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Abstract 

Background: Herbal plant extracts are a more common alternative to conventional medicine to treat sleep disorders and intermittent 

hypoxia. Notably, obstructive sleep apnea causes injuries similar to those observed in models of ischemia-reperfusion including 

the decrease of nitric oxide (NO) availability. Kidney transplantation in end-stage renal disease reverses the sleep apnea. The 

underlying mechanism linking hypoxia, sleep apnea, and renal protection remains to be defined at the cellular level. 

Objective: The aim of this study was to demonstrate the safety and efficacy of herbal plant infusions with a potential for donating 

NO, to attenuation of damage induced during a hypoxia/reperfusion sequence, on kidney epithelial cells LLC-PK1. 

Materials and Methods: Cell death (Lactate Dehydrogenase release assay) and a viability test (MTS assay) after 24 h of incubation 

with different concentrations of plant infusion were assessed using the LLC-PK1 cell line. Then, measurement of the breakdown 

product of NO (the NaNO2) and LDH assay were carried out after 24 h of hypoxia, followed by 4 h or 24 h of reperfusion. 

Results: The effect of different dilutions of herbal plant infusion on the LLC-PK1 cell viability, after 24 h of incubation, was 

maximal at a 30% dilution compared to control. After 24 h of hypoxia, there was an increase of NaNO2 and thus of NO, and a 

concentration-dependent decrease of cell death. Similar results were observed after hypoxia followed by 4 h of reperfusion. These 

effects were always maximal at 50% dilution of plants infusion. 

Conclusion: Safe infusion of plant extracts causes a dose-dependent increase of NO and has a protective effect against the cellular 

stress caused by hypoxia and reoxygenation. Since it has been demonstrated that there is a NO-dependent mechanism allowing the 

reduction of injuries induced by ischemia/reoxygenation process, such a mechanism could be responsible for our observations. 
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Introduction  

Herbal plant extracts, alone or in combination, when infused, 

[1] are common alternatives to conventional medicine to treat 

sleep disorders and sleep intermittent hypoxia [2-5]. One of the 

most widespread sleep disorder is apnea, where there is 

transient cessation of breathing and repetitive  
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hypoxia/reoxygenation; this causes injuries, inflammation, 

generation of reactive oxygen species (ROS), and the decrease 

of nitric oxide (NO) availability [6, 7]. Sleep disorders can be 

considered as the oxidative stress similar to 

ischemia/reperfusion of many organs [8]. Very recently, sleep 

disorders have been linked to end-stage renal failure in as many 

as 80% of dialysis patients [9]. Restoring the renal function in 

these patients after kidney transplantation reversed the sleep 

disorders, suggesting underlying mechanisms linking these 

two conditions of sleep apnea and renal oxidative stress [10]. 
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Furthermore, renal function should be considered important in 

the circadian regulation of sleep [11]. NO is a gaseous 

molecule, produced from the amino acid L-arginine, using 

proteins belonging to the family of NO synthases (NOS) 

involved in sleep regulation [12]. In fact, in the 

mesencephalon, NO is involved in many functions, including 

these of the awake-sleep cycle. It has been demonstrated in cats 

that the microinjection of a NO donor, S-nitroso-acetyl-

penicillamine, in a sleep control cerebral region, the 

pedunculopontine tegmentum increased at the same time as 

slow waves sleep and rapid-eye-movement sleep [13]. 

Similarly, in rats, the NO precursor, L-arginine, administered 

during the luminous phase, in this same region, increased the 

slow wave sleep [14]. Moreover, a specific inhibitor of the 

neuronal NOS (nNOS) showed that NO controls sleep in rats 

[15]. All these benefits on sleep from NO addition resulted 

from local cerebral changes. Endothelial NO is also altered 

during obstructive sleep apnea at multiple organ levels [16], 

but activation of NO by plant extract infusion on renal cells 

following oxidative stress is not known, to our knowledge. The 

renal production of NO following plant extract infusion could 

be used to protect kidney cells and consequently to improve 

sleep physiology. Such ischemia-reperfusion are well 

characterized for kidney and are successfully used for its 

preservation during transplantation. Amelioration of hypoxia 

is one key mechanism, and as kidney transplantation in the 

end-stage renal disease reverses the sleep apnea, the 

underlying mechanism linking these conditions remains to be 

better defined. Pig kidney epithelial cells (LLC-PK1) are well-

characterized cells that have been used to study the molecular 

mechanism of renal injuries [17].  

The aim of this study is to demonstrate the efficacy and safety 

of plant extract infusion using a potential NO donor, during an 

ischemia/reoxygenation sequence, on kidney epithelial cells 

LLC-PK1. 

Materials and Methods 

Plant extract 

Standard Dry plant extract (%) from Hawthorn (Crataegus 

oxyacantha) 30%, Melissa (Melissa officinalis) 30%, Tila 

(Tilia europaea) 30%, and Cacao (Theobroma cacao) 10% 

were used (Laboratoire Velay, France).  

Experimental procedures  

Infusions were prepared by the incubation of 2 g of a plant 

extract with hot water (95°C) for 5 min. Dilutions of plant 

extract infusions have been used at a range of concentrations 

from 5%-50%. The 100% dilution was obtained by incubation 

of 4 g of plant material with hot water (95°C) for 5 min and 

then diluted by a 2-fold factor in culture media. 

These dilutions of plant extract infusions were added to the 

medium and incubated for 24 h. Cells were washed twice with 

phosphate buffered saline (PBS) and then covered with Krebs-

Henseleit buffer (115 mM NaCl, 25 mM NaHCO3, 5.9 mM 

KCl, 1.2 mM MgCl2.H2O, 1.2 mM NaH2PO4.H2O, 1.2 mM 

Na2SO4, 20 mM Hepes, 2.5 mM CaCl2, pH 7.4). Cells were 

stored at 4°C under hypoxic (95% N2/5% CO2) conditions. 

Cold incubation was followed after 4 h or 24 h of rewarming 

under normoxic (21% O2/5% CO2/74% N2) conditions at 37°C 

without changing the medium as described previously [18]. 

Cell culture 

The porcine kidney epithelial cell line (LLC-PK1) was 

obtained from American Type Culture Collection (Rockville, 

MD, USA), which corresponds to a proximal renal tubule. 

Cells were grown in T-75 flask (Nunc, Merck-Eurolab, France) 

using Medium 199 (M199) medium (Gibco, Invitrogen Life 

Technology, France) supplemented with 10% fetal bovine 

serum (FBS) (Gibco, France) and penicillin (100 

U/ml)/streptomycin (100 µg/ml) (Sigma-Aldrich, France) at 

37°C in a 5% CO2/95% air humidified atmosphere. When cell 

cultures reached about 80% confluence, cells were trypsinized 

using 0.25% trypsin in EDTA (Gibco, France) and subcultured 

into 96 well plates [19]. Monolayer’s confluent cells were 

serum-starved for 48 h before experiments. 

Viability test 

MTS is a colorimetric assay based on the ability of viable cells 

to convert 3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium 

(MTS) (Promega, France) to formazan; the quantity of 

formazan product, absorbance, is directly proportional to the 

number of viable cells in culture. Cells were seeded in 96-well 

culture plates (3x105 cells/well) and incubated without or with 

different dilutions of plant infusion (from 5%-100% dilutions) 

for 24 h. Cells were then incubated with 20 μl MTS tetrazolium 

compound for 2 h at 37°C. Absorbance was measured using a 

multi-plate reader at 490 nm.  

LDH release 

The release of lactate dehydrogenase (LDH) induced by cell 

injury was determined by using the TOX-7 assay kit (Sigma-

Aldrich, St. Louis, MO, USA). 105 cells/ml were cultured in 

24-well culture plates. At the end of the experiments, cells 

were centrifuged at 400xg for 4 min at 20°C). The culture 

supernatants were collected and incubated with the substrate 

mixture for 30 min in the dark at room temperature.  

Absorbance was measured at 490 nm and 690 nm (background 

absorbance) using a multi-plate reader. LDH release value is 

the difference between the two absorbance measures. 

NaN02 

Production of NO was assessed as the accumulation of nitrite 

(NO2
−) in the medium using a colorimetric reaction with the 

Griess reagent [17]. Briefly, after the treatment period, cell 

culture supernatants were mixed with an equal (1:1) volume of
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Fig. 1: Effect of the herbal plants extract infusion on cell 

growth. Cell viability was measured by MTS assay. LLC-PK1 

cells were incubated for 24 h without or with plant infusions (5, 

10, 30, 50 or 100%). DMSO and Triton were used as negative 

and positive controls, respectively. C: control. Data are 

represented as mean ± SEM of six determinations. *p < 0.05 

from control. 

 
Fig. 2:  Effect of the herbal plants extract infusion on cell 

death. Cell death was measured by assessing the LDH release. 

LLC-PK1 cells were incubated for 24 h without or with plants 

infusions (5, 10, 30, 50, or 100%). DMSO and Triton were used 

as negative and positive controls, respectively. C: control. Data 

are represented as mean ± SEM of six determinations. *p < 0.05 

from control. 

Griess reagent (0.1% N-(1-naphthyl) ethylenediamine 

dihydrochloride, 1% sulfanilamide, and 2.5% H3PO4). The 

absorbance was measured at 540 nm using a 96-well multi-

plate reader. 

Statistical analysis 

Results were expressed as mean ± SEM of five to six 

experiments. Statistical analysis was done using analysis of 

variance (ANOVA) followed with the Tukey’s post-test 

(GraphPad Prism®, GraphPad Software, San Diego, CA, 

USA). Values of p < 0.05 were considered statistically 

significant. 

Results 

Cytotoxicity of infusion  

To study the effects of infusion in tissue culture cells, we used 

a well-established protocol that is known to cause rapid cell 

growth and reproducible cell toxicity. In order to determine the 

cytotoxicity of the plants’ infusion, cell viability and LDH 

release under physiological conditions were evaluated. The 

effect of the infusion, at different dilutions, on the LLC-PK1 

cell viability, after 24 h of incubation, was maximal at a 30% 

dilution of infusion in the medium, as it increases significantly 

(p < 0.05) the number of living cells by 26% compared to 

control. The increase observed after the treatment with 5% and 

10% dilutions were not statistically significant (Fig. 1). A loss 

of viability was observed at high concentration, about half with 

100%, versus control (p < 0.05). Thus, the effects of infusion 

on cell viability were clearly biphasic with an evident dose 

cytoprotection relationship followed by cell intoxication at the 

highest infusion concentrations used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The effect of plants’ infusion on cell LDH release was not 

found to be significant for any dilution. However, it is 

interesting that the dose relationship and the maximum cell 

LDH release occurred at the same dilutions and were 

maximum at 50% and 100% dilutions (Fig. 2). Thus, the LDH 

release that is due to cell death in our conditions was less 

sensitive than the first demonstration found with cell viability. 

 

 

 

 

 

 

 

 

 

Effects of plants infusions on hypoxia and reoxygenation 

To determine the potential protective effect of the plant extract 

infusion, the renal epithelial cells were subjected to hypoxic 

(24 h) and reoxygenation (4 h and 24 h) conditions. The 

standard LDH release assay was assessed after periods similar 

to those in previous reports [17]. Under these conditions that 

mimic the ischemia-reoxygenation, the LDH release is a well-

established and sensitive assay to estimate cell death. 

Fig. 3 shows the effect of 24 h of hypoxia on LDH release. A 

significant decrease of LDH release depending on the range of 

infusion concentrations used was observed (p < 0.05). Fig. 4 

shows a similar relationship between infusion dilutions and an 

increase of NaNO2 that was significant at the two highest 

concentrations. The two ranges of the dilution dependent effect 

of infusion appear to be overlapping. 

Fig. 5 shows the effect of 24 h of hypoxia followed by 4 h of 

reperfusion. Fig. 5 shows a significant decrease of LDH release 

at the two highest concentrations of infusion (p < 0.05).  Fig. 6 

shows a significant increase of NaNO2, only at the highest dose 

of infusion used (p < 0.05). These results appear similar but are 

smaller than those observed in Fig. 3 and 4.  So, only the 50% 

dilution was an effective dose to prevent damages on cell-

associated to LDH release during the cold hypoxia followed by 

24 h of warm reoxygenation. Fig. 7 and 8 show the effects of 

24 h of hypoxia followed by a 24 h period of warm 

reoxygenation. The results show trends in affecting cell LDH

http://www.canadianjbiotech.com/


 

119 | P a g e                      Can J Biotech  http://www.canadianjbiotech.com              November 2018| Volume 02| Issue 03 
 

 

 
Fig. 3:  Protective effect of the herbal plants extract infusion 

on LLC-PK1 cells injury after 24 h of hypoxia. LDH release 

of LLC-PK1 cells was assessed after incubation for 24 h in cold 

(4°C) Krebs-Henseleit buffer (KHB) under hypoxic conditions 

(95% N2/5% CO2) without or with plant infusions (5, 10, 30, 

or 50%). C: control. Data are represented as mean ± SEM of 

five determinations. *p < 0.05 from control. 

 

Fig. 4:  Effects of herbal plants extract infusion on the 

production of NO by LLC-PK1 cells after 24 h of hypoxia. 

The relative NaNO2 release of LLC-PK1 cells was assessed 

after incubation for 24 h in cold (4°C) Krebs-Henseleit buffer 

(KHB) under hypoxic conditions (95% N2/5% CO2) without 

or with plants infusions (5, 10, 30, or 50%). C: control. Data 

are represented as mean ± SEM of five determinations. *p < 

0.05 from control. 
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Fig. 5:  Protective effect of the herbal plants extract infusion 

on LLC-PK1 cell injury induced by a sequence of 24 h of 

hypoxia and 4 h of reoxygenation. LDH release of LLC-PK1 

cells was assessed after incubation for 24 h in cold (4°C) Krebs-

Henseleit buffer (KHB) under hypoxic conditions (95% N2/5% 

CO2) followed by 4 h of reoxygenation at 37°C without or with 

plants infusions (5, 10, 30, or 50%). C: control. Data are 

represented as mean ± SEM of five determinations. *p < 0.05 

from control. 

 

Fig. 6:  Effects of herbal plants extract infusion on the 

production of NO by LLC-PK1 cells induced by a sequence 

of 24 h of hypoxia and 4 h of reoxygenation. The relative 

NaNO2 release from LLC-PK1 cells was assessed after 

incubation for 24 h in cold (4°C) Krebs-Henseleit buffer (KHB) 

under hypoxic conditions (95% N2/5% CO2) followed by 4 h of 

reoxygenation at 37°C without or with plants infusions (5, 10, 

30, or 50%). C: control. Data are represented as mean ± SEM of 

five determinations. *p < 0.05 from control. 
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release and NaNO2 however, these results obtained at any 

infusion dilution did not differ from the control values except 

for the 50% dilution that decreased the LDH cell release. 
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Fig. 7:  Protective effect on LLC-PK1 cells injury induced 

by a sequence of 24 h of hypoxia and 24 h of reoxygenation. 

LDH release from LLC-PK1 cells was assessed after 

incubation for 24 h in cold (4°C) Krebs-Henseleit buffer (KHB) 

under hypoxic conditions (95% N2/5% CO2) followed by 24 h 

of reoxygenation at 37°C without or with plants infusions (5, 

10, 30, or 50%). C: control. Data are represented as mean ± 

SEM of five determinations. *p < 0.05 from control. 

 

Fig. 8:  Production of NO by LLC-PK1 cells induced by a 

sequence of 24 h of hypoxia and 24 h of reoxygenation. The 

relative NaNO2 release of LLC-PK1 cells was assessed after 

incubation for 24 h in cold (4°C) Krebs-Henseleit buffer (KHB) 

under hypoxic conditions (95% N2/5% CO2) followed by 24 h 

of reoxygenation at 37°C without or with plants infusions (5, 

10, 30, or 50%). C: control. Data are represented as mean ± 

SEM of five determinations. *p < 0.05 from control.  
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Discussion 

In this study, we first documented the safety and secondly, the 

efficacy of plant extract infusion having NO donor potential to 

attenuate the damages induced during an 

ischemia/reoxygenation sequence on kidney epithelial cells, 

LLC-PK1, derived from the proximal tubule. 

Cellular injuries, due to oxidative stress induced by 

ischemia/reoxygenation sequences in LLC-PK1 cells, were 

assessed by the LDH release evaluation. The plant extract 

infusions were added to the cell culture for 24 h as a 

pretreatment. 

This study was aimed to demonstrate the safety of infusion 

over a wide range of concentrations and its efficacy on hypoxic 

and reoxygenation-induced stress. This last effect was 

extrapolated to NO increase in the cell culture, meaning that 

infusion increases NO, either via a NO donor or by inducing 

the cellular production of NO. 

The initial experiments in this work were performed under 

physiological conditions, and they showed that the plant 

extract infusion is safe except at the concentration 

corresponding to a 100% dilution. This apparent toxic effect to 

the cells could be the real toxicity, but in our conditions could 

also be due to a weakened effect of the media altering the 

optimal cell condition culture. Thus, we avoided the use of this 

dilution in our subsequent experiment where cell cultures were 

affected during hypoxia and reoxygenation. Indeed, the study 

of cell death via the LDH release measurement showed no 

significant difference in a dilution ranging effect. Moreover, 

experiments studying cell viability at the 30% dilution suggests 

an improvement in cell culture rather than the dysfunction. 

The optimal effect was obtained with the 50% dilution. It has 

been shown that hypoxic conditions, but also cold storage, are 

responsible for damaging kidney cells. The damage is 

mediated by ROS. This production was observed both during 

hypoxia and hypothermia [20-22]. Additional damage to 

tissues is detected after reoxygenation and rewarming since 

several studies have shown the implication of ROS. Thus, 

injuries of renal cells may occur on renal cells at both of the 

two phases of cold hypoxia and warm reoxygenation by 

involving different mechanisms [22, 23]. However, many 

studies have shown altered NO levels using the induction of 

endothelial NO synthase (eNOS), the addition of NO donors in 

the cold storage liquid or the use of NO to mimic ischemic 

preconditioning [24-26]. It was seen that some sleep disorders 

cause the same damage as ischemia/reoxygenation, thus the 

use of NO or NO donors may be useful to counter the adverse 

effects associated with these sleep disorders. 

The NO production is dependent on dilution and on condition. 

In fact, at the same dilution, or in control condition, the NO 

production was lower without reperfusion and increased with 

the duration of reperfusion. This is in agreement with previous 

studies analyzing the endogenous production of NO. In fact, it 

has been shown experimentally that the renal tubule and 

glomerulus have the ability to produce NO in response to 

injury [27, 28] and NO production in proximal tubules could 

be substantially and rapidly enhanced under situations such as 

hypoxia/reoxygenation [29]. The overproduction of NO in  
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kidneys persists at 24 h after ischemia-reperfusion injury [30, 

31]. 

Evidence for the hypoxic alterations associated with the LDH 

release occurs in the reoxygenation step. This is in contrast 

with a previous study [18] that showed a continuous increase 

of LDH release during the first four hours of rewarming. We 

can speculate that LDH release during rewarming is the 

consequence of two effects: a reoxygenation or a combination 

of rewarming and reoxygenation. It is possible that the 

temperature transition between the two phases takes more than 

4 h to show the effects of warm reoxygenation on cell injuries.  

Thus, the physiological relevance of the use of plant extract 

infusion is the prevention of sleep disorders. One of the most 

widespread sleep disorder is obstructive sleep apnea (OSA). 

Repetitive hypoxia/reoxygenation occurring, during transient 

cessation of breathing, in OSA is similar to 

ischemia/reoxygenation injury. Although perfusion remains 

intact during obstructive events in OSA, the alterations, 

inflammation, generation of ROS, and the decrease of NO 

availability are related to those observed in models of 

ischemia-reperfusion [6, 8].  

The prevention by herbal plant extract infusion of deleterious 

hypoxia and reoxygenation demonstrated using cultured renal 

cells should be corroborated by clinical studies focusing on 

renal function in patients with sleep disorders. 

Conclusion 

In conclusion, the results of this study demonstrate the safety 

of the herbal plant extract infusion containing Hawthorn 

(Crataegus oxyacantha), Melissa (Melissa officinalis), and 

Tila (Tilia europaea) in similar ratios as those traditionally 

used for insomnia and anxiety treatments. This suggests a 

protective effect of the herbal plant extract when used as a 

preventive method to protect kidney epithelial cells (LLC-

PK1) against hypoxia/reoxygenation injuries. This effect could 

be a result of the increase of NO induced by the infusion. NO 

donors provide significant protection in ischemia-reperfusion 

in several organs [32, 33]. In addition, inhibition of NO can 

induce or aggravate most of the alterations elicited by ischemic 

damage [34, 35]. However, the cellular response to NO 

depends on the reducing potential produced by the internal 

compounds and free thiols, and its statement oxygenation, 

especially in the presence of species derived from oxygen. 

Thus, NO can also lead to the development of nitrosative stress 

by acting on antioxidants and cell signaling pathways. NO is a 

molecule whose effects are complex and can be either positive 

or deleterious. Thus, its effect on the stress injuries induced by 

the oxidative stress should be further explored as we have 

previously done with other herbal remedies (Gingko Biloba, 

Desmodium adscendens) or tea infusions [17, 36-38].  
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