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Abstract: A longstanding conjecture of Erdős and Simonovits states that for every rational
r between 1 and 2 there is a graph H such that the largest number of edges in an H-free graph
on n vertices is Θ(nr). Answering a question raised by Jiang, Jiang and Ma, we show that the
conjecture holds for all rationals of the form 2−a/b with b sufficiently large in terms of a.
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1 Introduction

Given a positive integer n and a graph H, the extremal number ex(n,H) is the largest number of edges
in an H-free graph on n vertices. In this short paper, we will be concerned with one of the standard
conjectures about extremal numbers, the rational exponents conjecture of Erdős and Simonovits (see, for
example, [4]), which states that every rational number r between 1 and 2 is realisable in the sense that
there exists a graph H such that ex(n,H) = Θ(nr).

Conjecture 1.1 (Rational exponents conjecture). For every rational number r ∈ [1,2], there exists a
graph H with ex(n,H) = Θ(nr).

The main result towards this conjecture is arguably the result of Bukh and Conlon [1] saying that for
any rational number r ∈ [1,2] there exists a finite family H of graphs such that ex(n,H) = Θ(nr), where
ex(n,H) denotes the largest number of edges in an n-vertex graph which does not contain any H ∈H as
a subgraph. However, the conjecture remains open in its original form, which asks for a single graph
rather than a family.

Nevertheless, following the breakthrough in [1], progress on the single graph case has been swift,
with substantial contributions, each extending the range of exponents for which the conjecture is known,
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Figure 1: The rooted graph Fr,s, with black vertices representing roots.

made by Jiang, Ma and Yepremyan [9], Kang, Kim and Liu [12], Conlon, Janzer and Lee [2], Janzer [7],
Jiang and Qiu [10, 11] and, most recently, Jiang, Jiang and Ma [8]. For now, we highlight only one
of these results, due to Jiang and Qiu [11] saying that any rational of the form 1+ p/q with q > p2 is
realisable. Proving a conjecture of Jiang, Jiang and Ma [8, Conjecture 11] in a strong form, we show that
a similar phenomenon holds near two.

Theorem 1.2. All rationals of the form r = 2−a/b with b≥max(a,(a−1)2) are realisable.

To say more, we must first explain the context in which the recent progress has been made. We will
be interested in rooted graphs (F,R) consisting of a graph F together with a proper subset R of the vertex
set V (F) that we refer to as the roots. We will usually just write F if the roots are clear from context.
For each S⊆V (F)\R, let ρF(S) := eS

|S| , where eS is the number of edges in F incident with a vertex of
S. The density of F is then ρ(F) := ρF(V (F)\R) and we say that (F,R) is balanced if ρF(S) ≥ ρ(F)
for all S⊆V (F)\R. Finally, given a rooted graph (F,R) and a positive integer t, the t-blowup F t is the
graph obtained by taking t vertex-disjoint copies of F and identifying the different copies of v for each
v ∈ R. The following result of Bukh and Conlon [1] now yields a lower bound for the extremal number of
F t provided F is balanced and t is sufficiently large in terms of F .

Lemma 1.3 (Bukh–Conlon). For every balanced rooted graph F with density ρ , there exists a positive
integer t0 such that ex(n,F t) = Ω(n2− 1

ρ ) for all integers t ≥ t0.

Paired to this result is the following conjecture, saying that Lemma 1.3 is tight up to the constant for
balanced rooted trees. If true, this conjecture would easily imply Conjecture 1.1.

Conjecture 1.4 (Bukh–Conlon). For every balanced rooted tree F with density ρ and all positive
integers t, ex(n,F t) = O(n2− 1

ρ ).

The recent progress then has centred on proving Conjecture 1.4 for particular choices of the rooted
tree F , with many novel and interesting ideas going into each new case. Here, we consider a family of
rooted trees first studied in this setting by Jiang, Jiang and Ma [8]. More precisely, for every pair of
integers (r,s) with r,s≥ 1, we write Fr,s for the rooted graph with vertices y, zi for 1≤ i≤ r and wi, j for
1≤ i≤ r, 1≤ j≤ s, with the wi, j roots, and edges yzi for all 1≤ i≤ r and ziwi, j for all 1≤ i≤ r,1≤ j≤ s.
For a picture with r = 4 and s = 3, we refer the reader to Figure 1, where the roots are drawn in black. It is
easy to verify that Fr,s is balanced provided s≤ r. Therefore, since ρ(Fr,s) = (rs+ r)/(r+1), Lemma 1.3
implies that

ex(n,F t
r,s) = Ω(n2− r+1

rs+r )
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for s≤ r and t sufficiently large. Our main technical result is the corresponding upper bound for a certain
range of parameters.

Theorem 1.5. For any integers r ≥ s+2≥ 3 and t ≥ 1, ex(n,F t
r,s) = O(n2− r+1

rs+r ).

This improves on a result of Jiang, Jiang and Ma [8], who proved a result similar to Theorem 1.5, but
under the more restrictive assumption that r ≥ s3−1. While our argument, which we outline in the next
subsection, shares some ideas with theirs, it is considerably simpler.

To see that Theorem 1.5 implies Theorem 1.2, we require one more ingredient, a key observation
of Kang, Kim and Liu [12] saying that if the exponent 2− a

ap0+q is realisable by a power of a balanced
rooted graph, then so is 2− a

ap+q for all p≥ p0. But

2− r+1
rs+ r

= 2− r+1
(r+1)s+(r− s)

,

so the observation of Kang, Kim and Liu implies that the exponent 2− r+1
(r+1)p+(r−s) is realisable for all

p≥ s. Since r− s ranges from 2 to r−1, this means that we get all exponents of the form 2− r+1
d with

r ≥ 3, d ≥ r2 and d 6≡ −1,0,1 (mod r+1). Therefore, setting a = r+1, we see that 2− a
b is realisable

provided a ≥ 4, b ≥ (a− 1)2 and b 6≡ −1,0,1 (mod a). The remaining cases, where a ∈ {1,2,3} or
b≡−1,0,1 (mod a), have all previously appeared in the literature (see, for instance, [12]). It therefore
remains to prove Theorem 1.5.

1.1 An outline of the proof

Let G be an n-vertex graph with Cn2− r+1
rs+r edges, where C is taken sufficiently large in terms of r, s and t.

We want to show that G contains F t
r,s as a subgraph. As is usual when estimating extremal numbers, we

may assume that G is K-almost-regular for some constant K depending only on r and s, by which we
mean that every vertex in G has degree at most K times the minimum degree δ (G).

Suppose that G does not contain F t
r,s as a subgraph. First, we show that, among all stars in G with s+1

leaves, the proportion of those in which the leaves have codegree at least |V (F t
r,s)| is only o(1). Indeed,

otherwise we could find a vertex u ∈V (G) such that a positive proportion of the (s+1)-sets in N(u) have
codegree at least |V (F t

r,s)|. However, since F t
r,s is the subdivision of an (s+ 1)-partite (s+ 1)-uniform

hypergraph, this would imply that F t
r,s can be embedded into G with one part of the bipartition mapped to

a subset of N(u).
We call a copy of Fr,s in G nice if, for each 1≤ i≤ r, the codegree of the images of y,wi,1, . . . ,wi,s is

at most |V (F t
r,s)|. By the previous paragraph and since G is almost regular, almost all copies of Fr,s in G

are nice.
Suppose now that we have a large collection of nice copies of Fr,s in G all of which have the same

leaf set, i.e., they all map the wi, j to the same vertices xi, j. Since G is F t
r,s-free, there cannot be t of these

copies of Fr,s which are pairwise vertex-disjoint apart from the xi, j. Hence, a positive proportion of them
must map one of y,z1, . . . ,zr to the same vertex in G. However, there cannot exist many nice copies of
Fr,s which map y and all the wi, j to the same set of vertices. Hence, we find that a positive proportion of
the nice Fr,s rooted at the xi, j must map some zk to the same vertex v ∈V (G). For the sake of notational
simplicity, we will assume that a positive proportion of the copies rooted at the xi, j map zr to v. The
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crucial observation is that this means that v sends many edges to a relatively small set that depends only
on the vertices xi, j for 1≤ i≤ r−1,1≤ j ≤ s. More precisely, v is clearly a neighbour of the image of y
in every copy of Fr,s that maps zr to v. However, the locus of the possible images of y is rather restricted:
if u is such an image, then, for each 1≤ i≤ r−1, the vertices u,xi,1, . . . ,xi,s have a common neighbour.

Fix a “typical” collection of vertices xi, j, 1≤ i≤ r−1,1≤ j≤ s, and let X be the locus of the possible
images of y in embeddings of Fr,s that map wi, j to xi, j for all 1≤ i≤ r−1,1≤ j ≤ s. For any u ∈ X , there
are around δ (G)s+1 embeddings of Fr,s that map y to u and wi, j to xi, j for each 1≤ i≤ r−1,1≤ j ≤ s,
since we can “freely" choose how zr,wr,1, . . . ,wr,s are embedded. If we assume that |X | is about as large
as it would be in a random graph with the same edge density, then, on average, for each embedding of Fr,s

which maps wi, j to xi, j for each 1≤ i≤ r−1,1≤ j ≤ s, there are a large constant number of copies of
Fr,s with the same leaves. Assuming that these copies are nice, the previous paragraph shows that there
are many embeddings of Fr,s which map wi, j to xi, j for all 1≤ i≤ r−1,1≤ j ≤ s with the property that
the image of zr has a large constant number of neighbours in X . This then allows us to conclude that there
are many edges uv ∈ E(G) with u ∈ X such that v has a large constant number of neighbours in X , which
in turn yields a very unbalanced bipartite subgraph of G with parts X and Y where every v ∈ Y has many
neighbours in X . This subgraph contains many stars with s+1 leaves centred in Y and, for most of them,
the leaves have large codegree, contradicting the observation made in the second paragraph.

2 Proof of Theorem 1.5

Fix r ≥ s+2≥ 3, t ≥ 1 and let H = F t
r,s. We begin our proof by defining what it means for a star with

s+1 leaves to be heavy and then showing that there cannot be too many such stars. Originating in work
of Conlon and Lee [3] and Janzer [6] on extremal numbers of subdivisions, similar definitions and results
appear often in the recent literature on the rational exponents conjecture.

Definition 2.1. We call a star with s+1 leaves heavy if the leaves have codegree at least |V (H)| and light
otherwise.

Lemma 2.2. For any ε > 0, there is a constant C =C(ε,H) such that the following holds. Let G be an
H-free bipartite graph with parts X and Y and minimum degree at least C on side Y . Then the proportion
of heavy (s+1)-stars among all (s+1)-stars centred in Y is at most ε .

Proof. It suffices to prove that for each u ∈ Y , the proportion of heavy stars among all stars centred at
u is at most ε . Define an (s+ 1)-uniform hypergraph G on vertex set N(u) by setting S ⊂ N(u) with
|S|= s+1 to be an edge of G if and only if the common neighbourhood (in G) of the vertices in S has
order at least |V (H)|. We also define an (s+1)-uniform hypergraph H with vertices yk for 1≤ k ≤ t and
wi, j for 1≤ i≤ r,1≤ j ≤ s whose edges are {ykwi, j : 1≤ j ≤ s} for every 1≤ k ≤ t,1≤ i≤ r. It is easy
to see that if G contains a copy of H, then there exists a copy of H in G. Moreover, H is (s+1)-partite
(the parts being {y1, . . . ,yt} and {wi, j : 1≤ i≤ r} for each 1≤ j ≤ s), so ex(n,H) = o(ns+1). It follows
that if |N(u)| is large enough in terms of ε and H, then there are at most ε

(|N(u)|
s+1

)
heavy (s+1)-stars in G

with centre u. Since H depends only on H, the proof is complete.

We now make a few definitions which capture some of the main ideas in our proof.
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Definition 2.3. Let F be a labelled copy of Fr,s with vertices y,zi,wi, j as before. We call F nice if, for
each 1≤ i≤ r, the (s+1)-star with centre zi and leaves y,wi,1, . . . ,wi,s is light.

Definition 2.4. For distinct vertices xi, j with 1 ≤ i ≤ r − 1, 1 ≤ j ≤ s in a graph G, let
S(x1,1, . . . ,x1,s,x2,1, . . . ,x2,s, . . . ,xr−1,1, . . . ,xr−1,s) be the set of vertices u ∈ V (G) for which there are
vertices v1, . . . ,vr−1 such that u, the vi and the xi, j are all distinct, uvi ∈ E(G) for all i and vixi, j ∈ E(G)
for all i, j.

Definition 2.5. Let F be a nice labelled copy of Fr,s with vertices y,zi,wi, j and let q
be the number of nice labelled copies of Fr,s with the same labelled leaf set as F .
For c > 0 and 1 ≤ k ≤ r, we call F (c,k)-rich if zk has at least cq neighbours in
S(w1,1, . . . ,w1,s, . . . ,wk−1,1, . . . ,wk−1,s,wk+1,1, . . . ,wk+1,s, . . . ,wr,1, . . . ,wr,s).

The next lemma shows that if an H-free graph G has many nice copies of Fr,s sharing the same leaves,
then many of those copies of Fr,s are rich.

Lemma 2.6. There exist positive constants c = c(H) and C =C(H) such that the following holds. Let G
be an H-free graph and let xi, j, for 1≤ i≤ r, 1≤ j ≤ s, be distinct vertices in G. Assume that there are
q≥C nice labelled copies of Fr,s in G with wi, j mapped to xi, j for all i, j. Then there is some 1≤ k ≤ r
such that the number of (c,k)-rich labelled copies of Fr,s with wi, j mapped to xi, j for all i, j is at least cq.

Proof. Let C = (t − 1)(r + 1)2|V (H)|r + 1 and c = 1/((t − 1)(r + 1)2|V (H)|r). Since G is H-free,
there cannot be more than t − 1 copies of Fr,s which all have the same leaves xi, j but are otherwise
pairwise vertex-disjoint. This means that any maximal collection of copies of Fr,s with leaves xi, j

which are otherwise pairwise disjoint cover a set R of at most (t − 1)(r + 1) vertices in addition to
{xi, j : 1 ≤ i ≤ r,1 ≤ j ≤ s}. Because of the maximality, any labelled copy of Fr,s with leaves xi, j must
map one of y,z1, . . . ,zr to an element of R. By the pigeonhole principle, there are therefore at least
q/(|R|(r + 1)) ≥ q/((t − 1)(r + 1)2) nice copies of Fr,s with leaves xi, j in which one of the vertices
y,z1, . . . ,zr is mapped to the same vertex v in G. By the condition that these copies are nice, y cannot be
mapped to the same vertex in more than |V (H)|r copies. Hence, since q≥C > (t−1)(r+1)2|V (H)|r,
there is some 1≤ k ≤ r such that zk is mapped to the same vertex v in at least q/((t−1)(r+1)2) copies.
Again using the fact that y is mapped to the same vertex at most |V (H)|r many times, it follows that there
are at least q/((t−1)(r+1)2|V (H)|r) = cq different images of y in these copies. All of these vertices are
in S(x1,1, . . . ,x1,s, . . . ,xk−1,1, . . . ,xk−1,s,xk+1,1, . . . ,xk+1,s, . . . ,xr,1, . . . ,xr,s) and all of them are neighbours
of v. Thus, all nice copies of Fr,s mapping wi, j to xi, j for every i, j and zk to v are (c,k)-rich.

The upshot of what we have done so far is the following lemma, which says that, under a mild
technical condition on the degrees (that we will in any case be able to assume), any H-free graph must
have many rich copies of Fr,s.

Lemma 2.7. For any positive real number K, there are positive constants c= c(H) and C =C(K,H) such
that the following holds. Let G be an H-free n-vertex bipartite graph with minimum degree δ ≥Cn1− r+1

rs+r

and maximum degree at most Kδ . Then G has at least cnδ rs+r (c,r)-rich labelled copies of Fr,s.

Proof. The number of labelled copies of Fr,s in G is at least 1
2 nδ rs+r. Let ε = 1

4rKrs+r . By Lemma 2.2, if C
is sufficiently large compared to K and H, then the proportion of heavy (s+1)-stars in G is at most ε . Then,
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by the maximum degree condition, there are at most εn(Kδ )s+1 labelled heavy (s+1)-stars. Thus, again
using the maximum degree assumption, there are at most r ·εn(Kδ )s+1 ·(Kδ )rs+r−(s+1)= 1

4 nδ rs+r labelled
copies of Fr,s in G which contain a heavy (s+1)-star. It follows that there are at least 1

4 nδ rs+r ≥ Crs+r

4 nrs

nice labelled copies of Fr,s in G. Let C′ be the constant C(H) from Lemma 2.6. Clearly, there are at most
C′nrs nice labelled copies of Fr,s whose leaves wi, j are mapped to some xi, j for all 1≤ i≤ r, 1≤ j ≤ s
with the property that there are fewer than C′ nice labelled copies of Fr,s with wi, j mapped to xi, j. Hence,
if C is sufficiently large, then these nice labelled copies of Fr,s amount to at most half of all nice labelled
copies of Fr,s. The statement then follows from Lemma 2.6 by noting that the number of (c,k)-rich
labelled copies of Fr,s in G is the same for every k.

The following lemma is the last ingredient needed for the proof of Theorem 1.5.

Lemma 2.8. There is a constant C0 =C0(H) such that the following holds. Let G be a bipartite graph
with parts X and Y such that there are at least |X |p edges xy for which x ∈ X, y ∈ Y and y has degree at
least q in G. If q≥C0 and pqs ≥C0|X |s, then G contains H as a subgraph.

We will prove Lemma 2.8 using Lemma 2.2, but we remark that it can also be proved directly using
dependent random choice.

Proof. We may assume, by shrinking Y if necessary, that each y ∈ Y has degree at least q. Then any
edge in G can be extended in at least

(q−1
s

)
ways to an (s+1)-star centred in Y . Hence, the conditions of

the lemma guarantee that G has at least |X |p
(q−1

s

)
/(s+1) stars with s+1 leaves centred in Y . Suppose

that G is H-free. If C0 is sufficiently large, then Lemma 2.2 implies that at least half of the (s+1)-stars
centred in Y are light. If again C0 is sufficiently large, then, since pqs ≥ C0|X |s, there are more than
|V (H)||X |s+1 light (s+1)-stars centred in Y . However, since there are at most |X |s+1 choices for the set
of s+1 leaves and, given such a choice, there are at most |V (H)| possibilities for the centre, this is a
contradiction.

We are now ready to complete the proof of Theorem 1.5. By a reduction going back to work of Erdős
and Simonovits [5], we may assume that our graph is K-almost-regular for some constant K depending
only on r and s, by which we mean that maxv∈V (G) deg(v)≤ K minv∈V (G) deg(v). As noted in [3], we may
also assume that the graph is bipartite, reducing our task to proving the following result.

Theorem 2.9. For any positive real number K, there is a constant C = C(K,H) such that if G is an
n-vertex bipartite graph with minimum degree δ ≥Cn1− r+1

rs+r and maximum degree at most Kδ , then G
contains H as a subgraph.

Proof. Let C be sufficiently large and suppose, for the sake of contradiction, that G is H-free. By
Lemma 2.7, there is a positive constant c = c(H) such that G has at least cnδ rs+r (c,r)-rich labelled
copies of Fr,s.

Claim. There are distinct vertices xi, j ∈ V (G) for 1 ≤ i ≤ r− 1, 1 ≤ j ≤ s such that the number of
(c,r)-rich labelled copies of Fr,s mapping wi, j to xi, j for 1≤ i≤ r−1,1≤ j ≤ s is

1. at least 1
2 cnδ rs+rn−(r−1)s and
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2. at least c/(2Krs+r) times the number of all labelled copies of Fr,s mapping wi, j to xi, j for 1≤ i≤
r−1,1≤ j ≤ s.

Proof of Claim. Clearly, the number of (c,r)-rich labelled copies of Fr,s which agree with fewer than
1
2 cnδ rs+rn−(r−1)s (c,r)-rich labelled copies of Fr,s on the images of wi, j (1≤ i≤ r−1,1≤ j ≤ s) is less
than 1

2 cnδ rs+r. Hence, there are at least 1
2 cnδ rs+r (c,r)-rich labelled copies of Fr,s such that each of

them agrees with at least 1
2 cnδ rs+rn−(r−1)s other (c,r)-rich labelled copies of Fr,s on the images wi, j

(1≤ i≤ r−1,1≤ j ≤ s). Moreover, the total number of labelled copies of Fr,s in G is at most n(Kδ )rs+r.

Since
1
2 cnδ rs+r

n(Kδ )rs+r = c/(2Krs+r), there are vertices xi, j satisfying the two conditions in the claim. �

Fix some vertices xi, j (1 ≤ i ≤ r− 1,1 ≤ j ≤ s) satisfying the conclusion of the claim and let
X = S(x1,1, . . . ,x1,s,x2,1, . . . ,x2,s, . . . ,xr−1,1, . . . ,xr−1,s). Moreover, let A be the set of (c,r)-rich labelled
copies of Fr,s mapping wi, j to xi, j for all 1≤ i≤ r−1,1≤ j ≤ s. Observe that

|A| ≤ |X |(Kδ )s+1|V (H)|r−1. (2.1)

Indeed, there are at most |X | ways to embed y ∈V (Fr,s), by the maximum degree condition there are at
most (Kδ )s+1 ways to embed zr,wr,1,wr,2, . . . ,wr,s and, finally, since the copy needs to be nice, there are
at most |V (H)| ways to embed each of z1,z2, . . . ,zr−1. On the other hand, property 1 of the claim asserts
that |A| ≥ 1

2 cnδ rs+rn−(r−1)s, so, by comparing this with (2.1), we get

|X |(Kδ )s+1|V (H)|r−1 ≥ 1
2

cnδ
rs+rn−(r−1)s. (2.2)

Note also that the total number of labelled copies of Fr,s mapping wi, j to xi, j for all 1≤ i≤ r−1,1≤
j ≤ s is at least |X |δ s+1/2, since, after embedding y to any vertex in X , there are at least δ s+1/2 ways to
complete the embedding. It follows from property 2 of the claim that

|A| ≥ c
4Krs+r |X |δ

s+1.

The number of those elements of A which agree with fewer than c
8Krs+r |X |δ s+1n−s elements of A on the

images of wr,1, . . . ,wr,s is at most c
8Krs+r |X |δ s+1. Hence, there are at least c

8Krs+r |X |δ s+1 elements of A
such that each of them agrees with at least c

8Krs+r |X |δ s+1n−s elements of A on the images of wr,1, . . . ,wr,s.
By the definition of (c,r)-richness, for all these copies, the image of zr has at least c · c

8Krs+r |X |δ s+1n−s

neighbours in X . By the maximum degree condition in G and since any (c,r)-rich copy of Fr,s is nice, we
see that for any u,v ∈V (G), there are at most |V (H)|r−1(Kδ )s elements of A which map y to u and zr to

v. Hence, G has at least
c

8Krs+r |X |δ s+1

|V (H)|r−1(Kδ )s =
c

8Krs+r+s|V (H)|r−1 |X |δ edges uv with u ∈ X and v ∈V (G) such that

v has at least c · c
8Krs+r |X |δ s+1n−s neighbours in X . Set Y =V (G)\X . Since G is bipartite, any neighbour

of a vertex in X is in Y .
We now want to apply Lemma 2.8 to the bipartite graph G[X ,Y ]. By the previous paragraph, we can

take
p =

c
8Krs+r+s|V (H)|r−1 δ
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and

q =
c2

8Krs+r |X |δ
s+1n−s

and we just need to verify that q≥C0 and pqs ≥C0|X |s, where C0 =C0(H) is the constant provided by
Lemma 2.8.

But, by equation (2.2),

q≥ c3

16Krs+r+s+1|V (H)|r−1 δ
rs+rn1−rs ≥ c3

16Krs+r+s+1|V (H)|r−1Crs+r.

When C is sufficiently large, this is indeed at least C0. Moreover,

pqs =
c2s+1

8s+1Krs+r+s+s(rs+r)|V (H)|r−1 δ
s2+s+1n−s2 |X |s

≥ c2s+1

8s+1Krs+r+s+s(rs+r)|V (H)|r−1Cs2+s+1n(s
2+s+1)(1− r+1

rs+r )−s2 |X |s.

Since r ≥ s+2, we have (s2 + s+1)(1− r+1
rs+r )− s2 ≥ 0, so we get that

pqs ≥ c2s+1

8s+1Krs+r+s+s(rs+r)|V (H)|r−1Cs2+s+1|X |s ≥C0|X |s,

provided that C is sufficiently large. Hence, we can indeed apply Lemma 2.8 to find a copy of H in G,
which is a contradiction.

3 Concluding remarks

Let Tr,s,s′ be the rooted tree obtained from Fr,s by attaching s′ leaves to the vertex y, all of which are taken
to be roots. It is easy to verify that Tr,s,s′ is balanced if and only if s′−1≤ s≤ r+ s′. In their paper, Jiang,
Jiang and Ma [8] actually studied this family of graphs, which clearly includes Fr,s = Tr,s,0, showing that
if Tr,s,s′ is balanced and r ≥ s3−1, then ex(n,T t

r,s,s′) = O(n2−1/ρ) holds, where ρ = ρ(Tr,s,s′) =
rs+r+s′

r+1 .
We can prove the same upper bound under the relaxed condition r ≥ s− s′+1 (except in the case s′ = 0,
where we need r ≥ s+2), almost matching the inequality r ≥ s− s′ required for balancedness.

Theorem 3.1. For any integers s′ ≥ 1, s≥ s′−1, r ≥ s− s′+1 and t ≥ 1, ex(n,T t
r,s,s′) = O(n2− r+1

rs+r+s′ ).

Proof sketch. Since the proof is very similar to that of Theorem 1.5, we only mention the necessary
adjustments. Taking H = T t

r,s,s′ , Lemma 2.2 still holds, although in the proof we need to consider the
common neighbourhood of s′ vertices rather than that of a single vertex. The auxiliary hypergraphs G
and H can then be defined identically (except that the vertex set of G is the common neighbourhood of
s′ vertices). By making use of the extra s′ vertices whose common neighbourhood we considered, the
existence of a subgraph H inside G still provides a copy of H.

The next substantial change is in Definition 2.4, where an additional s′ vertices are taken as inputs,
corresponding to the images of the s′ new leaves, and the vertices in S are required to be common
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neighbours of these s′ vertices (on top of the previous requirements). Similarly, for the claim in (the
analogue of) Theorem 2.9, we choose and fix the s′ new leaves as well as the (r−1)s leaves that were
fixed before.

Finally, although Lemma 2.8 does not directly provide a copy of H = T t
r,s,s′ , we can still use Lemma 2.8

in the proof of Theorem 2.9 to find a copy of F t
r,s in G[X ,Y ] with the t copies of y embedded into X . But

X is the common neighbourhood of s′ fixed vertices, so using those vertices we can extend F t
r,s to H.

The remaining changes are numerical, so we do not detail them here. �

Acknowledgments

We are grateful to the anonymous reviewers for several helpful comments.

References

[1] B. Bukh and D. Conlon, Rational exponents in extremal graph theory, J. Eur. Math. Soc. 20 (2018),
1747–1757. 1, 2

[2] D. Conlon, O. Janzer and J. Lee, More on the extremal number of subdivisions, Combinatorica 41
(2021), 465–494. 2

[3] D. Conlon and J. Lee, On the extremal number of subdivisions, Int. Math. Res. Not. (2021),
9122–9145. 4, 6
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