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Abstract

Purpose of Review Computational and mathematical modeling have become a critical part of understanding in-host infectious
disease dynamics and predicting effective treatments. In this review, we discuss recent findings pertaining to the biological
mechanisms underlying infectious diseases, including etiology, pathogenesis, and the cellular interactions with infectious agents.
We present advances in modeling techniques that have led to fundamental disease discoveries and impacted clinical translation.
Recent Findings Combining mechanistic models and machine learning algorithms has led to improvements in the treatment of
Shigella and tuberculosis through the development of novel compounds. Modeling of the epidemic dynamics of malaria at the
within-host and between-host level has afforded the development of more effective vaccination and antimalarial therapies.
Similarly, in-host and host-host models have supported the development of new HIV treatment modalities and an improved
understanding of the immune involvement in influenza. In addition, large-scale transmission models of SARS-CoV-2 have
furthered the understanding of coronavirus disease and allowed for rapid policy implementations on travel restrictions and
contract tracing apps.

Summary Computational modeling is now more than ever at the forefront of infectious disease research due to the COVID-19
pandemic. This review highlights how infectious diseases can be better understood by connecting scientists from medicine and
molecular biology with those in computer science and applied mathematics.
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Introduction

Infectious diseases are caused by organisms or pathogens
(bacteria, viruses, fungi, or parasites). The symptoms and
etiology of infectious diseases vary widely, and this

This article is part of the Topical Collection on Current State of the
Science of Disease Modeling

P< Morgan Craig
morgan.craig@umontreal.ca

Department of Mathematics and Statistics, Pavillon
André-Aisenstadt, Université de Montréal, Montréal, QC H3C 3J7,
Canada

Sainte-Justine University Hospital Research Centre,
Montreal, Canada

Department of Pediatrics, University of Tennessee Health Science
Centre, Memphis, USA

Natural Science Division, Pepperdine University, Malibu, USA

translates to vastly different treatments and case fatality
ratios. As such, different approaches are needed to combat
each disease, putting a strain on public health resources.
Mathematical and computational modeling have long been
employed to combat infectious diseases and improve the
understanding of their development, dispersion, and treat-
ment [1], with techniques applied to modeling one disease
being largely translatable to another. The first application
of mathematical modeling in infectious diseases arose in
1766, when Daniel Bernoulli developed a mathematical
model to analyze the mortality rate of smallpox [2]. Since
then, the field of epidemiological modeling has expanded
to encompass models of varying complexity accounting for
a multitude of scales, including within-host pathogen dy-
namics [3¢, 4] and social, economic, and demographic
host-host dynamics [5, 6].

Infectious disease models have been used to better under-
stand and predict contagion dynamics ranging from the intra-
cellular level to the within-host scale to between-host interac-
tions (Fig. 1). Mathematical modeling allows for the
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Fig. 1T Modeling infectious diseases occurs at multiple scales. At the
intracellular scale, models have been used to understand the
pathobiology of infectious pathogens, their replication, and within-host
cellular dynamics so that more effective and targeted treatments may be
developed. Left panel: Agent-based models can be used to model
intracellular dynamics where the probability of infection is a function of
receptors r and the movement of pathogens can be described as discrete
lattice jumps with a given probability p; ;. Center panel: A large majority
of infectious diseases cause a significant systemic reaction and can be

integration of a mechanistic understanding of biological pro-
cesses into precise and logical structures [7]. A correctly spec-
ified mathematical model reproduces observed empirical pat-
terns and enables predictions of the impact of changing con-
ditions on real-world outcomes [7]. Many techniques are used
to model infectious diseases, including multiscale models [8],
stochastic modeling [9], game theory [10], continuous single-
or multi-variable models [11], and, more recently, machine
learning and artificial intelligence [12]. Modeling therefore
plays a crucial role for predicting, assessing, and controlling
potential outbreaks [2] and offers practically useful means for
policy makers to evaluate the potential effect of intervention
strategies [9].

Although infectious vectors are unique, most between-host
dynamics are modeled using the susceptible-infected-
recovered (SIR) model [13, 14]
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captured at both the tissue- and systemic-level by in-host models. ODE
systems where target cells (7), infected cells (/), and virus (V) modeling
infection, replication, and cell death have been used to understand within-
host dynamics. Right panel: At the population level, the spread of
infectious diseases within a local community to the global scale is
crucial to our understanding of how diseases can be stopped and
pandemics prevented. Similar modeling systems to within-host models
can be used to model disease epidemiology where susceptible individuals
(S) become infected (/) and then eventually recover (R)

where S(?), I(f),and R(f) are the number of susceptible, infect-
ed, and recovered individuals at time ¢, (3 is the transmission
rate, and k is the recovery rate. Extensions of the SIR model
have proven useful to study the spread of dengue [15], malaria
[16], and SARS-CoV-2 [17], among others. Stochasticity can
be incorporated by describing disease spread progression by a
chain binomial model, where the number of susceptible mem-
bers S, A, at time £+ At is a binomial random variable de-
pending on S;, 7, and the recovery rate [9]. This highly versatile
SIR approach has also inspired mathematical investigations of
disease dynamics within the host. Existing reviews of within-
host modeling have described in depth the extensive roles that
mathematical models have played in elucidating effective im-
mune responses to viruses and bacteria [18-20], improving
drug or therapeutics treatments [21], and informing the design
of vaccines [22, 23] to protect against pathogens.

Here we survey numerous recent examples to demon-
strate the modern reach of modeling of infectious dis-
eases caused by bacteria, parasites, and viruses. We dis-
cuss specific examples at different scales where state-of-
the-art research employing mathematical and computa-
tional modeling, bioinformatics, machine learning, and
artificial intelligence was used.
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Bacteria

Developing novel ways to treat bacterial pathogens often re-
quires multifaceted, synergistic approaches. We highlight as
examples recent impactful research into the infectious dynam-
ics of Shigella and Mycobacterium tuberculosis and the ever
pressing issue of antibiotic resistance.

Shigella

The ongoing effort to design a safe and effective vaccine
against Shigella, a deadly dysentery-causing bacterium, has
not yet produced a licensed compound despite decades of
laboratory work and clinical trials. Fundamentally understand-
ing the underlying immune correlates of protection is consid-
ered crucial to success in vaccine design [24, 25], and two
distinct mathematical approaches have been applied to identi-
fy key immune interactions from Shigella vaccine trials and
human challenge studies. Arevalillo et al. [26] used a random
forest machine learning algorithm, classification and regres-
sion trees (CART), and statistical approaches to determine that
immunoglobulin-G (IgG) antibody in the blood and
immunoglobulin-A (IgA) antibody-secreting cells correlate
with immune protection against Shigella. Davis et al. [3e,
27] built mechanistic differential equation models of the gut
immune response to Shigella in humans (Fig. 2a) and con-
cluded that antibody-based vaccines that target lipopolysac-
charide or proteins on Shigella’s outer membrane are unlikely
to sufficiently protect against severe disease, deploying sensi-
tivity analysis to identify other possible targets for further
study.

Mycobacterium tuberculosis

Infection with Mycobacterium tuberculosis is the precursor to
tuberculosis (TB) disease and is responsible for more deaths
than any other infectious diseases, some 1.5 million per year
[28]. Until recently, one-third of the population was thought to
be carrying a latent TB infection. Houben and Dodd [28]
sought to quantify the true proportion of latent infections by
constructing trends in annual risk in infection (ARI) using a
combination of direct ARI estimates and Gaussian process
regression to represent data uncertainty and any years without
data. Their estimate of the global burden of latent TB infection
was 23%, in contrast to the commonly cited proportion of one-
third.

Given the latent TB burden, drastic changes are required to
achieve the 2050 target of complete elimination of TB [29].
The renewed urgency to develop effective treatments for TB
infection has resulted in large-scale phenotypic screens that
led to thousands of new compounds with activity in vitro
[30+]. While promising, a major obstacle is identifying com-
pounds worthy of in vivo clinical investigation. The careful

curation of 70 years of TB data enabled machine learning
models to improve selection of small molecule, anti-
tubercular compounds with in vivo activity. Using machine
learning classification models (Bayesian, support vector ma-
chines, and recursive partitioning), Ekins et al. [31] first pre-
dicted eight new compounds that should be effective in
treating TB. Extending their model to consider 60 additional
small molecules with in vivo data, they were able to classify
41 of these as actives [30¢]. Using a new data visualization
approach called honeycomb visualizations, they then clus-
tered the compounds and showed how the 60 new compounds
are dispersed, providing a novel way for compound activity
and potential to be assessed [30¢].

As an important component of the total global burden, TB
in children is a significant public health problem [5]. Using a
mechanistic mathematical model of TB in children with drug
resistance patterns, Dodd et al. [5] produced country-level,
regional, and global estimates of drug-resistant infection and
disease and estimated that 850,000 children developed TB in
2014. Importantly, their results suggested that there was a
higher level of drug-resistant TB in children than had been
diagnosed, which has redirected the focus of TB modeling
to multidrug-resistant tuberculosis [32].

Antibiotic Resistance

Antibiotics remain the cornerstone of modern medicine; how-
ever, antibiotic resistance (ABR) presents a major issue for
future generations [7]. It has long been known that antibiotics
exert a selective pressure that results in resistant strains [33].
This Darwinian process has been the focus of numerous math-
ematical models of ABR and a variety of other diseases (e.g.,
cancer [34]). By considering interaction networks, modeling
transmission of resistance has important consequences for
controlling infectious disease spread [35, 36]. For example,
from a dynamic transmission model tracking ABR acquisition
in humans, Knight et al. [36] found that ABR is most likely
community acquired rather than nosocomial, implying that
antibiotic stewardship efforts should include the community.

ABR spread in hospitals, including healthcare-associated
urinary tract infection (HAUTI), is another major concern as-
sociated with increased morbidity and mortality risks. Using
Bayesian weighted incidence syndromic antibiogram
(WISCA), Tandogdu et al. [37] compared HAUTI antibiotic
coverage between urology departments in Europe and estimat-
ed that the chance a specific antibiotic provided coverage of
causative pathogens when used as a first-line treatment was
63.4% for amoxicillin and 33.4% for imipenem (pooled over-
all incidence). Their analysis highlighted an 81% variation in
the choice of antibiotics between HAUTI conditions (cystitis,
pyelonephritis, and urosepsis), suggesting that personalized
empirical antibiotic choices were needed based on causative
pathogens and symptoms.

@ Springer



152

Curr Pathobiol Rep (2020) 8:149-161

Shigella
gella o IgA S, %,
Lumen AE
Epithelium %oSc M o
o Lamina Propria Mo By
Q000 Doo » IgA G ToR St Aq
P / O.. Macrophage 4 Oy . T
\ 1A A M\ i 4 p/uNl G Pa
y 7 @ R ! A-Plasma B SN e P,
Yoy Y N’ Cell ‘Xp
IgG T s T g (Naive) *-f::;T P Y% Mg:e ,f“" e
S o - ‘)\? ; p ';MA
M
G-Plasma G-Memory A-Memory
Cell B-Cell B—Cell

Index patient
infected

Transmitted/acquired
drug resistance

Strain A “ %;@

Strain B “ %;@

Strain C * %» —ep §
Strain D * %» _—

(1) Matched on number of
drug resistance phenotypes

Fig.2 Within-host and between-host modeling of bacterial infections. (a)
Davis et al. [3¢] developed a model for the key interactions between
Shigella and the host’s humoral immune system using a detailed ODE
system represented in their schematic. The distinction between bacterial
pathogenesis (blue) and antibody and B cell dynamics (red) is denoted in
a biological representation (left) and in the mathematical model (right).
Prior to infection of epithelial cells, Shigella, S, can be removed by
antibodies IgA, A, IgG, and G or engulfed by macrophages. Reprinted

Multidrug antibiotic resistance (MDR) further presents a
major issue in the treatment of TB. Applying statistical infer-
ence strategies (including a prior hypothesis and data-mining
procedure) to a case-control study comparing drug resistance-
associated mutations from Mycobacterium tuberculosis in
households with transmission (Fig. 2b), Salvatore et al. [32]
characterized fitness of different multidrug-resistant TB
strains. They concluded that strains carrying the katG
Ser315Thr mutation without the rpsL Lys43Arg substitution
were associated with an increased probability of generating
secondary cases.
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open access [3¢]. (b) Salvatore et al. [32] developed a method to study
drug resistance-associated mutations from Mycobacterium tuberculosis
strains causing multiple cases in a household. Households were
matched by the number of antibiotics to which the household strain was
resistant, the number of household contacts and the follow up time. Their
case-control design presents a useful approach for assessing in vivo
fitness effects of drug resistance mutations. Reprinted with permission
from [32]
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Without new antibiotics, other treatment modalities have
been sought to combat ABR. Encouragingly, antibacterial
peptides, essential components of host defenses against mi-
crobial infections, have been shown to kill multidrug-resistant
microorganisms, including bacteria [38]. To rationally design
short, unnatural amino acids with potent antimicrobial activi-
ty, Wang et al. [38] combined computer-aided modeling,
in vitro susceptibility tests, peptide characterization, and ma-
chine learning to develop statistical regression predictors to
guide and improve the molecular design and structural opti-
mization of unnatural antibacterial peptides. Overall, they
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demonstrated that ABPs with hybrid structure properties had
the highest potency against three bacterial strains
(Staphylococcus aureus, Pseudomonas aeruginosa, and
Escherichia coli), motivating the use of in silico screens
against ABR and other pathogens.

Parasites
Malaria

A number of within-host models describing the dynamics of
malaria infection (Fig. 3) have been developed to predict out-
comes with and without preventative measures and antimalar-
ial drug treatment [4, 39, 4041, 42+, 43]. By combining
mechanistic model simulations with statistical learning,
Georgiadou et al. [39] predicted that slower parasite growth
and a longer duration of illness could distinguish severe ane-
mia from cerebral malaria in infected individuals. They also
found that the growth of Plasmodium falciparum is inhibited
by cathepsin 9 and matrix metalloproteinase 9, suggesting
potential therapeutic uses for these encoding proteins [39].
Using nonlinear models and individual-based models for ma-
laria transmission, Hogan et al. [42+¢] simulated vaccine effi-
cacy and antibody titers induced by B cell responses and
found that the initial vaccine efficacy, duration, dosage, and
timing of vaccination had different outcomes on the number
of clinical cases averted [42¢, 44, 45], which indicates that
prioritizing initial efficacy over duration of protection may be
advantageous for a childhood malaria vaccine with subopti-
mal efficacy. Further, their results suggest that a greater num-
ber of childhood clinical cases in areas of high malaria
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Fig. 3 Standard models for malaria. Khoury et al. [4] reviewed the main
within-host models for malaria infections. (a) The Plasmodium
falciparum life cycle begins with (A) infection in a host by an
infectious mosquito. (B) Sporozoites traverse the bloodstream to the
liver where they infect liver cells and replication and rupture to release
merozoites into the blood. (C) Merozoites invade red blood cells (RBCs),
and the parasite matures into schizont, which rupture RBCs to create more
merozoites. (D) Some parasites commit to sexual development producing

transmission could be prevented if initial vaccine efficacy
was high rather than providing lengthy protection [42¢¢].

Within-host models of host-parasite interactions paired
with pharmacokinetic and pharmacodynamic (PK/PD)
models have also been used to predict the mechanisms
of action and efficacy of various antimalarial therapies
[43, 46-48]. In a recent clinical trial, modeling the effects
of the novel antimalarial drug SJ733 predicted that this
compound induces rapid parasite clearance and two-
staged efficacy, with maximal results following recircula-
tion of the drug [43]. PK analysis also found that the half-
life of SJ733 is comparable with other fast-acting antima-
larial drugs. The Guar et al. [43] model captured oscilla-
tory parasite dynamics, suggesting distinct rates of para-
site growth and clearance between individuals, and pre-
dicted that increased drug exposure could sustain parasitic
decline, motivating the need for a follow-up study aiming
to maximize exposure.

Examining malaria dynamics across biological scales has
also elucidated important insights into the effects of antima-
larial drugs, disease dynamics, and host immune control [49,
50]. For example, Cao et al. [51] linked gametocyte dynamics
(sexual blood stage of Plasmodium, transmitted from human
to the mosquito) with epidemiological dynamics to predict
that human-to-mosquito transmissibility is influenced by the
level of gametocytemia, which is altered by the sexual com-
mitment rate and gametocyte sequestration time. Lonnberg
et al. [52] used single-cell RNA sequencing and Gaussian
process modeling to reveal a close molecular relationship be-
tween CD4™ T cell subsets in malaria infection and inflamma-
tory macrophages in controlling the fate of differentiating
CD4" T cells. Lastly, Legros and Bonhoeffer [49] assessed
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gametocytes (E), which are then taken up by mosquitos during a blood
meal. (b) The standard ODE model of Plasmodium infection considers
uninfected RBCs (U) and parasitized RBCs (P), which are created when a
merozoite (M) infects an RBC. (¢—d) Age-structured models are also used
to model Plasmodium infection with either (¢) an ODE system
representing the stages of development of the parasitized RBC
compartment or its equivalent partial differential equation formalism.
Reprinted with permission from [4]
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the evolution of drug resistance by employing a multiscale,
stochastic framework and found that treatment coverage has a
stronger impact on disease prevalence and should therefore
constitute the primary focus of disease control efforts over
treatment efficacy, which was found to mainly affect the
spread of resistance. Interestingly, this work suggested that
the spread of resistance was generally less likely in areas of
intense transmission [49].

Viruses

From intracellular viral replication to global disease pandemics,
viral-borne infectious diseases have long been studied using
mathematical modeling, focused especially on human immuno-
deficiency virus (HIV) and influenza infections (Fig. 4). This
work is now being leveraged to study SARS-CoV-2. Modeling
of the immune response to viruses has also helped to inform
treatment of viral diseases [34, 53—57], and a recent study also
considered viral-borne plant disease epidemics [58].

HIV

The field of viral dynamics modeling has been instru-
mental for understanding the emergence of HIV and the
ensuing epidemic, particularly for understanding the
evolution of host/virus interactions [59-67], predicting
treatment responses [68—70], and designing novel and
more effective therapeutic approaches [69, 71, 72e].
Both Hill et al. [73¢¢] and Perelson [20] provide exten-
sive reviews of viral dynamics in the context of HIV
and in interaction with the immune system.

Similar to the basic epidemic infection model in Egs.
(1), (2), and (3), the classic within-host mathematical
model of HIV infection is described by a population of
uninfected CD4+ target cells 7(¢), infected cells /(f), and
virus V(#) (Fig. 3a; see [73+¢] for a more detailed review).
The model has been shown to capture dynamics of both
acute and chronic infection [73¢] and can be extended
through quasispecies kinetics to capture the emergence
of multiple drug-resistant strains [72¢]. The ability to track
multiple mutations is particularly relevant to treatment, as
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Fig. 4 Viral modeling in HIV and influenza. (a) Hill et al. [73] described
how an augmented viral dynamics model can be used to simulate
antiretroviral therapy and the evolution of drug resistance in HIV.
Uninfected cells (U) become infected (/) from infection by virus (V).
Infected cells can become latently infected (L) and can be reactivated to
produce actively infected cells. Latently infected cells are a crucial
compartment to consider for long-term therapy outcomes as temporary
administration of fully suppressive therapy can falsely be predicted to
cure infection. Simulating an example of a drug taken daily with 70%
probability, the impact on the viral load, and R, for wild-type and resistant
strains is significantly different over 20 days. Reprinted open access [73].
(b) Smith [91] summarized the major components of modeling viral
infections, including innate and adaptive immune response (IR)
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dynamics. Viral dynamics are represented by an ODE viral kinetic
model with an eclipse phase (/;) and an infected cell clearance which is
a function of the infection cell population. Macrophages (M) play a major
role in the innacte IR clearing up virus and also producing cytokines
which block the production of new virions. In the adaptive immune
response, T cells (E) play a major role in the clearance of infected cells
with the addition of activated B cells (B) and antibody (A) production
leading to eventual viral clearance. Viral load dynamics observed in actue
and chronic infections can be significantly different depending on the
underlying viral and IR kinetics. Reprinted from Current Opinion in
Systems Biology, Volume 12, A.M. Smith, Validated Models of
Immune Response to Virus Infection, Page 47, Copyright (2018), with
permission from Elsevier
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HIV replicates by error-prone mechanisms [74] and ac-
commodates high levels of genetic diversity [75].

The advent of antiretroviral (ARV) drugs has been trans-
formative in the effort to reduce the number of HIV-related
deaths and yet has not fully controlled the epidemic.
Treatment with ARV drugs can be viewed as an overwhelm-
ing success, but the need for the lifelong management of treat-
ed HIV infections brings about several complicating factors.
Drug resistance may exist before treatment begins or evolve
over the long course of therapy, and ARV drugs (triple com-
bination of highly active antiretroviral therapy or HAART)
must be taken daily, and the consequences of poor adherence
can be severely detrimental to an individual’s health [76].
During therapy breaks, drug levels drop (Fig. 4a), and viral
replication can rapidly restart. This leads to immunologic
damage and to an increased chance of generating mutations
that produce drug-resistant strains [68]. Ngina et al. [77] stud-
ied HIV drug resistance with a quasispecies model describing
susceptible, wild-type (WT)-infected, mutant-infected latently
WT-infected treated with a reverse transcriptase inhibitor
(RTI), and mutant-infected RTI-treated cells in addition to
WT and resistant virions, and non-activated and activated
CD8+ T cells. Their interest was in applying control theory
to understand effective treatment with an RTI and a protease
inhibitor (PI) was accomplished by introducing control vari-
ables to represent each drug type and the degree of drug-
resistant mutation. This approach allowed the authors to con-
clude that bang-bang control was critical to apply to the mod-
el, given that they found that PI control of the mutant popula-
tion decreased much faster than that of RTIs.

Recent work in anti-HIV therapy has been focused on pro-
actively addressing the problems of ARV adherence and drug
resistance through developing alternatives to daily treatment
regimens. Some pharmacology-focused groups are working
towards extended- and sustained-release oral drug formula-
tions [78, 79], while others have explored alternative routes
of drug administration or delivery that allow for slower, con-
trolled release of ARVs [80, 81]. Activation of the latent HIV
reservoir has also been explored as a means of eradicating the
virus from the body [82], something that is not feasible with
current HAART.

Pre-exposure prophylaxis (PrEP) is currently available as a
daily two-drug pill. Similar considerations with respect to ad-
herence arise during PrEP; however, here poor adherence can
lead to an increased risk of transmission due to lower drug
concentrations in relevant tissues. Several long-acting and
extended-release drug delivery methods have also been sug-
gested for PrEP [83]. A novel method of addressing the need
for long-term suppressive coverage that reduces an individ-
ual’s pill-taking burden is the long-acting, gastric-retentive
drug delivery devices that sustainably deliver drugs over days
and months [84]. To that end, Kirtane et al. [71¢] developed a
gastric-retentive device able to deliver ARV for 7 days after

ingestion. To predict the impact on virologic suppression as
compared with commercially available drug, the authors de-
veloped a quasispecies model of HIV infection dynamics dur-
ing treatment with daily pills and the long-acting drug delivery
system that also accounted for variable adherence and predict-
ed that the novel, weekly long-acting device provided similar
suppression of wild-type and mutant, drug-resistant strains,
given a similar level of adherence. Further, they predicted that
the maximal concentration of the long-acting delivery system
could be reduced relative to daily ART while still maintaining
viral suppression.

Despite positive developments in long-acting oral ARV
formulations and other delivery methods, a major hurdle to
effective HIV cure is the presence of latent reservoirs (Fig. 4a)
and protected physiological sites that prevent eradication
within the host [85]. Quantifying the size of the viral reservoir
is thus critical to predicting infection dynamics, particularly
for individuals experiencing treatment interruption during
which viral loads rebound and resistant strains may be
established. Combining experimental and modeling work,
Wang et al. [86] identified the ability for CD4+ T cells infect-
ed with replication-competent virus to proliferate when T cell
receptors were stimulated or when stimulated by IL-7 to pro-
liferate. Interestingly, when these CD4+ T cells were clonally
expanded, certain clones persisted while others waxed and
waned. Their findings substantiate the idea that the mainte-
nance of the latent reservoir is provided by clonal proliferation
that must be balanced by infected cell loss in the latent reser-
voir. The eradication of the latent reservoir with vorinostat, a
drug used to manage persistent cutaneous T cell lymphoma
[87], has also been studied as a latency reversing agent (LRA)
in HIV-positive individuals who are on combination ART
[88]. In addition to activating HIV RNA, vorinostat also het-
erogeneously modulates host cell gene transcription.
Understanding the variable individual response is critical to
establishing safe therapeutic protocols that are durably effec-
tive. Ke et al. [82] constructed two models that incorporate the
basic viral dynamic model with new equations for the latent
reservoir where seeding occurs either directly from a pool of
sustainably activated cells or a delayed compartment. The
pharmacodynamics of ART and vorinostat were modeled by
blocking infection of target cells (ART) or the activation of
latently infected cells (vorinostat). Fitting to viral load data
from individuals enrolled in a vorinostat clinical trial showed
that the multistage latent activation model was better at de-
scribing early viral loads, suggesting that variability in the
distribution across the multiple activation stages accounts for
the heterogeneity in vorinostat responses.

For both the London and Berlin patients (two individuals
who received allogeneic hematopoietic stem cell transplanta-
tions with cells that do not express the CCRS receptor, which
is required for HIV entry into cells), LRA strategies have
proven fruitful. The successful design of ART interruption
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trials, where LRAs are administered and ART treatment is
suspended, rests upon correctly quantifying the viral reservoir
size and kinetics controlling rebound during ART cessation.
Hill et al. [89] identified ideal scheduling strategies by model-
ing these dynamics with a fully stochastic HIV viral dynamics
quasispecies model that accounts for productively infected
CD4+ T cells that release viral particles upon bursting or die
without burst. Their results predicted that sampling must oc-
cur at least every 2 weeks to reduce the viral rebound and
reservoir reseeding after ART interruption. Hill et al. [89] also
demonstrated how the criticality of consistent patient monitor-
ing to catching viral rebounds by applying their model to cases
of two patients in Boston who underwent hematopoietic stem
cell transplantation and ART cessation. Both patients ulti-
mately experienced viral load rebounds and required reintro-
duction of ART to achieve viral suppression. The authors
further concluded that the integration of mechanistic modeling
and Bayesian uncertainty analysis is a de facto requirement to
design effective and safe clinical trials. Gupta et al. [90e]
extended these analyses to study the London patient for dura-
ble HIV-1 cure. Viral loads from plasma, semen, cerebrospi-
nal fluid, gut biopsy, lymph node tissue, and cells were quan-
tified using ultrasensitive assays and qtPCR to measure HIV-1
RNA and DNA levels. A mathematical model was applied to
estimate the distribution of time to viral rebound given the size
of the latent reservoir and chimerism (target cell fraction)
which, combined with the Bayesian inference framework
established in Hill et al. [89], allowed for the estimation of
the probability of the number of cells remaining in the reser-
voir, and the likelihood no rebound would be observed off
ART over a given time. Excitingly, the model and sampling
observations suggest that the London patient has achieved
HIV-1 cure.

Influenza

Several mathematical models have been developed to quantify
the contribution of different immune responses and how they
regulate primary influenza virus infection and related viral and
bacterial coinfection (Fig. 4b, detailed review in [91ee, 92]).
Close comparison to data and, in some cases, follow-up vali-
dation studies have led to robust hypothesis discrimination
and verification of model-derived parameter estimates
(reviewed in [105¢¢]), including a strong likelihood that epi-
tope masking by antibodies reduces B cell stimulation during
subsequent influenza infections [93] and a substantial (85—
90%) inhibition of resident macrophages over the course of
influenza that facilitates bacterial complications [94, 95¢]. A
better understanding of the spatiotemporal dynamics and how
initial deposition and transport of virus throughout the respi-
ratory tract contribute to the infection have been the focus of
recent studies [96-99]. The models highlighted a potential for
extended viral shedding at the nasopharynx and the possibility
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for heterogeneous dynamics at the cellular and host levels.
These differences together with divergent dynamics during
multi-pathogen infections [94, 95, 100—102] may have robust
downstream consequences on influenza epidemiology [103].

Highly pathogenic viruses like SARS and HINTI can sig-
nificantly impact people’s lives causing severe health, social,
and economic damages [9]. Recent outbreaks of these viruses
stressed the urgency of effective research on the dynamics of
infectious disease spread. Ming et al. [9] developed an empir-
ically evaluated stochastic model that allowed the investiga-
tion of transmission patterns of infectious diseases in hetero-
geneous populations. They tested their model on surveillance
data from 2009 HIN1 pandemic in Hong Kong and showed
that it had a 20% mean absolute percentage error in terms of
the forward predication. Moving into the future, modeling
pandemics in this way could provide valuable insight for pub-
lic health authorities to predict disease spread and guide con-
trol efforts [104] developed a system to detect infected pa-
tients by classification using vital signs, respiration rate, heart
rate, and facial temperatures and determining those at higher
risk for influenza using neural network and fuzzy clustering
method.

SARS-CoV-2

Understanding the early transmission dynamics of SARS-
CoV-2 infection and evaluating effective control measures is
crucial for controlling spread and preventing undue death
from coronavirus disease (COVID-19). To estimate these ear-
ly dynamics, Kucharski et al. [6] combined a stochastic trans-
mission model with data measuring new cases within and
outside Wuhan, China, the original epicenter and found that
the median effective reproduction number in Wuhan declined
from 2.35 to 1.05 within 2 weeks of the introduction of travel
restrictions, and a > 50% change of infection establishing in
locations with similar transmission potential to Wuhan follow-
ing introduction of four independent infections. To infer the
proportion of early SARS-CoV-2 infections that went unde-
tected and their contribution to the virus spread, Li et al. [17]
used a network dynamic metapopulation model and Bayesian
inference to estimate that ~ 86% of cases were undocumented
before travel restrictions were implemented. As in other infec-
tious diseases, it is crucial to understand the routes and timings
of transmission to impose optimal isolation, physical distanc-
ing, decontamination, and hygiene measures. Flaxman et al.
[105¢¢] used a mathematical model originally developed for
influenza to investigate the effects of non-pharmaceutical in-
terventions on healthcare demand, soon after which multiple
countries implemented more stringent distancing and stay-at-
home measures. To this end, Ferretti et al. [106] developed a
mathematical model where infectiousness varied as a function
of time since infection, which suggested epidemic control by
manual contact tracing was infeasible and that the use of a
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contact-tracing app with memory of contact proximity and
notifications to contacts could aid effective containment.

A case study for the dynamics of the COVID-19 pandemic
was the Diamond Princess cruise ship. After a patient tested
positive on the 1st of February 2020, 3711 passengers and
crew members were quarantined and tested extensively
[107]. Adjusting for delay from confirmation to death, case
and infection fatality ratios for COVID-19 on the Diamond
Princess ship were estimated by Russell et al. [107] as 2.6%
and 1.3%, respectively. Their analysis highlighted the impor-
tance of adjusting for delays from confirmation to outcome in
real-time establishment of fatality risk for COVID-19 and
provided early necessary insight into disease severity.

Characteristics of COVID-19 typically include a range of
respiratory symptoms (e.g., fever and cough) [108]. In severe
cases, symptoms progress to acute respiratory distress syn-
drome (ARDS) and are frequently accompanied by a variety
of inflammatory indications [109], such as increased IL-6 and
delayed type I IFN. A major challenge has been distinguishing
risk factors for severe versus mild manifestations. To that aim,
a large sweep of within-host viral dynamics models is current-
ly being rapidly developed to understand SARS-CoV-2 dy-
namics and therapeutic efficacy all of which are still in the pre-
print stage.

Conclusions and Future Perspectives

Innovative mathematical and computational modeling have
led to significant advancements in preventing disease spread
and improving treatment of infectious diseases. Modeling ef-
forts have been deployed in close collaboration with experi-
mentalists, clinicians, and public health specialists to provide
a pathway towards rational and implementable studies at the
bench, bedside, and policy levels. The global incidence of
infectious diseases requires a comprehensive and interdisci-
plinary approach to achieve goals like the complete eradica-
tion of TB by 2050 and the 90-90-90 target (90% of all people
living with HIV will know their HIV status; 90% of all people
with diagnosed HIV infection will receive sustained antiretro-
viral therapy; 90% of all people receiving antiretroviral thera-
py will have viral suppression) for HIV treatment. This is
epitomized by the modeling, scientific, and global
community’s massive ongoing efforts to understand the
SARS-CoV-2 virus and end the ongoing pandemic. The stud-
ies highlighted here have aided governance decisions that fa-
cilitate reduced fatality rates and disease spread and motivate
fundamental biomedical investigations at multiple scales (e.g.,
intracellular, within-host, and between-host within contained
communities or worldwide). Rapid real-time development of
models for the systemic immune response has been seen
throughout the world. Some of which use tissue-simulating
agent-based models, and others use simple ODE systems

calibrated to SARS-CoV-2 viral load measurements. While
still in progress, this research is helping improve the under-
standing of COVID-19 and to predict distinguishing factors of
severe and mild disease.

Given the historic contributions of mathematical and com-
putational modeling to understanding the spread of infectious
diseases and their effects within individuals, we expect that
modeling will continue to play a major role in global disease
response, treatment, and prevention.
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