1.
The status of data transmission in the network is shown
in Fig. 3, where s2a = 1(s2a = 0) indicates that the
data is (is not) successfully sent from the sensor to the
actuator. We can see that, only 1327 of 2001 packets
were successfully transmitted via network; it means that
66.318% of packets were lost. Fig. 4 shows simulations of
output and input control signals at two operating points
1.wp and 2.wp . It shows that networked MPC is robustly

stable and guarantees input constraints. In Fig. 5, there is
comparison between the case of packet loss and no packet
loss in the network at the first operating point. Compari-
son between the results obtained by design method with-
out considering packet loss and proposed method at the
first operating point is shown in Fig. 6. It shows that,
the design method without considering packet also stabi-
lizes NCS, but gives less performance than the proposed
method.

Fig. 6. Comparison between the case of design method without
considering packet loss and the proposed method: (a) – without

considering packet loss, (b) – considering packet loss

6 CONCLUSION

The stabilization of networked predictive control sys-
tem with packet-loss was studied in this paper. The
packet-loss process is arbitrary and bounded by the con-
trol horizon of model predictive control. Networked pre-
dictive control systems with packet loss are modeled as
switched linear systems. This enables us to apply the the-
ory of switched systems to establish the stability condi-
tion of networked predictive control systems. The stabiliz-
ing controller design is based on sufficient robust stability
conditions formulated as a solution of bilinear matrix in-
equality BMI. The effectiveness of the proposed method
was illustrated by a numerical example and simulations.
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Vojtech Veselý (Prof, Ing, DrSc) was born in 1940. Since
1964 he has worked at the Department of Automatic Con-
trol Systems at the Faculty of Electrical Engineering and
Information Technology, Slovak University of Technology in
Bratislava. Since 1986 he has been Full Professor. His research
interests include the areas of power system control, decentral-
ized control of large-scale systems, process control and opti-
mization.
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