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Abstract
Model-based medical decision support in terms of computer simulations, predictions
and optimization gains increasing importance in health care systems worldwide. This
work deals with the control of the glucose balance in intensive care unit (ICU)
patients providing nutrition and insulin. The basis of the investigations is the
bio-medical model GlucoSafe by Pielmeier et al. (Comput. Methods Programs
Biomed. 97(3):211-222, 2010) that describes the temporal evolution of the blood
glucose and insulin concentrations in the human body by help of a nonlinear
dynamic system of first-order ordinary differential equations. This paper aims at the
theoretical analysis and numerical treatment of the arising optimal control problem.
Numerical results demonstrate the controllability and applicability of the model, in
particular critical hyper- and hypoglycemic initial states are considered.

Keywords: bio-medical modeling; blood glucose regulation; optimal control;
ordinary differential equations

1 Introduction
Glucose is the major carbohydrate fuel of the human body. Blood glucose refers to the
amount of sugar (glucose) circulating in the blood. The human red cell and brain depend
entirely on the blood glucose for the energy metabolism, about % of the human body’s
daily glucose consumption (in total about  g) is due to these cells []. The maintenance
of a normal concentration of blood glucose ( mmol/l;  mg/dl) - i.e. only one-fifth of a
teaspoon of sugar in a liter of blood - is essential for survival. When the blood glucose de-
creases to less than .mmol/l, hypoglycemia (low blood glucose) develops and compro-
mises the brain function, leading to confusion, disorientation and possibly life-threatening
coma. Hypoglycemia poses an immediate threat to life [], on the other hand persisting
hyperglycemia (high blood glucose) with concentrations greater than . mmol/l puts a
human at risk for renal, vascular and eye diseases. The anabolic hormone insulin plays a
key role in the regulation of the blood glucose. In healthy individuals with a normal in-
sulin response glucose levels are relatively stable and average at different times of day at
- mmol/l with a standard deviation of about .-. mmol/l [, ]. But patients who are
critically ill are often insulin resistant, i.e. a given amount of insulin produces a less than
expected response. So, more insulin is required in a critically ill state to cause the ‘normal’
effect. In intensive care units (ICUs) worldwide it has become standard practice - also for
nondiabetic patients - to measure blood glucose concentrations frequently (mostly using
measurement intervals of - hours for nondiabetics) and to administer insulin by infu-
sion or injection if the patient is hyperglycemic (>- mmol/l) [].
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The glucose normalization in ICU patients is a desired goal, as studies have demon-
strated that normal glucose levels with low variability (fluctuations) are associatedwith re-
ducedmortality and less complications in the healing process, compared to hyperglycemic
ICU patients []. So far, clinical standard regulation procedures rely on the use of ad-
hoc insulin protocols that are primarily based on experience. In combination with the
unpredictable sudden changes in the insulin resistance that are typical for ICU patients
[] and/or with clinical modifications of the nutrition support, the protocol approach re-
sult in highly variable blood glucose levels being characterized by periods of hyper- or
hypoglycemia and oscillations between these states []. The risk of (life-threatening) hy-
poglycemia increases up to sixfold with these standard insulin protocols, and even for
very tight ( hour or less) measurement intervals the risk is significantly higher. There-
fore, model-based medical decision support gains increasingly importance, see [] and
references within. There is a strong need for more rigorous investigations, long-time pre-
dictions and optimal control on basis of computer simulations that model-based medical
decision support methods bring to this type of problem. Apart from the medical benefit
also the socio-economic profit of a safe and efficacious glucose control in the ICU might
be considerable. TheUnited States’ spending on critical care amounts to % of its gross do-
mestic product. Cost analysis studies in Europe and the United States estimate that ,
Euros or US$ ,, respectively can be saved per patient staying in the ICU with a tight
model/simulation-based glucose control [].
This work deals with the optimal control of the glucose balance in ICU patients, re-

garding insulin therapy and appropriate food supply. The basis is the bio-medical model
GlucoSafe developed by Pielmeier et al. []. The temporal evolution of glucose and in-
sulin concentrations is described by a nonlinear dynamic system of first-order ordinary
differential equations (ODE) that is closed by a parameter estimate for the insulin satura-
tion.We perform a theoretical analysis of themodel (regarding existence, uniqueness) and
propose an adequate and efficient numerical method. The simulation results demonstrate
the controllability and applicability of the model. Thereby, we particularly focus on long-
time predictions and the control of hyper- and hypoglycemic initial states, in comparison
to measurements. A large randomized clinical study to test the described approach is in
progress.
The paper is structured as follows. Starting with a short introduction into the bio-

medical problem, we formulate the optimal control problem as L-minimization with
ODE-constraints in Section . Sections  and  deal with the theoretical investigation
and numerical handling, respectively. Simulation results for prognosis/prediction and op-
timization are presented and discussed in view of the medical circumstances in Section .
We conclude with perspectives for future model extensions and modifications.

2 Optimal control problem
Our goal is the optimal control of the blood glucose concentration in ICU patients using
the supply of nutrition and insulin as control variables. The optimization is based on an
ODE-model for the compartmental description of the glucose metabolism.

Compartmental-based ODE-model for glucose metabolism
Apart from insulin and nutrition also the activities of brain, central nervous system, liver,
kidneys, gut, muscles etc. influence essentially the blood glucose. The temporal evolutions
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Figure 1 Illustration of the bio-medical model and its quantities [11]. The state is the blood glucose
concentration G, the controls are the exogenous insulin transfer rate ξ as well as the enteral ε and parenteral
π nutrition rates, i.e. u = (ξ ,ε,π ) (highlighted in green).

of the glucose and insulin concentrations in the human body are determined by a complex
system of hormonal interactions and several anabolic as well as catabolic pathways involv-
ing a greater number of different substrates. Taking into account all these interactions and
reactions yields very complex descriptions of the glucose metabolism with many relations
and parameters, some of them can neither be measured directly nor indirectly via observ-
ables. Hence, closure conditions and simplifying assumptions are required. The compart-
mental analysis is a typical approach to set up a simplified model, thereby the respective
total concentration under consideration (glucose or insulin) is distributed in a small num-
ber of compartments where the concentration gradients are assumed to be constant. The
fluxes into and out of each compartment are modeled by corresponding transfer rates
[]. In such a framework, a two-compartment model (plasma and peripheral compart-
ment) was developed for the insulin kinetics consisting of different appearance, clearance
and diffusion processes in []. The appearance and utilization of glucose are lumped in
blood glucose and gut compartments []. The model by Pielmeier et al. [] (GlucoSafe)
brings the described compartment models for insulin and glucose together by introduc-
ing a linking nonlinear relation via the insulin effect on the glucose uptake, for a graphical
illustration of the underlying considered processes see Figure . From a bio-medical point
of view the pharmacodynamic effect of the insulin is not fully explicated yet [], although
the saturation result at high insulin concentrations is well-known. Under normal condi-
tions (for healthy persons) the saturation of the insulin effect on the glucose uptake is of
no matter. However, for ICU-patients of whom the majority is insulin-resistant to some
degree and receives exogenous insulin (by injection/infusion) to increase the body insulin
concentration, the saturation of the insulin effect is of great importance []. This is not
least due to the fact that insulin at a saturated level ceases to be a control tool for the
regulation of hyperglycemia. The GlucoSafe model was developed for the specific use in
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critically ill, artificially nutritioned patients. It considers an exogenous insulin transfer rate
that accounts for external insulin infusions or injections, as well as enteral and parenteral
nutrition rates for the artificial food supply by help of a gastric tube or an intravenous ac-
cess. The endogenous (body’s own) insulin is assumed to be constant since the normally
glucose-dependent insulin production is often defective in critically ill patients.
Mathematically, the temporal evolutions of the glucose and insulin concentrations are

described by a ‘grey’ model in form of a deterministic nonlinear dynamic system of first-
order ordinary differential equations that contains patient-dependent as well as fixed
parameters and functions (Figure ). We restrict here on presenting the mathematical
structure of the system, for details on the concrete choice of the bio-medical parameters,
functions and dependencies we refer to the comprehensive data collection, discussion and
distinction of cases in the underlying bio-medical work by Pielmeier et al. []. In this work
we use the model setting as specified in []. The GlucoSafe model is given by

dG
dt

=
w
vG

[
E
(
(P,G), iσ

)
+ d(D) + π (t)

]
,

dD
dt

= –d(D) + ε(t),

dI
dt

=
c
vI
(P – I) – (rL + rK )I +
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vI

,
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=
c
vP
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()

with t ∈ T compact time period,

E
(
(P,G), iσ

)
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(
(P,G), iσ

)
– aR(G) – aM

(
(P,G), iσ

)
– aN (G)

and appropriate initial conditions. The state variable (to be controlled) is the glucose con-
centration in the blood plasma G. Further states are the respective concentrations in the
other compartments, i.e. the glucose in the gut D as well as the insulin concentrations in
the blood plasma I and around the cells (the so-called peripheral compartment) P. Be-
tween the last two a difference-based decay process takes place. The controls are the in-
takes/medication of exogenous insulin ξ as well as of enteral ε and parenteral π nutrition,
which we summarize as u = (ξ , ε,π ). State and control variables are certainly nonnegative
time-dependent functions. The glucose balance of the liver h as well as the glucose absorp-
tion from the gut content d, of the skeletal musculature aM , brain and central nervous sys-
tem aN are modeled as patient-independent continuous differentiable functions, in con-
trast to the continuous differentiable renal glucose excretion aR that depend on the patient
data (body weight w, height, age, gender and diabetic status). Further patient-dependent,
but temporal constant parameters are the rate of the insulin reduction in liver rL, kidneys
rK and in the process of endocytosis rE , the insulin diffusion constant c between plasma
and peripheral compartment as well as the volumes of glucose blood plasma vG, insulin
blood plasma vI and peripheral compartment vP . As mentioned, the endogenous (post-
hepatic) supply of insulin n is considered here as a patient-dependent constant. The effect
of the insulin on the glucose intake enters () by the quantity iσ . Since the understanding
of this biological process - involving impact sensitivity and saturation effect - is still rather
limited, iσ is expressed in terms of a nonnegative parameter tuple σ ∈ (R+

). It turns out
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that this tuple has to be adapted frequently to ensure reasonable predictions of the tem-
poral blood glucose evolution, see Section . We use a least-square parameter fit where
the deviation of the simulation results () to earlier measurements is minimized, i.e.

min
σ∈[,]

∑

i∈I

(
G(ti;σ ) – Ĝi

). ()

Here Ĝi denotes themeasured blood glucose value at the discrete time point ti andG(ti;σ )
is the corresponding numerical result computed in dependence on the parameter σ , in
particular i ∈ I ⊂ N, I �= ∅ is considered. For further explanations about the underlying
bio-medical processes and respective closure relations to () we refer to [].

Remark  Alternatively to () one might also think about a weighted fit where recent
measurements are considered to be of higher relevance for the insulin effect adaption than
older ones, []. However, the data set is relatively small because the typical measurement
intervals due to clinical standards are - hours and the insulin effect changes over the
day. Practically, only - measured values (within the last  hours) are taken into account
in () (see Figure  in Section ).

Note that only the blood glucoseG can be measured, but notD, I and P. This makes the
initialization of () at a certain time t inexact. In combination to the measured blood glu-
cose G(t) = Ĝ, reference values for D, I , P at t might be taken from literature []. The
initial perturbation that is carried into the system decreases over time due to the asymp-
totic stability of the ODE-model, see Section . During the course of a medical treatment
previous simulation results are used as better initial guesses. For the parameter calibration
of σ in (), the same initialization procedure is applied, only with the exception that () is
solved backward in time to yield G(ti;σ ) in the past.

ODE-constrainedminimization problem
For the control of the blood glucose G with respect to the supply of parenteral and enteral
nutrition as well as exogenous insulin we consider the following constrainedminimization
problem,

min
(G,u)∈Y×U

J(G,u) ()

subject to G =G(u) satisfying the ODE-system ()

and u ∈ U being the set of admissible controls.

The spaces of the state Y and the admissible controls U are assumed to be equipped with
a Lebesgue space structure. The minimization is performed with respect to the L-norm
of the square integrable functions on T . As cost function we particularly choose

J(G,u) =


∥∥G –G∗∥∥

L(T ) +


∥∥diag(κ)

(
u – u∗)∥∥

L(T ), ()

whereG∗ is the desired blood glucose concentration and u∗ is the desired control based on
bio-medical and economic reasons with weights κ ∈ (R+

). The control space U is speci-
fied in the following.
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3 Theoretical investigation
The optimal control problem for the blood glucose stated in () can be embedded in the
well-established theory of ODE-constrained optimization problems. Since the theoretical
investigations can be performed by help of standard techniques [, ], we restrict our-
selves to the presentation of the analytic results, omitting the respective derivations. In
addition, we specify the space of admissible controls U .
The underlying initial value problem () for the glucose metabolism is well-posed in the

sense ofHadamard, i.e. there exists a unique solution that depends continuously on the ini-
tial conditions. For continuous controls the initial value problem is solvable in the classical
sense. Existence and uniqueness of the solution are given according to the Picard-Lindelöf
theorem for the sufficiently smooth model functions on the right-hand side of (). How-
ever, bio-medical reasons require in general the use of noncontinuous controls. Consid-
ering u ∈L∞(T , (R+

)), the system () has got a unique nonnegative solution in the sense
of Carathéodory for every choice of nonnegative initial values. This stands in accordance
with biological demands (i.e. nonnegative state and control variables). In the following, we
consider the space of piecewise constant nonnegative bounded functions as set of admis-
sible controls U . This is reasonable and sufficient for the application regarding insulin and
food supply via infusions. Moreover, the structure of the dynamic system allows the de-
coupling into a linear system for I and P, a Riccati equation forD and a nonlinear equation
for G. The differential equations for I , P and D posses explicit solution formulas for the
chosen control space U . However, due to the required very technical case-by-case analy-
sis the formulas are quite lengthy and omitted here, see []. Furthermore, for each steady
state G >  there exist a constant control u ≥  and steady states I,P,D ≥ , so that all to-
gether satisfy (). It can be shown that this solution is asymptotically stable in all medically
relevant cases and for all possible patient data. So, the controllability of arbitrary station-
ary states is possible in Y . The existence of optimal controls in the space L(T , (R+

)) can
be proven straight forward for (), following the ideas and procedure prescribed in [].
Uniqueness is lacked due to the nonlinearity of (); however, this is not necessary from a
user point of view.

4 Numerical approach
The medical decision support in ICUs requires an efficient numerical handling of the op-
timal control problem in view of computation time and accuracy. Therefore, it is advanta-
geous to consider the associated equivalent reduced problem minu J̃(u), J̃(u) = J(G(u),u).
To solve ODEs efficient techniques have been developed, [, ]. As the GlucoSafe

model () is not stiff, the numerical computation can be performed by standard explicit
Runge-Kutta methods. We use the Dormand-Prince method (DOPRI) to calculate fifth-
and fourth-order accurate solutions. The difference between these solutions is considered
as error of the (fourth-order) solution and integrated in the adaptive step-size control [].
The computational effort can be even reduced by a factor of two when the analytical so-
lution formulas for D, I , P are used for the calculation for G.
The optimal control problem () can be approached by direct and indirect methods

[]. Testing various of them we have compared conditional gradient method, gradient
projection method and Newton-type methods as indirect methods with the direct SQP-
method. Regarding accuracy and computational efficiency, the indirect methods cannot
compete with the direct one for this special problem (); they are slower by a factor of
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Table 1 ICU-patients

Patient Gender
(female: 0, male: 1)

Age Height Weight Diabetes type
(no: 0, yes� : 1, 2)

P 93 1 36 1.85 102 1
P 96 0 53 1.71 70 0
P 99 (a|b) 0 80 1.65 85 2|1
P 100 0 63 1.65 60 0
P 111 (a|b) 1 40 1.80 90 0|1

�juvenile-onset diabetes: 1, adult-onset diabetes: 2.

about . Hence, we use the SQP-method with numerically calculated gradients [] in
the following.

Remark  Note that the SQP-method is also applied to the identification of the parameter
σ in the insulin effect quantity iσ , cf. parameter calibration/fitting problem in ().

Remark  The implementation is realized in MATLAB, version .. Thereby, we use the
MATLAB routines ode45 and fmincon for the Dormand-Prince method and the SQP-
method, respectively. The adaptive step-size control of the ODE-solver meets absolute
and relative error tolerances of tolabs = – and tolrel = –. The optimization is run
with the termination criteria: , function evaluations,  iterations and tolerance
for variable/cost function of – for the following numerical results.

5 Results and discussion
We demonstrate the controllability and applicability of the GlucoSafe model. Therefore,
we firstly compare long-time predictions with measurements and discuss the effect of the
insulin on the glucose intake. Then we show optimization results and recommendations
for the medical treatment of hyper- and hypoglycemic states. The underlying sample of
patient data and measurements is provided by the glucose research group at the Center of
Model-based Medical Decision Support, University Aalborg. In the following we present
a selection of characteristic cases, see Table .

Long-time prediction
Figure  illustrates long-time predictions of the blood glucose concentrations over 
hours for different patients. Comparing with the actual measured values the GlucoSafe
model yields meaningful results. From the bio-medical point of view the agreement is
very satisfying since the measured values lie in general in an acceptable area of % devia-
tion around the prognosis (green zone) for the first  hours. Then the deviation tends to
increase. The reason for the worsening is the time- and patient-dependent insulin effect
that is realized by a single parameter identification at the beginning of the observation
interval in these simulations. Figure  shows the cost functions K for the least square ap-
proximations () at the beginning of the observation for Patient  (Figure b) and after
 hours (precisely at the measurement time point  min). The minimizer has obviously
changed. Consequently, a frequent adjustment of the parameter tuple σ to measurements
is necessary for reliable long-time results (cf. Remark ). Moreover, it turns out that highly
fluctuating blood glucose concentrations cause trouble as they can hardly be predicted by
the simulations. Already in the first hours the deviations can go up to %, Figure c. Note

http://www.mathematicsinindustry.com/content/4/1/3


Marheineke et al. Journal of Mathematics in Industry 2014, 4:3 Page 8 of 13
http://www.mathematicsinindustry.com/content/4/1/3

Figure 2 Long-time predictions. Blood glucose measurements (blue cross) vs simulated prognosis (red
line), the deviation areas of 5, 10 and 20% are colored in green, yellow and red, respectively.

Figure 3 The cost function for the insulin effect approximation K(σ ), σ ∈ [0, 1]2 of (2) for Patient 100
(see Figure 2b) at different times. Left: at the beginning of the observation interval. Right: in the
observation interval after 5 hours. The minimizer σ opt is marked by the white cross.

that the same patient might have highly fluctuating as well as relatively stable concentra-
tions in a little while (see Patient a, Figures c and d). For the health of the patient such
strong fluctuations between hypoglycemic and hypoglycemic stated have to be avoided
(stabilized) by help of an appropriate glucose control via food and insulin supply.
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Optimization
Dealing with the optimization of the blood glucose we consider hyper- and hypoglycemic
initial states and study the temporal evolution for a period of  hours. The desired blood
glucose level is taken to be constant G∗ =  mmol/l. The control consists of the supply
of insulin, enteral and parenteral nutrition u = (ξ , ε,π ), the desired control is set to be
u∗ = . Concerning the weighting factors κ in the cost functional J () we investigate three
relevant control cases:
(a) κa = (–, , ): supply of insulin, no nutrition,
(b) κb = (–, –, ): supply of insulin and enteral nutrition (via gastric tube),
(c) κ c = (–, –, –): supply of insulin and nutrition.

As admissible controls, we choose the set of nonnegative functions that are piecewise
constant on an equidistant time grid of period size  minutes for Figures  and  as well
as of period size minutes for Figure . Their upper bound is due to medical restrictions
(here: u≤ (. U, . mmol/kg, . mmol/kg)/min componentwise).
Figure  illustrates the control of a hyperglycemic initial state (Ĝ ≈  mmol/l). In all

three control cases the blood glucose concentration is decreased to the desired level after
the first hour. But it is interesting to see that the choice of controls differs. Allowing all
kind of supplies, the insulin rate is exaggerated and combined with additional nutrition.
Thereby, the use of parenteral nutrition affects the blood glucose directly (intravenous ac-
cess) and yields the desired result at fastest. The recommended combination of insulin and
nutrition provides a very stable blood glucose level for the next hours. Studying the influ-
ence of the diabetes type (adult-onset diabetes in Figure (top) or juvenile-onset diabetes
in Figure (bottom)) it turns out that the required supply is generally higher for adult-
onset diabetes (type ). Moreover, the blood glucose concentration is more fluctuating
around the desired level as expected. However, this is not worthmentioning in view of the
high oscillations that are in general observed in the traditional ad-hoc insulin protocol
approaches at ICUs. So, the optimization results for hyperglycemic initial states are very
satisfying and clearly differ (positively) from the ones of the ad-hoc approaches. Similar
results are achieved starting with an already balanced blood glucose of - mmol/l, here
the desired state can be even reached within  minutes (see Figure , Case c). Although
ICU patients suffer mostly from hyperglycemia, we are also interested in the controllabil-
ity and applicability of our approach for hypoglycemia. Figure (top) shows a very critical
life-threatening scenario of a patient after a medical diet with a initial blood glucose level
Ĝ ≈ . mmol/l. As expected the exclusive insulin supply (Case a) provides no help for
a nondiabetic person. But the other control strategies are successful in the glucose nor-
malization. In analogy to the hyperglycemic problems, Case c yields the desired state at
fastest within  minutes. But certainly the composition of the controls is different: the
enteral tube feeding plays here the major role. The parenteral nutrition is just applied as
support within the first minutes in combination with a little rate of insulin.Without the
intravenous access (Case b) it takes longer to reach the desired state (more than  hours).
The results are reasonable and show again a very stabilized blood glucose level at the end
of the observation interval without any fluctuations. Repeating the computations for di-
abetes type  yields comparable results, but the supplies of enteral nutrition and insulin
are longer and higher (Figure (bottom)). Only the simulation of Case a raises questions
as the exclusive supply of insulin causes an increase of the blood glucose concentration.
This is unexpected and requires further investigations.
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Figure 4 Control of hyperglycemic initial state, influence of diabetes type. Blood glucose concentration
G, insulin rate, enteral nutrition rate, parenteral nutrition rate over time for the three control cases (Cases a-c
are visualized as colored dashed lines, desired quantity as black solid line). Top: adult-onset diabetes (type 2),
bottom: juvenile-onset diabetes (type 1).
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Figure 5 Control of normal (slight hypoglycemic) initial state. Blood glucose concentration G, insulin
rate, enteral nutrition rate, parenteral nutrition rate over time for the three control cases (Cases a-c are
visualized as colored dashed lines, desired quantity as black solid line).

A statistical validation of the numerical results is not yet possible due to the relatively
small sample ofmeasurements at hand. But the described approach has been implemented
in a software tool at the Center of Model-based Medical Decision Support, University
Aalborg that is recently applied and tested in a large clinical study.

6 Conclusion and outlook
This paper presented a theoretical and numerical investigation of the bio-medical model
GlucoSafe. It shows the controllability and applicability of the model for the optimal con-
trol of the blood glucose concentration in ICU patients via the supply of parenteral and
enteral nutrition as well as exogenous insulin. In view of long-time predictions and op-
timization (regulation) the simulation results are very convincing, in particular for ICU
patients having a temporal relatively stable pharmacodynamic effect of the insulin on the
glucose intake. Arising changes in the insulin effect are incorporated in the model by fre-
quent parameter adaptions. A large randomized clinical study to test the described ap-
proach is in progress.
Improvements of the model rely surely on a better bio-medical understanding of the in-

sulin effect on the glucose intake, implying a concrete definition of the insulin function iσ .
But also the modeling of the liver balance h as well as the endogenous insulin intake n be-
ing assumed to be constant so far pose open research questions to the bio-medical experts.
The introduction of a glucose-dependent n would lead to a fully coupled dynamic system
for all state variables. An interesting future task (from the bio-medical and mathematical
point of view) is the consideration and incorporation of uncertainties coming from the
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Figure 6 Control of drastical hypoglycemic initial state, influence of diabetes. Blood glucose
concentration G, insulin rate, enteral nutrition rate, parenteral nutrition rate over time for the three control
cases (Cases a-c are visualized as colored dashed lines, desired quantity as black solid line). Top: no diabetes
(type 0), bottom: juvenile-onset diabetes (type 1).
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patient data and themeasurements. This results in a stochastic control problem for which
sensitivity/robustness and controllability have to be investigated.
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