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A temporal-causal network model for the effect of emotional charge on
information sharing
Rosa Schoenmaker, Jan Treur, Boaz Vetter
Behavioural Informatics Group, Vrije Universiteit Amsterdam, The Netherlands

A B S T R A C T

In this paper a cognitive model is presented for sharing behaviour (retweeting) on Twitter, addressing the underlying cognitive and affective processes. The model
explains how the use of emotions in addition to information can cause an amplification in the diffusion of this information. It was designed according to a Network-
Oriented Modeling approach based on temporal-causal network models. By mathematical analysis of stationary points it was verified that the implemented network
model does what is expected from the design of the model. In addition, the equilibrium equations of the network model were solved algebraically by a symbolic
solver and the solutions were shown to relate well to empirically expected outcomes. Validation by parameter tuning was also performed, and also shows a good
approximation of empirically expected outcomes.

Introduction

With the introduction of the Internet, the diffusion of information
got an entirely new dimension. Every individual person, organization or
community is able to deploy the Internet for their very own commu-
nication or information diffusion purposes. Social media or social net-
working sites, have further strengthened this ability (Ellison and Boyd,
2013). The tremendous successes of the Internet and of these media in
recent years have impacted society in terms of public discourse and
communication greatly (Boyd and Nicole, 2007). Earlier, the barrier for
someone to spread a piece of information through a community was at
the cost of the infrastructure required to reach the audience. Since the
mass adoption of social media has changed the physical infrastructure
of information diffusion, the widespread access to Internet has almost
entirely eliminated this barrier.

Nowadays, this has led to huge amounts of information being ev-
erywhere and our lives being increasingly determined by analysing and
processing this information (Prensky, 2001). However, this massiveness
causes that the likelihood of this information actually being diffused
and reaching a large audience decreases significantly. The overload of
information makes that people can no longer see the wood for the trees
(Eppler & Mengis, 2004). Therefore, factors such as characteristics of
the sender and the content of the message become more important for
the diffusion of the information. Thus, the rise of the Internet and social
media have eased the spread of information while simultaneously it
made it more difficult to actually reach a large audience.

For several fields, such as marketing and politics, diffusing in-
formation among a large audience is vital. Therefore, the question of
how diffusion of information can be facilitated and accelerated is very

relevant to those fields and has been covered by various studies (e.g.,
Huffaker, 2010; Nagarajan, Hemant Purohit, & Amit Sheth, 2010).
Whereas Huffaker (2010) puts forward the impact of the characteristics
of the sender and argues for employing opinion leaders, the others
emphasize the effect of adjusting the content of the information, for
example, by including photos, videos, or “call-for-actions” (Nagarajan,
2010). Stefan Stieglitz and Dang-Xuan (2013) found that next to con-
tent-related features and user and network characteristics, emotions are
also an important driver for information diffusion. Specifically, they
found that emotionally charged Twitter messages are ‘retweeted’ (i.e.,
shared) more often compared to messages without emotional charge.
Still more background can be found in (Falk, O’Donnell, and Lieberman,
2012; Falk and Scholz, 2018; Scholz and Falk, 2017).

By focusing on the cognitive and affective processes behind this
sharing behaviour from a computational causal modelling perspective,
this paper aims to develop a deeper understanding of the empirical
findings of Stefan Stieglitz and Dang-Xuan (2013). To achieve this,
based on the Network-Oriented Modeling approach described in (Treur,
2016) a temporal-causal network model was designed for a person
processing a ‘tweet’. This model clearly represents the integrated cog-
nitive and affective processes that explain how the use of emotions can
cause an acceleration in the diffusion of information. Example simula-
tions illustrate how emotion indeed affects the spread of the informa-
tion. The temporal-causal network model has been analysed and ver-
ified mathematically on stationary points and equilibria, and validated
by comparing it to empirical information.

In the paper, first in Section “Drivers for sharing behaviour on
twitter” the drivers for sharing behaviour are discussed in some depth.
Next, in Section “The temporal-causal network model” the model is
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introduced, and in Section “Example simulation results” this model is
illustrated by example simulations. In Section “Mathematical analysis
of the model” it is shown how the model has been verified by mathe-
matical analysis. Section “Validation of the model” shows how valida-
tion has been performed. Finally, Section “Discussion” is a discussion
section.

Drivers for sharing behaviour on Twitter

In order to develop the temporal-causal model, a comprehensive
understanding of the underlying concepts and processes of sharing
behaviour on Twitter must be established. Therefore, first, the func-
tioning of sharing on Twitter, i.e. ‘tweeting’ and ‘retweeting’ is ex-
plained briefly. Then, the different factors of a tweet that can drive this
sharing behaviour are described where after the influence of the driver
‘emotion’ is elaborated in more depth. When a user retweets a tweet,
the message is spread to a new set of audiences (i.e. the ‘followers’ of
the retweeter). Previous studies have determined that a retweet, in
addition to sharing the information, can have functions such as en-
tertaining of a certain audience, e.g. Boyd, Scott Golder, and Gilad
Lotan (2010), but in most cases, it functions as publicly agreeing with
the message of the tweet (Metaxas et al., 2015).

Sharing behaviour

Whether someone appreciates or agrees with a tweet depends on
multiple factors and whether that person is likely to publicly share that
agreement, thus to retweet, is depending on even more factors (Suh,
Lichan Hong, Peter Pirolli, & Chi, 2010). For this agreement and like-
liness to retweet, the content of the information (e.g., the topic and URL
or image inclusion), the user and network characteristics (e.g., whether
the sender is a peer or an influential person), and the affective di-
mensions of the messages are important factors. These factors are
considered as the drivers of sharing behaviour and are described re-
spectively.

Content-related features that drive sharing behaviour on Twitter are
analysed by Nagarajan (2010). They identified that tweets including a
“call for some sort of social action” and tweets functioning as “collec-
tive group identity-making” or as “crowdsourcing” get significant less
retweets than tweets just providing information. Moreover, according
to Zhang, Peng, Zhang, Wang, and Zhu (2014), the evaluation of in-
formation in these tweets is critical to the sharing behaviour. They
found that this evaluation is dependent on the topic of the message, the
length of the tweet and the availability of supplementary information
such as an URL.

User and network characteristics, or ‘context-related features’ as
named by Zhang et al. (2014), are also important drivers for sharing
behaviour. They found that the author’s activeness on Twitter influ-
ences the readers’ evaluation and appreciation of the tweets positively
until the author is overactive which may be regarded as spamming
behaviour. Besides, an author’s number of followers positively moder-
ates the impact of his/her degree of activeness on the sharing behaviour
of its tweets. Stefan Stieglitz and Dang-Xuan (2013) name these influ-
ences according to the concepts of perceived social capital and popu-
larity.

In addition to the content-features and user and network char-
acteristics of the tweet, emotional aspects of messages are also con-
sidered as factors influencing sharing behaviour. Stefan Stieglitz and
Dang-Xuan (2013) have studied this effect for political Twitter mes-
sages and showed that affective dimensions (positive and negative
sentiment) positively influence the amount and the time rate of the
retweets.

Effect of emotions on sharing behaviour

Almost two decades ago, Bagozzi (1999) analyzed the role emotions

in messages and already stated implications of emotions for volitions,
goal-directed behaviour, and decisions to help. A bit more recently,
Forgas (2006) noted that emotions appear to influence what things we
process and how we do that by affecting what we notice, what we learn,
what we remember, and the kinds of judgments and decisions we make
(p. 273). Zhang et al. (2014) even state that the degree of emotional
expression in a post will positively affect its popularity. This is mainly
because, in the case of written communication, emotional stimuli (e.g.,
words or framing) of messages may elicit extensive affective and cog-
nitive processes (Kissler, 2007). These mental processes can account for
higher levels of attention and for higher levels of arousal towards the
message (Stefan Stieglitz and Dang-Xuan, 2013). Hence, it can be ar-
gued that attention- and arousal-related effects caused by emotional
stimuli in written messages are determinants of sharing behaviour.

Stefan Stieglitz and Dang-Xuan (2013) found that “the larger the
total amount of sentiment (positive or negative) a political Twitter
message exhibits, the more often it is retweeted” (p. 240). In their
study, this amount of sentiment refers to the amount of words with a
positive or negative emotional charge and represents the attitude of the
author. To determine this, they conducted a sentiment analysis which is
a systematic computer-based analysis of written text.

This role of emotional charge of messages influencing sharing be-
haviour fits in a more general perspective on the role of emotions in
decision making. Decision making is usually based on some form of
valuing of a considered decision option. In this valuing process emo-
tions come in: such an option may relate to a positive feeling, and this
will affect the decision positively. From a neuroscience perspective, it
has been found how such a valuation relates to amygdala activation
levels; see, e.g., (Morrison & Salzman, 2010; Murray, 2007; Rangel,
Camerer, & Read Montague, 2008; Rudebeck & Murray, 2014; Janak &
Tye, 2015).

To summarize, the theoretical foundation for the temporal-causal
network model developed in this paper is that next to content-related
and user and network characteristics, emotions also drive the decisions
underlying information diffusion. The basic premise from a cognitive
and neurological perspective is that emotional charge in messages
triggers more cognitive involvement by increasing levels of attention
and arousal.

The temporal-causal network model

This section describes how a temporal-causal network model was
developed according to the theoretical insights described in the pre-
vious section. This temporal-causal network model is based on the
Network-Oriented Modelling approach described in (Treur, 2016).
Causal modelling, causal reasoning and causal simulation have a long
tradition in AI; e.g., (Kuipers and Kassirer, 1983; Kuipers, 1984; Pearl,
2000). One of the challenges has been causal modelling involving cyclic
graphs; therefore, many approaches limit themselves to Directed
Acyclic Graphs (DAG’s). The Network-Oriented Modelling approach
based on temporal-causal networks described in (Treur, 2016) can be
viewed on the one hand as part of this causal modelling tradition, and
on the other hand from the perspective on mental states and their
causal relations in Philosophy of Mind; e.g., (Kim, 1996). It is a widely
usable generic dynamic AI modelling approach that distinguishes itself
by incorporating a dynamic and adaptive perspective, both on states
and on causal relations between states. This dynamic perspective takes
the form of an added continuous time dimension, and enables model-
ling of cyclic and adaptive networks, and also of timing of causal ef-
fects. Due to this, causal reasoning and simulation is possible for
adaptive networks for connected mental states, or networks for (evol-
ving) social interaction.

According to the adopted Network-Oriented Modelling approach, a
model is designed at a conceptual level, for example, in the form of a
graphical conceptual representation or a conceptual matrix re-
presentation. A graphical conceptual representation displays nodes for
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states and arrows for connections indicating causal impacts from one
state to another, and includes additional information in the form of:

• for each connection from a state X to a state Y a connection weight
ωX,Y (for the strength of the impact of X on Y)

• for each state Y a speed factor ηY (for the timing of the effect of the
impact)

• for each state Y the type of combination function cY(..) used (to ag-
gregate multiple impacts on a state)

To choose combination functions, a number of standard options is
available, varying from linear or sum functions or logistic functions, to
product or max and min-based functions as often used in probabilistic
and possibilistic approaches. The conceptual representation of a model
which basically is a labelled graph with the three types of labels listed
above, can be transformed in a systematic or automated standard
manner into an equivalent declarative numerical representation as
follows (Treur, 2016, Ch 2); here the variable t indicates a time point; it
varies over the real numbers.

• at each time point t each state Y in the model has a real number
value Y(t) (usually in the interval [0, 1])

• at each time point t each state X connected to state Y has an impact
on Y defined as =t X timpact ( ) ( )X Y X Y, , where ωX,Y is the weight of
the connection from X to Y

• The aggregated impact of multiple states Xi on Y at t is determined
using a combination function cY(..):

= … = …t t t X t X taggimpact c impact impact c( ) ( ( ), , ( )) ( ( ), , ( ))Y Y X Y Xk Y Y X Y Xk Y k1, , 1, 1 ,

where Xi are the states with connections to state Y

• The effect of aggimpacty(t) on Y is exerted over time gradually,
depending on speed factor ηY:

+ = +

=

Y t t Y t t Y t t

t Y t

aggimpact

aggimpact

( ) ( ) [ ( ) ( )]

[ ( ) ( )]
Y Y

dY t
dt Y Y

( )

• This provides a difference and differential equation for Y:

+ = + …Y t t Y t Y X t X t Y t tc( ) ( ) [ ( ( ), , ( )) ( )]Y X Y X Y k, 1 ,k1

= …X t X t Y tc[ ( ( ), , ( )) ( )]dY t
dt Y Y X Y X Y k

( )
, 1 ,k1

These numerical representations can be used for mathematical and
computational analysis and simulation. Software templates are avail-
able, for example, in Matlab and Python to support the transition from
conceptual to numerical representation described above in a fully au-
tomated manner.

A conceptual network model, depicted in Fig. 1, was constructed
that focuses on the emotion and information in tweets and their effects
on a person’s retweeting behaviour. Nine different states are dis-
tinguished, inter-connected by directional connections that indicate the
causal relations.

In an effort to gain a clear understanding of the relations between
the states and connections in this representation, a scenario is used to
illustrate the relations of each state. In this scenario, we have two
persons: Mark and Tim. Mark sends out a tweet in which he expresses
that he cannot wait to sing in the Christmas choir next week. This tweet
contains both information and emotional charge: there is a choir per-
formance next week, and secondly, Mark makes clear that he cannot
wait for this event to happen. Tim reads Mark’s tweet. Tim’s inter-
pretation of this message is positively influenced by the fact that Mark

and Tim are friends. Tim does like to visit choir performances; there-
fore, he already has a positive association on the information that this
event will take place. Reading about this Christmas performance, Tim
gets slightly aroused and is focusing on the message. Mark’s enthusiasm
amplifies Tim’s attention and arousal, which in turn lead to a positive
interpretation of the tweet. Tim’s positive interpretation of the message
coupled with the fact that he is good friends with Mark and is excited
about this performance leads to Tim’s decision to retweet Mark’s ori-
ginal Tweet. In the presented model, states have a state value ranging
from 0 to 1. For example, a value 0 for the state emotional charge
implies an absence of emotional charge, whereas a value 1 for emo-
tional charge represents the maximal amount of emotional charge.

Table 1 describes the weights of the connections in the conceptual
representation. In this table each cell (X, Y) in row X and column Y
shows the weight of the connection from state X to state Y. Connection
weights range here from 0 (no connection) to 1 (strong connection),
chosen in incremental steps of 0.25. Person, Information known and
Emotional charge have a maximal influence on Relation with person,
Opinion, Attention and Arousal, respectively, as these are the influen-
cers. The extent of positive interpretation has a strong influence on the
appreciation of the person of the incoming tweet. A person's internal
attention and arousal are stronger influencers on the interpretation than
the person’s relation with the sender. In line with what both Stefan
Stieglitz and Dang-Xuan (2013), and Kim and Yoo (2012) indicate
about emotions being a strong driver for information diffusion, atten-
tion and arousal are modelled as stronger influencers than the relation
with the person.

Next, a declarative numerical representation of the presented net-
work and its dynamics is discussed using first-order differential equa-
tions and difference equations. Not only can different connections have
different weights, the expected behaviour might also differ per state.
Different combination functions are considered to fit behavioural ex-
pectations. For states with a single impact, an identity function id
(V)= V is used. For states with multiple impacts, a scaled sum com-
bination function is used, defined as:

… = + …+V V V Vssum ( , , )k
k

1
1

For the states Interpretation and Sharing behaviour, as an alter-
native also an advanced logistic combination function has been used,
defined as:

… =
+ +

++ +V Valogistic
e e

e( , , ) 1
1

1
1

(1 )k V V1 ( .. )k1

with σ a steepness and τ a threshold parameter. Depending on the
steepness σ this allows a more binary 0 or 1 outcome than a scaled sum
function. As according to the modelling approach followed, such a
combination function is just a label or parameter in the model, it is easy
to switch from one to the other, and the software templates support
that.

The difference equation for the state ‘Relation’ is as follows (based
on the identity combination function):

+ = +t t t t t tRelation( ) Relation( ) [ Person( ) Relation( )]Relation Person,Relation

The differential equivalent of this equation is:

=d t
d

t tRelation( )
t

[ Person( ) Relation( )]Relation Person,Relation

Note that Person indicates the closeness of the friendship with the
sender.

For Opinion, a scaled sum combination function is used:

+ = +
+

t t t
t t

t tOpinion( ) Opinion( )
Information( ) Interpretation( )

Opinion( )Opinion
Information,Opinion Interpretation,Opinion
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The differential equivalent of this equation is:

For Sharing behaviour, using an advanced logistic combination
function the difference equation is:

+ =
+

t t t

t

t t

t t

alogistic
Sharing( ) Sharing( )

[ (

Relation( ),

Interpretation( ), Arousal( ))

Sharing( )]

Sharing Relation,Sharing

Interpretation,Sharing

Arousal,Sharing

The differential equivalent is:

=d t
dt

t

t t

t

alogisticSharing( ) [ ( Relation( ),

Interpretation( ), Arousal( ))

Sharing( )]

Sharing Relation,Sharing

Interpretation,Sharing Arousal,Sharing

A concise overview of all 6 differential equations for the non-input
states (based on the scaled sum combination function for states with
multiple impacts) can be found in Box 1.

Example simulation results

In this section, simulations for three different scenarios are shown.
For Interpretation and Sharing behaviour, the advanced logistic com-
bination function has been used. The first simulation (Fig. 2) shows a
scenario where a person receives a tweet with no emotional charge. The

Fig. 1. Conceptual representation of the network model.

Table 1
Connection matrix in the conceptual representation (screen display).

=
+d t

d
t t

tOpinion( )
t

Information( ) Interpretation( )
Opinion( )Opinion

Information,Opinion Interpretation,Opinion
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green line (X9) indicates the Sharing behaviour. In all simulations, the
assumption is made that a person retweets a tweet when the value of
Sharing reaches at least 0.9.

The second simulation (Fig. 3) shows a scenario with a tweet that
contains a small amount of emotion, and the third simulation (Fig. 4)
shows a scenario with a received tweet containing the maximum
amount of emotion. By looking at the plots, it can be noticed that
emotion added to a tweet indeed leads to a higher activation of the
retweet action. (See Fig. 5)

Mathematical analysis of the model

Mathematical Analysis of the model was performed in two different
ways. First, analysis of stationary points was done in order to verify the
implemented model against the model specification. Next, overall
equilibria for the model were analysed. Symbolic expressions were
found for the equilibrium values of each state in terms of the connection
weights and input values of Person, Information and Emotion.

Definition. A state Y has a stationary point at t if dY(t)/dt = 0. A model
is in equilibrium a t if every state Y of the model has a stationary point at
t.

For a temporal-causal network model the following criterion in
terms of the labels for connection weights and combination functions
can be derived (e.g., (Treur, 2016), Ch 12).

Criterion for a temporal-causal network model

A state Y in a temporal-causal network model has a stationary point
at t if and only if

… =X t X t Y tc ( ( ), , ( )) ( )Y X Y X Y k, 1 ,k1

where Xi are the states with outgoing connections to state Y.
The temporal-causal network model is in equilibrium at t if and only

if this holds for all states. In this case the above criterion expressions for
all states together form the equilibrium equations of the network model.

Verification based on analysis of stationary points was done for a
scenario with maximal emotional charge. The results of this analysis
can be found in Table 2.

Here the third row (Agg. impact) indicates the left-hand side of the
stationary point criterion, and the second row (State value) the right-
hand side. For most states, the accuracy is within acceptable bound-
aries, but the stationary point calculation for state Relation (X4) is off by
over 5%. This is explained by the narrow maximum of X4 (see the red
line in Fig. 3). To increase accuracy, the step size of the model may be

Fig. 2. Simulation without emotional charge; value of X3 = 0.

Box 1

Overview of the differential equations

=d
d

Relation
t

[ Person Relation]Relation Person,Relation

=
+d

d
Opinion

t
Information Interpretation

OpinionOpinion
Information,Opinion Interpretation,Opinion

Opinion

=
+ +d

d
Interpretation

t
Re lation Opinion Attention,

InterpretationInterpretation
Re lation,Interpretation Opinion,Interpretation Attention,Interpretation

Interpretation

=
+ +d

d
Attention

t
Emotion Relation Opinion

AttentionAttention
Emotion,Attention Relation,Attention Opinion,Attention

Attention

=
+ + +d

d
Arousal

t
Emotion Relation Opinion Intepretation

ArousalArousal
Emotion,Arousal Relation,Arousal Opinion,Arousal Intepretation,Arousal

Arousal

=d
dt

alogisticSharing [ ( Relation, Interpretation, ArousalSharing Relation,Sharing Interpretation,Sharing Arousal,Sharing
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decreased from the current step size Δt = 0.3 to, for example, Δt = 0.1.
For X4 and X9, no table entries are provided; both the state values and
aggregated impacts are zero.

Next, the overall equilibrium equations were identified; see Box 2.
Note that in such an equilibrium state it is assumed that the input va-
lues of Person, Information and Emotion are constant over time, with
values indicated by A1, A2, A3, respectively. Note also that Sharing
behaviour causally depends on the other states but not conversely; its
equilibrium value can directly be calculated from the equilibrium va-
lues of the other states Relation, Interpretation and Arousal, given any
choice of combination function.
Box 2

Equilibrium Equations of the network model

=Relation PersonPerson,Relation

=
+

Opinion
Information InterpretationInformation,Opinion Interpretation,Opinion

Opinion

=

+

+
Interpretation

Relation Opinion

Attention
Relation,Interpretation Opinion,Interpretation

Attention,Interpretation

Interpretation

=

+
+

+
Attention

Emotion Relation
Opinion

Interpretation

Emotion,Attention Relation,Attention

Opinion,Attention

Interpretation,Attention

Attention

=

+
+ +

Arousal

Emotion Relation
Opinion Interpretation

Emotion,Arousal Relation,Arousal

Opinion,Arousal Interpretation,Arousal

Arousal

= alogistic
Sharing

( Relation,

Interpretation, Arousal)
Relation,Sharing Interpretation,Sharing

Arousal,Sharing

For example, for the advanced logistic combination function the
equilibrium value is

Sharing = X9 = alogisticσ,τ(ωRelation,Sharing Relation,
ωInterpretation,Sharing Interpretation, ωArousal,Sharing Arousal)
The linear equilibrium equations for the states other than Sharing

can be solved in a symbolic manner to obtain explicit algebraic ex-
pressions for their equilibrium values (the online WIMS Linear Solver
tool1 was used); see Box 3. Here subscripts are abbreviated for the sake
of briefness.
Box 3

Explicit algebraic solutions of the equilibrium equations of the network
model

= = = = = =Person Information EmotionX A X A X A1 1 2 2 3 3

= =Relation X A4 P,R 1

Fig. 3. Simulation with low emotional charge; starting value of X3 = 0.1.

Fig. 4. Simulation with high emotional charge; starting value of X3 = 1.

1 http://wims.unice.fr/wims/wims.cgi?session=DH1DFC9A6E.3&+lang=
en&+module=tool%2Flinear%2Flinsolver.en.

R. Schoenmaker et al. Biologically Inspired Cognitive Architectures 26 (2018) 136–144

141

http://wims.unice.fr/wims/wims.cgi?session=DH1DFC9A6E.3%26ang=en%26odule=tool%2Flinear%2Flinsolver.en
http://wims.unice.fr/wims/wims.cgi?session=DH1DFC9A6E.3%26ang=en%26odule=tool%2Flinear%2Flinsolver.en


= = +
+ +
+ +

+
+ +

+ +

Opinion X [A (
) A3(
) A (( )

)]
/[ ( )

( )]

5 1 Int,O P,R Ar At R,Int Ar At,Int RAt

At Ar,Int R,Ar Ar At,Int E,At

At Ar,Int E,Ar Int,O 2 Inf,O Ar At,Int Int,At

At Ar,Int Int,Ar Ar At I

Int,O Ar At O,Int Ar At,Int O,At At Ar,Int O,Ar

O Ar At,Int Int,At At Ar,Int Int,Ar Ar At I

= = +
+ +
+ +
+ +

+
+ +
+

Interpretation X [A (
) A (

)
A ( )]

/[ (
) (

)]

6 1 O P,R Ar At R,Int Ar At,Int R,At

At Ar,Int R,Ar 2 Inf,O Ar At O,Int

Ar At,Int O,At At Ar,Int O,Ar

3 O Ar At,Int E,At At Ar,Int E,Ar

Int,O Ar At O,Int Ar At,Int O,At

At Ar,Int O,Ar O Ar At,Int Int,At

At Ar,Int Int,Ar Ar At I

=
= +

+ +

+
+

+
+ +

+ +
+ +

+ +

Attention X
[A ( ( (

) )
( ( )

))
A ( ( ( )

) ( ( )
)) A (

( ) )]
/[ ( )

( )]

7

1 P,R Int,O Ar O,At R,Int Ar,Int O,At R,Ar

O,Ar R,At Ar O,Int R,At

O Ar Int,At R,Int Ar,Int Int,At R,Ar Int,Ar R,At

Ar I R,At

3 Int,O Ar,Int E,Ar O,At E,At O,Ar

Ar E,At O,Int O Ar,Int E,Ar Int,At E,At Int,Ar

Ar I E,At 2 Inf,O Ar Int,At O,Int

Ar,Int Int,At O,Ar Int,Ar O,At Ar I O,At

Int,O Ar At O,Int Ar At,Int O,At At Ar,Int O,Ar

O Ar At,Int Int,At At Ar,Int Int,Ar Ar At I

= =
+
+ +
+

+
+

+

Arousal X [A ( (
( ) )

( ( )
))

A ( ( ( )
) ( ( )

))

8 1 P,R Int,O At O,Ar R,Int

At,Int O,Ar R,At O,At R,Ar At O,Int R,Ar

O At Int,Ar R,Int At,Int Int,Ar R,At Int,At R,Ar

At I R,Ar

3 Int,O At,Int E,At O,Ar E,Ar O,At

At E,Ar O,Int O At,Int E,At Int,Ar E,Ar Int,At

At I E,Ar

As can be seen, each of the equilibrium values is a linear combi-
nation of the three values A1, A2, A3, where the coefficients are ex-
pressed in terms of specific connection weights and scaling factors. For
example, this means that if all of these values A1, A2, A3 are reduced by
20%, all equilibrium values will be reduced by 20%. This indeed is the
case in simulation examples. If the values of the parameters for con-
nection weights are assigned as in Table 1 and scaling factors
λAr = 1.75, λAr = 1.75, λO = 1.75 and λI = 2.75, then the outcomes of
the equilibrium values are (here the green highlighted digits are re-
petitive):

= =
= =

= =

Person X A
Information X A
Emotion X A

1 1

2 2

3 3

= =Relation X A4 1

= = + +Opinion X 0.17307692A 0.682692307A 0.144230769A5 3 2 1

= = + +Interpretation X 0.40384615A 0.259615384A 0.336538461A6 3 2 1

= = + +Attention X 0.65384615A 0.13461538A 0.21153846A7 3 2 1

= = + +Arousal X 0.65384615A 0.13461538A 0.21153846A8 3 2 1

It can be seen that each of these equilibrium state values is a
weighted average of A1, A2, and A3 (for each the sum of these weights is
1). Therefore, in particular when all Ai are 1, all of these outcomes are

Fig. 5. Pattern of SSR during the Simulated Annealing.

Table 2
Mathematical verification results for stationary points.

X4 (Relation) X5 (Opinion) X6 (Interpretation) X7 & X8 (Attention & Arousal) X9 (Sharing)

Time point 1.8 8.7 8.1 3.0 19.2
State value 0.39933 0.41378 0.95215 0.31218 0.99990
Agg. impact 0.37715 0.41245 0.94834 0.31044 0.99990
Deviation 0.02218 0.00133 0.00381 0.00174 0
Accuracy 94.12% 99.68% 99.60% 99.44% 100%
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1. If only A1 and A2 are 1, then the outcomes depend just on the
emotional charge A3:

= =
= =

= =

Person X 1.0
Information X 1.0
Emotion X3 A3

1

2

= =Relation X 1.04

= = +Opinion X 0.17307692A 0.826923075 3

= = +Interpretation X 0.40384615A 0.596153846 3

= = +Attention X 0.6538461A 0.34615387 3

= = +Arousal X 0.6538461A 0.34615388 3

= = + +alogisticSharing X , (0.5, 0.40384615A 0.59615384, 0.6538461A 0.3461538)9 3 3

It can be seen from this that the equilibrium values of Attention and
Arousal depend for about 65% on the emotional charge level and as a
consequence the impact of the emotional charge on the equilibrium
value of Interpretation is about 40%. The effect of emotional charge on
Sharing works through two causal pathways: via Interpretation and via
Arousal. This leads to the function

+ +alogistic (0.5, 0.40384615A 0.59615384, 0.6538461A 0.3461538), 3 3

which is a monotonically increasing function of A3. So more emo-
tional charge (higher A3) leads to more sharing. In this way, together
these states Attention and Arousal can make the difference for Sharing
to pass the threshold for retweeting, if the emotional charge level A3 is
high enough. Using appropriate values for steepness and threshold in
this combination function alogistic, (..)can modulate or amplify the
effect and realise an increase as known from empirical literature. More
specifically, by Stefan Stieglitz and Dang-Xuan (2013) it is found:

• One-unit increase in total amount of sentiments= 6% more retweets

Here, one-unit increase in the total amount of sentiments is mea-
sured by the tool ‘SentiStrength’ (Thelwall, 2011), which ranges from 0
to 9, so for the whole scale the difference is 60%. This can well be
approximated by the above Mathematical Analysis of the equilibria by
choosing appropriate values for steepness and threshold of the logistic
sum combination function used for Sharing. In particular, if in the
above alogisticσ,τ(..) formula of Sharing dependent on A1, steepness
σ = 2.5 and threshold τ = 1.25 are chosen, then without emotional
charge (A1 = 0) Sharing = 0.601142, and with emotional charge
(A1 = 1) Sharing = 0.956063, which is 59% higher (0.956063/
0.601142 = 1.59, so the difference is 59% of the value 0.601142); this
shows how the model can easily approximate the empirically found
60%.

Validation of the model

For validating the model dynamically, as no suitable (temporal)
empirical data was found, the requirement of 60% difference found by
Stefan Stieglitz and Dang-Xuan (2013) was used here as well (see at the
end of Section “Mathematical analysis of the model”). Simulation of the
model without emotional charge (Initial value 0) was compared with a
model with maximal emotion (Initial value 1). To get data points for
sharing without emotional charge, the values for a simulation of X9

with maximal emotion were multiplied by 0.4. Thus, the required

values for X9 without emotional charge are 60% lower than the output
values of X9 with maximum emotion. By comparing this data set against
model simulations, the sum of squares of residuals SSR can be obtained
as an indication how far the model is off. To get an approximation,
parameter tuning was performed in Matlab, for tuning each speed
factor η. By the tuning process SSR was reduced to 17.01 and average
(root mean square) deviation =( ) 0.125n

SSR . Table 3 shows initial and
tuned speed factors. The outcome was that a 60% higher effect of
emotional charge than without emotional charge, is approximated up to
0.125, which is a fairly good result.

Discussion

The aim of this paper was to analyse the underlying processes using
emotional charge in Twitter messages and to show the effects on in-
formation diffusion. This was done through the development of a
temporal-causal network model. Different simulations show how re-
tweeting behaviour changes, and may be used for industries to adapt
social media marketing strategies to achieve a higher diffusion of in-
formation. The model indeed predicts that higher emotional charge
causes more sharing.

By mathematical analysis of stationary points it was verified that the
implemented network model does what is expected from the design of
the model. In addition, the equilibrium equations of the network model
were solved algebraically by a symbolic solver. This has provided a
monotonically increasing formula in terms of the level of emotional
charge predicting the sharing behaviour, which has been compared to
empirical data showing a good match. Validation by parameter tuning
was also performed, and also shows a good approximation of empiri-
cally expected outcomes. More specifically, a requirement of 6% more
retweets for each unit increase (hence 60% more for the whole scale) in
emotional charge, was found in the paper of Stefan Stieglitz and Dang-
Xuan (2013). Both by the equilibrium equations and by parameter
tuning it was found that the model can approximate this empirically
found effect well.

The model provides insights to marketers on what extents of emo-
tional charge can influence information diffusion and how this charge
also affects the other drivers of sharing behaviour. Based on these in-
sights, marketers could develop tools that evaluate messages on their
effectiveness and that forecast the information diffusion patterns that
should emerge from certain messages.

More and more information becomes available from neuroscience.
The model can be validated, further developed and refined by involving
new recent developments, for example, as described in (Baek, Christin
Scholz, Brook O’Donnell, & Falk, 2017; Falk et al., 2012; Falk and
Scholz, 2018; Scholz and Falk, 2017). Based on such literature future
refinements of the model may be developed incorporating elements of a
more detailed (subjective) valuing system for deciding, self-related
processing, and social cognition with respect to receivers of the message
(empathy, Theory of Mind, mentalizing).
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