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Abstract
We study sign changes and non-vanishing of a certain double sequence of Fourier coeffi-
cients of cusp forms of half-integral weight.
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1  Introduction

Starting with the paper [6] many authors have investigated sign change properties of Fou-
rier coefficients of cusp forms, in various directions. In particular, the case of half-integral 
weight has been the focus of much research. If g is a cusp form of half-integral weight 
k +

1

2
 with real Fourier coefficients c(m) (m ≥ 1) and in addition g is a Hecke eigenform, 

then there are at least two important themes in this area: on the one hand the study of sign 
changes of (c(tn2))n≥1 where t is a fixed positive integer, and on the other hand the corre-
sponding question for the sequence (c(t))t≥1squarefree where t runs over positive squarefree 
integers only. Of course, similar questions can be studied for forms of weight k + 1

2
 in the 

plus subspace in which case t has to be replaced by |D| where D is a fundamental discri-
minant with (−1)kD > 0 . For a good (at least partial) survey the reader may look up the 
literature given in [4].

Note that sign change results trivially imply corresponding non-vanishing results and in 
general non-vanishing properties of Fourier coefficients a priori are easier to handle. We 
recall that non-vanishing of products of Fourier coefficients was studied in [3].

In this short note we will investigate sign change and non-vanishing properties of the 
double sequence (c(4n + r2))n≥1,r∈� where g is a cusp form of weight k + 1

2
 with k even and 

level 4 in the plus subspace S+
k+1∕2

 (so c(m) = 0 unless m ≡ 0, 1 (mod 4) , see [7]). These 
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coefficients turn up naturally when one considers the adjoint linear map with respect to the 
Petersson scalar products of (essentially) the linear map “multiplication with � ”, where

is the standard theta function of weight 1
2
 and level 4. Here as throughout q = e2�iz for 

z ∈ H , the complex upper half-plane.
Our results will be stated in the next section; the proofs will be given in section 3. They 

rely on a detailed study of the above mentioned adjoint map, on growth properties of Fou-
rier coefficients of cusp forms of integral weight due to Ram Murty and on a strong bound 
for the Fourier coefficients of cusp forms of half-integral weight due to Blomer-Harcos. 
Detailed references will be given below.

2 � Statement of results

If M ⊂ � we denote by #M the cardinality of M (thus #M is either a non-negative integer 
or ∞).

By k we always understand a positive even integer. We let Sk be the space of cusp forms 
of weight k on Γ1 ∶= SL2(�) . There is a linear map

Note that in general L is not Hecke equivariant.
We denote by L∗ ∶ S+

k+1∕2
→ Sk the linear map adjoint to L with respect to the Petersson 

scalar products. Note that since L is injective, L∗ is surjective.
Let g ∈ S+

k+1∕2
 be fixed, with Fourier coefficients c(m) (m ≥ 1) . For each n ∈ � we then 

put

and if in addition the c(m) are real

Theorem 1  Let g ∈ S+
k+1∕2

 with real Fourier coefficients c(m) (m ≥ 1) and suppose that L∗g 
is a normalized Hecke eigenform. Then there are sequences (n�)�≥1 and (m�)�≥1 in � such 
that for any 𝜎 <

1

16
 one has lim�→∞

�+
n�

n�
�

= ∞ and lim�→∞

�−
m�

m�
�

= ∞ . In particular one has 

lim�→∞ �+
n�
= ∞ and lim�→∞ �−

m�
= ∞.

Remark  It is easy to see that for any normalized Hecke eigenform F ∈ Sk there exists 
g ∈ S+

k+1∕2
 with real Fourier coefficients such that F = L∗g.

If we drop the assumption that L∗g is an eigenform, we still can get non-vanishing 
results for the Fourier coefficients. Let us put V ∶= imL and denote by V⊥ the orthogonal 
complement of V in S+

k+1∕2
.

�(z) =
∑

r∈�

qr
2

L ∶ Sk → S+
k+1∕2

, f (z) ↦ f (4z)�(z).

�n ∶= #{r ∈ � | c(4n + r2) ≠ 0}

𝛼+
n
∶= #{r ∈ � | c(4n + r2) > 0}, 𝛼−

n
∶= #{r ∈ � | c(4n + r2) < 0}.
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Theorem 2  Let g ∈ S+
k+1∕2

 with real Fourier coefficients c(m) (m ≥ 1) and suppose that g is 
not contained in V⊥ . Then there exists a sequence (n�)�≥1 in � such that for any 𝜎 <

1

16
 one 

has lim�→∞

�n�

n�
�

= ∞ . In particular one has lim�→∞ �n� = ∞.

Remark  Applying the above result with g replaced by g − g0 where g0 ∈ V⊥ has Fourier 
coefficients c0(m) , we obtain a corresponding statement with “ c(4n + r2) ≠ 0 ” replaced 
by “ c(4n + r2) ≠ c0(4n + r2) ” in the definition of �n . A corresponding assertion mutatis 
mutandis (and in the case where the c0(m) are real) of course is valid also in the context of 
Theorem 1.

3 � Proof of results

We start with briefly indicating the explicit construction of the map L∗ adjoint to L fol-
lowing [9, sect. 5], and [8], mutatis mutandis.

Let g ∈ S+
k+1∕2

 . The n-th Fourier coefficient of L∗g is given by

by the usual Petersson formula, where Pk,n denotes the n-th Poincaré series in Sk.
By definition

where z = x + iy, dV =
dxdy

y2
 is the invariant measure, F  is a fundamental domain for 

Γ0(4) ⊂ Γ1 and G(z) ∶=
√
y g(z)�(z) behaves like a modular form of weight k under Γ0(4) . 

Recall that Γ0(4) consists of those matrices in Γ1 whose left lower component is divisible 
by 4. The integral in the last line above can be computed by the usual unfolding argument.

Altogether one finds that

where Ck is a real positive constant depending only on k and

The convergence of the sum is clear by the usual Hecke estimate for the coefficients c(m) 
(observe that we may assume that k ≥ 4 , otherwise S+

k+1∕2
= {0} ). This gives an explicit 

description of the map L∗.
Since the Pk,n (n ≥ 1) generate Sk , we also see that V⊥ = kerL∗ consists of those g with 

the property that �(g, n) = 0 for all n ≥ 1.
For the proof of our results we also need Ω-results for the Fourier coefficients 

a(n) (n ≥ 1) of cusp forms f ∈ Sk . Recall that for arithmetic functions v,  w with w(n) 
ultimately strictly positive, one defines

a(L∗g, n) =
(4�n)k−1

(k − 2)!
⟨L∗g,Pk,n⟩

⟨L∗g,Pk,n⟩ = ⟨g(z),Pk,n(4z)�(z)⟩

= ∫
F

G(z)Pk,n(4z)y
kdV

(1)a(L∗g, n) = Ck ⋅ n
k−1

⋅ 𝓁(g, n)

(2)�(g, n) ∶=
∑

r∈�

c(4n + r2)

(4n + r2)k−1∕2
.
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if

and if in addition v is real-valued

if

and

if

Now recall that for f ≠ 0 it was proved in [11] that

and if in addition f is a normalized Hecke eigenform

where c,c± are positive constants depending only on f.
We shall now prove the first assertion of Theorem  1. We put F ∶= L∗g and denote 

by A(n) (n ≥ 1) the Fourier coefficients of F. According to (4) (applied with Ω+ ) we can 
choose a sequence (n�)�≥1 in � such that

for all � and

We claim that

for any 𝜎 <
1

16
.

v(n) = Ω(w(n))

lim sup
n→∞

|v(n)|
w(n)

> 0,

v(n) = Ω+(w(n))

lim sup
n→∞

v(n)

w(n)
> 0,

v(n) = Ω−(w(n))

lim inf
n→∞

v(n)

w(n)
< 0.

(3)a(n) = Ω
(
n(k−1)∕2 exp(c

log n

log log n
)
)
,

(4)a(n) = Ω±

(
n(k−1)∕2 exp(c±

log n

log log n
)
)
,

(5)A(n𝜈) > 0

(6)lim
𝜈→∞

A(n𝜈)

n
(k−1)∕2
𝜈

exp(−c+
log n𝜈

log log n𝜈
) > 0.

lim
�→∞

�+
n�

n�
�

= ∞,
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Suppose that this is not true, for a given � . Then we can find a sequence n𝜈1 < n𝜈2 < … 
and K > 0 such that

for all � ≥ 1.
It follows from (1) and (2) that

where r in 
∑+

r
 runs over those r ∈ � with c(4n𝜈𝜇 + r2) > 0 and r in 

∑−

r
 runs over those r 

with c(4n�� + r2) ≤ 0 . Note that the sum 
∑+

r
 is non-empty by (1) and (5) and for each fixed 

� is finite by (7).
By [1] the Fourier coefficients c(m) of g can be estimated by

where one can take � =
1

16
 . This estimate is slightly better than the Weil bound with � = 0 . 

It is important to us that the bound (9) holds for all m ≥ 1 . Bounds better than the Weil 
bound for m squarefree were obtained in [2, 5, 10].

Inserting (9) into (8) we obtain

where in the last line we have used (7). Choosing � = � − � =
1

16
− � we therefore find that

Letting � going to ∞ we obtain a contradiction to (6).
This proves the assertion of Theorem 1 regarding �+

n
 . To obtain the assertion with �−

n
 one 

proceeds in the same way, mutatis mutandis, using (4) with Ω− . Finally to prove Theorem 2, 
one again proceeds in the same way, using (3). Note that the assumption that g ∉ V⊥ is used to 
guarantee that L∗g ≠ 0.
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(7)
�+
n��

n�
��

≤ K,

(8)

A(n�� ) = C
k
⋅ n

k−1
��

⋅

(∑+

r

c(4n�� + r2)

(4n�� + r2)k−1∕2
+
∑−

r

c(4n�� + r2)

(4n�� + r2)k−1∕2

)

≤ C
k
⋅ n

k−1
��

⋅

∑+

r

c(4n�� + r2)

(4n�� + r2)k−1∕2
,

(9)c(m) ≪g,𝜖 m
k∕2−𝛿+𝜖 (𝜖 > 0)

A(n�� ) ≪g,�nk−1��
⋅
∑+

r
1

(4n�� + r2)k∕2−1∕2+�−�

≪g,� nk−1��
⋅

�+
n��

(4n�� )
k∕2−1∕2+�−�

≪g,�,K nk∕2−1∕2−�+�+���

A(n𝜈𝜇 ) ≪g,𝜖,K n(k−1)∕2
𝜈𝜇

.
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