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Identification via Channels

RUDOLF AHLSWEDE anp GUNTER DUECK, MEMBER, IEEE

Abstract —Qur main finding is that any object among N = 7" (doubly
exponentially many!) objects can be identified in blocklength n with
arbitrarily small error probability via a discrete memoryless channel
(DMCQ), if randomization can be used for the encoding procedure. More-
over, we present a novel doubly exponential coding theorem, which deter-
mines the optimal R, that is, the identification capacity of the DMC as a
function of its transmission probability matrix. Surprisingly, this identifica-
tion capacity is a well-known quantity, namely, Shannon’s transmission
capacity for the DMC.

1. RESULTS AND PRELIMINARIES

A. Formulation of the Classical Transmission Problem

O PUT our new coding theorems for identification in

a proper perspective, we describe first the analogous
classical situation for transmission. A stochastic matrix
W={W(ylx) x€Z, y€ %} uniquely defines a discrete
memoryless channel with input alphabet &, output alpha-
bet %, and transmission probabilities

Wr(yix") = ﬁ W(rix,)

(=1
for n-sequences x" =(x),- -, x,)EXL", y"=(y. ", ),
€EY" n=1273,---.

For a set &, P(&) always stands for the set of proba-
bility distributions on %. An (n, M, A) code for W is a set
of pairs {(u;, @,)|i =1,---, M} with the properties

wEeEX" Pc¥%",  foriefl,---,M} (1.1)

9,Nn9,=2 fori,je{l,---,M}withi#j (1.2)

W' (2)u)=1-A, forie(l,---,M}. (1.3)

Let M(n,\) be the maximal integer M for which an
(n, M, \) code exists.

Theorem S (Shannon [2]):

1
lim —logM(n,A)=C
n—o H
where C=max, I(P,W).
Here I(P, W)= H(PW)— H(W|P) is the familiar mu-
tual information associated with P € 2(%). Actually,

for all A € (0,1)
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Shannon proved in [2] only the direct part of the Theorem.
The so-called strong converse was proved by Wolfowitz

(see [3]).
B. Formulation of the Identification Problem

A (randomized) identification (ID) code (n, N, A}, A,) is
a family

of pairs with
Q(-li)e®(x"), D,c¥", fori=1,---,N (14)

and with errors of the first (resp. second) kind satisfying

Y o(x"W(Zx") <A (1.5)
x"ex"
and
2 O(x")W(Z1x") <A, (1.6)

x"eqg"

forall i=1,--- N, j=1,--- N with j+i.

Of course, we also could have defined deterministic 1D
codes where the Q(-|i) denote point masses on points
u,€ 2". However, the study of deterministic ID codes
leads only to very poor results (see the Discussion, Section
IV). Therefore, we consider only the much more powerful
randomized ID codes.

The essential difference between ID codes and classical
transmission codes is that no disjointness condition is
imposed on the decoding sets ,. In an ID code, the
decoding sets have to be only pairwise significantly differ-
ent in the sense specified by (1.5) and (1.6).

We now explain how ID codes arise naturally as the
appropriate code concept in an identification problem.
Assume there is a set & = {e,,---, ey} of events (or ob-
jects), any one of which may occur. The event is known to
the sender of the channel, but unknown to the receiver. On
the receiver’s side is a set of persons (or devices) F =
{ F},-- -, Fy} observing the output of the channel. Person
F; wants to know whether or not event e; occurred. The
sender can transmit his knowledge of the event over the
channel. For this transmission procedure, randomization is
allowed, that is, an encoding rule for an event e, is
formally described by a probability distribution (PD)
Q(-li) out of Z(I"). Clearly, F, can choose a decision
rule specifying sequences y” for which s/he assumes that
e, has occurred. This rule is represented by the decoding
set 2, C ¥". Thus one is led to the notion of an ID code as
described above. Randomized decision rules on the re-
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ceiver’s side are not considered because they yield only
minor improvements in the present coding problem.

The identification problem can also be stated in the
following way. Instead of N persons, we can assume that
the receiver wants to know whether or not e, occurred.
The parameter j is not known to the sender; that is, the
sender does not know what the receiver wants to identify.

At the end of the paper we give examples for which the
present model is suitable and discuss its relation to identi-
fication problems found in the literature {4], [3].

C. The Double Exponent Coding Theorem

Let N(n,\) be the maximal number N such that an
(n, N,A,,\,) ID code with A}, A, <A exists, and let C be
Shannon's transmission capacity of the DMC W.

Theorem 1 (Coding Theorem and Soft Converse):
lim inf

a) nawl/nloglog N(n,A) 2 C,
for all A € (0,1].

b) lim sup,_ . 1/nloglog N(n,27")<C,
for all ¢> Q.

We used the term “soft” converse for statement b) of
Theorem 1 because the error probability on the left side is
exponentially small. In the usual terminology a “weak”
converse would mean

1
inf limsup —loglog N(n,A) <C (1.7)
n

Ae@.1) 4,50
which is a sharper bound than that in b). An even stronger
bound

1
limsup — loglog N(n,\) <C,
n

for all A€ (0,1) (1.8)

would be called a “strong” converse. Note that (1.8) is not
true for A >1/2.

To make this plausible, consider an arbitrary system of
encoding PD’s together with the following decoding rule:
if y” is received and if it is to be decided whether or not e,
occurred, decide *yes” with probability 1/2. Clearly, both
error probabilities (first and second kind) are below A >
1/2.

We do not know whether (1.7) or (1.8) holds. One has to
keep in mind that in ordinary coding theory, when dealing
with constant A the codelength grows exponentially. Thus,
since now N(n, A) grows doubly exponentially in n, one
may have to change the scale of error performance to an
exponential decline to get a fair comparison. In any case, a
proof of (1.7) (or even (1.8)), if true, would require very
delicate estimates.

We derive better estimates than those stated in Theorem
1. For their description we use the notions of information
and J-divergence, and some notation from {6] and [1]. The
reader not familiar with these is referred to Section I-D. In
those sharper estimates, we are concerned with error expo-
nents, which can be achieved with a certain (second-order)
rate.
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The triple (R, E|. E,) is called achievable if. for all § >0
and n2>n(8.)Z|1%). an 1D code exists for N messages
and error probabilities A (n). A-(n) such that

i=1.2.
(1.9)

1
—loglogN=R-8. A <exp{—n(E —8)}.
n

For achievable triples we have the following result.

Theorem 2: a)y If Pe P(X) sausfies (P.W)> R+

2E,, then
(&

min _ D(V|IW|P), E,)

HP.Vy<R+2E,
is achievable. b) If E; >0 and R+2E,> (. then
(R, E,. E,) 1s not achievable.

Remarks:
1) Theorem 2-a) clearly implies Theorem 1-a).
2) Theorem 2-b) implies, formally, that

1
liminf —loglog N(n,2 ") < C.
n—x N
From the proof of Theorem 2-b), however, it will become
clear that the same is true for the limes superior.

3) Since D(V||W|P) is a continuous function with the
property D(V||W|P)> 0 if and only if V' # W we see that
the condition I(P,W)> R +2E, in Theorem 2-a) implies
that

min
I(P.V)<R+E

D(V||W|P) > 0.

4) Theorem 2 completely characterizes the set of achiev-
able pairs (R, E,) in the limit E; > 0. More precisely,

lim {(R, E,): (R, E, E,) is achievable}
E =0

= {(R,E,): R<C-2E,)}.

In the remainder of this section we prepare the reader
for the results of Theorem 1 and its proof. The fact that
the maximal codelength grows doubly exponentially can
more easily be understood for the very special case of a
noiseless binary channel. We include a complete proof. We
then comment on our proof for the direct part of Theorem
1 for the general DMC, and, finally, on the proof of the
converse part.

We start with the construction of n-block ID codes for
the binary channel W given by the input alphabet % =
(0,1}, &= {0,1}, and W(1j1) = W(00) =1. We use the
standard maximal coding argument.

Let n be the blocklength, and let X € (0,1/2) be given.
Let 2/ be the smallest power of 2, such that

A-log(2'~1)>1and 2'> 6.
Suppose that n is large compared with 2", Set
M:=2""
We define an n-block ID code
{(QC1), 2)li=1,-- N}

such that loglog N is close to nlog2. We restrict our
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attention to distributions Q(-|i) which are equidistribu-
tions on sets .« C #" with cardinality M. Since M equals
2"~ we therefore consider only equidistributions on rela-
tively large subsets of 2" Suppose now we have found

subsets &/, -, &\ C ", all of which have cardinality M
and such that
0ot | <XA-M, foralli,je€ {1, .-+ N}, i# |
(1.10)

Then we define
Q(|¢#) = equidistribution on &,
D=, fori=1,---, V.
Consider {(Q(-|i).2,)li=1,---.N}. We claim that this
system is an (n, N,0,X) ID code. This is true because

;Q(x"li)W"(@.»rx") =
ZQ

for i, je (1,---, N}, i # j. Here we used the special na-
ture of W and assumption (1.10).

We have seen now that it suffices to show the existence
of a large family &/,,---, &/, of sets of cardinality M
which satisfies (1.10).

Proposition 1: Let & be a finite set and let A € (0,1/2)
be given. If € is so small that

1
Alog ( - - 1) >2
€
then a family &/, - -, &/ of subsets of 2 exists satisfying

|| =|€|Z|}, forallie {1,--- N},
|\, N <Ne|Z|, fori,je{l, - N},

X)W (Dx") = ML N A <N

._>6’
€

i#j
and
N> |Z| Lzl

Proof: Choose as a starting point an arbitrary &/, C Z,
|| =|e-|Z|]. We count how many sets & C Z exist with
cardinality |e-|Z|| and

o N |2\ Z)].
|€|Z|}. The number of those sets &/ in

£ ()

i=[)\~M’] M,""l !

We define M':=
question is then

(1.11)

For A <1/2 and 1 /¢ > 6 the first summand in the sum is

the maximal one. This is easy to establish. Therefore, the

sum in (1.11) can be upper-bounded by
\Z|- M’ )( M

M"(M*IAMl IAM'I)SM"(M f

—[AM']
(1.12)
Hence at most T sets & of cardinality M’ exist such that

|, A2\ M.

)-2”"== T.
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There are ("; ,') sets of cardinality M'. If T < ("‘) then an
&, C Z exists with || = M’ and |/, N &/, <A-M'. Fur-
thermore, if 2T < ('j'), then &7, C Z exists with || = M’,
|30 | <A-M', and |/, N <AM'. By repeatedly
using this argument, we get the following result.

There are M’-element sets &, -+, &\. C Z such that
|, N | <A-M for i# j,if

N*-T<('§‘).

&), exists with
Ni= l(lg,l)-T“j—l. (113)
M’

Recall that 7 was defined in (1.12). It is now easy to
lower-bound N. By (1.12) and (1.13),

Hence a family of sets &, -,

M1 |2 |- M+
N>2"M.pmL ——
- I:[ M -[AM']+1

Since M'=|¢|Z|) and A<1/2, for i€ {1,---,[AM']}
|Z|-M+i 1
- S
—[AM|+i €

Hence

M)
N+122‘”"M"1-(——1)
\ €

1 A'Il
>27 M |-~1] M7
€
= 2M’(Alog((l/()— -1, Mrul
>2M lﬂ@q 1_ 2[(|2’H Igl 1
where we have used the assumption in the proposition. The

proof is complete.

We return to the binary noiseless channel. We apply the
result of Proposition 1 to {0,1}" instead of 2 and with
27" instead of €. We conclude that there are at least

N=2772""~1
sets o7}, + -, &y of {0,1)" with cardinality 2"~/ such that
|, N | <A2""" fori# .

In other words, we have found an (n, N,0, A) identifica-
tion code. Clearly, (1/n)loglog N is arbitrarily close to
log2, the capacity of the binary noiseless channel, if »
grows to infinity.

Thus Theorem 1-a) is proved for the noiseless binary
channel. The validity of Theorem 1-b) is easy to see for
this channel. Obviously, the number of messages in an
identification code cannot exceed the number of possible
decoding sets, because all the decoding sets have to be
different.

Since all the decoding sets of n-block length codes are
subsets of {0,1}", there are at most 2*" decoding sets in an
identification code. We shall see in Section II that the
construction in Proposition 1 can be used to construct
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good ID codes with the help of an underlying classical
transmission code with rate close to capacity.

The converse part of the proof, however, is highly com-
plicated. One has to show that there is no advantage in
considering equidistributions on subsets with a cardinality
larger than exp (nC}.

We originally wanted to show that, starting with a given
code with equidistributions on large sets, we can find
“smaller” equidistributions on sets with cardinality smaller
than exp { nC} such that the resulting decoding sets in the
new code are nearly the same as in the originally given
code. Then one could conclude that any ID code could
have at most as many messages as subsets of Z" with
cardinality smaller than exp { nC }, and the proof would be
complete.

Unfortunately, we were not able to prove the converse
part in this elegant version; we were, however, able to
prove it following this basic idea. In the next section
(Section I-D) we introduce some notation. This notation is
not needed for the proof of Theorem 1-a). The reader not
interested in exponential error bounds may proceed di-
rectly to Section II-A.

D. Notation and Known Facts

1) Channels, Types, Generated Sequences: We use essen-
tially the notation of [1]. Script capitals Z,%, - - - denote
finite sets. The cardinality of a set & is denoted by |.«/|.
The letters P, Q always stand for probability distributions
on finite sets. X,Y,--- denote random variables (RV’s).
The functions “log” and “exp” are understood to be to the
base 2. For a stochastic |Z'|X |#|-matrix W we have al-
ready defined the transmission probabilities W" of a DMC,
and we have also introduced #(%") as the set of PD’s on
& We abbreviate (%) as 2. # denotes the set of all
channels V with input alphabet 4 and output alphabet %.
For positive integers n we set

#,={PePP(x)e{0,1/n2/n,
For any P € 2, called type or n-type, we define the set

(1 2 1}

VewV(yx)e 0
xe%,yE@}.

¥.(P) =

n

\ "nP(x)’ nP(x) i

For x"€ &" we define for every x€ &

1
P.(x)= — (number of occurrences of x in x").

P_. is a member of &, by definition. P,. is called type of
x". Similarly, we define the type P,. . for pairs (x", y") €
F'"XH" For PP the set I, of all P-typical se-
quences in Z" is given by

Tp={x"\P.=P)}.
For V € #°, a sequence y" € %" is said to be V-generated
by x" if, forall xe &, ye %,

Py (x, ) =Pl x)-V(ylx).

1) forall xe Z'}.
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The set of those sequences is denoted by J"(x"). Notice
that 77 #@ if and only if PEP, and T(x") #2 if
and only if V€ #,(P.). For PEP. VEW wewrite PV
for the PD on % given by

PV(y) ZP

Iy, 1s the set of PV-typlcal sequences in ¥'".

2) Entropy and Information Quantities: Let X be an RV
with values in & and distribution P € 2, and let Y be an
RV with values in % such that the joint distribution of
(X,Y)on & X% is given by
P(x)-V(ylx),

We write H(P), H(V|P), and I(P,V) for the entropy
H(X), the conditional entropy H(Y|X), and the mutual
information I(X A Y), respectively. For P, P€ 2

P(x)
P(x)

denotes the I-divergence and for V, Ve# the quantity

D(V|IV|P)= ZP(x)D( (-1X)V(-1x))

V(ylx), ye¥.

Pr(X=x,Y=y)= Vew.

D(P||P) =L P(x)log

stands for the conditional /-divergence.
3) Elementary Properties of Typical Sequences and Gen-
erated Sequences.

12| < (n+1)" (1.14)

#,(P)|< (n+1)"
forevery Pe 2, (1.15)
(n+1)""lexp {nH(P)} <|77| < exp (nH(P))
forPe®, (1.16)
Ta(x")| 2 (n+1)"""® exp (nH(V|P))
|77 (x") <exp{nH(V|P)}
forPe®,, Ve¥,(P),x" eIy (117)
wr(y"x") =exp{—n(D(VIW|P)+ H(V|P)))
for PeP,VeEW,(P), x"eTy, y"eTHx") (118)
w(Ty(x")|x") <exp{—nD(V||W|P)}
wr(T(x")x") 2 (n+1) "M exp {(— nD(v|W|P))
forPe®, Ve¥,(P), x"eIp. (119)

II. THE DIRECT PARTS OF THE CODING THEOREMS

A. Proof of the Direct Part: Theorem 1-a)

We simply apply Proposition 1 for a classical transmis-
sion code for W. Let A € (0,1) be given, and let € > 0 be so
small such that

1
Mog(——l) >2,
€

By Theorem S there exists for any large n an n-length

1
—->6.
€
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block code,
¢={(u.6)li=1.--. M)
with maximal error bounded by A and
M> 29,

Let & :={u,, -, uy}. By Proposition 1 a family of sub-
sets &7, -+, o, of & exists satisfying

|| =€ 2] = e M|
forie {1,---,N} (2.1)
|, N | < e |2
foralli, je{l,---,N},i#j (2.2)
N> |Z| 1214, (2.3)

From the sets &/}, -+, &, we construct an ID code in
the following simple manner. Define for i € {1,---, N}

Q(-)i) = equidistribution on s,
and
@,. = U é”k.

ukeﬂi
Form the ID code
{(e(-1i). 2)li=1,---,

We look at the errors of first and second kind of this ID
code (recall (1.5) and (1.6)). Let i€ {1,---, N}, and let
u, € ;. Then

W (Dluy) <W(E5lu,) <A

N).

because of &, C 9, and because &, is the decoding set for
u, in the transmission code %. Hence

Y o(x") W (2lx")

eqgn

1
= ¥ — W9, <.
u, €, I‘Mkl

On the other hand, fora je(1,---,N}, j#i,
Y o(x"j)Wn(2x")

x"eq”
T — W)
= —_— n ',u
u,e.«/j“%l
1
=7( Z W"(@ilu)+ Z W"(.@Ju,))
| j| wESN A, W& ;N
1
<l T wea)
|'JJ/I e N

If u € o, then &N, =2. Hence for such u, the rela-
tion %, C &/ holds. This observation together with (2.2)
yields

Y Q(x"j)W"(2,|x") <2A.

eqg"

19
Equation (2.3) finally gives
N> |M|1. 21921
> | &)l

In summary, {(Q(-|i), Z,)|i=1,--+,N}isan (n, N,A,2X)
ID code with (1/n)loglog N close to C — e. Since A and ¢
could be chosen arbitrarily small, Theorem 1 is proved.

Remark: Observe that for the proof we needed only
Proposition 1 (which is just Gilbert’s bound for constant
weight sequences) and a given code for the channel W.
Thus we can conclude that Theorem 1-a) holds in fact for
all channels having a capacity. It is not necessary to
assume that W is discrete or memoryless.

B. Proof of the Direct Part: Theorem 2-a)

Of course, one could easily derive exponential error
bounds with the construction in the preceding section. The
difference would be instead of a code with maximal error
A one would start with a code having exponentially small
error probability. Furthermore, one would choose 2"
instead of .

However, Theorem 2-a) gives a stronger result than the
one obtainable by this simple method. Theorem 2-a) gives,
in the sense expressed in Remark 4, a best possible error
exponent. The principal idea is random selection of ID
codes rather than a maximal coding idea which led to
Proposition 1. The key step is the application of Proposi-
tion 2 which we will present soon. Its proof is rather
technical, so we give here only the short proof of Theorem
2-a) assuming that Proposition 2 holds. The proof of
Proposition 2 can be found in the Appendix.

Let P € #,. We consider here only ID codes of a special
structure. Every message i is encoded by the uniform
distribution on a family %, of members of 7, satisfying
|%)=M forall i=1,---, N=]22"].

Let (R, &,) be given. We assign to %, a decoding set
9,=9(¥,) defined by

@(%i)= U Z,

UE %,

(2.4)

where

Z,= T (u).

V:I(P,V)Y>R+1E,

(2.5)

First notice that

Wr(F,\u) < )
Vi I(P,V) < R+2E,

< X

V: I(P.VY<R+2E,

W( T (u)lu)

exp { —nD(V||W|P)}

<(n+1)H¥

op{-n min  DVWP)
ViI(P.V)s R+1E,



20

by (1.19) and (1.15) and thus

_ Z Wn c'u (n+1)|9[[‘1“!/'
u€~?/
-exp{-— min D(V|1W|P)}.
Vi I(P.VY< R +2E,

This means that regardless of the choice of %, the error
exponent of the first kind

E,:= min D(V W |P)
Vi (P.V)< R+2E,
1s achievable. We now specify the sets %, to achieve
(R, E,). We choose
= [exp {n (R+E,)}| (26)

and define the %, by random selection as follows.

Let U, i=1,---,N; j=1,---, M, be independent ran-
dom variables, all uniformly distributed over 7", Define
the random families

?7,: {Uilv"'vUiM}’

Every realization of the Uj, gives rise to an ID code as
described before.

We want to show that a large fraction of these randomly
selected ID codes has an error exponent of the second kind
at least £, — & (8> 0 arbitrarily small, n sufficiently large
for 8). In fact, we can get this result (and therefore
Theorem 2-a)) by the following result for two messages.

Let %, be any subset of 7" of cardinality M and let
4, be as described above. We consider the probability P*
that for y>0:

i=1,--,N.

— Z w(a( 2)]u)sexp{—n(Ez—h)} (2.7)

ue?/l

and

—ZW(

ueﬁil2

U )|u) <exp{-n(E,-3y)}. (2.8)
Then we have the following proposition.
Proposition 2: For any y>0 and n > n(y),

P*>1—(n +1)exp (~(ny~2)-exp {nR}).

A proof is given in the Appendix. We show here that
Theorem 2-a) follows from Proposition 2. Imagine that the
random selection is performed iteratively and that the
realizations %,,---,%, have the desired error perfor-
mances.

Then, by Proposition 2, with the choice Y=468/3,
(%, ¥, %,,,) has the desired error performances with
probability exceeding 1~ 1(1— P*). Therefore, there exists
a sufficiently good realization %,,, of %, ., if

1-1(1-P*)>0.

Since by Proposition 2 even 1 N(1— P*) > 0 for large n,
it is p0551ble to find a realization (%,,- -, %) of
(¥, -+, Uy) with the desired error performances

The proof of Proposition 2 follows the large deviations
approach of [3] in the improved form of [1]. Specifically,

t+ 1

Fooig
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we shall need a very useful lemma on lurge deviations
which we state at the end of the section. The proof can be
found in the Appendix.

Lemma LD (Generalized Chebysher Inequality. Bernstein's
Trick, Chernov’s Bound): Let ¥, --- ¥, be independent
identically distributed RV's with values in {0.1}. Suppose
that the expectation E¥, of ¥, satisfies E¥, <p <A <1:
then
M
Pr( Y ¥ >MA

;=1

<exp{ M-D(\|ju)}.

where D(A||p) denotes the I-divergence between (A.1— ))
and (p,1-p).

I, THe CONVERSES

A. Rearranging ID Codes

In the following analysis it is essential that the error
probabilities A, be exponentially small (or at least of the

order O(n”~ <) for sufficiently large ¢), that is
A <2°%"  withe,>0 fori=1,2.  (3.1)
Starting with an (n, N, A, X,) ID code ((Q(-i). 2,)|i =

1,---, N}, we proceed in several steps to construct a
modified code whose structure is described in Proposition
3 below. This modified code will have essentially the same
length and error performances. The intermediate results in
each step are put into the form of lemmas.

Step 1: From general Q(-|i) to uniform distributions on
sets ,C X" (i=1,--+,N).

Lemma 4: For every (n, N, A, ),) ID code {(Q(-i),
2,)li=1,---,N} and every ¢>0, sets ¥,CZ exist for
i=1,---,N such that the ID code {(Q'(‘|i),Z,)|i=
1,---, N} formed with the uniform distributions Q'(-|i)
on %, has error probabilities X, satisfying

X, <A (e tog|&|+1)- 27 (1-2 ) !

Proof: For i€ {1,---,N} and k:=[¢ 'log|Z|+]1],
define

(i) = {x"R7"<Q(x"i) <270} (32)

for I=1,---, k. Clearly this definition implies

Ufé’ 1,i) )<2 knqgrn < 27ne,

Now choose I* = 1(i) such that
(™ (I*,i)li) 2 Q(Z"(1,i)i)
Then, for %, := Z"(I* i), we have

fori=1,--- k.

Q(@l,|i)2k“(1—2""). (3.3)
Define Q' by
-1 n
Q,()Cnll')z{l%'l , for x EGZ/[‘ (34)
\ 0, otherwise
From (3.4) we conclude that for x" € %,
Q' (x"li) =12 <)% "k (1-2") ‘(2 i). (3.5)
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By the definition of %, we have for x", x"e %,

H

O(X"i) < 2"Q(x")i).

Thus [%,| 'Q(%]i) <2"Q(x"|i), and from (3.5) we derive
forx"€,

Q'(x71i) <k(1-27") 2" Q(x"}i).
Therefore, for any 2 C %" and i=1,--- N
ZQ'(X"[[’)W"(Qhﬂ) Sk.(l_z_n()—lzn(

(3.6)

~;Q(x"|i)W”(.@|x"). (3.7

Choosing 2¢ (resp. 9,) for 2 in (3.7) one gets the desired
bounds on X| (resp. X,).

Step 2: Towards locally good codes.

We call a code {(Q(-]i), 2,)i=1,-- v N'} locally good
if, forall i=1,--- N,

WH(9,)x") 21X, forall x" with Q(x"i) >0,

(3.8)

Lemma 5: To every (n,N,\,, A;) ID code {(Q(-|i),
2,)i=1,--,N} we can assign a locally good code
{(Q*(-i), Z,)li =1, -+, N'} with error performances A* <
2A, (i =1,2). Moreover, if Q(-i) is a uniform distribution,
then Q*(-|i) can also be chosen to be uniform.

Proof: Consider @ * = {x"|W"(9,|x") >1-2A,} and
define

0*(xi) = | ©(xI)-0(2,21) ",
0,

forx"eu*
otherwise

(3.9)
Clearly,

LO*(x)W"(2)x") 21-2A,.

The definition of #* and the code properties imply that
Q(%*|i)=1/2. Therefore,

Z"Q*(X"Ii)W"(%IX")
< LO(DO() " W(3,)x")
2L Q(x"i)W (B x") <2X,  for j+i.

Step 3: Reduction to sequences of one type.

Lemma 6: Suppose that {(Q(-]i), 2)li=1,--,N}isa
locally good (n, N,A;,A,) ID code with Q(-)i) the uni-
form distribution on %,C #". Then types P, € 2, exist
such that, for the uniform distribution Q’(- li)on %, N T,
the system {(Q'(:]i), 2,): i=1:-- N} is an (n, N,
(n+1)¥IX,(n +1)1X,) ID code.

Proof: Since |2,|<(n+ 1), for any i there is a
P e # with

%N TP\ 2 (n+1) ),

21

Therefore, for any 2 c ¥"
LO(x"i)wn(2|x")

= X NI na w9k

EUNTP
<(n+ 1)L 0(x"i)-wr(2)x").

This implies the error bounds we claimed in the lemma.
Finally, notice that among the sets

A (P,m)={ili=1,--- N; P =P, % NI =m}
for P& &, there is one set of cardinality at least
NAZ| "(n+1)™,

This fact and the previous lemmas imply the following
Proposition.

Proposition 3: For every (n, N, A,, A,) ID code
{(Q(-1i), 2)li=1,---,N} there exists a locally good
(n, N, N, X,) ID code {(Q'(-}i), )i =1,- - -, N} with the
following properties:

a) the Q'(-|i) are uniform distributions on sets U Iy
for some fixed Pe2,

b) |%/|=M fori=1,--- N

¢) N> N-|Z|""(n+1)~1,

d) X, < (7 og | F[+1)-2% (1-277) 712 (n +1)¥1. ),
for i=1,2 and all ¢> 0.

This proposition shows that it suffices to analyze locally
good ID codes with properties a), b), ¢), and exponentially
small error probabilities. We refer to them as canonical 1D
codes (n, N, M, P\, X,). They are specified by a set of
pairs ((%;, 2,)|i =1,---, N'} with the required parameters.

B. Basic Observations on the Structure of ID Codes

1) The Key Idea: By Proposition 3 it suffices to
consider for the proof of Theorem 1-b) and 2-b) canon-
ical ID codes ((%,92,)i=1.---, N} with parameters
(n, N, M, PN Xy). IF A <1/2 and X, <1/2, it is clear
from the error bound conditions on the ID code that

a) the %, are distinct.

Suppose that for any 6 > 0 and all sufficiently large n our
codes satisfy
b) M <exp {(I(P,W)+ 8)n}) <exp{n(C +8)).

Then, of course, N cannot be larger than the set of
different subsets of " which have cardinality M. Thus,

in case b), N < ('ﬁ") <exp{nlog|%|exp{n(C+8)}}, and

1 logn +loglog |2
—loglogN<C+8+ & il !.
n

n
This completes the proof of Theorem 1-b).

Now recall that in the proof of the direct Theorems 1-a)
and 2-a) we used for , the set of codewords of an
ordinary code. Here b) holds. It seems therefore natural to
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try to “eliminate some unnecessary randomization in the
encoding” by selecting suitable subsets %/ C %,, all of a
cardinality M’, such that {#/|i=1,- -+, N } satisfies a) and
b). We presently do not know whether this can be done in
such a way that the ID code {(%/,%;)|i=1,---,N} has
good error performances Aj, A,. However, this is not
needed in our proof. We actually have to show the exis-
tence of the “representatives” #; only for an essential
proportion of the message set {ili=1,---, N}. Sull the
calculations are involved, mainly because we work in a
space which is larger than the one usually considered in
information theory. Furthermore, the structural conse-
quences of bounds for the error have to be extracted. The
main observation in this respect is presented next.

2) A Global Property of List Sizes: Let {((Q(-|i), 2,)|i =

-,N} be an (n, N,A, A,) ID code. For y"€ %" we
define the list size
N
L(y")= Y la(»") (3.10)
i=1
where /,, denotes the indicator function of 2. We look for
an estimate of those list sizes.

If a y"€¥" is contained in too many 2,, this may
cause an error event of the second kind in many messages
if y" is received. In other words, the error probability of
the second kind cannot be very low if the numbers L(y")
are large. We quantify this observation as follows.

Let J be an RV that takes values in {1,---, N} with
probabilities 1/N. Using J we define an “output variable”
Y" by the distribution:

N
Pr(Y"=y7) = (=) QU)W (1)

1 N
=5 L Zo(xmi)wn (). (311)
=1 x"

Proposition 4: For any (n, N, A, A,) ID code {(Q(-|i),
D))ji=1,---, N}, the expected list size, EL(Y") can be
bounded as follows:

EL(Y") <(N=1)A,+1. (3.12)

Proof:

=

") X lg

y i=1 x j=1

~
]

—

=

J#i

<(1-}) +—Z ZZQxlz

l-ljaﬁt x"
S(I=-A)+(N=DA, < (N=1)A,+1. (3.13)

3) Local Properties of List Sizes: Our next results (Pro-
position 3) involving list sizes concern a local property,

by

(‘9/1)‘")
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that is, a property for a fixed message i in a canonical
(n,N.M, P, A \,)IDcode {(%,.%)]i=1.---.N}. Here,
only the error of the first kind A, <exp{—¢n} is of
interest. The results are expressed in terms of hypergraphs
¥, which we associate with the single messages i. We then
apply the covering lemma [2, lemma 3. part Il]. to these
hypergraphs to find the representatives mentioned in Sec-
tion 11-B1).

If the given canonical ID code is built from P-sequences
x" € J,, then define V € #,(P) to be a channel such that

WY T (x")|x") = max WT(x")x") (3.14)
for x" € 7. Clearly, if W itself is contained in % (P),

then V = W. Otherwise, V' is the best approximation of W
in #,(P). V satisfies

wr( T2 (x")x") 2 (n+1) ¥ for x" e T (3.15)
and, if any 8 > O is given, it also satisfies
[I(P,W)-I(P,V)| <8 (3.16)

for every n > ny(8).
For this V € #° we define the hypergraph

X=(2 (TN D) eq)

i
For a 7€ (0,1), which we later choose sufficiently small,
we partition the set &, into the sets

(a.(hp<i<fiz)i])
according to the vertex degrees or local list sizes
d(y")=|{uc|y e T} (u)nD}|
for y" € 2, as follows:
-@i(l) — {yne gilzu_”mﬁd,(

for I=1,2,---,[|Z|" "
Since d,(y") <|%| < |Z|", we have

d,(y") <exp{nlog|%|} <exp{[|Z|-r "|n}.
This, together with the above definitions, implies that

(3.17)

y") < 2’"’} (3.18)

9,(0) = (" 24 (") =0} = 7,- U 1)
For any i € {1,---, N}, choose [, € {0,---,[|Z|/7]} such
that
1
— Z W"(2,(1,)|u) = max — wW(2.(1)|u).
(3.19)
Then, by this definition and (3.15),
W 2,(1)NT M (u)lu
WI“:LQ (2,(1)N TP (u)u)
> (n+1)""EL a7 TS AL (3.220)

For convenience, we make a little change from the given
code (%, 2,)li=1,---,N} to a new system {(%,, 2,*)|i
=1,- -+, N*} which is simpler and contains all information
necessary for the proof of the theorem.
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Since /,€ (1,---.[|1Z|/7]} and |92,(!))| € {1,---,1%|"},
we conclude that there are numbers /*, T* such that

N*=|{ill,=1*|2,(1)| = T*} | (321)

is lower-bounded by N|%| "[|Z|r~'1"'. For those i for
which [, =1* and |2,(/,)| = T*, we set

D= 91‘(11')'

After relabeling, we can assume that, for the indices i =
1,- -+, N*, the conditions /,=/* and |2,(/,)| = T* are satis-
fied.

In what follows we study {(%, 2*)|i=1,---, N*} in-
stead of the ID code given originally. Observe that by
(3.21) the limitation to only N* messages does not affect
the second order rate. The 2* are rather small in compar-
ison with the 2. However, we shall see that they are
substantial enough parts of the 2, for the purposes of our
proof.

We now consider the new hypergraphs

2 =(22 (TN D) sea,),  i=100 N®

with vertex degrees (or local list sizes) d*(y") defined as
in (3.17). We have our next proposition.

Proposition 5: For €,8, r€(0,1) the constructed hy-
pergraphs J* above (i=1,---, N*) have the following
properties

a) |2X =T

b) 2(I‘~1)n‘r_<_ dl_*(yn) < zl'n‘r for all yn e @i*;

) N>=N*>N- % "[|Z)]+7 7L

&) 1/NE,caW"(DF 0 THu)u) > (n +1)~H1191.
NZ)r 1= A; and

e) [(P,W)—I(P,V)| <8 if n is sufficiently large.

4) Choosing Representatives via Balanced Hypergraph
Covering: We consider the system {(%,, 9*)|i =
1,---,N*} and the hypergraphs J,*, i=1,---, N*. With
the help of a covering lemma from [2] we choose represen-
tation subsets #,C %, c I

In Sections III-C to III-E we shall show that the sets %,
we define here have a cardinality which is essentially
bounded by A,exp{nI(P,V)} (Section III-C). Further-
more, we show in Section III-E that the sets %, are not
just distinct but, rather differ greatly. In particular, we
demonstrate that the %, cannot have large subsets in
common. This strong distinctness property immediately
leads to a proof of Theorem 2-b). For a proof of Theorem
1-b) it would be sufficient to prove just the normal dis-
tinctness of the sets %,

We start the formal arguments for the definition of the
;. Following [2] we call ¢ = {E,---,E,} C& a c-bal-
anced covering of a hypergraph (¥", &) if

k
E=v
.

Jj
and

{E€¥lveE}|sc forallvey. (3.22)

23

Covering Lemma 3 [2, p. 11, p. 250]: A hypergraph with
a= maxdeg(v), mindeg (v) =8 >0
€Y ve¥y
has a c-balanced covering with exactly k edges, if

a) k=|&|B '(og|¥|+1)
b) c<k<c|€la!, and
) exp{(h(ck™')+log(a|&| 1)k +log|¥|} <1/2.

If a) holds and ¢ > k, the result is again true (already by
Covering Lemma 1 in [2, pt. I]). Note that k() denotes the
binary entropy.

We now apply this Lemma to the hypergraphs
Recall that |%,|= M > 2 for every i =1, .-, N*.

Corollary 1: Every hypergraph #*, i=1,---, N* has
a c-balanced covering

6, = {.7',5'(u)ﬂ@,*|u€9,.}

with the properties:

a) |#|=|M-27""P"| and
b) ¢<2%" if n is sufficiently large.

¥ A

1

Proof: The parameters of J#,* are
€=M  |V|=|2}=T*<|¥|"
and
2(1‘—1)»1‘S B <a< zl‘n-r.
We choose k =|M2~""~2") and ¢ =[2*"),
1) 18- B~ log |7+ 1) < M-27"" V™. 20 1og || < k,
for n > n(r).
2) c&la™t 22| M-27"" > k for n> n(7).
3) In case ¢>k we are done. Otherwise, k > ¢ and
c-k~1. Hence h(ck™') is defined and 0 < h(ck~!) <1.
Furthermore, k > ¢ implies
lz4n1] < M.2~(I‘—2)n1'
and therefore
M2 21 +1)nr

This gives us
log(al&|™!) <log (2"""M~!) <log2™""= — 1.

for large n.

Therefore, the left side of c) in Covering Lemma 3 is here
upper-bounded by (again use k > c): exp{1—nr)]2%7|+
nlog|¥|} for large n, which converges to zero if n tends to
infinity. This completes the proof of Corollary 1.

We next establish an important upper bound on |Z,| in
terms of T* =|9*|. We start with a simple observation. By
(1.18) we have for any y" € 75(x"), x" € Tp

W(y"|x") < exp{ — nH(V|P)).
With the abbreviation

Y= (n+1) T g Ty
we can rewrite (3.20) as

My X W20 T (u)u)
uey,

1
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and then by (1.18),

M <y, bexp{—nH(VIP)}. ¥ 19077 (u)]

uE‘?/
<Y, "exp{—nH(V|P)} - 2" G x|

<2"exp{—-nH(V|P)}-2""|9*, fornzn(7).

(3.23)

Thus we can use (3.23) and the property a) of Corollary 1
to obtain the following,
Corollary 2:

|R,|<2°""-T*exp (- nH(V|P)},  forn>n(7).

C. An Upper Bound on T*

In the preceding section we defined representatives %,
for the messages i. We recall briefly that we first want to
upper-bound the cardinality of the %, Then we want to
show that the %, differ greatly. We shall conclude that
there are not too many %,.

The preceding section ended with an upper bound on
|#,]. For a final result, however, we still need an upper
bound on T*. This bound is provided here.

Proposition 6:

a) T*<exp{nH(PV)}-(A,+1/N*)2%™"

b) |%|<exp{nl(P,V)}-(A,+1/N*)28m

if n > n(r) is sufficiently large.

Proof: In Proposition 4 we proved that, for A, small,
the 9* cannot overlap too much. This result is used here
to prove that the 2* cannot be too large.

First, we need a simple observation. As before, we
consider the system

{(Z,27)i=1, -,

instead of the original system {((%;, 2,)|i=1,---,N}.

We want to apply Proposition 4 to the new system. We
remark here that this presents no problems because the
sets 9* are subsets of the original sets. The reason is that,
if one reduces the decoding sets of an ID code in size then
the error probability of the second kind cannot increase.

We consider the list sizes

L*(y") =|{ilie {1,---,
Let J* be uniformly distributed over {1,- -, N*} and Y*"
be defined in analogy to (3.11), for the new system
(%, 2>)i=1,---, N*}.
Proposition 4 yields:
N*A, +12 Y Pr(Y*" = y")L*(y")

N

N*}

N*}, y"e2*}|. (3.24)

> Y Pr(y* =yp")L*(y"). (3.25)
y"egg,
Since the £,*’s are contained in 73},
N*
Y L*(y")> Y2 =N*T*.  (3.26)
ey, i=1
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For y"€ .7, we have by (3.15) and (1.17)

V‘
Pr(¥"=y")=—23% ¥ —W"(y"u)
N* i=luey, M
1 1
> — Z Z . VV"(_V"!II)
N* (Y E€ED* u y' e T (u) M
uEQII
1 1
S Th vh exp {~nH(V|P))}

.2(/‘—1)n'rL*(yn)(n + 1) 4)f|-|‘d/|‘
Substituting this into (3.25) we get

=119

1
N*A,+12> N exp{—nH(V|P)}-(n+1)

20 S (L (pm)E (3.27)
yegg,
The last sum can be written in the form
L*(y")?
\Tovl X
Vv'egm, ' PVI
which by convexity of the square function exceeds
1 2
|9-nl(_T L*(yn ) i
iz 20
By (3.26), this is lower-bounded by
Ig"Pnyrl,N*Z.T*Z.
Therefore, (3.27) yields
1
N*A,+1> o N*T*2 |\ T |~ Lexp {=nH(V|P)}
20D (4 1) T (3 08)

We now estimate one term only on the right side namely
T* with the aid of the inequality in Corollary 2:

1
]\/*}\2 +12 7‘.4. .N*.T*_l‘q'PnV|—l_2~3n7.2(l*—l)n'r

(n+1) ¥ g (329)
By (1.16) we have |7, | < exp {nH(PV)}. Thus, by Corol-
lary 1-a),
N*Ay+12 N*-T*exp { —nH(PV)}-2-%"

A(n+1)"HF¥(3.30)

We see that for large n we get part a) of Proposition 6.
Part b) follows from part a) and Corollary 2, if n is
sufficiently large.

Remark: The bounds on T* (resp. |%,]) we derived here
are not needed for a proof of Theorem 1-b). For this
theorem, the trivial bound

T <|7p | <exp{nH(PV))

would suffice for a proof. Thus in this case Proposition 4 is
not used at all.
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D. A Probubilisuc Property of the Hypergraph X *

For a complete proof of our Converse Theorem 2 it
remains 1o show a strong distinctness of the representa-
tives #,. The technical Lemma 7 of this section provides a
tool for this final step. We show here that our c-balanced
hypergraph ¥ * =(2* (T Mu)NZ*), ., ) is in a cer-
tain sense also probabilistically balanced. Define

.= (e ar| T Wil 3o (~nh(vIP) } |

‘u€E A
Lemma 7:
1
— . Y W ALNTu)u) 224"
l"?rl u€ A

if n is sufficiently large.

Proof: Let
a= ) W (o, 0T (u)u)
uE A,
b= Y W'((9*=L)NT(u)|u).
uE A

First, note that by (1.18)

a,s L exp{~nH(V|P)}-[{ueR|y"€TP(u))|
T (3.31)

and

b< QZ dexp{—nH(VuP)}l{uegf,»ly"e%"(u)}l-

i

(3.32)

On the other hand, by the definition of the representatives
X, the sets 7 (u), ue R, cover 9*. Therefore, (3.15)
and (1.17) give

)-lfl'i‘?lfi

a;+bz2(n+1 -exp { —nH(V|P)} 12|

Continuing with Corollary 2 we get

a;+b,=(n+1)" 1. g (3.33)

for sufficiently large n. This is used to obtain

Z W"(9,-*|u) <|#|< (” + l)m.lgl'zsw'(ai + bi)'

ue R

(3.34)

We now derive a lower bound for the left side of (3.34). If
y" € 2*, then apparently

Zw W"(y"|u) 2 exp (- nH(V|P))

{ue Ry e To(u)}|-(n+1)"F1¥ (335)

By Corollary 1, |{u € &,|y" € T2(u)}| < 2*"" for y" € D.*.
If y"e2*— o, this, together with the definition of &7,

25

gives:

X Wr(pmlu) 227 (n+1) " P exp (— nH(V|P))

u€ A,
Hue Ry e Tp(u)}|. (3.36)
Hence, by (3.31), (3.32). (3.35), and (3.36)

Y W(2*u)
u€ R

>(n+1) " g 4 (n41) TP (3.37)
From (3.34) and (3.37) we finally get
a, 42", < (n+1)"F1¥03 (g 4 p ).
Since a, <|#,| and 4, >0,
(27,"_(” + l)z'f"'g'-?’")bi <(n +1)2lf|'lg|_23nr,9il.
(3.38)
This gives an upper bound on b,. We conclude with (3.33)

a;> (n+1)"H¥3mg o (3.39)

One need only substitute (3.38) into (3.39) to get the claim
of the Lemma for sufficiently large n.
Corollary 3: At least 1 27%""|®,| members u € X, sat-
isfy
W T (u)NLju) =275
if n is sufficiently large.

Proof: Let %, = {ue R|W"(THu)N |u) >
275"} Lemma 7 yields
12274 < 3 W72 (u)n fu)
ue:?,
<|B|+27"|R,.
Hence
|9, > |8 (27477 = 2 5)

1
> 5|Q,.|-2"'", for n large.

E. A Strong Distinctness Property of the Representatives X,

For every i€ {1,---,N} choose 1 27"|®,-2 "
2237) elements u € R, with

W (T2 (u)N ju) 2275,

This is possible by Corollary 3, if 7 is small. Let £ be
the subset of these chosen elements.

Proposition 7: The sets R* are distinct, if 7 is small in
comparison with ¢,, ¢, and if n is sufficiently large.

Remark: Note that we prove here a much stronger
property than just the distinctness of the %, themselves. In
Section III-D we proved that many u € &, satisfy (3.40).
In light of these results, we see that the definition of the
sets #.* means essentially: “Take any subset of 27" %]
elements u € #; and call it #*." The fact that we restrict
our attention only to those u € %, satisfying (3.40) is only

(3.40)
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a technical necessity. Therefore, Proposition 6 says essen-
tially: The sets %, are very much different in the sense
that they cannot contain common subsets of size 27"|%,|.
We now give the proof of Proposition 7 along with some
easy arguments to complete the proof of Theorem 2-b).

Proof: Suppose i # j and #* = R *.
We lower-bound the error probability of the second
kind
1
— WD |u),
M uez% ( jlu)
which we assumed is less than or equal to A,. We will be

led to a contradiction.
Suppose that y" € /. Then

— Z W (y"lu)
uE‘?/
1
2o L W)
ue,
Y€ TV(u)
1
z~M~(n+1)"""“'-exp{—nH(V|P)}-2"‘*”"'
1
lg?l(n-H) W= mmexp ( — nH(V|P))
because of Corollary 1. Since y” € &/,
1
— L W(yu)
M ue,

Y W(y"u)

(n+1) |F-19] .- 12n7,
‘Ql uE X,

1
>————(n+l) I g2 S (7). (3.41)
|.@’ ueR*

Recall now that 2* =2 * and that the original code was
assumed to be locally good, i.e., that

W"(Dflu) <A,

Since #* = 99* we also have #*C 0]/ Thus we can
continue with (3 41).

Ly wiaw

M uew,

1
2_)\72

W"(Qjﬁ&ﬂu)
UEX,

i

for all ue%-.

1 119
>—(n+1) "= 2 g9 N o))
I‘@:| TE=¥ §d ’

1
> —(n+1)
ez

-2—12"*( Y, WH(Au)-
ueAr
I *

|9?|

i)

( +1) 1-19| - 12n1(2 Snr _ >\1)

o
1 }K i

(3.42)
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where we used (3.40) in the last step. The definition of
|#*| gives

LY we(au)

S RLUTN }\2
M ued,

(3.43)

if = is small in comparison with €. ¢, and if n is suffi-
ciently large. Proposition 7 is proved.

Final Arguments for the Proof of Theorem 2-b: From
Proposition 7 we see that the map

is &%, i€ {l.-- N*)

is injective. Thus N* is bounded by the number of subsets
of Z" with cardinality |#*|. We conclude:

n\
V) <japrn g a2

*
AT

(3.44)

From (3.21) we see that loglog N* and the original param-
eter loglog N do not differ too much. In Proposition 6 we
gave an estimate for ||

We bounded (1/n)log|#,| essentially by I(P,V)—¢,
Hence (3.44) bounds 1/nloglog N* essentially by I(P, V)
—2¢,, which was to be proved.

IV. DIscuUssION

In all coding problems previously studied in information
theory, the maximal codelengths grow only exponentially
in blocklength. Therefore, our double exponent coding
theorem is the first of its kind. The identification problem
solved seems to be a natural one. In our judgment
it enlarges the basis of information theory, which in
Shannon’s foundation was restricted to the transmission
problem. The success of Shannon’s theory relies on the
fact that the semantic aspect of information was excluded,
but the identification problem also has its place in a
presemantic theory. It therefore is satisfying to see that
this meaningful question finds an answer in a smooth
mathematical theory. Moreover, the result is quite sophisti-
cated from the mathematical point of view. Of course, we
expect that simpler proofs will be found; we do not expect,
however, that a very simple proof of the converse will be
given soon.

A few historical remarks seem in order. In 1970 one of
the authors presented a manuscript entitled “A New Infor-
mation Theory: Information Transfer at Rates Above
Shannon’s Capacity” to the late Jack Wolfowitz. Within 24
hours Wolfowitz responded with a letter entitled, “New
Information Theory for Those who Don’t Know the Old.”
He was absolutely right, because the calculation of the
error probability for a random encoding procedure used
only two-codeword error probabilities and had completely
ignored the union bound. Nonetheless, somehow informa-
tion was conveyed, and in another letter two days later,
Wolfowitz wrote “The result is perhaps completely useless,
but I like it!”

At the Information Theory Workshop at Grinna, Swe-
den, during a discussion on Yao's two-way communication
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complexity (see [4]). Ephremides drew attention to a recent
unpublished work of Ja’Ja’ (see [5]). Immediately, the bell
rang. The ancient result had a proper interpretation in the
context of identification. The observation of Ja’Ja’ is that,
for the binary symmetric channel with crossover probabil-
ity € #1/2, one can identify at a rate arbitrarily close to 1.
This is immediately clear, if one uses Gilbert’s bound for
the Hamming distance d=8-n(8 »0) and Hamming
spheres of radius equal to (e + n)n(e<1/n,m < €) as de-
coding sets.

One can apply the same idea to the general DMC to get
a (non-randomized) identification capacity equal to log, of
the number of distinct row vectors in W, The unsatisfac-
tory aspect of this result is that the actual values of the
positive entries in W do not matter.

Our idea to use randomization in the encoding therefore
is fruitful in two respects: it leads to much better perfor-
mance and also eliminates the shortcoming mentioned.
Since X »Q(x")i)W(D,]x") =1 — X implies the existence of
an u; with W(9,Ju;) 21— A, the effect of randomization is
on the error of the second kind. For the transmission
problem on the DMC, it does not help at ail!

It must also be emphasized that even for noiseless
channels our result is of interest. Suppose that one out of
N possible events occurred. Shannon was concerned with
the question, “Which event occurred?” The question asked
in identification is “Did event i occur?” Here i could be
any member of {1,2,---, N }. There are many situations in
which the answer to this question is of interest.

Example 1: Let §,,---, Sy be sailors on a ship, and let
sailor S; be associated with lady L,. In a stormy night one
sailor, say S, drowns in the ocean. One could now broad-
cast his name to the radio stations of the country from
which all sailors are known to come, hoping that the lady
L; listens to the news, so that she hears about the tragic
event. However, this takes [log, N] bits and the news is
(primarily) of interest only to one lady. If we now permit a
certain error probability, which is not much of a prize in
an imperfect (as the tragedy shows) world, then by our
result O(loglog N) bits suffice!

Example 2: In many countries the winning m-digit state
lottery number is made public on radio and television.
Again, by tolerating a certain error probability, this num-
ber could be replaced by a properly produced random
number of O(log m) digits and still every winner and every
loser would be informed correctly with probability close to
1. Also one could modify the lottery so that the chance
errors become part of the lottery.

These examples show that there is a need for explicit
constructions of ID codes. If such codes achieve positive
second-order rates, then they are already much better than
the naive error-free identification codes.

There is a multitude of other problems which can now
be studied. Almost every known coding theorem concern-
ing the transmission problem can be reconsidered in the
context of identification. Also, new phenomena arise. We
are preparing two papers entitled “Identification in the
Presence of Feedback” and “Identification for Multi-Way
Channels” to expand the discussion.
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APPENDIX

Proof of Lemma LD
If 7> 0 is a random variable, then by Chebyshev’s inequality,

ET
Pi(T=>9) < 5

for > 0. If a> 0 then
Pr(T28) =Pr(2°7 > 29),
We apply the above inequality to the right side.
Pr(T>6) <27 *.E2.
This gives for the RV’s ¥,,- -, ¥,,

M M
Pr E ‘Ilj> M-\ Sz—a)\M.El—Iza\P =2~u)\M'(E2a\I'])M
j=1 j=i

for any a> 0, because the ¥, are independent and identically
distributed.

E2% = Pr(¥, =0)-2° +Pr(¥, =1) .2 =1-E¥, + 2*E¥,.
Since >0, we have 2" >1. Hence E2°%1 <1—p +2% p, because
E¥, < u by assumption. Now choose

) | I-A
= —log| — - ——|.
* 8 A 1-p

Since p < A, also (1-X)/A < (1- p)/p; therefore, o’ > 0. We get
easily

M
(E2%) Y = (1~u+n-%' 1,“‘)
= 2~ M(log(1-X) ~ log(1 - )
and also
2Aa’\I/~M = 2—M(~Alog((l—>\)/)\-u/(l*u))).

Note now that the product of the last two right sides expressions
equals 2~ MDA,

Proof of Proposition 2

The following lemma (lemma 2) is [1, lemma 1, p- 433].

Lemma 2: Let U be uniformly distributed on I, P € 2, Let
¥ be a subset of I, |%| = exp{nR*}. Define for any V, V'€ ¥’
and u*e ¥":

8V,V’(“*) = L‘qu.?',}',(u)ﬂf;'(u*) . (A1)

Then
a) Egy . (U)<(n+1)*-exp{n(H(V|P)-[I(P,V')—
R}
b) forall 1>0,£>0, and n> n(n,|},|¥)),
Pr(gy - (U)exp{n( H(V|P)-[1(P, V')~ R¥*]" + £ +21))
for one pair V,V' e #') <exp{-n(n+§£)}.

The significance of the functions g, ,. lies in the fact that they
can be used in deriving upper bounds on the error probabilities
of the second kind. Indeed we have the following.

Lemma 1: Suppose that, for every V, V'€ #, u*€ ' satis-
fies

gy (u*) < exp{n(H( V|P)
~[1(P,V)-R-E] +2n+¢)}; (A2)
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then

W D(X)NFalu*) < (n+ 1) exp{ ~ n(E,~ 21 - £))
(A3)
L W (Folu) < (n+ )™ Pexp { — n(E,—2m-¢)).

ue¥
(A4)

Proof: Notice that
W (2(U)N Z.u*)

<
V: I(P,V)2 R+2E,

)y

Vi I(PV')2 R+2E,

<(n+1)2919 (ur
<(n+1) V:l(P,V)zR»»zEZgV"(u)
Vi I(PV) = R+2E,
‘exp{ —n(D(V||W|P)+ H(V|P)))

by (1.15), (1.18), and (A1) Furthermore, by (A.2) and
D(Viw|P)>0

v (w*)exp{—n(D(V|IW|P) + H(V|P))}
<exp{ —n([I(P,V')—R—52]‘—217—5)}
<exp{-n(E,~2n-¢)},
if I(P,V’) > R+2E,.

Substitution of this bound in the previous bound gives (A.3). We
show now (A.4). Clearly,

Y W (F.u)

<X X )}

uE¥ vV v I(P,V)=R+2E,

Obviously, TP A(UuNN T u) 0 implies PV'= PV’ Now use
(1.15), (A1), (A.2), and D(V|W|P)=>0 to obtain the upper
bound

W"(fy"(u*)nugf.%( w)lu*)

W T(u*) O T ) ).

exp( —n( H(V|P) - H(V'|P)
V. I(P.V')2 R+2E,
V: PV=py
R
+[I(P,V)- R~ E)] ~2n-¢)}.
It remains to be shown that
H(V|P)- H(V|P)+[I(P,V)~R-E,]" > E,.
If (P,V)<R+ E,, then because of PV = Py’
H(V|P)2 H(PV')-R-E,.
Since I(P,V') > R+2E,,
H(V|P)- H(V'|P)+[I(P,Vv)~ R~ E,]
SI(P,V)~R-E,2R+2E,~R-E,=EL,.
On the other hand, if I(P, V)zR+E,
H(V|P)~ H(V'|P)+I(P,V) - R-E,
=H(PV)—H(V’|P)—R—E2=I(P,V’)—R—-Ez
>R+2E,-R-E,=E,.

Lemma 1 says something about the error contribution of a u*
satisfying (2.2) if taken as a member of a U,, say, and if ¥, =%
is already specified. Our last auxiliary result concerns large
deviations. We keep 7 > 0 fixed in (A.2) and prove
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Lemma 3: Let Uy, Uss,- - -, Usy, be defined as above For any
£ > 0 we define

_fo.

i1,
for j=1.---, M. Then for every ¢ € [0, E.Jand n>n(n, E,):

if Uy, equals a u* satisfving (2.2)
S/g(U:, ) !

otherwise

M i
Pr(ZS/£>exp{—n$}-M sexp{—exp{nR}‘(nn~2)}.
=1

(A.5)

Proof: For fixed ¢ the Sigo ++ Sy are independent identi-
cally distributed random variables with values in {0.1}. Lemma
2-b) gives

ES<exp{—n(n+¢)).
We apply Lemma LD and get

g

M
2 S¢>Meexp{—nt) sexp{ - M-D(2 "2 el
7 =1

(A.6)
We have to estimate the divergence.
D(Z n£”2 nli'm) =7 log(2 n§ gnig . m)

o 12
H(1=2 "log s
22 "qn+(1-2 ")log(1-2 ")
>2 "‘-rpn+log(1—2"")‘

because log 1 < 0 for ¢t €[0,1).
For small ¢ > 0 one can estimate

log(1~1¢) > -21.
Therefore,
D(z-nsllz-»n15+n)) 22"’€~n~n—2-2""=(n'q-2)~2“"5‘
(A7)
if n is large enough. Since M="exp{n(R+ E;)}] (see (2.6)) and

£ €0, ), (A6) and (A7) imply (AS).
From Lemmas 1-3 to Proposition 1: We apply Lemmas 1-3
with 7 =y, Choose in Lemma 3

E, -k

n

&

’

to obtain
M

Pr| ¥ Sie,> M-exp {~n¢, ) for some k€ {0,---,n}
i=1

<(n+1)exp{ —exp{nR}-(ny-2)}. (AS8)
It remains to be shown that (2.7) and (2.8) hold if

M

Y S <Mexp{-nt) forall ke {0,---,n}. (A9)
J=1

Suppose now that (A.9) holds. Choose Jj€{l,---, M}. Note

that if S¢=0 for a £>0, then also S =0 for every ¢'>¢.

Similarly, if S =1 for a £>0, then also S =0 for every

0 < ¢ < ¢ By the definition of § there is a minimal ¢ such that
S.=0.

7€

Choose & € {0,- - ~»n}. The number of je (1,-- M} such

that the corresponding minimal ¢ is contained in the interval

(k/n,(k+1)/n) is upper-bounded by L).,S, (because of the
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monotonicity property discussed above). For these j, of course,
S, ., =0 holds, and a fortiori, (A.4) holds with £ .. On the
other hand, the number of j € {1,---, M} such that the corre-
sponding minimal § is larger than E,( =¢,) is upper-bounded by
Z;’_ lS/fn'

With these arguments we get the following estimate:

Y, u:;% W (2(4,)|u)
M
Pl

1 ued

wi( 7, u))

RI~

'(n +1)2l3ﬂ'!5l

O(Zs

=1 /

IM:

1
Mk

exp{ —n(E,-2y-§,,,))+

Z Se,

/-1

Since §, — §,,, = —1/n we can continue with (A.9)

v L W(9(@))

ueﬂl(l

L4

Y (n+ 1) exp = n(E -2y~ £+ £))
k=0

+exp{—nE2} SeXP{‘"(EZ_:;Y)}
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for n = n(y, E,). Using (A3) instead of (A4) in the foregoing
derivation one obtains by the very same arguments

=) W"(@(qv)|u)<— L w( U zns, 1)
uE‘?/ J=1 ue 4,
- <exp{-n(E, -3y)}
forn>n(y,E,).
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