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Introduction 

Thermal conductivity (TC) of a material can be defined as the 
rate of heat transfer through a unit thickness of the material 
per unit area per unit temperature difference [1], which is 
one of the basic transport properties that significantly affects 
heat transfer and clothing comfort. Plenty of work has been 
done and is still going on to understand the phenomenon of 
steady-state heat transfer in general and through textiles and 
porous materials in particular. Ismail et al. [2] developed a 
mathematical model for woven fabrics with simple structure, 
which determines the effective thermal conductivity (ETC) 
of woven fabric by assuming that the gas phase is stagnant. 
Bhattacharjee and Kothari [3] proposed  a model for prediction 
of thermal resistance of woven fabrics by using thermal 
electrical analogy technique. Yoshihiro et al. [4] developed 
structural models of yarns, plain weave fabrics and plain weave 
fabric/resin composites and theoretical formulas for the ETC 
which were based on the thermal resistance network analysis 
and volume fraction. Zhu and Li [5] developed a fractal ETC 
model for woven fabrics with multiple layers. Das et al. [6] 
developed a mathematical model for prediction of thermal 
resistance of multilayer clothing in non-convective media. 
Matusiak [7] developed a model of thermal resistance of woven 
fabrics and considered cross-section of yarn as square shape. 
But the prediction models for special-shaped fibres and yarns 
are missing. On the other hand, it is very difficult to measure 
the TC of a single fibre since it has a very small diameter and is 
very flexible. Though a few measurements which evaluated a 
composite specimen including a bundle of the fibres have been 
reported, these methods sometimes give TC values far more 
than the value for a single fibre [8-10]. 

Special-shaped fibres and textiles which contain fibre material 
and air can be taken as porous material or heterogeneous 
material. Therefore, the models of ETC of porous materials were 
used in the textiles. For heterogeneous materials with simple 
structure, the fundamental principle like thermal resistance 
networks can be used to obtain the ETC of heterogeneous 
materials. However, for heterogeneous materials with 
complicated physical structures, it is not possible to give 
the thermal resistance networks, and then some empirical 
analytical models were reported. Bogaty et al. [11] proposed 
one predicting model for textiles by combining series structure 
model and parallel structure model, and gave one coefficient 
for each component, but these coefficients would be changed 
when the arrangement of textiles is different; therefore, this 
model cannot be widely used. Faleh [12] stated one polynomial 
predicting model which needs to get the coefficient from every 
practical experiment for evaluating the TC of fibre in composites. 
Militky and Kremenakova [13] simplified the predicting model 
for ETC of textiles by getting the average value of the series 
and parallel models. The Maxwell–Eucken model [14,15] was 
used for materials with continuous and dispersed phases. It 
assumes a dispersion of small spheres within a continuous 
matrix of a different component, with the spheres being far 
enough apart so that the local distortions to the temperature 
distributions around each of the spheres do not interfere 
with their neighbours’ temperature distributions. Wang et al 
[16] deduced a mathematical expression for co-continuous 
structural materials based on Maxwell–Eucken model, but his 
model also can be expressed by the series and parallel models. 
Levy [17] gave a model based on the Maxwell–Eucken model, 
but Levy’s model was derived solely by algebraic manipulation, 
with no stated physical basis.    
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The following equations are used for calculating the ETC of 
heterogeneous material with square and rectangular inclusions.
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where k1 and k2 are TC of material 1 and material 2; ke 
represents ETC of heterogeneous material (W·m-1·K-1); Ra, 
Rb,  Rc and Rtot represent thermal resistance of zones a, b, c 
and total thermal resistance (K/W); A is area where heat flow 
goes through (m2); L is height of material (m);  a, b and c are 
the length of material in zones a, b and c, respectively (m); and 
h is the width of material (m). 

Heat flow by infinitesimal method

Unfortunately, it is not easy to distinguish the sub-regions of 
a heterogeneous material such as circular, elliptic or other 
irregular inclusions; therefore, the differential concept was 
adopted. Generally speaking, this method is the extension of the 
thermal resistance networks, but the motivation of this method 
is to consider the heat flow through the objective first. The 
geometrical model is divided into infinitesimal area (Figure 2), 
the heat flow from each infinitesimal area is accumulated and 
then the ETC is calculated by Fourier’s equation. In this paper, 

On the other hand, the numerical method has been widely 
used in every area due to its reliable accuracy, flexibility for 
both realistic conditions and ideal conditions, and more 
detailed information. Carson et al. [18] and Dasgupta et al. [19] 
stated that the numerical simulation for heat transfer had good 
agreement with the experimental results. The aim of this work 
is to compare the results from these analytical models and 
numerical simulation with the results based on Fourier’s law, 
and to investigate some factors which have an effect on ETC of 
heterogeneous materials. 

Method 

In order to compare the accuracy and difference of analytical 
models and numerical simulation, heterogeneous materials 
with different inclusion shapes, volume fractions, inclusion 
size, distribution, cross-section length of inclusion and contact 
area were adopted. From the analytical model, only one group 
data would be provided even if so many different factors were 
adopted in the experiments since these analytical models only 
take the volume fraction into consideration. But numerical 
simulation can provide more specific results according to 
different parameters. Heterogeneous materials include two 
kinds of materials with TC of k1 (=0.4 W·m-1·K-1) and k2 (= 1 
W·m-1·K-1), which can be any kind of materials for the aim is to 
compare the accuracy and difference of analytical models and 
numerical simulation. 

Fourier’s law of heat conduction

Fourier’s law is based on some assumptions, like perfect 
boundaries among materials, perfect geometrical shapes, and 
stagnant conditions of the gas/liquid phases, no humidity and 
no moisture absorption effects.

Thermal resistance networks 

Thermal resistance network is one effective method to analyse 
TC of heterogeneous materials with simple structures which 
can be easily divided into several zones. The concept of thermal 
resistance network is analogous to the electrical resistance 
concept. Therefore, the ETC of heterogeneous materials can 
be obtained by the combinations of TC of each zone. One 
simple example is given in Figure 1.

Figure 1. Left: structure of one heterogeneous material; right: the 
corresponding thermal resistance networks

Figure 2. The geometrical model of heterogeneous material including 
circular inclusion
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bracket on the right side represents the thermal resistance of 
inclusion material. Therefore, the sum of these two terms is the 
total thermal resistance of the heterogeneous material in each 
infinitesimal area. The integrand is another form of Fourier’s 
equation.

Similarly, the expressions for ETC of heterogeneous material 
including elliptic inclusion are:
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where a is the length of major semi-axis in x direction (m) and b 
is the length of minor semi-axis in y direction (m).

Some analytical models

Some analytical models for predicting ETC of heterogeneous 
materials are shown in Table 1. The first two models are widely 
used for heterogeneous materials containing continuous 
phases such as textile materials. The last two models are 
usually used for heterogeneous materials containing particles. 

only the circular and elliptic inclusions were considered to get 
rid of the difficulties from very irregular inclusions. Owing to the 
symmetry of the geometrical model, only half-a-part was taken 
into consideration. The heat flow and ETC can be obtained 
from following equations.

The heat flow that goes through a material can be divided 
into two parts: Q1, heat flow goes through both inclusion and 
covering material (W·s); Q2, heat flow only goes through 
covering material (W·s).
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where L and A are distance (m) and area (m2) of heat flow 
that goes through, D is diameter of circular inclusion (m), h 
is thickness of heterogeneous material (m), ∆T is temperature 
difference (K), and k1 and k2 are the TC of inclusion material 
and the covering material (W·m-1·K-1). In equation (6), the 
first term in the square bracket on the right side represents 
the value of covering material fraction divided by the TC of 
covering material, which means the thermal resistance of 
covering material. Similarly, the second term in the square 

Table 1. Some ETC models of heterogeneous materials 

Models Effective thermal conductivity equation References
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where { }T  represents temperature matrix, [ ]C  represents 
specific heat matrix, [ ]K  represents thermal conduction 
matrix, [ ]Q  represents heat flux vector matrix and { }T& is the 
derivative of the temperature with respect to time. 

Therefore, the equation for steady-state thermal analysis is 
given by:

    
{ } { }[ ]K T Q=

                               (13)

where { }Q  is the heat flux vector at nodes. 

Simulation 1. Four types of inclusion shapes – square (SI), 
rectangle (RI), circle (CI) and ellipse (EI) – were investigated 
and the volume fractions of inclusions were from 10% to 70%. 

Simulation 2. The inclusion sizes were from 0.12% to 30% of 
total size of heterogeneous material, and the inclusion volume 
fraction was kept constant.

Simulation 3. Six distributions of inclusions were investigated, 
and the inclusion volume fraction was kept constant. The circles 
represent fibres, and the rest represents another material.

Simulation 4. The major semi-axes of elliptic inclusions were 
from 41.52% to 95.49% of the total cross-section length of 
heterogeneous materials, and the inclusion volume fraction 
was kept constant.

Simulation 5. The contact length/area between inclusions was 
from 0% to 63% of inclusion length, and the inclusion volume 
fraction was kept constant.  

The textile material is described as a fibre–air mixture or 
heterogeneous material. In these models, P is volume fraction 
of material 1, ke is ETC of heterogeneous material, kp and 
ks are TC of materials with parallel arrangement and series 
arrangement, ki and vi are the TC and volume fraction of ith 
material, v1 and v2 are the volume fraction of materials 1 and 
2, and k1 and k2 are the TC of materials 1 and 2.   

Numerical simulation

Numerical methods include finite difference methods, boundary 
element methods and finite element methods which have the 
advantage that the discretization process is not constrained by 
regular node positioning, and they are therefore more suitable 
for irregular geometries and for spatially variable properties 
and conditions.

Therefore, the finite element models were set up to simulate 
a three-dimensional steady-state TC measurement apparatus. 
One geometrical model and grid topologies of simulations are 
given in Figure 3. The boundary conditions imposed on the 
model faces were: one side was kept at constant temperature 
while its opposite side was subjected to heat flow; the other 
two sides were kept thermally insulated. Hence, after getting 
temperature distribution of heterogeneous material, the ETC 
can be calculated from equation (8).

Figure 3. Geometrical model and grid topology

And the governing equation used in numerical simulation is: 

   
( ) { } ( ) { } ( )[ ] [ ] [ ]C T T K T T Q T+ =&

           (12)

Figure 4. Different distributions of inclusions

Figure 5. Different major semi-axes of elliptic inclusions

Figure 6. Different contact length/area between inclusions
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have better predicting results for square and circular inclusions 
than rectangular and elliptic inclusions; for PSM2 and LM, 
the better predicting results were for square and rectangular 
inclusions. Some researchers stated that the prediction of the 
TC of heterogeneous materials has proven to be a difficult task. 
Part of the difficulty may be due to an over-simplification of the 
structure [20].

Figure 7. Comparison of results from some models and results 
based on Fourier’s law 
FSI: results of square inclusions based on Fourier’s law; FRI: 
results of rectangular inclusions based on Fourier’s law; FCI: results 
of circular inclusions based on Fourier’s law; FEI: results of elliptic 
inclusions based on Fourier’s law; PSM1: parallel-series model 1; 
MEM: Maxwell–Eucken model; LM: levy’s model; PSM2: parallel-
series model 2

Comparison of results from numerical simulation and 
results based on Fourier’s law

The ETC of heterogeneous materials from numerical simulation 
and results based on Fourier’s law are given in Figure 8. As 
mentioned above, the results based on Fourier’s law were 
taken as reference values. And then the accuracy of numerical 
simulation was checked by comparing with the reference 
values. The maximum deviation and mean deviation of ETC 
from numerical simulation are given in Table 3. Heterogeneous 
material including rectangular inclusions gave the biggest 
deviation, and the circular inclusions provided the smallest 
deviation. Generally, the deviations from numerical simulations 
were less than 3%, which provided enough accurate results. 
On the other hand, comparing with the analytical models, the 
numerical simulation is suitable for any type of inclusion shapes.

Results and discussion 

Comparison of results from some models and results 
based on Fourier’s law

Comparing with the results based on Fourier’s law, analytical 
models would be less accurate since these models were 
either based on some assumptions or on experimental results. 
During the experimental process, there are serious difficulties 
of measurement in many situations, and the measuring 
instruments are not free from errors. Therefore, the results 
based on Fourier’s law were taken as reference values and 
the accuracy of analytical models was checked by comparing 
with the reference values. In order to evaluate the accuracy of 
analytical models easier, deviation was adopted (Table 2). The 
deviation, De, can be obtained from the following equation:
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where k’ represents the TC from models or numerical simulation 
and kF represents the TC based on Fourier’s law. 

The ETC from analytical models and based on Fourier’s law 
had a slight difference at each volume fraction, and the ETC 
decreased as volume fraction of inclusions increased owing to 
the lower TC of inclusion (Figure 7). The deviations of ETC 
from analytical models are shown in Table 2. Every analytical 
model has its advantages and limitations due to assumptions. 
Based on this work, PSM1 has better predicting accuracy 
than the other models. The results from PSM1 provided the 
smallest deviation when the inclusion shapes were square, 
circle and ellipse compared with the results from other models, 
especially when the inclusion shape was square. The reason 
could be that the geometrical model is regular and easy to 
be divided into bulk sub-regions, which is more close to the 
thermal resistance networks analysis method. ME model is 
usually derived from a specific assumed physical structure 
as mentioned above, but it can also provide results which 
have good agreement with the results based on Fourier’s law. 
PSM2 extended the application of ME model to co-continuous 
structure heterogeneous materials, but it did not improve the 
accuracy of ME model since all assumptions were based on ME 
model. Levy’s model added one coefficient to ME model, which 
in some conditions can improve the accuracy of predicting 
results. Moreover, the accuracy of ETC from analytical models 
was influenced by inclusion shapes. For PSM1 and ME, they 

Table 2. Deviation of ETC from analytical models 

Inclusion 
shape

Parallel-series model 1 Parallel-series model 2 ME model Levy’s model

Maximum 
deviation 

(%)

Mean 
deviation

(%)

Maximum 
deviation

(%)

Mean 
deviation

(%)

Maximum 
deviation 

(%)

Mean 
deviation

(%)

Maximum 
deviation

(%)

Mean 
deviation

(%)

Square 0.9 0.24 2.69 2.48 1.94 1.05 3.37 2.68

Rectangle 4.24 3.46 4.63 2.34 3.81 2.65 3.86 1.83

Circle 3.47 1.83 5.99 4.19 3.35 2.67 5.21 4.38

Ellipse 3.08 3.39 7.64 5.49 6.54 4.32 8.38 5.86
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Table 3. Deviation of ETC from numerical simulation 

Inclusion shape Square Rectangle Circle Ellipse

Maximum 
deviation (%) 2.13 4.24 1.78 3.08

Mean deviation 
(%) 1.22 2.95 1.09 1.5

Effect of inclusion shape on ETC 

In this article, we have been discussing that the inclusion 
shape has the potential to influence the ETC of heterogeneous 
materials [20,21]. In this work, four types of inclusion shapes 
– square, rectangle, circle and ellipse – at different volume 
fraction were investigated based on Fourier’s law of heat 
conduction. For rectangular and elliptic inclusions, the 
dimensions are also related to the inclusion shapes even 
though the volume fractions could be the same. Therefore, one 
side length of rectangular inclusion and the major semi-axis 
of elliptic inclusion were kept as a constant which was 80% 
of heterogeneous material’s side length. The heterogeneous 
material including elliptic inclusions gave the smallest ETC. 
Square and circular inclusions in heterogeneous materials 
showed very similar results, which are the same as with the 
work of Carson et al. [18]. Rectangular inclusions showed the 
biggest ETC, which does not have an agreement with the result 
of Carson et al. [18], because in their work, the dimension of 
rectangular inclusions were set as 2:1, and these inclusions 
were distributed randomly. These different results indicated 
that the dimensions of inclusion also could be one factor which 
would influence ETC of heterogeneous materials. Comparing 
with the ETC of heterogeneous materials including different 
inclusion shapes with the same volume fraction, the biggest 
difference can reach 10.67% (Figure 9), which reveals that the 
inclusion shape is a significant factor.

Effect of inclusions size on ETC

Some researchers [18,20] stated that the effect of porosity 
on TC cannot be described solely by volume fraction. Carson 
et al. [18] reported that the ETC of heterogeneous materials 
with different inclusion sizes were similar over the range of 
volume fractions. In this work, the ETC decreased obviously as 
the increase of inclusion size (Figure 10). The possible reason 
is that the small inclusions increased the interface area, which 
is helpful for dissipating heat when they contacted with better 
conductor.

Effect of distribution of inclusions on ETC

Generally, the distribution of inclusions has the same effect 
with the inclusion shape since different combination of small 
inclusions can form different structures of a larger inclusion. 
The difference between the largest and smallest ETC was 
6.3%. Comparing with these results corresponding to the 
distribution, the smallest ETC happened when more inclusions 
are at cross-section (distribution 6), and the opposite case 
is distribution 1. In order to confirm the conclusion that the 
inclusion length ratio in cross-section would influence ETC, 

Figure 8. Comparison of ETC from numerical simulation and results 
based on Fourier’s law
NSI: results of square inclusions from numerical simulation; NRI: 
results of rectangular inclusion from numerical simulation; NCI: 
results of circular inclusions from numerical simulation; NEI: results 
of elliptic inclusions from numerical simulation 

Figure 9. ETC of heterogeneous material including different inclusion 
shapes

Figure 10. Effect of inclusion size on ETC of heterogeneous material
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one more simulation focusing on the cross-section length of 
inclusion was carried out subsequently.

Effect of cross-section length of inclusion on ETC

Based on the conception of parallel and series structures, the 
cross-section length of inclusions should have an effect on 
ETC of heterogeneous material. Therefore, elliptic inclusions 
with different dimensions at the same volume content were 
investigated. The results showed that ETC was inversely 
proportional to the cross-section length of inclusions, and the 
biggest difference reached 8.45%.

Effect of contact length/area among inclusions on ETC

Heat conduction happens only when materials contact with 
each other, and the larger the contact area, the faster the heat 
conduction will be. The results suggested that the contact had a 
significant effect on ETC, and the biggest deviation was 5.41% 
which was not a very large difference due to the small difference 
of TC of these two materials. This simulation also can be used to 
analyse the ETC of yarns with different packing density.  

Conclusions 

Effective TC of some heterogeneous materials with simple 
structure was investigated by analytical models and numerical 
simulation in this work. Significant conclusions drawn from the 
results are: (1) analytical models presented in this paper can 
provide accurate prediction and have a very small difference 
among them; (2) numerical simulation can provide more 
accurate results than analytical models and is more flexible 
for any structure; besides, numerical simulation can be a good 
way to evaluate ETC of textiles with complicated structures and 
experimental conditions due to the difficulties in experiment; 
and (3) more important parameters need to be considered for 
improving analytical model, such as inclusion of shapes, the 
length ratio of inclusions in cross-section and contact area. 
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