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Abstract: In this article, the parametric model for the
stiffness characteristic and burst pressure of cord-rein-
forced air spring with winding formation is developed.
Based on the non-geostrophic winding model and the
assumption of cord cross-stability, the cord winding tra-
jectory model of the capsule is established. Then, the
anisotropic and nonlinear mechanics model of the cap-
sule with complex cord winding trajectory variation char-
acteristics is constructed by the classical thin-shell theory.
The capsule state vector is solved by the extended homo-
geneous capacity precision integration method. Due to the
complex coupling relationship between the capsule state
vector and the internal air pressure, the stiffness charac-
teristic is solved by the iterative integration method. The
burst pressure of the air spring is solved by the Tsai–Hill
strength theory. Eventually, the accuracy and reliability of
the proposed method are verified by the experimental
results. The effects of the material properties, winding
parameters, and geometric structure parameters on stiff-
ness characteristics and burst pressure are discussed. The
results of this article provide an important theoretical basis
for the performance design of cord-reinforced air springs
with winding formation.

Keywords: air spring, cord winding, theory of thin shell,
transfer matrix method, stiffness, burst pressure

1 Introduction

The air spring uses the nonlinear stiffness and damping
characteristics of air compression to isolate vibration and
shock. It has been widely used in the field of vibration
and noise reduction in vehicles and ships [1–3]. The cap-
sule of the air spring generally consists of a cord skeleton
layer and a rubber layer. The cord skeleton layer is the
main force carrier of the capsule, and it is formed by
high-strength cords and rubber [4,5]. In applications
with small installation space and large bearing require-
ments, the air spring must achieve a large bearing capa-
city at a small size. Therefore, its internal pressure is
generally 4–6 times higher than general air springs.
The cord-reinforced air spring with winding formation
is proposed to ensure the structural strength of the air
spring under high pressure.

The mechanical characteristics of air springs consist
mainly of stiffness characteristics and burst pressure. The
effects of geometric parameters, internal pressure, and
material parameters on the mechanical characteristics
of air springs are difficult to ignore [6–8]. The capsule of
an air spring composed of rubber-cord composites is
typical anisotropic materials with complicated mechan-
ical modeling. Therefore, most scholars established the
mechanical model of the capsule by simplification, ana-
logy, or simulation. Erin et al. simulated the nonlinearity
of the capsule with a linear spring, a damper, and a hys-
teresis damper in parallel to analyze the mechanical
properties of the air spring [9]. Moon and Lee et al.
extracted themechanical property data of rubber air springs.
The Zenermodel was used to simulate themechanical prop-
erties of air springs. However, the model is complicated and
less general [10]. Wong et al. developed a finite element
model of the air spring. The nonlinear properties of the cap-
sule were described by ABAQUS and rebar elements. The
effects of the cord winding angle, cord diameter, and the
initial internal pressure on the mechanical properties were
analyzed [11].

Due to the characteristics of the forming process of
the air spring, the air spring capsule not only has
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complex anisotropic and nonlinear characteristics but
also presents complex winding trajectory variation char-
acteristics. It makes the construction of a mechanical
model of the air spring extremely difficult. The cord tra-
jectory inside the air spring capsule is determined by two
stages: the cord winding stage and the capsule extrusion
stage. Currently, most scholars have conducted in-depth
theoretical studies on the cord winding stage. Based on
the geodesic and nongeodesic winding models, the cord
winding models of different curvature shells and the
corresponding winding process methods were analyzed
[12–15]. However, there is a lack of relevant theoretical
studies on the changes in cord winding trajectory during
the capsule extrusion stage. In addition, there is a strong
coupling between the capsule state vector and the internal
pressure of the air spring in the process of solving the
mechanical properties of the air spring. The capsule state
vector (internal force and displacement, etc.) changes with
the internal pressure, and the internal pressure is also
affected by the change in the capsule state vector. The
complexity of solving the mechanical properties of air
springs is further increased. Therefore, establishing the
mechanical model of the rubber-cord composite capsule
with complex winding trajectory variation characteristics
and solving themechanical characteristics of the air spring
under strong coupling of the capsule state vector and the
internal pressure are difficult points in the study of the
parametric mechanical model of the cord-reinforced air
springs with winding formation.

The main purpose of this article is to develop the
parametric model for the stiffness characteristics and
burst pressure of the cord-reinforced air spring with
winding formation. Some new methods for constructing
and solving mechanics models of the cord-reinforced air
spring are presented. Some crucial parameter studies of
the cord-reinforced air spring are also reported. These
results provide an important theoretical basis for the per-
formance design of the cord-reinforced air spring with
winding formation.

2 Theoretical model

2.1 Geometry model of the air spring

The air spring mainly consists of the top plate, capsule,
base plate, and constraint sleeve, as shown in Figure 1. In
the figure, P is the internal pressure, F is the bearing
capacity of the air spring, α and β are the upper and lower
guiding angles of the air spring capsule, respectively, Re

is the effective radius of the air spring, and abcd is a
microelement on the capsule. The air spring capsule is
simplified to a rotational shell formed by a plane curve
rotating around an axis coplanar with the curve, and the
curve is the meridian. The coordinates of any point on the
shell can be expressed by (φ, θ), φ represents the direc-
tion of meridian, and θ represents the direction of lati-
tude. The corresponding principal radius of curvature is
expressed by Rφ and Rθ, respectively, and the lame coef-
ficients of the rotational shell are R0 and Rφ. The fol-
lowing parametric equations can be obtained from the
geometric structure relations:
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2.2 Material model of the air spring

The air spring capsule is the rubber-cord composite. It is
formed by alternating layers of rubber and cord. However,
since the elastic modulus of the cord in the capsule is
much larger than that of the rubber, the effect of the
elastic modulus of the rubber will be ignored in the sub-
sequent analysis. Let Nφ, Nθ, and Nφθ represent the film
internal force components, andMφ,Mθ, andMφθ represent

Figure 1: Schematic diagram of the air spring structure.
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the bending internal force components. According to the
theory of composite laminated plate theory [16], the rela-
tionship between the internal force in the capsule and the
midsurface strain can be expressed as
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In equations (2.2) and (2.3), Aij is the tensile stiffness
and Dij is the bending stiffness. The equation of stiffness
can be expressed as
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In equation (2.4), h is the total thickness of the cord
and Q̄ij is the stiffness coefficient of the capsule in the
nonmaterial principal direction, and can be expressed as
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In equation (2.5), E1 and E2 are the elastic modulus of
the cord in the 1, 2 directions, respectively, v12 and v21 are
Poisson’s ratio of the cord in the 1-2 and 2-1 directions,
respectively, G12 is the shear modulus of the cord, and δ is
the winding angle of the cord in the capsule.

2.3 Winding model of the air spring

As shown in Figure 2, the forming core mold of the air
spring can be simplified to the combination of the front-
end revolving body and the back-end revolving body. The
front-end revolving body forms the circular section of the
air spring capsule in Figure 1, and the back-end revolving
body forms the straight section of the air spring capsule
in Figure 1.

2.3.1 Cord trajectory model in the cord winding stage

Since the air spring linear section capsule is in direct
contact with the constraint sleeve of the air spring, the sub-
sequent mechanical analysis only considers the mecha-
nical action of the circular section capsule. Therefore, the
model of the cordwinding trajectory on the front-end revol-
ving body of the core mold needs to be established. The
front-end revolving body can be regarded as a conical shell
structure, and its geometric model is shown in Figure 3.
Taking the center of the circle at the right end of the conical
shell as the originO, a column coordinate system (ρ, θ, z) is
established. r0 is the radius of the conical shell end, r1 is the
radius of the other end, and L1 is the total length of the
conical shell. The parameter equation of the conical shell
under the column coordinate system can be expressed as
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Thecord iswoundby thenongeodesicwindingmethod,
and the differential equation of the winding trajectory can
be expressed as
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where δ′ is the winding angle of the cord on the core
mold, λ is the slippage coefficient of the cord on the

Figure 2: The main forming process of the air spring.

Figure 3: Geometric model of the front-end revolving body.
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core mold, the coefficients E and G are the measures of
surface ( )S θ z, , and km and kp represent the principal
curvatures of the surface ( )S θ z, . The functional equation
can be expressed as
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2.3.2 Cord trajectory model in the extrusion stage

The capsule extrusion model corresponding to the front-
end revolving body of the core mold is shown in Figure 4.
MN, NQ, QP, and PM are the four intersecting cord micro-
segments in the capsule, R0 is the curvature radius of the
latitudinal surface of the capsule, and pointsM and Q are
on the latitude of the capsule. ′R0 is the radius of the
corresponding section of the core mold. During the extru-
sion process, it is assumed that there is no relative sliding
between any two intersecting curtain strands. Therefore,
the lengths of microsegments MN, NQ, QP, and PM
remain constant, and the length of MQ changes.

Since the number of cords wound on the core mold is
certain, the radius angle θs corresponding to the arc MQ
on the certain section of the mandrel remains unchanged
after extrusion. According to the geometric structure

relationship, the relationship between the cord winding
angle before and after the capsule extrusion can be
expressed as

= =

′
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where δ is the cord winding angle after the capsule extru-
sion. Equation (2.12) can be simplified to
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′
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In summary, given the initial winding angle γ and the
slippage coefficient λ, equation (2.7) can be solved by
the fourth-order Runge-Kutta method to obtain the cord
winding angle δ′ at each point on the conical shell. After
extrusion, equation (2.13) can be solved to obtain the cord
winding angle δ at each position of the cylindrical section
of the capsule.

3 Solution of the mechanical model

3.1 Solution of capsule state vectors

The air spring in the internal pressure-filled state can be
simplified to an axisymmetric rotational shell model. The
simplified equations of the geometric and equilibrium
equations [17] of the air spring can be expressed as
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In equation (3.1), u, v, and w are the displacement
components of the rotational shell, and θφ and θθ are theFigure 4: Schematic diagram of the cord winding variation.
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curvature components. In equation (3.2), Qφ and Qθ are
the shear components.

The capsule state vector (the state vector consists of
six physical quantities: displacement and internal forces)
can be denoted as

{ }=Z u w θ N Q Mφ φ φ T (3.3)

By combining equations (2.2), (2.3), (3.1), and (3.2)
and using Maple mathematical software to eliminate
and transform the variables, the first-order state vector
differential equation of the air spring capsule can be
expressed as
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Bij are the nonzero elements of the matrix B and can be
expressed as follows:
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The elements in the state vector equation coefficient
matrix A are functions of the coordinate φ. Therefore,
equation (3.5) as a variable coefficient nonhomogeneous
matrix differential equation is difficult to solve. The state
vector equation is first homogenized and made constant,
and then solved by the precise integration method.

Equation (3.4) is collapsed toobtain adifferential equa-
tionwithhomogeneous expansion and can be expressed as
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Equation (3.6) can be rewritten as
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s
Z B Zd

d
¯ ¯ ¯ . (3.7)

In equation (3.7), { }Z̄ is the expansion state vector.
Under the condition that the radius change is small
enough, the variables in the coefficient matrix A that
vary with coordinates φ can be replaced by the corre-
sponding average values. Therefore, A can be considered
as a constant matrix, and equation (3.7) can be solved by
the precise integration method with high precision.

According to the matrix theory, the ordinary solution
for equation (3.7) can be expressed as

{ } ([ ]( )){ } [ ]{ }= − =Z B φ φ Z T Z¯ exp ¯ ¯ ¯φ φ s φ2 12 1 2 (3.8)

In equation (3.8), Ts is the transfer matrix of the rota-
tional shell in the meridional direction, giving the rela-
tionship between the expansion state vectors at two
adjacent points φ1 and φ2 along the meridian direction.
The transfer matrix can be obtained by the precise inte-
gration method [18]. After the transfer matrix has been
determined, the expansion state vector at the initial point
of the capsule can be obtained by the boundary condi-
tions at the starting and end of the rotating shell meri-
dian. Then, the expansion state vector at any point along
the meridian of the air spring capsule can be solved by
the transfer matrix.

3.2 Solution of mechanical properties

The starting end of the air spring capsule (φ = α) is
radially constrained by the constraint sleeve and is free
to move in the axial direction. The boundary conditions
can be expressed as
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In equation (3.9), x is the axial displacement value of
the air spring.

The end of the air spring capsule ( = −φ π β2 ) is com-
pletely fixed to the base. The boundary conditions can be
expressed as
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The stiffness of the air spring can be obtained by the
change in the bearing capacity of the air spring under the
unit displacement. Under the conditions of axial defor-
mation of the air spring, the expansion state vector at the
initial point of the air spring can be solved by changing
the displacement values x in the boundary conditions of
the air spring. The result is given as

{ } =
{ }=

Z u w θ N Q M¯ 1 .φ α 0 0 0 0 0 0 (3.11)

By analyzing the force at the starting point of the
circular section of the capsule, the bearing capacity of
the air spring can be expressed as

(( ( ) ( ) )= − −F Pπr N α Q β πrsin cos 20
2

0 0 0 (3.12)

From equation (3.12), the bearing capacity of the air
spring is determined by the initial capsule state vector
and the internal pressure. Due to the complex coupling
relationship between the initial state vector of the cap-
sule and the internal pressure, the stiffness characteris-
tics of the air spring are difficult to be solved; it is solved
in this article using the iterative integral method. The
deformation process of the air spring is decomposed
into the superposition of small deformations. In the
ith small deformation stage, the following assumptions
are made:
(1) Constant structural parameters Re and Rφ during

small deformation.
(2) The small deformation process can be divided into

the capsule state change phase and the internal pres-
sure change phase. The axial displacement of the air
spring changes and the internal pressure remains
unchanged in the capsule state change phase, and
the axial displacement of the air spring remains
unchanged and the internal air pressure changes in
the internal pressure change phase.

During the capsule state vector change phase, the air
spring displacement value changes from xi−1 to xi, and the
internal pressure remains as Pi−1. By changing the value
of x in equation (3.9), the initial state vector of the cap-
sule under different boundary conditions is solved, and
the bearing variation force FΔ i1 under the condition of
the internal pressure Pi−1 is calculated. During the internal
air pressure change phase, the air spring displacement
remains constant at xi, and the internal air pressure changes
from Pi−1 to Pi. The bearing variation force FΔ i2 of the air

spring is calculated by changing the air pressure under
the same boundary conditions as displacement xi.

According to the adiabatic equation [20], the relation-
ship between the internal pressure and internal volume
of air spring can be expressed as
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where Pa is the atmospheric pressure,
−

Pi 1 and −
Vi 1 are the

internal pressure and volume values of the air spring at
the axial displacement xi−1, respectively, Pi and Vi are the
internal pressure and volume values of the air spring at
the axial displacement xi, respectively, and n is the poly-
tropic coefficient.

(3) After each small deformation, the air spring capsule
is still regarded as an arc, and the relationship between the
structural parameters Re and Rφ of the air spring and the
axial displacement x can be expressed as [19]
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Based on the above assumption, the stiffness of the
air spring can be expressed as
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For the rubber-cord composite, the Tsai–Hill strength
theory can be used for failure determination. The Tsai–
Hill’s failure criterion can be expressed as
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where X is the axial tensile strength of the composite, Y is
the transverse tensile strength of the composite, and S is
the shear strength of the composite.

According to the material model of the air spring, the
relationship between the stress components σ1, σ2, and τ12
in the main direction of the rubber-cord composite and
the strain components εφ and εθ in the main direction of
the capsule can be expressed as
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(3.17)

The strain components εφ and εθ can be solved by
equation (3.1). T is the rotation axis matrix, and the para-
meter equation can be expressed as

Mechanical model of cord-reinforced air spring with winding formation  633



⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
−

− −

T
δ δ δ δ
δ δ δ δ

δ δ δ δ δ δ

cos sin 2 sin cos
sin cos 2 2sin cos

sin cos sin cos cos sin

2 2

2

2 2
(3.18)

4 Computational analysis and
experimental verification

The stiffness characteristics and burst pressure of a cer-
tain type of the cord-reinforced air spring with winding
formation are calculated and analyzed, and the structural
parameters of the air spring are shown in Table 1.

4.1 Computational analysis

4.1.1 Effects of material parameters

The material properties of the rubber-cord composite are
the elastic constants and the fundamental strengths. The
elastic constants mainly affect the stiffness characteristic
of the air spring, and the fundamental strengths mainly
affect the burst pressure of the air spring. Since the elastic
modulus E2 is much smaller than the elastic modulus E1
and the shear modulus G12, only the elastic modulus E1
and the shear modulusG12 are scaled by a certain number
to investigate the influence of the elastic constants in the
analysis process. The calculated results are shown in
Figure 5, and the elastic modulus E1 has a greater influ-
ence on stiffness characteristics.

The burst pressure of the air spring is calculated by
scaling the fundamental strengths X, Y, and Z of the
material by the same value. The calculated results are
shown in Figure 6. As the fundamental strengths increases,
the burst pressure of the air spring increases significantly.
However, the axial tensile strength and shear strength
have basically no effect on the burst pressure of the air
spring. Therefore, the rubber-cord composite with higher

transverse tensile strength can be selected to increase the
burst pressure of the air spring.

4.1.2 Effects of winding parameters

The winding pattern is determined after the initial winding
angle and the slippage coefficient of the cord are deter-
mined for the certain core mold. According to the actual
engineering experience, the slippage coefficient of the
cord does not exceed 0.25; otherwise, the cord will slide
during the winding process. In addition, for the core mold
used for the certain type of air spring in this article, the
initial winding angle of the cord does not exceed 34.2° to
ensure that the winding angle during cord winding does
not exceed 90° under the above conditions. The stiffness

Table 1: Structural parameters of the air spring

Name Value Name Value Name Value

Rφ 22.5 mm λ 0.2 X 347.6 Mpa [20]
Re 141 mm E1 49.7 GPa Y 4.7 MPa [20]
α 90° E2 6MPa Z 4.0MPa [20]
β 54° G12 2.5 MPa h 3.3 mm

γ 24.8° v21 0.45

Figure 5: Effect of elastic constants on the stiffness characteristics.

Figure 6: Effect of fundamental strengths on the burst pressure.
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characteristic and burst pressure of the air spring under
different initial winding angles and slippage coefficients
are calculated. The results are shown in Figures 7 and 8,
respectively. The stiffness and burst pressure increase and
then decrease with the increase in the initial winding
angle. The stiffness reaches the highest near 25.2°, and
the burst pressure reaches the highest near 30.6°. The
influence of the slippage coefficient on the mechanical
properties is low. However, it increases with the increase
in the initial winding angle. The cord winding parameters
have a large impact on the burst pressure. Therefore,
under the condition of ensuring the basic requirements
of stiffness characteristics, the cord winding angle and
the slippage coefficient can be determined based on the
strength requirements in the air spring design process.

4.1.3 Effects of structural parameters

The structural design parameters of the air spring are Rφ,

Re, α, and β. Re is a definite value for the certain type of
air spring with a definite bearing capacity, and therefore,
we consider only the effect of the structural parameters
Rφ, α, and β on the mechanical properties of the air
spring. Under the condition that the structure coefficient
is scaled, and the corresponding changes in the stiffness
characteristic and burst pressure are calculated as shown
in Figure 9. The burst pressure and stiffness of the air
spring increase as the structural parameter Rφ increases
and the stiffness characteristics are further affected.

The range of α and β is [0–90°]. The stiffness and the
burst pressure of the air spring are calculated with dif-
ferent values of α and β. The results are shown in Figures
10 and 11. Compared to parameter α, parameter β has a

Figure 7: Effect of winding parameters on the stiffness
characteristics.

Figure 8: Effect of winding parameters on the burst pressure.

Figure 9: Effect of the ripple radius on the stiffness and burst
pressure.

Figure 10: Effect of guide angles on the stiffness characteristics.
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greater effect on the stiffness of the air spring. The stiff-
ness of the air spring decreases as the parameter β
increases and the stiffness is the smallest with α = β = 90°.
Parameters α and β have little effect on the burst pressure.
The burst pressure increases with the growth of parameter
α and decreases with the growth of parameter β. The
highest burst pressure of the air spring is achieved with
α = 90° and β = 0°.

4.2 Test verification

The mechanical properties of the air spring are tested,
and the test installation is shown in Figure 12. A total of
10 air springs were tested for stiffness and three air
springs were tested for the burst pressure. The results
of the mechanical properties of the air spring in the rated
state are shown in Table 2. The theoretical calculation

errors are within 10%, and the theoretical calculation
results are in good agreement with the test results.

5 Conclusion

In this article, a nonlinear capsule mechanics model with
complex winding trajectory variation characteristics is
constructed based on the thin-shell theory, the nongeo-
desic winding model, and the assumption of cord cross-
stability. Then, the capsule state vector is solved by the
extended homogeneous capacity precision integration
method. The stiffness characteristic and burst pressure
of the air spring are calculated based on the iterative
integration method and Tsai–Hill strength theory, respec-
tively. Finally, the effects of winding parameters, material
properties, and geometric structure parameters on the

Figure 11: Effect of guide angles on the burst pressure.

Figure 12: Installation diagram of the air spring mechanical characteristics test: (a) stiffness test and (b) burst pressure test.

Table 2: Mechanical performance test results

Name Prototype
number

Theoretical
calculation
value

Experimental
results

Calculati-
on
errors (%)

Stiffness SZ-01 4.16 kN/
mm

4.34 kN/mm 4.15
SZ-02 4.12 kN/mm 0.97
SZ-03 4.28 kN/mm 2.80
SZ-04 4.37 kN/mm 4.81
SZ-05 4.06 kN/mm 2.46
SZ-06 4.08 kN/mm 1.96
SZ-07 4.45 kN/mm 6.52
SZ-08 4.41 kN/mm 5.67
SZ-09 4.50 kN/mm 7.56
SZ-10 4.54 kN/mm 8.37

Burst
pressure

SZ-11 26.92MPa 25.4MPa 5.98
SZ-12 27.0 MPa 0.30
SZ-13 25.0 MPa 7.68
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mechanical properties of the air spring are discussed, and
the theoretical model is verified to be highly accurate.
Based on the above results, the following conclusions
can be summarized.
(1) The stiffness of an air spring increases with the

growth of the capsule elastic constant, and the burst
pressure increases significantly with the growth of
the transverse tensile strength. Therefore, the rubber-
cord composite with the low elastic constant and the
high transverse tensile strength can be selected to ensure
low stiffness and high reliability of the air spring.

(2) The winding parameters have a large influence on the
burst pressure of air springs and a small effect on the
stiffness characteristics. Therefore, the winding para-
meters can be adjusted to effectively increase the
burst pressure of the air spring under the condition
of ensuring the basic requirements of the stiffness
characteristics. In addition, generally winding para-
meters are defined to maximize the stiffness and burst
pressure of the air spring.

(3) The structural parameter Rφ of the air spring has a
large effect on the stiffness characteristics and burst
pressure. The stiffness and burst pressure of the air
spring increase as the parameter Rφ increases. The
effect of parameters α and β on the burst pressure
of the air spring are small. The effect of parameters
α and β on the stiffness of the air spring are large,
especially the parameter β. The stiffness decreases as
the growth of parameter β, and it reaches a minimum
value with α = β = 90°.

Conflict of interest: There are no conflicts of interest.
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