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Abstract: In this article, we compute the vertex 
 Padmakar-Ivan (PIv) index, vertex Szeged (Szv) index, 
edge Padmakar-Ivan (PIe) index, edge Szeged (Sze) 
index, weighted vertex Padmakar-Ivan (wPIv) index, and 
weighted vertex Szeged (wSzv) index of a graph product 
called subdivision vertex-edge join of graphs.
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1   Introduction, basic definitions, 
and notations

A molecule is represented by a graphical method which 
shows the relationship between the atoms and bonds 
in that molecule. Such a representation is called a 
molecular graph. We denote a molecular graph by Γ. The 
set containing all the atoms is called the vertex set of 
the molecular graph Γ, and denoted by V(Γ). Similarly, 
the set containing all the edges of Γ is denoted by E(Γ). 
The quantity |V(Γ)| represents the number of atoms in Γ, 
and it is called the order of Γ. Similarly, the cardinality 

 Open Access. © 2021 Syed Sheraz Asghar et al., published by De Gruyter.  This work is licensed under the Creative Commons
Attribution alone 4.0 License.

* Corresponding author: Yu-Ming Chu, Department of Mathematics, 
Huzhou University, Huzhou 313000, China; Hunan Provincial Key 
Laboratory of Mathematical Modeling and Analysis in Engineering, 
Chengsha University of Science and Tehnology, Changsha 410114, 
China; e-mail: chuyuming2005@126.com 
Syed Sheraz Asghar and Muhammad Ahsan Binyamin: Department 
of Mathematics, Government College University, Faisalabad, 
Pakistan 
Shehnaz Akhtar: Department of Mathematics, School of Natural 
Sciences, National University of Sciences and Technology, H-12, 
Islamabad, Pakistan 
Mehar Ali Malik: Department of Mathematics, Riphah Institute of 
Computing and Applied Sciences Riphah International University, 
Lahore, Pakistan

|E(Γ)| represents the size of Γ, which is the number of 
chemical bonds or edges in Γ. Let |V(Γ)| = n and |E(Γ)| = 
m. The distance dΓ(v,w) between two vertices v,w Î V(Γ) 
is the length of a path of minimal length joining v with 
w in Γ. Let u,x,y Î V(Γ) and e = xy Î E(T). The distance 
between u and e is defined as dΓ(u,e) = min{dΓ(u,x), dΓ 
(u,y)}. A set S Í E(Γ) is called an edge-cut of a connected 
graph Γ if Γ − S is disconnected. For e = uv Î E(Γ), the 
cardinalities of the sets containing vertices or edges in Γ, 
which are closer to one end-vertex of e are important to 
study. These number are obtained from the sets defined 
as follows:

 (1)

 (2)

The cardinalities |Nu (e|Γ)| and |Mu (e|Γ)| are denoted 
by nu (e|Γ) and mu (e|Γ), respectively. The quantities nv 
(e|Γ) and mv (e|Γ) are defined analogously. Similarly, we 
define the sets N0 (e|Γ) and M0 (e|Γ) of vertices and edges 
that are equidistant from both ends of the edge e = uv as 
follows:

 (3)

 (4)

Clearly {Nu, Nv, N0} define the vertex partition of Γ with 
respect to an edge e Î E(Γ). Thus nu + nv + n0 = n. Observe 
that in any bipartite graph, n0 = 0.

2  Topological indices
A molecular or topological descriptor/index is a quantity 
that correlates some properties of a molecule by a constant. 
These properties include physical or chemical properties 
or biological reactivity in molecules. The definitions and 
analysis of these topological indices uses several tools 
from graph theory and heavily depends on it. A standard 
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procedure in QSAR/QSPR studies is to find applications of 
molecular descriptors. The relations between the  physico-
chemical properties of a chemical compounds and the 
molecular connectivity of the same compound are used in 
QSAR/QSPR studies by using graph techniques. The same 
process is adopted in computer-aided drug discovery 
and predictive toxicology. As a result, many molecular 
topological descriptors emerge from the successful 
relationships which are found (Azari and Iranmanesh, 
2013; Bajaj et al., 2006; Balasubramanian, 1985a, 1985b; 
Basak et al., 2000).

Wiener (1947) defined the first topological index 
called the Wiener index as a structural descriptor for 
some alkanes. This index is defined as the sum of all 
pairwise distances between vertices of a graph. This index 
has been intensively studied in theoretical chemistry. It 
has found numerous applications in pharmacology, and 
many physico-chemical properties of organic molecules, 
see books (Balaban et al., 1983; Diudea, 2001) and survey 
(Dobrynin and Entringer, 2011). For a connected graph Γ, 
the Wiener index W(Γ) and its equivalent form for a tree T 
is defined as follows.

 (5)

Platt (1952) used the term Wiener number for it and the 
same has been exclusively used ever since. Hundreds of 
molecular descriptors have been defined during the past 
decade. All of these indices are candidates for possible 
applications in molecular structure-property studies and 
many are actually used in QSAR/QSPR studies (Devillers 
and Balaban, 1999; Gupta et al., 2002; Hansch and Leo, 
1996). The advancement in the quantitative study of 
structure-property relationships requires investigation 
of new indices that are capable of correlating different 
properties of chemical compounds. These descriptors 
are tested with linear or multivariate regressions for their 
applications in pharmacology and engineering sciences 
(Randić, 2004).

In this paper we study several Szeged-type topological 
indices of SVE-join of graphs. First we introduce the basic 
definitions of these indices and notations in the next 
section.

3  Szeged-type indices
In this section, we introduce some Szeged-type topological 
indices that are defined as the number of vertices or edges 

that lye on either side of a vertex or an edge. These indices 
are distance based indices and are extensively studied in 
the literature for their applications (Gutman et al., 1995). 
Now we define some Szeged indices as follows.

Gutman (1994) extended the idea of the Wiener index 
to any connected graph and named it as Szeged index 
(Szv) defined in the following way.

 

The vertex Padmakar-Ivan (PIv) index of a graph Γ was 
defined by Khalifeh et al. (2009), as follows:

 

Khadikar et al. (2001) defined the Padmakar-Ivan or  
PIe index as follows:

 

Gutman and Ashrafi (2008) defined the index 
(Sze) as the edge type of the already defined Szeged  
index as:

 

The weighted vertex Padmakar-Ivan (wPIv) index of 
a graph Γ was defined by Ilic and Milosavljevic (2013) as 
described below:

 

The weighted vertex Szeged index (wSzv) defined in 
Ilic and Milosavljevic (2013) is given by:

 

4  SVE-join of graphs
Graph operations are used to construct new graphs whose 
structure is defined in terms of the structural properties 
of underlying graphs. In this section, we define a recently 
defined graph operation known as subdivision vertex 
edge join of graphs. It is denoted by SVE-join of graphs. 
This operation is applied on three graphs and results in 
one product graphs. The study of topological indices 
for several graph operations has been carried out in 
the literature, for examples see: Ashrafi et al. (2010), 
Das et  al. (2013), De et al. (2016), Imran et al. (2020), 
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Khalifeh et al. (2008), Klavžar et al. (1996), Liu et al. 
(2019), Nagarajan et al. (2014), Pattabiraman and Kandan 
(2016), Pattabiraman and Paulraja (2012), Siddiqui (2020), 
Tavakoli and Rahbarnia (2013), Xu et al. (2019), Yang et al. 
(2019), Yousafei-Azari et al. (2008).

The SVE-join of graphs has been introduced recently 
in Wen et al. (2019). It is defined as follows. Let Γ1, Γ2, and  
Γ3 are three graphs. Let  denotes the subdivision of 
of Γ1. Then the vertex set of Γ1 has two portions, one V(Γ1) 
that contains the original vertices of the graph Γ1, and 
the other is denoted by V′(Γ1), which includes the new 
vertices that are inserted into the old edges to subdivide 
them the edges of Γ1. Let  denotes the 
SVE-join of our graphs Γ1, Γ2 and Γ3. The vertex set of 

 is V(Γ1)  È V′(Γ1) È V(Γ2) È V(Γ3) and the 
edge set of  is the set E(Γ1) È E(Γ2) È E(Γ3) 
and all edges that join the vertices of Γ1 with the vertices 
of Γ3 and all edges joining the vertices in V′(Γ1) with all the 
vertices of Γ2.

Consider three graphs C4, P3, and K2. Then the SVE join 
 is shown in Figure 1. It can bee seen that 

the edge subdivision of C4 is performed first and then the 
vertices of C4 are joined with all of P3 and the new vertices 
introduced in the subdivision of C4 are joined with all 
vertices of K2. 

5  Previous results
For an edge xy of the graph Γ, let NΓ(xy) be the set of 
common neighbors of x and y, and N′Γ(xy) be a set of 
edges that are lying at distance one from x and y. The 
set N′Γ(x) (NΓ(y)) have the edges that are at distance one 
from x (y).

In the following lemma, we present some structural 
properties of the SVE-join of graphs.

Lemma 5.1
According to Wen et al. (2019), let Γ1, Γ2 and Γ3 be graphs. 
Then the degree of vertices in the SVE join  
and the number of vertices and edges closer to arbitrary 
vertices and edges in this product is given below:

Figure 1: The SVE-join  of graphs.
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2. 

3. 

4. 
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5. 

6. 

6  Main results
Now we proceed towards the main calculations of several 
Szeged and PI-type indices of SVE join of graphs. First we 

calculate the vertex PI and vertex Szeged indices of SVE 
join of graphs.

6.1   Vertex Padmakar-Ivan and vertex Szeged indices of SVE

Theorem 6.1
Let Γ1, Γ2, and Γ3 be three graphs. Then:

Proof.

This completes the proof. 
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Theorem 6.2
Let Γ1, Γ2, and Γ3 be three graphs. Then:

Proof. 

This completes the proof. 

6.2  Edge Padmakar-Ivan and edge Szeged indices

In this section, we calculate the edge PI and edge Szeged indices of SVE join of graphs.

Theorem 6.3
Let Γ1, Γ2, and Γ3 be three graphs. Then:
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Proof. 

This completes the proof. 

Theorem 6.4
Let Γ1, Γ2, and Γ3 be three graphs. Then:

Proof. 
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This completes the proof. 

6.3  Weighted vertex Padmakar-Ivan and weighted vertex Szeged indices

Now we calculate the weighted versions of vertex PI and vertex Szeged indices of SVE join of graph.

Theorem 6.5
Let Γ1, Γ2, and Γ3 be three graphs. Then:

Proof. 
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This completes the proof. 

Theorem 6.6
Let Γ1, Γ2, and Γ3 be three graphs. Then:

Proof. 
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This completes the proof. 

7  Conclusion
The operation of subdivision vertex-edge join of graphs is 
also known as SVE join of graphs. We computed the several 
distance based topological descriptors of graphs, namely 
vertex Padmakar-Ivan (PIv) index, vertex Szeged (Szv) index, 
edge Padmakar-Ivan (PIe) index, edge Szeged (Sze) index, 
weighted vertex PadmakarIvan (wPIv) index, and weighted 
vertex Szeged (wSzv) index of SVE join of graphs. These 
results are helpful for people who are interested in applied 
chemistry for the computation of SVE join of graphs.
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