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Low-order alpine glacial valleys on Earth commonly have a characteristic spacing of 1–3 km. Here we
develop analytic and numerical solutions of a coupled numerical model for alpine glacial flow and subglacial
bedrock erosion to quantitatively determine the controls on glacial valley spacing assuming an initially-
undissected landscape, an initially-fluvially-dissected landscape, and an initially-cratered landscape. The
characteristic spacing of glacial valleys produced by the model is controlled by a competition between the
thickening of ice in incipient glacial valleys, which acts to enhance flow and valley deepening, and viscous/
sidewall drag, which acts to limit flow and deepening. The glacial valley spacing that represents the best
compromise between these two competing effects is found to be a function of valley slope, the threshold
basal shear stress for ice motion, the effective ice viscosity, a bed-friction parameter, and gravity. This model
framework provides the preliminary basis for understanding the relative spacing of glacial valleys on Earth
and Mars. On Mars, montane glacial valleys have widths and spacings that are approximately 10–20 times
larger than those on Earth. Model results suggest that this difference is predominantly a consequence of
lower bed slopes and larger temperature-controlled ice viscosities of glacial ice on Mars compared to Earth.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Fluvial valleys that form in the absence of structural control are
characteristically V-shaped while glacial valleys are characteristically
U-shaped. Numerical modeling has been successful in reproducing the
transition between these two characteristic forms. Starting from a V-
shaped valley with a prescribed width and height, Harbor (1992a,b,c)
quantified the transition to a U-shaped valley through time following
the introduction of an alpine glacier into the valley. A number of
studies (e.g., Harbor, 1992c; Seddik et al., 2005) have explored the
specific functional form of glacial valleys, e.g. is the valley cross-
sectional profile best fit by a parabola or a catenary? Most of these
studies are limited to 2D, however, and hence may not capture
important 3D effects of converging and diverging ice flow in glacial
valleys. Also, just as important as the functional form of the valley
cross section is the fact that low-order glacial valleys tend to be quasi-
periodic with a characteristic spacing of approximately 1–3 km. What
controls this fundamental length scale of low-order glacial valleys?
Fluvial valleys, in contrast, vary in width and spacing over a much
wider range of scales, i.e. from tens of meters to several kilometers,
depending on drainage basin size, bedrock erodibility, uplift rate and
other factors. In this paper, we investigate the relationship between
ice flow and subglacial bedrock erosion in alpine glacial environments

in order to determine the factors that control the spacing of low-order
glacial valleys.

Recent modeling work on the coupled evolution of glacial flow and
erosion has illuminated the feedbacks between glacial erosion,
climate change, and tectonics (e.g. Herman and Braun, 2008). No
study has yet provided a better fundamental understanding of the
controls on glacial valley spacing using a 3D model, however, in part
because sidewall drag is included inmost numerical models in only an
approximate way. In Herman and Braun (2008), for example, sidewall
drag is included in the model by reducing the basal flow velocities by
an amount related to the product of a prescribed “constriction factor”
(which has units of length) and the cross-sectional valley curvature
(units of one over length). The glacial valley width and spacing that
result from models that use a constriction-factor-based approach to
quantifying sidewall drag depend directly on the value of this
constriction factor. As such, the glacial valley spacing is an input
rather than an output in suchmodels. Fundamentally, the constriction
factor must depend on the flow rheology (e.g. viscosity) and frictional
parameters of the bed. In order to better understand the controls on
glacial valley morphology and spacing, a more comprehensive
approach is needed that quantifies the sidewall drag of alpine glaciers
as a function of the fundamental parameters that define the rheology
of the flow and the friction parameters of the bed (Table 1).

To put the characteristic size of glacial valleys into perspective, it is
useful to compare glacial valleys on Earth with those on Mars. In the
regions of the Argyre and Hellas Basins of the southern hemisphere of
Mars, crater walls have been sculpted into cirque-like basins (Kargel
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and Strom, 1992). These landforms have been used, as one component
of an assemblage of landforms morphologically similar to glacial
landforms on Earth, to argue for warm-based glaciation on Mars
(Kargel and Strom, 1992). These cirque-like landform grade down-
slope into sinuous ridges that share many similarities with terrestrial
eskers (Banks et al., 2009). Erosional grooves and streamlined hills are
also present in the high resolution imagery of these regions (Banks et
al., 2009). The characteristic size of cirque-like landforms in the
Argyre region of Mars is approximately 10–20 times larger than those
on Earth (Kargel, 2004). The reason for this difference is unclear, but
possible reasons include differences in gravity, ice thickness, valley
slope, ice viscosity, and bed-friction parameters between the two
planets. Differences in viscosity and bed friction may ultimately be
related to differences in temperature within the ice.

In this paper, we investigate the controls on glacial valley spacing,
motivated by the question of what factors lead to the order-of-
magntiude difference in the characteristic scales of low-order glacial
valleys on Earth and Mars. We begin by quantifying the characteristic
spacing of glacial valley cross-sectional profiles on Earth and Mars
using Digital Elevation Model (DEM) analysis. We then develop a
mathematical model for the flow of ice over complex topography and
the glacial erosion that results from that flow. The model is first
analyzed using a linear stability analysis that poses the question:
given an initially-undissected sloping terrain with small-amplitude

variations in bed topography (i.e. incipient glacial valleys), which
glacial valleys grow the most rapidly? The fastest-growing incipient
valleys predicted by this analysis represent a compromise between
the thickening of ice in incipient glacial valleys, which increases flow
and erosion, and viscous stresses/sidewall drag, which act to limit
flow and erosion. Conceptually, the model suggests that very narrow,
deeply-incised glacial valleys do not form (or form very slowly)
because increased bed friction and viscous stresses within such
narrow valleys limit basal sliding and erosion. This limiting effect
favors the formation of relatively wide valleys in the competition
between incipient valleys with a range of spacings as an initially-
undissected landscape begins to be incised. Linear stability analyses
are only precisely applicable when incipient valleys are small in
amplitude. Nonetheless, linear stability analyses are often useful in
quantitatively determining how the spacing of a given instability is
controlled by the fundamental parameters of themodel. The results of
the linear stability analysis in this paper reveal that the spacing of
glacial valleys that grow most rapidly (and hence are favored to form
well-developed glacial valleys) is a function of valley slope, the
threshold basal shear stress for ice motion, ice viscosity, a bed-friction
parameter that controls how rapidly the glacier slides along its base
for a given basal shear stress, and gravity. The importance of these
controlling factors is confirmed by 3D numerical models that track the
formation of well-developed glacial valleys from initially-undissected
topography, initially-fluvially-dissected topography, and initially-
cratered topography. The characteristic size of glacial valleys
produced by the model is not very sensitive to whether the
topography is initially undissected, initially-fluvially dissected, or
initially cratered. The version of the model with initially-fluvial
topography, for example, exploits preexisting fluvial valleys but the
characteristic spacing of those valleys increases over time to match
those of the case with initially-undissected topography. Given
sufficient time, therefore, a fluvial landscape can be completely
“reset” above the equilibrium line by glacial erosion.

2. DEM analysis and observations

The purpose of this section is to place quantitative constraints on
the spacing of low-order glacial valleys on Earth and Mars. Fig. 1
illustrates examples of terrestrial alpine glacial topography from the
Absaroka, Uinta, and central Rocky Mountains of the United States.
The highest elevations in each of these ranges are dominated by low-
order cirque basins with characteristic spacings of 1–3 km. Fig. 2A–C
plots selected topographic cross sections from the low-order valleys
of each range, illustrating the periodic nature of the topography and
the U-shaped character of the valleys. Cirque valleys at the highest
elevations are tributaries to larger glacial valleys with spacings of 5–
10 km. Our focus in this paper is on the characteristic spacing of the
low-order glacial valleys. The spacing of higher-order valleys is more
difficult to interpret uniquely in terms of ice rheology and the
processes of glacial erosion because those valleys may be inherited
from the fluvial system and/or may be controlled by the large-scale
structural and tectonic history of each mountain range. The spacing of
low-order glacial valleys in these ranges is remarkably consistent
despite differences in rock type, structure, etc. between each range.

Evidence for warm-based glaciation in the vicinity of the Argyre
and Hellas basins of Mars (Fig. 3) has been steadily accumulating in
recent years. Kargel and Strom (1992) first proposed the glacial
erosion hypothesis for these regions based on the morphological
similarity between erosionally-modified craters with cirque basins
and U-shaped valleys on Earth. The fact that water or CO2 ice could
flow under Martian conditions has long been established (e.g. Clark
and Mullin, 1976). The regions of Argyre and Hellas Basins are home
to glacial ice today in the form of lobate debris aprons. Holt et al.
(2008) and Plaut et al. (2009) recently documented that some of these
landforms are rock-covered glaciers that under present conditions are

Table 1
Definitions of model variables and parameters.

Variable/
parameter

Description Representative value/range
used here (if applicable)

a Coefficient in Hallet erosion model
A Coefficient in Glen's flow law 5×10−15 (kPa)−3 s−1 for

T=0 °C, but varies with T
Ad Drainage area (fluvial model)
b Exponent in Hallet erosion model 1
c Bed-friction parameter 3×10−17–3×10−15 Pa

−2 m s−1

E Spatially-averaged erosion rate
ε Amplitude of bed perturbation
g Acceleration due to gravity 9.81 m s−2 (Earth),

3.72 m s−2 (Mars)
h(x,y) Ice thickness
h0 Average ice thickness
h1 Ratio of amplitude of ice thickness

perturbations to bed topography
variations

K Bedrock erodibility coefficient (fluvial
model)

λ Wavelength of bed perturbation
λmax Fastest-growing wavelength
M(x,y) Ice mass balance (3D model)
m1 Mass balance gradient above ELA (3D) 0.01 yr−1

m2 Mass balance gradient below ELA (3D) 0.03 yr−1

μ Ice viscosity 1014 Pas, but varies with T
ρ Ice density 920 kg m−3

q(x,y) Ice flux (3D model)
S Ice surface slope in radians
T Time
T Ice temperature in degrees Celsius
Θ Bed surface slope in radians
τb Basal shear stress
τy Threshold shear stress for motion 0.1–1.0 bars
τγ τy divided by ρg
us Basal sliding velocity
us1 Amplitude of perturbations in us
u(x,y) Depth-averaged ice velocity (3D model)
U Rock uplift rate (fluvial model)
X Distance along valley cross section
X 2πx/λ
Y Distance down valley
z(x,y) Bedrock elevation
zELA Equilibrium line altitude (3D model)
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likely cold-based (and hence have limited erosive power) but may
have expanded and eroded the adjacent highlands under conditions
of higher obliquity. Numerous wide crater breaches suggest that
warm-based glaciers filling craters eroded crater walls as ice spilled
over the edges. In addition, Banks et al. (2009) recently analyzed a
suite of depositional landforms in the lower elevations of Argyre Basin
using (High Resolution Imaging Science Experiment) HiRISE imagery,
including sinuous ridges and longitudinal grooves. Many of these
landforms on Mars share striking similarities with terrestrial eskers
and glacially-carved grooves on Earth.

The characteristic scale of glacial landforms onMars is much larger
than those on Earth. Fig. 2D illustrates that “cirque” valleys on Mars
occur with characteristic spacings of 10–30 km. Glaciation on Mars is
also different from that on Earth due to the nature of the preexisting
topography. Meteors continuously bombard the Martian surface and
create impact basins with a wide range of sizes. Glacial modification of
crater rims creates embayments of the larger craters that ring the
Argyre and Hellas basins at a scale set by the coupled behavior of ice

flow and subglacial bedrock erosion. What determines that scale on
both Earth and Mars is the central question of this paper. The strength
of gravity and the threshold basal stress of ice on Mars will both be
different from those on Earth, of course. Differences in gravity and
threshold basal shear stress may not play a dominant role in
influencing the relative scale of glacial erosion on the two planets,
however, because these two effects partly offset one another.
Threshold basal shear stress and gravity both control ice thickness, a
variable that certainly plays a role in controlling glacial valley spacing.
However, it is the ratio of the threshold basal shear stress to gravity
that controls the thickness of ice, and the threshold basal shear stress
on Mars is lower than that on Earth, as is gravity. Inferred threshold
basal shear stresses in the south polar ice cap of Mars are about half
that of modern terrestrial ice sheets (Banks and Pelletier, 2008). For
the same bed topography, this implies that ice thicknesses onMars are
comparable to those on Earth because the lower gravity on Mars
(about 40% that of Earth) offsets the lower threshold basal shear
stresses to a significant extent. This suggests that the primary cause

Fig. 1. Shaded-relief images of glacially-eroded topography in the United States using U.S. Geological Survey 30 m/pixel DEMs. (A) Beartooth-Absaroka Mountains, Montana,
(B) Uinta Mountains, Utah, and (C), central Rocky Mountains, Colorado. The locations of topographic profiles plotted in Fig. 2 are shown as white lines.
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for the vastly different scales of glacially-eroded landforms on Earth
and Mars is not simply the result of the difference in gravity.

Typical bed slopes within formerly glaciated areas of Mars are
several times smaller than those of typical alpine glacial valleys on
Earth. Slopes in glacial valleys are highly variable, but average slopes
at the scale of glacial valleys can be estimated using the relief ratio,
defined as the ratio of the relief to the lateral distance over which that
relief is calculated. In the terrestrial areas illustrated in Fig. 1, relief is
approximately 0.5 km over spatial scales of 1–3 km, yielding relief
ratios in the range of 0.15–0.5. On Mars, relief is greater, increasing up
to 2 km, but distances along and between valleys increases by an even
greater amount, from 1–3 km to a typical range of 10–30 km. As such,
relief ratios of formerly glaciated highland regions on Mars are in the
range of 0.05–0.1, or approximately 2–6 times smaller than those on
Earth. Bed slopes control the thickness of ice for a given yield stress
(with steeper slopes resulting in thinner ice), hence if ice thickness
controls glacial valley spacing it is likely that differences in bed slope
between the two planets will play a significant role on controlling
differences in glacial valley spacing.

3. Model description and results

3.1. Description

For a given lithology, the rate of glacial erosion can be controlled
by basal sliding velocity, ice thickness, or a combination of the two.
Boulton (1974) emphasized the role of ice thickness in determining
erosion rates, while Hallet (1979) emphasized the importance of
sliding velocity. In Boulton's model, the hydrostatic pressure induced
by the ice overburden pressure increases the normal stress acting on
subglacial debris, which, in turn increases its ability to abrade the bed.
In Hallet's model, ice thickness is not a factor because hydrostatic
pressures are assumed to act equally on the tops and bottoms of

rounded subglacial particles. In Hallet's model, the velocity of the
abrading particles, embedded in the ice, is the most important
controlling factor for erosion. Hallet's model can be summarized as

∂z
∂t = −a jus jb ð1Þ

where ∂z/∂t is the erosion rate, |us| is the basal sliding speed, and a
and b are empirical coefficients. The value of b is assumed to be 1 in
some studies (Harbor, 1992a,b; Tomkin and Braun, 2002; Herman and
Braun, 2008) and 2 in others (MacGregor et al., 2000, 2009). A value of
b greater than 1 is consistent with the conceptual model that more
erosion provides the “cutting tools” that lead to enhanced bedrock
erosion downvalley. The value of a may be constrained for a given area
using sediment-flux estimates frommodern glaciers (e.g. Hallet et al.,
1996).

Theoretical models suggest that basal sliding velocity depends on
the square of the basal shear stress (Weertman, 1957):

us = DR−4τ2b = cτ2b ð2Þ

where D is a constant primarily dependent on the thermal properties
of the ice and rock, R is the ratio of the characteristic size of obstacles
to their spacing on the bed, and τb is the basal shear stress. Here we
combine D and R into a single parameter c equal to the product DR−4.
We refer to c as the bed-friction parameter because it controls the rate
of sliding for a given basal shear stress. The value of c can be
approximately constrained by noting that, in low-order terrestrial
alpine glaciers, basal shear stresses are on the order of 0.1–1 bar (104–
105 Pa) and sliding velocities are on the order of 1–10 m yr−1. These
values constrain c to be approximately in the range of 3×10−17 to
3×10−15 Pa−2 m s−1 for low-order terrestrial alpine glaciers.

Fig. 2. Plots of topographic cross-sectional profiles extracted from the DEMs of Earth and Mars. (A) Beartooth-Absaroka Mountains, Montana, (B) Uinta Mountains, Utah, (C) central
Rocky Mountains, Colorado and (D) Argyre Basin, Mars. See Figs. 1 and 3 for profile locations.
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τb in a wide alpine glacier is given by (Nye, 1951)

τb = ρgh sin S ð3Þ

where ρ is the density of ice, g is the acceleration due to gravity, h is
the ice thickness, and S is the ice surface slope. For a sloping bed of
mean gradient tanθ and variations in bed elevation and ice thickness
given by z(x,y) and h(x,y), respectively, Eq. (3) can be written as

τb = ρgh cos θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂z
∂y +

∂h
∂y

� �2

+
∂z
∂x +

∂h
∂x

� �2
s

ð4Þ

Eq. (4) holds for a wide, shallow glacier in which sidewall drag can
be neglected. In alpine glacial environments where sidewall drag
cannot be neglected, it is necessary to modify Eq. (4) by adding an
additional term that has units of shear stress. Conceptually, this term
must be proportional to the cross-sectional bed curvature, |∂2z/∂x2|,
because the more tightly curved the cross-sectional bed topography
is, the larger the sidewall drag will be. As the sliding ice flows down
incipient valleys, variations in sliding velocity us that result from bed
friction will trigger viscous stresses within the flow that are
proportional to the effective ice viscosity. The effective ice viscosity
μ depends on thermal and material properties of the ice and on the
stress state of the ice, but for ice under shear stress and temperature
conditions common in terrestrial environments the effective ice

viscosity is on the order of 1014 Pa s (Paterson, 2000). The only term
that combines |∂2z/∂x2|, us, and μ that has the units of shear stress is
the product of these three variables, i.e. μ|∂2z/∂x2|us. Subtracting this
sidewall/viscous drag term from Eq. (4) gives

τb = ρgh cos θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂z
∂y +

∂h
∂y

� �2

+
∂z
∂x +

∂h
∂x

� �2
s

−μ j ∂2z∂x2 jus ð5Þ

Conceptually, Eq. (5) suggests that the spacing of glacial valleys
will be determined by a competition between two effects. Spatially-
concentrated ice flow causes localized valley erosion in a positive
feedback of localized ice thickening and erosional deepening. This
effect is represented quantitatively by the h, ∂z/∂x, and ∂h/∂x factors
in the first term on the right side of Eq. (5). The development of
narrow glacial valleys with high curvature, however, generates
viscous shear stresses and sidewall drag that act to limit sliding
velocities. This effect is represented by the second term on the right
side of Eq. (5). Substituting Eq. (2) into Eq. (5) gives

τb = ρgh cos θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂z
∂y +

∂h
∂y

� �2

+
∂z
∂x +

∂h
∂x

� �2
s

−μc j ∂2z∂x2 jτ2b ð6Þ

i.e. a quadratic equation for τb. Given values for z(x,y) and h(x,y) for
each time step, τb can be computed by solving Eq. (6), us can then be

Fig. 3. Shaded-relief images of topography in the Argyre Basin,Mars, usingMarsOrbital Laser Altimeter (MOLA) gridded data (Smith et al., 2003). (A)Overviewmap. (B and C) Closeup
images. (D) Area of lobate debris aprons and possible glacially-eroded topography near Hellas Basin. The locations of topographic profiles plotted in Fig. 2 are shown as white lines.
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computed using Eq. (2), and erosion rates can be computed using
Eq. (1). In the model, the variables μ and c always appear as a product.
Since their values are very high and low, respectively, in mks units, it
is useful to give a representative value for the range of their product. A
representative range of μc is approximately 0.003–0.3 m Pa−1 for
terrestrial glaciers, given c=3×10−17–3×10−15 Pa−2 m s−1 and
μ∼1014 Pa s.

3.2. Linear stability analysis

In this section we calculate the growth rates of incipient, small-
amplitude glacial valleys as a function of the wavelength of those
valleys and the fundamental parameters of the model. For the
purposes of this analysis, the ice thickness h is assumed to have a
constant spatially-averaged value given by

h0 =
τγ
sinθ

ð7Þ

In Eq. (7), τγ (units of length) is equal to τy/ρg, where τy (units of
Pascals) is the threshold basal shear stress for the motion of ice over
bedrock. Threshold basal shear stresses of terrestrial glaciers are
commonly in the range of 0.3–1 bars (1 bar equals 105 Pa), resulting
in a range of values for τγ from 3 to 10 m for both terrestrial glaciers
andmodern ice caps onMars (where lower gravity is accompanied by
lower threshold basal shear stresses; Banks and Pelletier, 2008). Ice is
thicker in incipient valleys and thinner on incipient interfluves, but
the assumption of a reference spatially-averaged value h0 simplifies
the analysis so that the results can be written in terms of an average
ice thickness or threshold basal shear stress rather than a mass
accumulation function.

The linear stability analysis begins by assuming an initially-
undissected sloping bed with a uniform gradient tanθ and a cross-
sectional sinusoidal variation in bed topography with amplitude ε
given by

z = tan θy + ε cos
2πx
λ

� �
ð8Þ

where λ is the wavelength of the sinusoidal variation. The ice
thickness is given by the reference value in Eq. (7) minus a sinusoidal
variation that mimics the variations in bed topography:

h =
τγ
sinθ

−εh1 cos
2πx
λ

� �
ð9Þ

The variable h1 in Eq. (9) is a nondimensional factor between 0 and
1 that represents the relative amplitude of variations in ice thickness
to variations in bed topography. If h1 equals 1, the ice surface is flat
and variations in h are a mirror image of variations in z. If h1 equals 0,
the ice surface is follows the bed topography and h is uniform even
though the bed topography is variable.

To solve for h1, it is necessary to introduce an additional model
element that allows us to solve for ice thickness. Here we assume that
the ice deforms by creep and/or sliding when the basal shear stress is
above a threshold value τy, consistent with Eq. (7), i.e.

h sin S = τγ ð10Þ

Expanding Eq. (10) in terms of the derivatives of z and h with
respect to the cross-sectional direction x and along-slope direction y
gives

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2y + ðzx + hxÞ2

1 + z2y + ðzx + hxÞ2

vuut = τγ ð11Þ

where zx is the derivative of z with respect to x, and zy is the
derivative of z with respect to y. Substituting Eqs. (9) and (10) into
Eq. (11) gives

τγ
sinθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2θ +

2πε
λ

ð1−h1Þ sin
2πx
λ

� �� �2

1 + tan2θ + 2πε
λ ð1−h1Þ sin 2πx

λ

� �� �2
vuuuut = τγ ð12Þ

An approximate solution to Eq. (12) is

h1 =
τγ

sin2θλ

1 + τγ
sin2θλ

ð13Þ

For λ≪τγ/sin2θ, h1≈1, i.e. the ice surface is flat in the cross-
sectional direction. In the opposite limit of large λ, h1≈0, i.e. the ice
surface parallels the bed topography.

The goal of a linear stability analysis is to compute the growth rate
of incipient valleys to first order in the amplitude ε. As such, terms of
order ε2 can be neglected from the analysis, keeping in mind that the
results will only be applicable for small ε (i.e. the initial phase of valley
deepening starting from initially-undissected topography). The first
step of the analysis is to solve for the basal sliding velocity to first
order in ε. Combining Eqs. (2), (5), (8), and (9) gives

us≈cτ2y 1 + 2εeiX ρg sin θh1 +
τy
tanθ

2π
λ

ei
π
2ð1−h1Þ−μcτ2y

2π
λ

� �2� �� �
ð14Þ

In Eq. (14), the sinusoidal terms have been written using complex
exponential notation. In this formulation, the cos term is replaced
with exp(iX), where X=2πx/λ. Substitution of Eq. (14) into Eq. (1)
gives, to first order in ε:

∂z
∂t = −a jus jb = −acτ2by −abcτ2yus1 = −E−ėiX ð15Þ

where us1 is the perturbation of us in Eq. (14), E is the average erosion
rate and ε̇ is the derivative of ε with respect to time. The solutions for
the average erosion rate E and the dimensionless growth rate of the
perturbations in bed topography, ε̇/ε, are given by

E = acτby ð16Þ

and

ε̇
ε
=

1
2abcτ2y

ρg sin θh1−μcτ2y
2π
λ

� �2� �
ð17Þ

Eq. (17) is obtained by analyzing just the real part of complex
Eq. (14). Only the real part is used because it is this part that is “in
phase”with variations in bed topography and hence it is this and only
this part that controls whether bed perturbations grow or decay over
time. Eq. (17) quantifies how quickly sinusoidal variations in bed
topography grow as a function of the model parameters and the
wavelength of the bed (assuming the linear conditions appropriate
early on in the valley-forming instability). The dimensionless growth
rate ε̇/ε can take on both positive (growing perturbations) and
negative values (decaying perturbations) depending on whether the
ice thickening effect (the first term in Eq. (17)) is greater to or less
than the viscous drag effect (the second term in Eq. (17)). Fig. 4 plots
the dimensionless growth rate ε̇/ε as a function of λ for a reference
case with τγ=0.3 bar, μc=0.001 m Pa−1, and sinθ=0.03 on Earth
(g=9.81 m2 s−1), illustrating which wavelengths grow (i.e. ε/̇ε is
greater than zero) versus which decay (ε̇/ε is less than zero). Fig. 4B,C,
D illustrates the dependence of the instability on variations in that
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values of μc, τy, and sinθ, respectively. Fig. 4B illustrates that, as the
value of μc increases, the fastest-growing wavelength also increases,
reflecting the fact that an increase in effective viscosity inhibits the
formation of glacial valleys over a wider range of values at the low end
of the wavelength spectrum. The dependence between the fastest-
growing wavelength and μc is nonlinear, however, since an increase
in μc by two orders of magnitude increases the fastest-growing
wavelength by less than one order of magnitude. Increasing the value
of the yield stress τy increases the value of the fastest-growing
wavelength by approximately the same factor (Fig. 4C). Increasing the
value of sinθ (Fig. 4D) results in a decrease in the value of the fastest-
growing wavelength by approximately the same factor. The shape of
these growth curves indicate that, for a given set of parameter values,
there is a value of λ that represents an optimal compromise between
thickening of flow and viscous/sidewall drag in incipient valleys. This
fastest-growing wavelength can be determined analytically by
approximating h1 as 1−(sin2θ/τγ)λ and substituting this expression
into Eq. (17), differentiating with respect to λ, and setting the result
equal to zero to yield

λmax≈
2τy
sin θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2μc= ðρgÞ23

q
ð18Þ

Eq. (18) is not an exact expression; it relies on an approximation to
h1 (Eq. (13), the full expression for h1, leads to a growth curve whose
maximum value cannot be determined analytically, only graphically
or numerically). As an example, Eq. (18) predicts λmax=2.1 km for
τy=1.0 bar, μc=0.01 m Pa−1, and sinθ=0.1. Eq. (18) predicts that
λmax is proportional to τy, is inversely proportional to sinθ, and
increases as the cube root of μc. Since the average ice thickness is
proportional to τy/sinθ, Eq. (18) also implies that λmax is approxi-
mately proportional to the average ice thickness.

3.3. Numerical model results

Linear stability analyses are useful for identifying the combination of
model parameters that control the length scale of a given geomorphic
instability. Once valleys begin to form in earnest, however, the linear
assumptions of themodel break down and hence a 3D numerical model
is necessary. To the extent that valley formation in the nonlinear, large-
amplitude regime of themodel involves the deepening of glacial valleys
established during the initial, linear phase of valley formation, however,
the predictions of the linear stability analysis can be expected to hold at
least approximately for large-amplitude glacial valleys.

One key aspect neglected by the linear stability analysis is the
stabilizingeffectsofglacialerosiononceoverdeepeningsformbeneatha
glacier. Alley et al. (2003) proposed that supercooling of subglacial
meltwaterinsufficientlyoverdeepenedbedconditionswouldresult ina
cessation of glacial erosion. In our model, we include this effect by
prescribingzeroerosionduringanytimestepofthemodelifthebedslopeis
antithetical to and 50% greater than the ice surface slope above it, as
suggestedbyAlleyetal.(2003).Thiseffectstabilizesoverdeepeningsinthe
model; without it, unrealistically deep cirque features can form in the
modelforcertainmodelparametervaluesgivensufficienttime.

The numerical model of this paper combines the stabilizing effect
of Alley et al. (2003) with the approximate solutions to Eqs. (1), (2),
and (6) on a raster grid. Eqs. (1), (2), and (6) prescribe the basal shear
stress, sliding velocity, and erosion rate for a given time step using the
thickness of the ice and the ice surface slope above each pixel. A
complete model also requires an expression for conservation of ice
mass. The mass accumulation function M(x,y), together with the
divergence of ice flux, controls changes in ice thickness according to
the conservation of mass equation:

∂h
∂t = −∇⋅q + Mðx; yÞ ð19Þ

Fig. 4. Illustration and results of the linear stability analysis of Section 3.2. (A) Schematic diagram of the linear stability analysis, illustrating a sloping bedrock with sinusoidal cross-
sectional bed variations. (B–D) Plots of the dimensionless growth rate of the bed perturbations as a function of the wavelength λ illustrating the model dependence on variations in
(B) μc, (C) τy, and (D) sinθ.
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where q=hu and u is the depth-averaged ice velocity. The functionM
(x,y) can take on any values, but it is usually assumed to be a function
of elevation with positive values for elevations above the equilibrium
line altitude (ELA), zELA, increasingly linearly with altitude, and
negative values (ablation) for elevations below the ELA, i.e.,

M = m1ðzðx; yÞ−zELAÞ if zðx; yÞN zELA
M = m2ðzðx; yÞ−zELAÞ if zðx; yÞ b zELA

ð20Þ

In this paper we use m1=0.01 yr−1 and m2=0.03 yr−1 as the
default values in Eq. (20). If m2 is greater than m1, ablation will occur
at higher rates for a given distance below the ELA compared to mass
accumulation at the same distance above the ELA.

Given h and S at a pixel during a given time step, the basal shear
stress is calculated by solving Eq. (6) to yield

τb =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4ρgh sinSμc j ∂2z∂x2 j

q
−1

2μc j ∂2z∂x2 j
ð21Þ

Substituting Eq. (21) into Eq. (2) gives

us =
c

2μc j ∂2z∂x2 j
� �2 4ρgh sin Sμc j ∂

2z
∂x2

j−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4ρgh sinSμc j ∂

2z
∂x2

j
s0

@
1
A
ð22Þ

which can be approximated as

us≈
cðρgh sinSÞ2

1 + μcðρghsinSÞ j ∂2z∂x2 j
ð23Þ

If we further assume that the basal shear stress is everywhere
equal to a prescribed threshold value τy, as in the linear stability
analysis, Eq. (23) can be further simplified to

us =
cτ2y

1 + μcτy j ∂
2z

∂x2 j
ð24Þ

Eq. (24) states that the effect of viscous drag is to reduce the basal
sliding velocity by factor of ð1 + μcτy j∂2z=∂x2 j Þ−1. This approach is
equivalent to the manner in which Herman and Braun (2008)
introduced viscous drag into their model (i.e. via a prescribed
“constriction factor,” equal to the coefficient in front of the curvature
term in Eq. (24)). Our approach, however, provides a relationship
between the constriction factor and the fundamental mechanical
properties of glacial flow.

Eq. (19) is implemented in themodel using a discrete, raster-based
algorithm. During each time step, a thickness of ice equal to M(x,y)Δt
is added to each pixel (or removed, if M(x,y) is negative) until the
basal shear stress exceeds τy (or, in the ablation area, removed until
no ice remains). Excess ice, i.e. ice from pixels where the flow of ice
entering the pixel from up-ice together with local (i.e. M(x,y)Δt)
contributions minus the amount of ice that can be added to the pixel
before the critical basal shear stress is exceeded, is partitioned to all
neighboring pixels downice. The proportion of the excess ice
delivered to each pixel downice is weighted by the local ice surface
slope in each direction, including diagonals. This approach is broadly
similar to the “balance velocity” method of Budd and Warner (1996),
which computes the depth-averaged ice velocity given the geometry
of an ice body (h and S) and a mass accumulation function (M). In the
balance-velocity method, however, the geometry of the ice body is
considered static. In our model, steady state is not assumed because
the geometry of the ice evolves in response to the flow pathways of
excess ice. The excess ice flow at each pixel during a given time step is
divided by ice thickness to yield a depth-averaged velocity. The basal

sliding velocity is assumed to be proportional to that depth-averaged
velocity. The basal sliding velocities calculated in this manner are then
multiplied by (1+μc τy|∂2z/∂x2|)−1 and then entered into Eq. (1) to
calculate the local erosion rate for that time step. The depth of erosion
that occurs during a given time step is also controlled by the
coefficient a in Eq. (1). The results of the model can be reported more
generally, however, by presenting results for a given maximum
amount of erosion or thickness of rock removed from any one point in
the grid. Depending on the value of a, 3 km of rock removal may
require 3 or 30 Myr to accomplish, but the final landforms will be
identical. As such, we report the model results for a prescribed value
of the maximum amount of rock removal rather than as a function of
time for specific values of a.

The model also includes isostatic rebound using a simplified
algorithm. Isostatic rebound is calculated by computing the average
erosion rate in the model domain during a given time step and then
applying an uplift rate equal to 80% of that average erosion rate during
the next time step. The 80% value comes from typical values for the
relative density of crust and mantle rock. This approximate method is
adequate for this application because glacial valleys form in the model
at a spatial scale much lower than the flexural wavelength of the
lithosphere. As such, it is not essential for the model to reproduce the
details of the flexural solution for this particular application. On Mars,
isostatic rebound at scales of tens to hundreds of kilometers is not
significant due to the relatively large elastic thickness. As such, we do
not include isostatic rebound in the application of the model to Mars.
Including isostatic rebound in the terrestrial model application is not
essential for creating periodic glacial valleys, but it does ensure that
“mature” glacial valleys form in the model. Without isostatic rebound,
glacial erosion slows down and eventually ceases as topography that
began above the ELA is denuded below the ELA.

Fig. 5 illustrates the results of the model for an initially-
undissected, plateau-dominated landscape (initial topography
shown in Fig. 5A) that is 20 km by 60 km with a maximum elevation
of 2 km, and τy=0.4 bar, zELA=0.8 km, b=1, and μc=1.0 m Pa−1,
m1=0.01 and m2=0.03. Fig. 5B,C illustrates the topography of the
model after 3 km of rock removal by glacial erosion has taken place.
Bowl-shaped cirques form on the plateauwith a characteristic spacing
of approximately 3 km in this example. Cirques feed into glacial valleys
and outlet glaciers with a similar spacing as the cirque basins on the
plateau. It should be emphasized that the periodic valleys created by
the model are entirely a self-organized feature of the model — the
initial topography has no initial grooves at any scale. The relative
values of m1 and m2 control how far glacial erosion takes place
downslope from the equilibrium line. If m1=m2, outlet glaciers will
extend, tongue-like, farther out into the basin surrounding the range
than they do in this model. We choose a relatively large value for m2/
m1 (i.e. the ablation rate increases rapidly with vertical distance below
the ELA) in order to limit the size of the model domain needed to fully
encompass the outlet glaciers. It should be noted that the value for μc
assumed in this example is somewhat larger than the range of values of
this parameter combination estimated for terrestrial glaciers. Howev-
er, the choice of this value for μc yields values for valley spacing
comparable to those on Earth. The relatively high value of μc offsets the
fact that bed slopes are quite steep in this example (i.e. a drop of
2000 m at the plateau edge over a distance of several kilometers).

Fig. 6 illustrates the effect of varying the value of τy from 0.2 to
0.8 bars and the value of μc from 0.01 to 1.0 m Pa−1 in the model. In
each case, the final bed topography is shown once amaximumof 3 km
of rock removal by glacial erosion has occurred. Cirque valleys increase
in spacing in direct proportion to the value of τy mean spacings are
1.5 km for τy=0.2 bars (Fig. 6A), 2.8 km for τy=0.4 bars (Fig. 6B), and
5.5 km for τy=0.8 bars, (Fig. 6C) assuming μc=1.0 m Pa−1. Valleys
increase in spacing more slowly with increasing values of μc: mean
spacings are 0.7 km for μc=0.01 m Pa−1 (Fig. 6D), 1.3 km for
μc=0.1 m Pa−1 (Fig. 6E), and 2.8 km for μc=1.0 m Pa−1 (Fig. 6B)
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assuming τy=0.4 bars. It is difficult to compare the results of the 3D
model preciselywith the linear stability analysis of Section 3.2 because
the bed slope is not constant in this plateau-dominated landscape, but
instead varies from flat to steeply-sloping as one moves from plateau
interior to plateau margin. Nevertheless, Fig. 7 illustrates good
agreement between the trends predicted by the linear stability
analysis and the results of the 3D model for a range of parameter
values. Fig. 7 plots the results of 21 model simulations with the
plateau-dominated initial condition of Fig. 6 with three different
values of τy and seven different values of μc. The straight lines indicate
the predicted trends of the linear stability analysis (i.e. spacing is
proportional to τy and proportional to the cubed root of μc), showing
good agreement with the results of the 3D model. Model results (not
shown) were also obtained by varying the exponent b from 1 to 3 in
Eq. (1) keeping all other parameters constant. The spacing of glacial
valleys did not vary as a function of b, a result consistent with the
predictions of the linear stability analysis.

Initially-undissected topography is an appropriate starting point for
investigating the self organization of glacial valleys. On Earth, however,
most if not all glacial valleys are influenced to some degree by the
presence of preexisting fluvial valleys. Fluvial valleys can also be
periodic, so it is reasonable to ask whether some periodic glacial valleys
may be relict features inherited from earlier periods of predominantly
fluvial erosion. To determine the effect of preexisting fluvial valleys on

the spacing of glacial valleys, we performed a two-phase model
experiment in which an initially-fluvially-dominated landscape was
subjected to glaciation at time zero (Fig. 8). The initial topography in
Fig. 8A was created using a stream-power bedrock channel erosion
model (Whipple and Tucker, 1999) in which the erosion rate is a
function of drainage area, Ad, and along-channel slope, ∂z/∂x:

∂z
∂t = U−KA1 = 2

d j ∂z∂x j ð25Þ

where U is the rock uplift rate and K is the bedrock erodibility
coefficient. This model was run forward in time until an approximate
steady-state topographic condition was achieved. The values of U and
Kwere chosen to yield amaximumelevation of 2 km in steady state so
that the total relief of this fluvial landscape would be comparable to
the plateau-dominated initial condition of Fig. 6. Outlet channels in
the fluvial topography (Fig. 8A) have a characteristic spacing, a result
that is commonly observed in drainage basin evolution models in
which a significant regional slope exists (e.g. Perron et al., 2008). The
location of large outlet fluvial valleys sets the location of the resulting
outlet glacial valleys, but glacial erosion widens smaller V-shaped
valleys into wide U-shaped valleys with a larger characteristic spacing
(Fig. 8B). Glacial erosion acts to filter out the small, narrowly-spaced
low-order fluvial valleys above the ELA because viscous drag in these

Fig. 5. Maps of the input and output topography of the numerical model. (A) The initial 20×60 km plateau-dominated landscape of the model, (B) the final ice surface topography
predicted by the model for the reference case with an equilibrium line altitude (ELA) of 0.8 km, τy=0.4 bars, and μc=1.0 m Pa−1, and (C) the final bed topography for the same
model.
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valleys limits the ability of the ice to incise into such narrow valleys.
As a result, valleys with spacings smaller than λmax are replaced
with valleys spaced by values closer to λmax. This “resetting” of the

landscape by glacial erosion takes time to occur in the model and in
nature. Based on the results of this model, as a rule of thumb the
amount of maximum rock removal in the model must exceed twice

Fig. 6.Maps of the final bed topography predicted by the numerical model with an initial plateau-dominated landscape, illustrating the dependence of the model on the parameters
τy and μc for a constant ELA of 0.8 km. Results for (A) τy=0.2 bars, μc=1.0 m Pa−1, (B) τy=0.4 bars, μc=1.0 m Pa−1, (C) τy=0.8 bars, μc=1.0 m Pa−1, (D) τy=0.4 bars,
μc=0.01 m Pa−1, and (E) τy=0.4 bars, μc=0.1 m Pa−1.
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the initial relief of the landscape (i.e. 4 km of maximum rock removal
compared to 2 km of initial relief) in order for glacial processes to be
fully imprinted on the landscape.

The plateau-dominated and fluvially-incised initial conditions of
Figs. 6 and 8 are appropriate for terrestrial glaciers but not for Mars.
The topography of Mars is dominated by impact craters that have
been modified over time by mass wasting. In order to provide the
model with an initial landscape representative of the mid-latitude
regions of Mars, we obtained a synthetic landscape subjected to
meteor impacts and mass wasting from Shane Byrne of the University
of Arizona (Shane Byrne, personal communication, 2009). This
synthetic landscape was produced using a numerical model similar
to that of Richardson et al. (2004). Themodel generates impact craters
with a frequency-size distribution comparable to that of actual craters
and degrades them over time using a slope-dependent transport
model for regolith coupled with conservation of mass. Example
output from this model is shown in Fig. 9A prior to the introduction of
glaciers. Note the significantly larger spatial scale of this model

domain (e.g. 128×128 km) compared to that of the terrestrial model
example of Fig. 6. For this model experiment, the entire surface was
assumed to be covered in ice (i.e. the ELA was set to zero) and a
uniform mass accumulation rate was prescribed. The value of g was
set for Mars (i.e. g=3.72 m s−2) and the threshold basal shear stress
was assumed to be 0.4 bars, consistent with the calibration of Banks
and Pelletier (2008). It should be emphasized that the calibration of
threshold basal shear stress of Banks and Pelletier (2008) corresponds
tomodern conditions thatmay not be applicable to other time periods
on Mars. Nevertheless, using the observed ice thicknesses on Mars
today provides the best available calibration for the threshold basal
shear stress parameter.

The output of the model after a maximum of 3 km of rock removal
has occurred is shown in Figs. 9B–C for τy=0.4 bars and μc=1.0 and
10.0 m Pa−1, respectively. We choose larger values for μc in this
example because colder ice on Mars leads to higher viscosity values.
We will discuss this point in detail in Section 4 below. As in Fig. 6,
glacial valley formation selects a preferred wavelength or spacing that
is related to the values of τy and μc. Mean spacings are harder to
quantify precisely in this case due to the more complex (i.e. cratered)
nature of the pre-glacial landscape, but estimates for glacial valley
spacing predicted by the model are approximately 10–30 km for the
two values of μc chosen (with increasing spacing for the higher value
of μc). This range of values is consistent with characteristic spacing of
cirque-like basins of the Argyre and Hellas regions of Mars, which also
range from approximately 10 to 30 km.

4. Discussion and conclusions

The model results in this paper provide a preliminary basis for
understanding the controls on the spacing of low-order glacial valleys
on Earth and Mars. The results suggest that valley slope, the threshold
basal shear stress for ice motion, effective ice viscosity, bed friction,
and gravity all control the spacing of low-order glacial valleys. Based
on the characteristic scales of glacial valley spacing on Earth (1–3 km)
and Mars (10–30 km) and the model prediction λmax = 2ðτy = sin θÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π2μc= ðρgÞ23
q

, the inferred values of the product of μc is in the range of

Fig. 8. Illustration of the model results with initially-fluvially-dissected topography. (A) Initial topography input to the model, produced by running a stream-power model of
bedrock channel erosion by fluvial processes to an approximate topographic steady-state condition. (B) Map of the final bed topography predicted by the numerical model with
τy=0.4 bars and μc=1.0 m Pa−1 after 3 km of maximum erosion has occurred.

Fig. 7. Plots of glacial valley spacing measured from output of the numerical model with
a plateau-dominated initial condition (see Figs. 5 and 6) for a range of values of τy and
μc. Note logarithmic scales on both axes. Straight lines correspond to the power-law
relationship between spacing and μc predicted by the linear stability analysis.
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0.01–0.1 m Pa−1 for terrestrial paleoglaciers in the western United
States, assuming a typical bed slope of 0.1 and a yield stress of 0.3 bars.
Given that bed slopes/relief ratios are 2–6 times lower on Mars, the
model predicts that glacial valley spacing on Mars will be approxi-
mately 2–6 times greater than on Earth, all else being equal. As such,
lower bed slopes can partly account for why glacial valley spacing on
Mars is more than an order of magnitude greater than on Earth. Since
ice viscosity is strongly controlled by temperature, the model also
suggests that differences in ice temperature between the two planets
may also account for part of the difference in the characteristic scales
of glacial valley formation.

Fig. 10 plots the relationship between the rate coefficient in Glen's
flow law (1952), A, and ice temperature T. For a given basal shear
stress, the values of μ and A are inversely proportional, so the data
plotted in Fig. 10 provides a basis for relating μ to the mean ice
temperature T. Solid circles in Fig. 10 are the values for A
recommended by Paterson (2000) based on measured data for
terrestrial glaciers (higher temperatures) and a model based on
thermally-activated creep (lower temperatures). The temperature of
glacial ice varies as function of depth below the surface of the glacier.
As a result, viscosity will also vary with depth. Temperatures at the
base of a glacier are controlled by the mean annual temperature at the
surface, the geothermal gradient, the friction produced by sliding
along the bed, and the heat released or absorbed by freezing or
melting, respectively. The vertically-averaged ice temperature in a
warm-based glacier can be roughly approximated, however, as the
average of 0 °C (i.e. the temperature near the bed) and the mean
annual surface temperature. Ice a fewmeters below the glacier surface
will be equilibrated to the mean annual surface temperature while ice

near the base of the glacier must be close to 0 °C (assuming a warm-
based glacier). Colder bed conditions are possible, of course, but do
limited geomorphic work if the temperature of the ice is significantly
below 0 °C because the ice will be frozen to its bed and no sliding will
occur. The modern mean annual surface temperatures of terrestrial
glaciers are in the range of−20 to 0 °C. Higher temperatures do occur
in outlet glaciers that extend far out into the ablation zone, but those
cases are not relevant to the low-order glacial valleys considered here.

Fig. 9. Maps of the final bed topography predicted by the numerical model with an initially-cratered domain 128×128 km, illustrating the dependence of the model on the
fundamental parameters. (A) Initial topography. Results for τy=0.4 bar and (B) μc=1.0 m Pa−1, (C) μc=10.0 m Pa−1.

Fig. 10. Plot of the relationship between the coefficient in Glen's flow law (1952), A, and
ice temperature T. Solid circles are values recommended by Paterson (2000) based on
measured data for terrestrial glaciers (higher temperatures) and models for thermally-
activated creep of ice (lower temperatures). Common ranges for terrestrial glaciers and
estimated range for Martian mid-latitude glaciers also shown.
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In the Martian midlatitudes from 45° to 60°, mean annual modern
surface temperatures are in the range of −70 to−40 °C based on the
methods of Leighton and Murray (1966). Using these temperature
ranges, we can approximate the depth-averaged temperatures of
glacial ice on Earth and Mars to be within a range from −10 to 0 °C
and−35 to−20 °C, respectively (Fig. 10). Of course, temperatures on
both Earth and Mars are a function of climate (glacial/interglacial
cycles on Earth and variations in orbital obliquity on Mars). As such,
any estimate based on modern temperatures is only a rough
approximation. Nevertheless, based on the data illustrated in Fig. 10
and the assumption that relative temperatures between Earth and
Mars today are broadly applicable to past epochs, it is possible to
estimate that the value of μc for Martian midlatitudes is approx-
imately 30–50 times higher than the value for terrestrial paleogla-
ciers, i.e. in the range of 0.3–5.0 m Pa−1 if we assume μc is in the range
of 0.01–0.1 m Pa−1 on Earth and that the value of the bed friction c
remains the same. Values within this range were chosen for the
initially-cratered experiments illustrated in Fig. 9. Those experiments
predict characteristic glacial valley spacings in the range of 10–30 km,
i.e. within the range of spacings observed on Mars. It should be
emphasized that the larger value of valley spacings onMars cannot be
uniquely interpreted in terms of differences in bed slope and
temperature-dependent viscosity. Gravity does play a role in
controlling spacing, as indicated in Eq. (18), but this effect is likely
to be partially offset by lower threshold basal shear stresses on Mars,
as documented by Banks and Pelletier (2008) based on a comparison
of the yield stresses inferred from the geometries of modern ice caps
on Earth and Mars. Nevertheless, the hypothesis that differences in
bed slope and ice viscosity play the dominant roles in controlling the
difference in characteristic scales of glacial erosion is consistent with
the model results and independent constraints available on model
parameters.

In this paper we developed analytic and numerical solutions of a
coupled numerical model for alpine glacial flow and subglacial
bedrock erosion to quantitatively determine the controls on the
spacing of low-order glacial valleys. The characteristic spacing of
glacial valleys produced by the model is controlled by a competition
between the thickening of ice flow into incipient glacial valleys, which
acts to enhance flow and valley deepening, and viscous drag, which
acts to limit flow and deepening. The glacial valley spacing that
represents the best compromise between these two competing effects
is found to be a function of valley slope, the threshold basal shear
stress for ice motion, the effective ice viscosity, a bed-friction
parameter, and gravity. The model predicts that glacial valleys on
Mars are larger than those on Earth, based primarily on differences in
valley slope and temperature-dependent ice viscosity between the
two planets.
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