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The present paper reports the effect of Ge addition on the optical band gap and refractive index of As2Se3 thin films. Thin films
of As2Se3 and (As2Se3)90Ge10 were prepared by thermal evaporation technique at base pressure 10−4 Pa. Optical band gap and
refractive index were calculated by analyzing the transmission spectrum in the spectral range 400–1500 nm. The optical band
gap decreases while the refractive index increases with the addition of Ge to As2Se3. The decrease of optical band gap has been
explained on the basis of density of states; and the increase in refractive index has been explained on the basis increase in disorder
in the system.
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1. INTRODUCTION

Chalcogenide glasses based on the chalcogen elements S, Se,
and Te are attractive and widely investigated materials as they
possess high optical transparency in the IR region. They have
low phonon energy, high photosensitivity, easy fabrication
and processing, and good chemical durability. So they are
used in ultrafast optical switches, frequency converters, op-
tical amplifiers, optical recording devices, integrated optics,
infrared lasers, and infrared transmitting optical fibres [1–
3]. Chalcogenide semiconducting alloys have found appli-
cation not only due to their electrical and thermal proper-
ties, but also due to their optical properties. Many amor-
phous semiconducting glasses, in particular selenium, ex-
hibit a unique property of reversible transformation. Its vari-
ous device applications like rectifiers, photocells, xerography,
switching and memory, and so on have made it attractive, but
pure selenium has disadvantages like short lifetime and low
sensitivity. Due to high glass-forming ability of Se, it repre-
sents a good host matrix for the investigation of chalcogenide
glasses in the bulk and thin film forms [4–7]. Thus, the above
problems can be overcome by alloying Se with some impu-
rity atoms (Bi, Te, Ge, Ga, As, etc.), which gives higher sen-
sitivity, higher crystallization temperature, and smaller age-
ing effects [8–10]. The As-Se-Ge system has been extensively

studied [11–13] because of the fact that Ge, As, and Se are
the elements of same period in groups IV-VI, and it brings
about the covalent character of the interaction between their
atoms. This results in a broad glass formation region in As-
Se-Ge system [14] among all investigated three-component
chalcogenide systems.

The present work reports the effect of Ge addition on the
optical band gap and refractive index of arsenic selenide thin
films. The straightforward technique proposed by Swanepoel
has been used for analyzing the transmission spectra in the
spectral range 400–1500 nm [15].

2. EXPERIMENTAL PROCEDURE

Two compositions of (As2Se3)100−xGex (x = 0, 10) chalco-
genide system were prepared using melt quench technique.
The materials (5 N pure) were sealed in evacuated (∼10−4

Pa) quartz ampoules each of 3 g batch, weighed according
to their atomic weight percentage. The sealed ampoules
were kept inside a furnace where the temperature was in-
creased up to 950◦C in five steps (200◦C, 400◦C, 600◦C,
950◦C) gradually at a heating rate of 2-3◦C/min. The am-
poules were frequently rocked for 24 hours at the highest
temperature to make the melt homogeneous. The quench-
ing was done in ice cold water. Thin films were prepared
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on cleaned glass substrates (microscopic glass slides). The
substrates were cleaned with soap solution, ultrasonically
cleaned by trichloroethylene, acetone followed by methyl al-
cohol. In last, the substrates were washed by DI water and
dried in oven at approximately 110◦C. Thin films of the al-
loys were prepared by thermal evaporation technique (Vac-
uum coating unit HINDVAC 12A4D Model) at room tem-
perature and base pressure of ∼10−4 Pa using a molybde-
num boat. The thickness of the deposited thin films has been
measured by thickness monitor (DTM-101). The composi-
tions of evaporated samples have been measured by an elec-
tron microprobe analyzer (JEOL 8600 MX) on different spots
(size ∼ 2 μm). For the composition analysis, the constitu-
tional elements (As, Se, and Ge) and the bulk original alloys,
that is, (As2Se3)100−xGex, are taken as reference samples. The
composition of 2× 2 cm2 sample is uniform within the mea-
surement accuracy of about ±0.2%. Amorphous nature of
the bulk samples and thin films was checked by XRD tech-
nique. No prominent peak is observed in the bulk as well
as in thin films. The normal incidence transmission spec-
tra of (As2Se3)100−xGex thin films were obtained by a dou-
ble beam ultraviolet-visible-near infrared spectrophotome-
ter [Hitachi-330], in the transmission range 400–1500 nm.
The spectrophotometer was set with a suitable slit width of
1 nm in the measured spectral range. All optical measure-
ments were performed at room temperature (300 K).

3. RESULTS AND DISCUSSION

Optical transmission (T) is a very complex function and
is strongly dependent on the absorption coefficient (α).
Figure 1 shows the variation of transmission (T) with wave-
length (λ) in As2Se3 and (As2Se3)90Ge10 thin films. According
to Swanepoel’s method [15], the envelope of the interference
maxima and minima of transmission spectra can be used for
deducing optical parameters. The refractive index (n) of the
thin films is obtained by the envelope method by making use
of the following expressions. In the transparent region where
the absorption coefficient α ≈ 0, the refractive index (n) is
given by

n =
[
N +

(
N2 − s2)1/2

]1/2
, (1)

where

N = 2s
Tm

−
(
s2 + 1

)

2
(2)

and Tm is the envelope function of minimum transmittance,
and s is the refractive index of substrate. In the weak re-
gion, where absorption coefficient α /= 0, the transmittance
decreases due to the influence of α, the value of N in (1) is
given by

N = 2s
TM − Tm
TMTm

+

(
s2 + 1

)

2
, (3)

and Tm is the envelope function of maximum transmittance.
The extinction coefficient (k) can be calculated using the

relation k = (λ/4πd) ln(1/x), where d is the thickness of the
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Figure 1: Transmission spectrum for As2Se3 and (As2Se3)90Ge10

thin films.

Table 1: Values of thickness (d), n, k, and E
opt
g for As2Se3 and

(As2Se3)90Ge10 thin films.

Composition d (nm)
at 800 nm

E
opt
g (eV)

n k

As2Se3 934 2.50 0.0054 1.52

(As2Se3)90Ge10 900 2.64 0.0076 1.46

film and x is the absorbance [15]. If n1 and n2 are the re-
fractive indices of two adjacent maxima or minima at wave-
lengths λ1 and λ2, then the thickness of the film is given by
d = λ1λ2/2(λ1n2 − λ2n1). The thickness of the thin films cal-
culated using the above relation is given in Table 1 and found
to be within ±35 nm with thickness values measured while
depositing the thin films using thickness monitor.

The variation of refractive index (n) and extinction co-
efficient (k) with wavelength is shown in Figures 2 and 3,
respectively. From figures, it is clear that both refractive in-
dex and extinction coefficient decrease with the increase of
wavelength for the thin films under study. The decrease in
the value of refractive index with wavelength shows the nor-
mal dispersion behavior of the material. On the part of Ge
addition to As2Se3 thin films, the refractive index has been
found to have higher values. This increase in the refractive
index may be ascribed to increase of disorder in the struc-
ture, change in stoichiometry and internal strain caused with
the addition of Ge. The values of n and k at 800 nm (as nearly
at this wavelength the spectrum region changes) are given in
Table 1.
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Figure 2: Plot of refractive index versus wavelength for As2Se3 and
(As2Se3)90Ge10 thin films.
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Figure 3: Plot of extinction coefficient versus wavelength for As2Se3

and (As2Se3)90Ge10 thin films.
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Figure 4: Plot of (αhv)1/2 versus hv for As2Se3 and (As2Se3)90Ge10

thin films.

The optical band gap (E
opt
g ) has been determined from

absorption coefficient data as a function of photon energy,
according to the generally accepted “nondirect transition”
model for amorphous semiconductors [16], proposed by
Tauc [17] αhv = B(hv − E

opt
g )n, where hν is the photon en-

ergy, α is the absorption coefficient, E
opt
g the optical band gap,

B is band tailing parameter, and n = 1/2 for direct band gap
and n = 2 for indirect band gap. Figure 4 shows the varia-
tion of (αhv)1/2 with hν. Optical band gap can be determined
by the extrapolation of best-fit line between (αhv)1/2 and hν
to intercept the hν axis (α = 0) for thin films. The region of
the transparency is limited by an intrinsic absorption at short
and long wavelengths, the position at short wavelength cor-
responds to λ = hc/Eg , where λ is wavelength, h is Planck’s
constant, c is light velocity, and Eg is energy width of the for-

bidden band [18]. So best-fit line between (αhv)1/2 and hν to
intercept the hν axis (α = 0) is taken only for short wave-
lengths, that is, where absorption is strong. It is found that
the optical band gap decreases with the addition of Ge to
As2Se3 thin films. The variation in optical parameters with
Ge incorporation is mainly due to change in stoichiometry.
The Ge additive in As2Se3 must bring about a compositional
change of host network of As-Se. In the fundamental absorp-
tion region, the absorption is due to the transition from the
top of valence band to the bottom of the conduction band.
Addition of Ge in As2Se3 thin film may cause an increase in
the density of state-in-the-valence band. The addition of Ge
may also create localized states in the band gap [19]. This will
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lead to a shift in the absorption edge towards lower photon
energy, and, consequently, the decrease in the optical energy
gap can be explained by the increased tailing [20] of the con-
duction band edge into the gap due to the addition of germa-
nium impurities.

4. CONCLUSION

The thermally evaporated thin films of the As2Se3 as well as
(As2Se3)90Ge10 were analyzed using their transmission spec-
tra in the spectral range 400–1500 nm. The optical parame-
ters viz. n, k, and E

opt
g were calculated. Refractive index and

extinction coefficient were found to increase while optical
band gap decreases with Ge addition to As2Se3. The increase
in the refractive index with the addition of Ge has been ex-
plained on the basis of the increase in disorder in the system.
The decrease in optical band gap with Ge addition has been
explained on the basis of density of states.
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