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The aim of the present paper is to investigate several third-order differential subordinations, differential superordination properties,
and sandwich-type theorems of an integral operator W𝑠,𝑏𝑓(𝑧) involving the Hurwitz–Lerch Zeta function. We make some
applications of the operatorW𝑠,𝑏𝑓(𝑧) for meromorphic functions.

1. Introduction

Denote by H(U) the class of functions analytic in the unite
disk

U = {𝑧 : 𝑧 ∈ C, |𝑧| < 1} (1)

of the form

H [𝑎, 𝑛] = {𝑓 : 𝑓 ∈ H (U) , 𝑓 (𝑧) = 𝑎 + ∞∑
𝑘=𝑛

𝑎𝑘𝑧𝑘}
(𝑎 ∈ C; 𝑛 ∈ N = {1, 2, . . .})

(2)

and letH = H[1, 1].
For two functions 𝑓(𝑧) and 𝑔(𝑧) to be analytic in U, 𝑓(𝑧)

is said to be subordinate to 𝑔(𝑧) in U and written by

𝑓 (𝑧) ≺ 𝑔 (𝑧) (𝑧 ∈ U) , (3)

if there exists a Schwarz function𝜔(𝑧), which is analytic inU,
with

𝜔 (0) = 0,
|𝜔 (𝑧)| < 1, (4)

such that

𝑓 (𝑧) = 𝑔 (𝜔 (𝑧)) (𝑧 ∈ U) . (5)

It is generally known that

𝑓 (𝑧) ≺ 𝑔 (𝑧) (𝑧 ∈ U) 󳨐⇒
𝑓 (0) = 𝑔 (0) , 𝑓 (U) ⊂ 𝑔 (U) . (6)

Furthermore, if the function 𝑔(𝑧) is univalent in U, then

𝑓 (𝑧) ≺ 𝑔 (𝑧) (𝑧 ∈ U) ⇔
𝑓 (0) = 𝑔 (0) , 𝑓 (U) ⊂ 𝑔 (U) . (7)

Denote by𝑄 the set of functions 𝑞(𝑧) that are analytic and
univalent on U \E(𝑞), where

E (𝑞) = {𝜁 ∈ 𝜕U : lim
𝑧→𝜁

𝑞 (𝑧) = ∞} (8)

are such that min |𝑞󸀠(𝜁)| = 𝜀 > 0 for 𝜁 ∈ 𝜕U \ E(𝑞).
Furthermore, let

𝑄 (𝑎) = {𝑞 (𝑧) ∈ 𝑄 : 𝑞 (0) = 𝑎} ,
𝑄1 = 𝑄 (1) . (9)

Denote byA∗ the class of functions of the form

𝑓 (𝑧) = 1𝑧 +
∞∑
𝑛=1

𝑎𝑛𝑧𝑛, (10)
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which are analytic in the punctured unit disk

U
∗ = {𝑧 ∈ C, 0 < |𝑧| < 1} = U \ {0} . (11)

We recall the general Hurwitz–Lerch Zeta functionΦ(𝑧, 𝑠, 𝑎) (see, e.g., [1, p. 121] and [2, p. 194]) defined by

Φ (𝑧, 𝑠, 𝑎) fl ∞∑
𝑘=0

𝑧𝑘(𝑘 + 𝑎)𝑠
(𝑎 ∈ C \ Z−0 ; 𝑠 ∈ C when |𝑧| < 1; R (𝑠) > 1 when |𝑧| = 1) ,

(12)

where

Z
−
0 fl Z

− ∪ {0} = {0, −1, −2, . . .} . (13)

In recent years, the general Hurwitz–Lerch Zeta functionΦ(𝑧, 𝑠, 𝑎) was investigated by many researchers. A huge
amount of interesting properties and consequences can be
found in, for example, Choi and Srivastava [3], Garg et al. [4],
Lin and Srivastava [5], and Srivastava et al. [6].

In 2007, by involving the general Hurwitz–Lerch Zeta
function Φ(𝑧, 𝑠, 𝑎), Srivastava and Attiya [7] (also see [8–11])
introduced the integral operator

J𝑠,𝑏𝑓 (𝑧) = 𝑧 + ∞∑
𝑘=2

(1 + 𝑏𝑘 + 𝑏)
𝑠 𝑐𝑘𝑧𝑘

(𝑏 ∈ C \ Z−; 𝑠 ∈ C; 𝑧 ∈ U) .
(14)

Analogous to abovementioned operatorJ𝑠,𝑏𝑓, Wang and
Shi [12] introduced a new integral operator

W𝑠,𝑏 : Σ 󳨀→ Σ (15)

defined by

W𝑠,𝑏𝑓 (𝑧) fl Θ𝑠,𝑏 (𝑧) ∗ 𝑓 (𝑧)
(𝑏 ∈ C \ {Z−0 ∪ {1}} ; 𝑠 ∈ C; 𝑓 ∈ Σ; 𝑧 ∈ U

∗) , (16)

where

Θ𝑠,𝑏 (𝑧) fl (𝑏 − 1)𝑠 [Φ (𝑧, 𝑠, 𝑏) − 𝑏−𝑠 + 1𝑧 (𝑏 − 1)𝑠 ]
(𝑧 ∈ U

∗) ,
(17)

and “∗” denotes the Hadamard product.
From (10), (12), (16), and (17), we easily find that

W𝑠,𝑏𝑓 (𝑧) = 1𝑧 +
∞∑
𝑘=1

(𝑏 − 1𝑏 + 𝑘)
𝑠 𝑎𝑘𝑧𝑘. (18)

It is true that 𝑏 ∈ C \ {Z− ∪ {1}}, the integral operator W𝑠,𝑏
defined as

W𝑠,0𝑓 (𝑧) fl lim
𝑏→0

{W𝑠,𝑏𝑓 (𝑧)} . (19)

We can deduce that

W0,𝑏𝑓 (𝑧) = 𝑓 (𝑧) , (20)

W−1,0𝑓 (𝑧) = −𝑧𝑓󸀠 (𝑧) , (21)

W−1,−1𝑓 (𝑧) = 𝑓 (𝑧) − 𝑧𝑓󸀠 (𝑧)2 , (22)

W𝑠,2𝑓 (𝑧) = 1𝑧 +
∞∑
𝑘=1

( 1𝑘 + 2)
𝑠 𝑎𝑘𝑧𝑘, (23)

W1,𝑏+1𝑓 (𝑧) = 1𝑧 +
∞∑
𝑘=1

( 𝑏𝑘 + 𝑏 + 1) 𝑎𝑘𝑧𝑘

= 𝑏𝑧𝑏+1 ∫
𝑧

0
𝑡𝑏𝑓 (𝑡) 𝑑𝑡 (𝑏 > 0) ,

(24)

W𝛼,𝛽+1𝑓 (𝑧) = 𝛽𝛼
Γ (𝑠) 𝑧𝛽+1 ∫

𝑧

0
𝑡𝑏 (log 𝑧𝑡 )

𝑠−1 𝑓 (𝑡) 𝑑𝑡
(𝛼 > 0; 𝛽 > 0) .

(25)

We also see that

W1,𝛾𝑓 (𝑧) = 𝛾 − 1𝑧𝛾 ∫𝑧
0
𝑡𝛾−1𝑓 (𝑡) 𝑑𝑡 (R (𝛾) > 1) . (26)

Furthermore, by (18), we observe that

W𝑠+1,𝑏𝑓 (𝑧) = 𝑏 − 1𝑧𝑏 ∫𝑧
0
𝑡𝑏−1W𝑠,𝑏𝑓 (𝑧) 𝑑𝑡

(R (𝑏) > 1) .
(27)

Operator (23) was introduced and studied by Alhindi and
Darus [13]; operators (24) and (25)were introduced by Lashin
[14].

The main purpose of this paper is to derive some third-
order differential subordination, differential superordination
properties, and sandwich-type theorems of the integral oper-
atorW𝑠,𝑏𝑓(𝑧).
2. Preliminary Results

We will investigate our main results by using following
definitions and lemmas.

Definition 1 (see [15, p. 440, Definition 1]). Suppose thatΨ : C4 × U → C, 𝑞(𝑧), and ℎ(𝑧) are univalent in U. If𝑝(𝑧) is analytic in U and satisfies the third-order differential
subordination

𝜓 (𝑝 (𝑧) , 𝑧𝑝󸀠 (𝑧) , 𝑧2𝑝󸀠󸀠 (𝑧) , 𝑧3𝑝󸀠󸀠󸀠 (𝑧) ; 𝑧) ≺ ℎ (𝑧) , (28)

then𝑝(𝑧) is called a solution of the differential subordination.𝑞(𝑧) is called a dominant of the solutions of the differential
subordination or more simply a dominant if 𝑝(𝑧) ≺ 𝑞(𝑧) for
all 𝑝(𝑧) satisfying (28). A dominant 𝑞(𝑧) that satisfies

𝑞 (𝑧) ≺ 𝑞 (𝑧) , (29)

for all dominants of (28), is called the best dominant of (28).
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As the second-order differential superordinations were
introduced and investigated byMiller andMocanu [16], Tang
et al. [17] introduced the following third-order differential
superordinations.

Definition 2 (see [17, p. 3, Definition 5]). Suppose that 𝜓 :
C4 × U → C and the function ℎ(𝑧) is analytic in U. If the
functions 𝑝(𝑧) and

𝜓 (𝑝 (𝑧) , 𝑧𝑝󸀠 (𝑧) , 𝑧2𝑝󸀠󸀠 (𝑧) , 𝑧3𝑝󸀠󸀠󸀠 (𝑧) ; 𝑧) (30)

are univalent in U and satisfy the third-order differential
superordination

ℎ (𝑧) ≺ 𝜓 (𝑝 (𝑧) , 𝑧𝑝󸀠 (𝑧) , 𝑧2𝑝󸀠󸀠 (𝑧) , 𝑧3𝑝󸀠󸀠󸀠 (𝑧) ; 𝑧) , (31)

then 𝑝(𝑧) is called a solution of the differential superordina-
tion. An analytic function 𝑞(𝑧) is called a subordinant of the
solutions of the differential superordination or more simply
a subordinant if 𝑞(𝑧) ≺ 𝑝(𝑧) satisfies (31) for 𝑝(𝑧) satisfying
(31). A univalent subordinant 𝑞(𝑧) that satisfies

𝑞 (𝑧) ≺ 𝑞 (𝑧) (32)

for all superordinants 𝑞(𝑧) of (31) is said to be the best
superordinant.

Lemma 3 (see [18, p. 132], [19, p. 190]). Suppose that 𝑞 is
univalent in the open unit disk U and 𝜃 and 𝜙 are analytic in
a domain D containing 𝑞(U) with 𝜙(𝜔) ̸= 0 when 𝜔 ∈ 𝑞(U).
SetΦ(𝑧) = 𝑧𝑞󸀠(𝑧)𝜙(𝑞(𝑧)) and ℎ(𝑧) = 𝜃(𝑞(𝑧)) + Φ(𝑧). Suppose
that

(1) Φ is star-like in U;
(2) R(𝑧ℎ󸀠(𝑧)/Φ(𝑧)) > 0.

If 𝑝 ∈ H[𝑞(0), 𝑛] for some 𝑛 ∈ N with 𝑝(U) ⊂ D and

𝜃 (𝑝 (𝑧)) + 𝑧𝑝󸀠 (𝑧) 𝜙 (𝑝 (𝑧))
≺ 𝜃 (𝑞 (𝑧)) + 𝑧𝑞󸀠 (𝑧) 𝜙 (𝑞 (𝑧)) , (33)

then 𝑝 ≺ 𝑞 and 𝑞 is the best dominant.

Lemma 4 (see [20, p. 332]). Suppose that 𝑞 is univalent in
the open unit disk U and 𝜃 and 𝜙 are analytic in a domain D

containing 𝑞(U). Set Φ(𝑧) = 𝑧𝑞󸀠(𝑧)𝜙(𝑞(𝑧)). Suppose that
(1) Φ is star-like in U;
(2) R(𝜃󸀠(𝑞(𝑧))/𝜙(𝑞(𝑧))) > 0.

If 𝑝 ∈ H[𝑞(0), 1]∩𝑄, with 𝑝(U) ⊆ D, 𝜃(𝑝(𝑧))+𝑧𝑝󸀠(𝑧)𝜙(𝑝(𝑧))
is univalent in U, and

𝜃 (𝑞 (𝑧)) + 𝑧𝑞󸀠 (𝑧) 𝜙 (𝑞 (𝑧))
≺ 𝜃 (𝑝 (𝑧)) + 𝑧𝑝󸀠 (𝑧) 𝜙 (𝑝 (𝑧)) , (34)

then 𝑞 ≺ 𝑝 and 𝑞 is the best dominant.

Lemma 5 (see [16, p. 822]). Suppose that 𝑞 is univalent
complex in the open unit disk U and 𝛾 ∈ C, with R(𝛾) > 0.
If 𝑝 ∈ H[𝑞(0), 1] ∩ 𝑄, 𝑝(𝑧) + 𝛾𝑧𝑝󸀠(𝑧) is univalent in U, and

𝑞 (𝑧) + 𝛾𝑧𝑞󸀠 (𝑧) ≺ 𝑝 (𝑧) + 𝛾𝑧𝑝󸀠 (𝑧) (𝑧 ∈ U) , (35)

then 𝑞 ≺ 𝑝 and 𝑞 is the best dominant.

3. Main Results

In this section, we state several third-order differential sub-
ordination and differential superordination results associated
with the operatorW𝑠,𝑏𝑓(𝑧).
Theorem 6. Suppose that the function 𝑞 ∈ A∗ is nonzero
univalent in U with 𝑞(0) = 1 and

R(1 + 𝑧𝑞󸀠󸀠 (𝑧)𝑞󸀠 (𝑧) − 𝑧𝑞󸀠 (𝑧)𝑞 (𝑧) ) > 0 (𝑧 ∈ U) . (36)

Let 0 ≤ 𝜌 ≤ 1 and 𝜂 ∈ C. If 𝑓 ∈ H[0, 𝑝] satisfies
[(1 − 𝜌) 𝑧W𝑠,𝑏𝑓 (𝑧) + 𝜌𝑧W𝑠+1,𝑏𝑓 (𝑧)] ̸= 0 (𝑧 ∈ U) , (37)

𝜂 [(1 − 𝜌) 𝑧 (W𝑠,𝑏𝑓 (𝑧))󸀠 + 𝜌𝑧 (W𝑠+1,𝑏𝑓 (𝑧))󸀠(1 − 𝜌)W𝑠,𝑏𝑓 (𝑧) + 𝜌W𝑠+1,𝑏𝑓 (𝑧) − 1]

≺ 𝑧𝑞󸀠 (𝑧)𝑞 (𝑧) ,
(38)

then

[(1 − 𝜌) 𝑧W𝑠,𝑏𝑓 (𝑧) + 𝜌𝑧W𝑠+1,𝑏𝑓 (𝑧)]𝜂 ≺ 𝑞 (𝑧) (39)

and 𝑞 is the best dominant in (39). When 𝜂 = 0 the left hand
side expressions in (39) are interpreted as 1.

Proof. Suppose that

𝑝 (𝑧) fl [(1 − 𝜌) 𝑧W𝑠,𝑏𝑓 (𝑧) + 𝜌𝑧W𝑠+1,𝑏𝑓 (𝑧)]𝜂 . (40)

Then 𝑝 is analytic in U. Logarithmically differentiating both
sides of (40) with respect to 𝑧, we have

𝑧𝑝󸀠 (𝑧)𝑝 (𝑧)
= 𝜂 [(1 − 𝜌) 𝑧 (W𝑠,𝑏𝑓 (𝑧))󸀠 + 𝜌𝑧 (W𝑠+1,𝑏𝑓 (𝑧))󸀠(1 − 𝜌)W𝑠,𝑏𝑓 (𝑧) + 𝜌W𝑠+1,𝑏𝑓 (𝑧)
− 1] .

(41)

To apply Lemma 3, we set

𝜃 (𝜔) fl 1,
𝜙 (𝜔) fl 1𝜔

(𝜔 ∈ C \ {0}) ,
Φ (𝑧) = 𝑧𝑞󸀠 (𝑧) 𝜙 (𝑞 (𝑧)) = 𝑧𝑞󸀠 (𝑧)𝑞 (𝑧) (𝑧 ∈ U) ,
ℎ (𝑧) = 𝜃 (𝑞 (𝑧)) + Φ (𝑧) = 1 + 𝑧𝑞󸀠 (𝑧)𝑞 (𝑧) .

(42)
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By means of (36) we see that Φ(𝑧) is univalent star-like in U.
Since ℎ(𝑧) = 1 + Φ(𝑧), we furthermore get that

R(𝑧ℎ󸀠 (𝑧)Φ (𝑧) ) > 0. (43)

By a routine calculation using (40) and (41) we find that

𝜃 (𝑝 (𝑧)) + 𝑧𝑝󸀠 (𝑧) 𝜙 (𝑝 (𝑧)) = 1
+ 𝜂[(1 − 𝜌) 𝑧 (W𝑠,𝑏𝑓 (𝑧))󸀠 + 𝜌𝑧 (W𝑠+1,𝑏𝑓 (𝑧))󸀠(1 − 𝜌)W𝑠,𝑏𝑓 (𝑧) + 𝜌W𝑠+1,𝑏𝑓 (𝑧)
− 1] .

(44)

Therefore, hypothesis (38) is equivalently written as

𝜃 (𝑝 (𝑧)) + 𝑧𝑝󸀠 (𝑧) 𝜙 (𝑝 (𝑧)) ≺ 1 + 𝑧𝑞󸀠 (𝑧)𝑞 (𝑧)
= 𝜃 (𝑞 (𝑧)) + 𝑧𝑞󸀠 (𝑧) 𝜙 (𝑞 (𝑧)) .

(45)

We know that condition (33) is also satisfied. From an
application of Lemma 3, we have

𝑝 (𝑧) ≺ 𝑞 (𝑧) . (46)

Thus, we get the assertions in (39). Thus, the proof of
Theorem 6 is completed.

Theorem 7. Suppose that the function 𝑞 ∈ A∗ is a univalent
mapping of U into the right half plane with 𝑞(0) = 1 and

R(1 + 𝑧𝑞󸀠󸀠 (𝑧)𝑞󸀠 (𝑧) − 𝑧𝑞󸀠 (𝑧)𝑞 (𝑧) ) > 0 (𝑧 ∈ U) . (47)

Let 0 ≤ 𝜌 ≤ 1 and 𝜂 ∈ C, 𝑓 ∈ H[0, 𝑝] satisfy
[(1 − 𝜌) 𝑧W𝑠,𝑏𝑓 (𝑧) + 𝜌𝑧W𝑠+1,𝑏𝑓 (𝑧)] ̸= 0 (𝑧 ∈ U) . (48)

If

Δ (𝑧) ≺ 𝑞 (𝑧) + 𝑧𝑞󸀠 (𝑧)𝑞 (𝑧) , (49)

where

Δ (𝑧) = [(1 − 𝜌) 𝑧W𝑠,𝑏𝑓 (𝑧) + 𝜌𝑧W𝑠+1,𝑏𝑓 (𝑧)]𝜂

+ 𝜂[(1 − 𝜌) 𝑧 (W𝑠,𝑏𝑓 (𝑧))󸀠 + 𝜌𝑧 (W𝑠+1,𝑏𝑓 (𝑧))󸀠(1 − 𝜌)W𝑠,𝑏𝑓 (𝑧) + 𝜌W𝑠+1,𝑏𝑓 (𝑧)
− 1] ,

(50)

then

[(1 − 𝜌) 𝑧W𝑠,𝑏𝑓 (𝑧) + 𝜌𝑧W𝑠+1,𝑏𝑓 (𝑧)]𝜂 ≺ 𝑞 (𝑧) (51)

and 𝑞 is the best dominant in (51). When 𝜂 = 0, the left hand
side expression of (51) is interpreted as 1.

Proof. Suppose that the function𝑝(𝑧) is defined by (40). If set
𝜃 (𝜔) fl 𝜔,
𝜙 (𝜔) fl 1𝜔

(𝜔 ∈ C \ {0}) ,
Φ (𝑧) = 𝑧𝑞󸀠 (𝑧) 𝜙 (𝑞 (𝑧)) = 𝑧𝑞󸀠 (𝑧)𝑞 (𝑧) (𝑧 ∈ U) ,
ℎ (𝑧) = 𝜃 (𝑞 (𝑧)) + Φ (𝑧) = 𝑞 (𝑧) + Φ (𝑧)

(52)

we easily get

R(𝑧ℎ󸀠 (𝑧)Φ (𝑧) ) = R(𝑞 (𝑧) + 1 + 𝑧𝑞󸀠󸀠 (𝑧)𝑞󸀠 (𝑧) − 𝑧𝑞󸀠 (𝑧)𝑞 (𝑧) )
> 0 (𝑧 ∈ U) .

(53)

By virtue of (41), hypothesis (49) can be rewritten as

𝜃 (𝑝 (𝑧)) + 𝑧𝑝󸀠 (𝑧) 𝜙 (𝑝 (𝑧))
≺ 𝜃 (𝑞 (𝑧)) + 𝑧𝑞󸀠 (𝑧) 𝜙 (𝑞 (𝑧)) . (54)

Therefore, by making use of Lemma 3, we derive that

𝑝 (𝑧) ≺ 𝑞 (𝑧) (𝑧 ∈ U) . (55)

Thus, the assertion in (49) follows.The proof ofTheorem 7 is
completed.

Theorem 8. Suppose that the function 𝑞 ∈ A∗ is a univalent
mapping of U into the right half plane with 𝑞(0) = 1 and
satisfies condition

R(1 + 𝑧𝑞󸀠󸀠 (𝑧)𝑞󸀠 (𝑧) − 𝑧𝑞󸀠 (𝑧)𝑞 (𝑧) ) > 0 (𝑧 ∈ U) . (56)

Let 0 ≤ 𝜌 ≤ 1, 𝜂 ∈ C, and 𝑓 ∈ H[0, 𝑝] satisfy
[(1 − 𝜌) 𝑧W𝑠,𝑏𝑓 (𝑧) + 𝜌𝑧W𝑠+1,𝑏𝑓 (𝑧)]𝜂
∈ H [1, 1] ∩ 𝑄. (57)

Let function Δ(𝑧) be univalent in U, where Δ(𝑧) is defined by
(50). If

𝑞 (𝑧) + 𝑧𝑞󸀠 (𝑧)𝑞 (𝑧) ≺ Δ (𝑧) , (58)

then

𝑞 (𝑧) ≺ [(1 − 𝜌) 𝑧W𝑠,𝑏𝑓 (𝑧) + 𝜌𝑧W𝑠+1,𝑏𝑓 (𝑧)]𝜂 (59)

and 𝑞 is the best subordinant in (59). When 𝜂 = 0, the left hand
side expressions of (59) are interpreted as 1.
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Proof. By putting

𝜃 (𝜔) fl 𝜔,
𝜙 (𝜔) fl 1𝜔

(𝜔 ∈ C \ {0}) ,
Φ (𝑧) = 𝑧𝑞󸀠 (𝑧) 𝜙 (𝑞 (𝑧)) = 𝑧𝑞󸀠 (𝑧)𝑞 (𝑧) (𝑧 ∈ U) ,

(60)

obviously, Φ is star-like in U and

R(𝜃󸀠 (𝑞 (𝑧))𝜙 (𝑞 (𝑧)) ) = R (𝑞 (𝑧)) (𝑧 ∈ U) . (61)

Suppose that function 𝑝 is defined by (40). By simple
calculation, from (41), we know that

𝜃 (𝑝 (𝑧)) + 𝑧𝑝󸀠 (𝑧) 𝜙 (𝑝 (𝑧)) = Δ (𝑧) . (62)

Hence, condition (58) can be equivalently written as

𝜃 (𝑞 (𝑧)) + 𝑧𝑞󸀠 (𝑧) 𝜙 (𝑞 (𝑧))
≺ 𝜃 (𝑝 (𝑧)) + 𝑧𝑝󸀠 (𝑧) 𝜙 (𝑝 (𝑧)) . (63)

Therefore, by Lemma 4, we have

𝑞 (𝑧) ≺ 𝑝 (𝑧) (𝑧 ∈ U) (64)

and 𝑞 is the best subordinant. The proof of Theorem 8 is
completed.

Theorem 9. Suppose that 0 ≤ 𝜌 ≤ 1, 𝛼, 𝜂 ∈ C, the function𝑞 ∈ A∗ is univalent in U, and

R(1 + 𝑧𝑞󸀠󸀠 (𝑧)𝑞󸀠 (𝑧) ) > max {0, −R (𝛼)} . (65)

Let 𝑓 ∈ H[0, 𝑝] satisfy
[(1 − 𝜌) 𝑧W𝑠,𝑏𝑓 (𝑧) + 𝜌𝑧W𝑠+1,𝑏𝑓 (𝑧)] ̸= 0 (𝑧 ∈ U) . (66)

Denote by

Ξ (𝑧) = [(1 − 𝜌) 𝑧W𝑠,𝑏𝑓 (𝑧) + 𝜌𝑧W𝑠+1,𝑏𝑓 (𝑧)]𝜂 × {𝛼

+ 𝜂[(1 − 𝜌) 𝑧 (W𝑠,𝑏𝑓 (𝑧))󸀠 + 𝜌𝑧 (W𝑠+1,𝑏𝑓 (𝑧))󸀠(1 − 𝜌)W𝑠,𝑏𝑓 (𝑧) + 𝜌W𝑠+1,𝑏𝑓 (𝑧)
− 1]} (𝑧 ∈ U) .

(67)

If

Ξ (𝑧) ≺ 𝛼𝑞 (𝑧) + 𝑧𝑞󸀠 (𝑧) , (68)

then

[(1 − 𝜌) 𝑧W𝑠,𝑏𝑓 (𝑧) + 𝜌𝑧W𝑠+1,𝑏𝑓 (𝑧)]𝜂 ≤ 𝑞 (𝑧) (69)

and 𝑞 is the best dominant in (69). When 𝜂 = 0, the left side
hand expressions of (69) are interpreted as 1.

Proof. Suppose that function 𝑝(𝑧) is defined by (40). Making
using of (41), we have

𝑧𝑝󸀠 (𝑧) = 𝜂𝑝 (𝑧)
⋅ [(1 − 𝜌) 𝑧 (W𝑠,𝑏𝑓 (𝑧))󸀠 + 𝜌𝑧 (W𝑠+1,𝑏𝑓 (𝑧))󸀠(1 − 𝜌)W𝑠,𝑏𝑓 (𝑧) + 𝜌W𝑠+1,𝑏𝑓 (𝑧)
− 1] .

(70)

Therefore, by putting

𝜃 (𝜔) fl 𝛼𝜔,
𝜙 (𝜔) fl 1

(𝜔 ∈ C) ,
Φ (𝑧) = 𝑧𝑞󸀠 (𝑧) 𝜙 (𝑞 (𝑧)) = 𝑧𝑞󸀠 (𝑧) (𝑧 ∈ U) ,
ℎ (𝑧) = 𝜃 (𝑞 (𝑧)) + Φ (𝑧) = 𝛼𝑞 (𝑧) + 𝑧𝑞󸀠 (𝑧) ,

(71)

obviously,Φ is star-like in U and

R(𝑧ℎ󸀠 (𝑧)Φ (𝑧) ) = R(𝛼 + 1 + 𝑧𝑞󸀠󸀠 (𝑧)𝑞󸀠 (𝑧) ) > 0. (72)

Furthermore, by substituting the expression for 𝑝(𝑧), 𝑧𝑝󸀠(𝑧)
from (40) and (70), respectively, we get

𝜃 (𝑝 (𝑧)) + 𝑧𝑝󸀠 (𝑧) 𝜙 (𝑝 (𝑧))
= 𝛼 (𝑝 (𝑧)) + 𝑧𝑝󸀠 (𝑧) 𝜙 (𝑝 (𝑧)) = Ξ (𝑧) , (73)

where Ξ(𝑧) is given by (67). Hypothesis (68) can be equiva-
lently written as

𝜃 (𝑝 (𝑧)) + 𝑧𝑝󸀠 (𝑧) 𝜙 (𝑝 (𝑧))
≺ 𝜃 (𝑞 (𝑧)) + 𝑧𝑞󸀠 (𝑧) 𝜙 (𝑞 (𝑧)) . (74)

From Lemma 3, we get

𝑝 (𝑧) ≺ 𝑞 (𝑧) . (75)

Thus, we get assertion (69) of Theorem 9.

Theorem 10. Suppose that 0 ≤ 𝜌 ≤ 1, 𝜂 ∈ C, 𝛼 ∈ C \{0}, R(𝛼) > 0; function 𝑞 ∈ A∗ is univalent in U with𝑞(0) = 1. Let function 𝑓 ∈ H[0, 𝑝] satisfy
[(1 − 𝜌) 𝑧W𝑠,𝑏𝑓 (𝑧) + 𝜌𝑧W𝑠+1,𝑏𝑓 (𝑧)] ̸= 0 (𝑧 ∈ U) ,
[(1 − 𝜌) 𝑧W𝑠,𝑏𝑓 (𝑧) + 𝜌𝑧W𝑠+1,𝑏𝑓 (𝑧)]𝜂
∈ H [1, 1] ∩ 𝑄.

(76)

If Ξ(𝑧) defined by (67) is univalent and satisfies
𝛼𝑞 (𝑧) + 𝑧𝑞󸀠 (𝑧) ≺ Ξ (𝑧) , (77)
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then

[(1 − 𝜌) 𝑧W𝑠,𝑏𝑓 (𝑧) + 𝜌𝑧W𝑠+1,𝑏𝑓 (𝑧)]𝜂 ≺ 𝑞 (𝑧) (78)

and 𝑞 is the best subordinant in (78). When 𝜂 = 0, the left hand
side expressions of (78) are interpreted as 1.

Proof. Suppose that function 𝑝(𝑧) is defined by (40). From
(41), we get

𝛼 (𝑝 (𝑧)) + 𝑧𝑝󸀠 (𝑧) 𝜙 (𝑝 (𝑧)) = Ξ (𝑧) . (79)

Hypothesis (77) can be rewritten as

𝑞 (𝑧) + ( 1𝛼) 𝑧𝑞󸀠 (𝑧) ≺ 𝑝 (𝑧) + ( 1𝛼) 𝑧𝑝󸀠 (𝑧) . (80)

Then, combining Lemma 5 with 𝛾 = 1/𝛼, we have (78).
Theorem 10 follows immediately.

Following that, we display some sandwich-type theorems
associated with the operatorW𝑠,𝑏𝑓(𝑧).
Theorem 11. Suppose that functions 𝑞1, 𝑞2 ∈ A∗ are univalent
mapping of U into the right half plane and satisfy conditions

𝑞1 (0) = 𝑞2 (0) = 1,
R(1 + 𝑧𝑞󸀠󸀠𝑗 (𝑧)𝑞󸀠𝑗 (𝑧) − 𝑧𝑞󸀠𝑗 (𝑧)𝑞𝑗 (𝑧) ) > 0 (𝑗 = 1, 2; 𝑧 ∈ U) . (81)

Let 0 ≤ 𝜌 ≤ 1, 𝛼, 𝜂 ∈ C, and 𝑓 ∈ H[0, 𝑝] satisfy
[(1 − 𝜌) 𝑧W𝑠,𝑏𝑓 (𝑧) + 𝜌𝑧W𝑠+1,𝑏𝑓 (𝑧)] ̸= 0 (𝑧 ∈ U) ,
[(1 − 𝜌) 𝑧W𝑠,𝑏𝑓 (𝑧) + 𝜌𝑧W𝑠+1,𝑏𝑓 (𝑧)]𝜂
∈ H [1, 1] ∩ 𝑄.

(82)

If function Δ(𝑧) is given by (50) and satisfies

𝑞1 (𝑧) + 𝑧𝑞󸀠1 (𝑧)𝑞1 (𝑧) ≺ Δ (𝑧) ≺ 𝑞2 (𝑧) + 𝑧𝑞󸀠2 (𝑧)𝑞2 (𝑧) , (83)

then

𝑞1 (𝑧) ≺ [(1 − 𝜌) 𝑧W𝑠,𝑏𝑓 (𝑧) + 𝜌𝑧W𝑠+1,𝑏𝑓 (𝑧)]𝜂
≺ 𝑞2 (𝑧) , (84)

where 𝑞1 and 𝑞2 are, respectively, the best subordinant and the
best dominant in (84).

Combining Theorems 9 and 10, we get the following
result.

Corollary 12. Suppose that 0 ≤ 𝜌 ≤ 1, 𝜂 ∈ C, and 𝛼 ∈ C \ {0}
withR(𝛼) > 0. Functions 𝑞1 and 𝑞2 are univalent convex in U

with 𝑞1(0) = 𝑞2(0) = 1. Let 𝑓 ∈ H[0, 𝑝] satisfy
[(1 − 𝜌) 𝑧W𝑠,𝑏𝑓 (𝑧) + 𝜌𝑧W𝑠+1,𝑏𝑓 (𝑧)] ̸= 0 (𝑧 ∈ U) ,
[(1 − 𝜌) 𝑧W𝑠,𝑏𝑓 (𝑧) + 𝜌𝑧W𝑠+1,𝑏𝑓 (𝑧)]𝜂
∈ H [1, 1] ∩ 𝑄.

(85)

If function Ξ(𝑧) is given by (67) and satisfies

𝑞1 (𝑧) + 𝑧𝑞󸀠1 (𝑧) ≺ Ξ (𝑧) ≺ 𝛼𝑞2 (𝑧) + 𝑧𝑞󸀠2 (𝑧) , (86)

then

𝑞1 (𝑧) ≺ [(1 − 𝜌) 𝑧W𝑠,𝑏𝑓 (𝑧) + 𝜌𝑧W𝑠+1,𝑏𝑓 (𝑧)]𝜂
≺ 𝑞2 (𝑧) , (87)

where 𝑞1 and 𝑞2 are, respectively, the best subordinant and the
best dominant in (87).

4. Conclusions

In the present paper, making use of the integral operator
W𝑠,𝑏𝑓(𝑧) involving the Hurwitz–Lerch Zeta function, we
have derived several third-order differential subordination
and differential superordination consequences of meromor-
phic functions in the punctured unit disk. Furthermore, the
sandwich-type theorems are considered. These subordinate
relationships have shown the upper and lower bounds of the
operator in the punctured unit disk.
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