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Abstract:
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tors of the underlying parameters. In particular, we consider the simple two-sample hypothesis concerning the
full parametric homogeneity as well as the general two-sample (composite) hypotheses involving some nui-
sance parameters. The asymptotic and theoretical robustness properties of the proposed Wald-type tests have
been developed for both the simple and general composite hypotheses. Some particular cases of testing against
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1 Introduction

Testing of parametric hypothesis is an important paradigm of statistical inference. In many real life applications
like medical sciences, biology, epidemiology, sociology, reliability etc., we need to compare data from two in-
dependent samples through appropriate two-sample tests of hypotheses. Examples include, but are not limited
to, comparing the means of any biomarker or success of any treatment between control and treatment groups,
comparing lifetime of two populations in reliability, etc.

Mathematically, let (𝒳 , 𝛽𝒳 , 𝑃𝜃𝜃𝜃)𝜃𝜃𝜃∈ΘΘΘ be the statistical space associated with the random variable X , where
𝛽𝒳 is the 𝜎-field of Borel subsets 𝐴 ⊂ 𝒳 and {𝑃𝜃𝜃𝜃}𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃∈ΘΘΘ is a family of probability distributions defined on the
measurable space (𝒳 , 𝛽𝒳 ) where ΘΘΘ is an open subset of ℝ𝑝, with 𝑝 ≥ 1. Probability measures 𝑃𝜃𝜃𝜃 are assumed
to possess the densities 𝑓𝜃𝜃𝜃 (𝑥) = 𝑑𝑃𝜃𝜃𝜃/𝑑𝜇 (𝑥) , where 𝜇 is a 𝜎-finite measure on (𝒳 , 𝛽𝒳 ) . We shall denote by
ℱ = {𝑓𝜃𝜃𝜃 ∶ 𝜃𝜃𝜃 ∈ Θ ⊂ℝ𝑝} a set of parametric model densities.

On the basis of two independent random samples 𝑋1, ..., 𝑋𝑛 and 𝑌1, ...., 𝑌𝑚 of sizes n and m, respectively,
from two densities 𝑓𝜃𝜃𝜃1 (𝑥) and 𝑓𝜃𝜃𝜃2 (𝑥) belonging to ℱ , we can solve the problem of complete homogeneity by
testing

𝐻0 ∶ 𝜃𝜃𝜃1 = 𝜃𝜃𝜃2 versus 𝐻1 ∶ 𝜃𝜃𝜃1 ≠ 𝜃𝜃𝜃2. (1)

The classical test statistics for testing eq. (1) are the likelihood ratio test, Wald test and Rao test, where the un-
known parameters are estimated by the maximum likelihood estimators (MLEs). Some alternative test statistics
have also been presented in the literature based on divergence measures; see, for instance, Basu et al. [1] and
Pardo [2]. It is well-known that the MLE is a BAN estimator, i.e., asymptotically efficient, but at the same time
it has serious lack of robustness against data contamination and model misspecification. In order to avoid the
robustness problem, appropriate testing procedures have been developed in the statistical literature based on
suitable robust estimators. For example, Basu et al. [3] have introduced a family of test statistics for testing eq.
(1) based on the density power divergence (DPD) measure between 𝑓𝜃𝜃𝜃1 and 𝑓𝜃𝜃𝜃2 when the parameters are esti-
mated by the minimum density power divergence estimator (MDPDE) of Basu et al. [4]; see Section 1.1 for more
details about the MDPDE.
Ayanendranath Basu is the corresponding author.
© 2018 Walter de Gruyter GmbH, Berlin/Boston.
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Note that, if the problem considered in eq. (1) has been solved, we will be able to apply it for the particular
(and most common) normal populations with 𝑓𝜃𝜃𝜃1 ≡ 𝑁(𝜇1, 𝜎1) and 𝑓𝜃𝜃𝜃2 ≡ 𝑁(𝜇2, 𝜎2) to test the following problem
of complete homogeneity

𝐻0 ∶ (𝜇1, 𝜎1) = (𝜇2, 𝜎2) versus 𝐻1 ∶ (𝜇1, 𝜎1) ≠ (𝜇2, 𝜎2) .

But there are other interesting problems of testing for partial homogeneity, for instance, to test

𝐻0 ∶ 𝜇1 = 𝜇2 versus 𝐻1 ∶ 𝜇1 ≠ 𝜇2

when the variances are the same but unknown; this is a particular case of the general composite hypotheses
involving two samples. This particular problem with normal population has been considered in [5] on the basis
of a family of test statistics based on the DPD measure and by estimating the unknown parameters using the
MDPDE. The results presented in their paper have been excellent in relation to the robustness and efficiency
trade-off; for some suggested members of their proposed test family the loss in efficiency based on the size
and the power under pure data was not really significant but the improvement in terms of robustness under
contaminated data was highly significant. Although their approach can theoretically be extended beyond the
simple case of normal populations, from a practical point of view, it is often not very easy to compute the
density power divergence measure between 𝑓𝜃𝜃𝜃1 and 𝑓𝜃𝜃𝜃2 . In this paper we present a new family of test statistics
which are easy to calculate based on only the MDPDEs for any general two-sample problem (involving nuisance
parameters as well) and with any parametric distribution. These test statistics are Wald-type test statistics and
their usefulness have been illustrated in the literature of one sample testing problems by Basu et al. [6] and
Ghosh et al. [7]. In the present paper, not only will we present the asymptotic distribution of the proposed Wald-
type test statistics for the two-sample problems but will also provide a theoretical study of their robustness
properties along with suitable examples and numerical illustrations.

The rest of the paper is organized as follows: In Section 1.1 we present some important background results
and definitions in relation to the MDPDE that will be necessary for the rest of the paper. Section 2 is devoted
to developing the family of Wald-type tests for solving the problem of complete homogeneity given by eq.
(1). We study its asymptotic distribution as well as the theoretical robustness properties with examples in the
same section. In Section 3, we present a family of Wald-type tests for the more general composite hypotheses in
the two sample context. We again derive their asymptotic distributions and robustness properties. Illustrations
are provided for the special case of testing partial homogeneity in presence of nuisance parameters like, for
example, testing equality of two normal means with unknown (nuisance) variances. In Section 4, we briefly
describe the extensions for testing the two-sample hypotheses against one-sided alternatives. Section 5 presents
several real life applications of our proposal with interesting data from applied sciences like medical science,
biology, reliability etc. Appropriate simulation studies with some comments on the choice of the robustness
tuning parameters are presented in Section 6. The paper ends with a short concluding remark in Section 7. For
brevity in presentation, the proofs of all the results have been moved to Appendix 8.

1.1 The minimum density power divergence estimator: Asymptotic properties and robustness

Given any two densities 𝑓𝜃𝜃𝜃1 and 𝑓𝜃𝜃𝜃2 from ℱ , the density power divergence with a nonnegative tuning parameter
𝛽, is defined as [4]

𝑑𝛽(𝑓𝜃𝜃𝜃1 , 𝑓𝜃𝜃𝜃2) =
⎧{{
⎨{{⎩

∫ {𝑓 1+𝛽
𝜃𝜃𝜃2

(𝑥) − (1+ 1
𝛽) 𝑓 𝛽

𝜃𝜃𝜃2
(𝑥)𝑓𝜃𝜃𝜃1(𝑥𝑥𝑥) + 1

𝛽 𝑓 1+𝛽
𝜃𝜃𝜃1

(𝑥)} 𝑑𝑥, for 𝛽 > 0,

∫ 𝑓𝜃𝜃𝜃1(𝑥)ln ( 𝑓𝜃𝜃𝜃1 (𝑥)
𝑓𝜃𝜃𝜃2 (𝑥)) 𝑑𝑥, for 𝛽 = 0.

� (2)

The divergence corresponding to 𝛽 = 0 may be derived from the general case by taking the continuous limit as
𝛽 → 0+, and the resulting 𝑑0(𝑓𝜃𝜃𝜃1 , 𝑓𝜃𝜃𝜃2) turns out to be the Kullback-Leibler divergence.

Let G represent the distribution function corresponding to the underlying true density g that generates the
data and we want to model it by the parametric model density 𝑓𝜃𝜃𝜃 ∈ ℱ . The corresponding minimum DPD
functional at G with tuning parameter 𝛽, denoted by 𝑈𝑈𝑈𝛽(𝐺), is defined through the relation 𝑑𝛽(𝑔, 𝑓𝑈𝑈𝑈𝛽(𝐺)) =
min
𝜃𝜃𝜃∈Θ

𝑑𝛽(𝑔, 𝑓𝜃𝜃𝜃). Therefore the MDPDE of 𝜃𝜃𝜃 with tuning parameter 𝛽 is given by ̂𝜃𝜃𝜃𝛽 = 𝑈𝑈𝑈𝛽(𝐺𝑛),
where 𝐺𝑛 is the empirical distribution function associated with the observed random sample 𝑋1, … , 𝑋𝑛 from

the population having density g. As the last term of eq. (2) does not depend on 𝜃𝜃𝜃, ̂𝜃𝜃𝜃𝛽 is indeed given by

̂𝜃𝜃𝜃𝛽 = arg min
𝜃𝜃𝜃∈Θ

{∫ 𝑓 1+𝛽
𝜃𝜃𝜃 (𝑥)𝑑𝑥 − (1+ 1

𝛽) 1
𝑛

𝑛
∑
𝑖=1

𝑓 𝛽
𝜃𝜃𝜃 (𝑋𝑖)} , if 𝛽 > 0,

(3)
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and ̂𝜃𝜃𝜃𝛽 = arg min
𝜃𝜃𝜃∈Θ

{− 1
𝑛

𝑛
∑
𝑖=1

ln𝑓𝜃𝜃𝜃(𝑋𝑖)} , if 𝛽 = 0.

(4)

Notice that ̂𝜃𝜃𝜃𝛽 for 𝛽 = 0 coincides with the maximum likelihood estimator (MLE). Denoting

𝑉𝜃𝜃𝜃 (𝑥) = ∫ 𝑓 1+𝛽
𝜃𝜃𝜃 (𝑥𝑥𝑥)𝑑 𝑥−𝑥−𝑥− (1 + 1

𝛽) 𝑓 𝛽
𝜃𝜃𝜃 (𝑥),

the expression in eq. (3) can be written as ̂𝜃𝜃𝜃𝛽 = arg min
𝜃𝜃𝜃∈Θ

1
𝑛

𝑛
∑
𝑖=1

𝑉𝜃𝜃𝜃(𝑋𝑖). It shows that the MDPDE is an M-

estimator.
The functional 𝑈𝑈𝑈𝛽(𝐺) is Fisher consistent; it takes the value 𝜃𝜃𝜃0, the true value of the parameter, when the

true density is a member of the model with 𝑔 = 𝑓𝜃𝜃𝜃0
. Let us assume 𝑔 = 𝑓𝜃𝜃𝜃0

and define the quantities

𝐽𝐽𝐽𝛽 (𝜃𝜃𝜃) = ∫𝑢𝑢𝑢𝜃𝜃𝜃(𝑥𝑥𝑥)𝑢𝑢𝑢𝑇
𝜃𝜃𝜃 (𝑥𝑥𝑥)𝑓 1+𝛽

𝜃𝜃𝜃 (𝑥𝑥𝑥)𝑑𝑥𝑥𝑥, 𝐾𝐾𝐾𝛽 (𝜃𝜃𝜃) = ∫𝑢𝑢𝑢𝜃𝜃𝜃(𝑥𝑥𝑥)𝑢𝑢𝑢𝑇
𝜃𝜃𝜃 (𝑥𝑥𝑥)𝑓 1+2𝛽

𝜃𝜃𝜃 (𝑥𝑥𝑥)𝑑𝑥𝑥𝑥 − 𝜉𝜉𝜉𝛽 (𝜃𝜃𝜃)𝜉𝜉𝜉𝑇
𝛽 (𝜃𝜃𝜃) , (5)

where 𝜉𝜉𝜉𝛽 (𝜃𝜃𝜃) = ∫𝑢𝑢𝑢𝜃𝜃𝜃(𝑥𝑥𝑥)𝑓 1+𝛽
𝜃𝜃𝜃 (𝑥𝑥𝑥)𝑑𝑥𝑥𝑥 and 𝑢𝑢𝑢𝜃𝜃𝜃(𝑥𝑥𝑥) = 𝜕

𝜕𝜃𝜃𝜃 ln𝑓𝜃𝜃𝜃(𝑥𝑥𝑥). Then, following [1, 4], it can be shown that, under
Assumptions (D1)–(D5) of Basu et al. [1][p. 304] to be referred as “Basu et al. conditions” in the rest of the paper,

𝑛1/2( ̂𝜃𝜃𝜃̂𝜃𝜃𝜃̂𝜃𝜃𝜃𝛽 −𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃0)
ℒ⟶𝑛→∞ 𝑁(000𝑝,ΣΣΣ𝛽(𝜃𝜃𝜃0)), (6)

where ΣΣΣ𝛽(𝜃𝜃𝜃) = 𝐽𝐽𝐽−1
𝛽 (𝜃𝜃𝜃)𝐾𝐾𝐾𝛽(𝜃𝜃𝜃)𝐽𝐽𝐽−1

𝛽 (𝜃𝜃𝜃). It is a simple exercise to see that for 𝛽 = 0, 𝐽𝐽𝐽𝛽=0 (𝜃𝜃𝜃) = 𝐾𝐾𝐾𝛽=0 (𝜃𝜃𝜃) = 𝐼𝐼𝐼𝐹 (𝜃𝜃𝜃),
the Fisher information matrix associated to the model under consideration. Therefore we obtain the classical
well known result,

𝑛1/2( ̂𝜃𝜃𝜃̂𝜃𝜃𝜃̂𝜃𝜃𝜃𝛽=0 − 𝜃𝜃𝜃0)
ℒ⟶𝑛→∞ 𝑁(000𝑝, 𝐼𝐼𝐼−1

𝐹 (𝜃𝜃𝜃0)).

Next, the influence function (IF) can be used to study the robustness of the MDPDE. Note that, if the influ-
ence function is bounded, the corresponding estimator or test statistic is said to have local robustness against
infinitesimal contamination. More simply, the influence function ℐ ℱ (𝑥,𝑈𝑈𝑈𝛽, 𝐹𝜃𝜃𝜃0

) is the first derivative of an
estimator or statistic viewed as a functional 𝑈𝑈𝑈𝛽, which describes the normalized influence on the estimate or
statistic of an infinitesimal contamination at a distant point x in the sample space. In [4] it was established that
the influence function (IF) of the minimum DPD functional is given by

ℐ ℱ (𝑥,𝑈𝑈𝑈𝛽, 𝐹𝜃𝜃𝜃0
) = lim

𝜀→0

𝑈𝑈𝑈𝛽 (𝐹𝜀) − 𝑈𝑈𝑈𝛽 (𝐹𝜃𝜃𝜃0
)

𝜀 = 𝐽𝐽𝐽−1
𝛽 (𝜃𝜃𝜃0) (𝑢𝑢𝑢𝜃𝜃𝜃 (𝑥) 𝑓 𝛽

𝜃𝜃𝜃0
(𝑥) − 𝜉𝜉𝜉 (𝜃𝜃𝜃0)) , (7)

where 𝐹𝜀 = (1−𝜀)𝐹𝜃𝜃𝜃0
+𝜀∧𝑥 is the 𝜀-contaminated distribution of 𝐹𝜃𝜃𝜃0

, the distribution function corresponding
to 𝑓𝜃𝜃𝜃, with respect to the point mass distribution ∧𝑥 at x. If we assume that 𝐽𝐽𝐽𝛽(𝜃𝜃𝜃0) and 𝜉𝜉𝜉 (𝜃𝜃𝜃0) are finite, the IF is
a bounded function of x whenever 𝑢𝑢𝑢𝜃𝜃𝜃 (𝑥) 𝑓 𝛽

𝜃𝜃𝜃0
(𝑥) is bounded. And this is the case for most common parametric

models at 𝛽 > 0 implying the robustness of MDPDEs with 𝛽 > 0.

2 A simple two-sample problem

Let 𝑋1, ..., 𝑋𝑛 and 𝑌1, ..., 𝑌𝑚 be two samples of sizes n and m respectively from two populations having densities
belonging to ℱ with parameters 𝜃𝜃𝜃1 and 𝜃𝜃𝜃2. The most common problem under this setup is to test the complete
homogeneity of the two populations given by eq. (1). But some component of the parameters can also be just
nuisance in many applications, for example, as in eq. (2).

In general notation, let us assume that

𝜃𝜃𝜃1 = (𝜃1,1, ..., 𝜃1,𝑟, 𝜃1,𝑟+1, ..., 𝜃1,𝑝)𝑇 = (∗𝜃𝜃𝜃𝑇
1 ,0 𝜃𝜃𝜃𝑇

1 )
𝑇

and 𝜃𝜃𝜃2 = (𝜃21,1, ..., 𝜃2,𝑟, 𝜃2,𝑟+1, ..., 𝜃2,𝑝)𝑇 = (∗𝜃𝜃𝜃𝑇
2 ,0 𝜃𝜃𝜃𝑇

2 )
𝑇

with 0𝜃𝜃𝜃1 and 0𝜃𝜃𝜃2 known (𝑝−𝑟)-vectors. Based on 𝑋1, ..., 𝑋𝑛 we can get the MLE, ∗ ̂𝜃𝜃𝜃1, of ∗𝜃𝜃𝜃1 and based on 𝑌1, ..., 𝑌𝑚
the MLE, ∗ ̂𝜃𝜃𝜃2, of ∗𝜃𝜃𝜃2. Assuming ∗𝜃𝜃𝜃1 =∗ 𝜃𝜃𝜃2 we can obtain an estimator, ∗

(𝑜) ̂𝜃𝜃𝜃1 of the common value ∗𝜃𝜃𝜃1 by using
the two random samples 𝑋1, ..., 𝑋𝑛 and 𝑌1, ..., 𝑌𝑚 together. It is well-known that, under ∗𝜃𝜃𝜃1 =∗ 𝜃𝜃𝜃2,

√ 𝑚𝑛
𝑚 + 𝑛 (∗ ̂𝜃𝜃𝜃1 −∗ ̂𝜃𝜃𝜃2)

ℒ⟶𝑛→∞ 𝒩 (000𝑟, 𝜔𝐼𝐼𝐼−1
𝐹 (∗𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃1,0 𝜃𝜃𝜃1) + (1 − 𝜔)𝐼𝐼𝐼−1

𝐹 (∗𝜃𝜃𝜃1,0𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃2)) (8)
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with

𝜔 = lim𝑚,𝑛→∞
𝑚

𝑚 + 𝑛.

Based on eq. (8), the classical Wald test statistic for testing

𝐻0 ∶∗ 𝜃𝜃𝜃1 =∗ 𝜃𝜃𝜃2 versus 𝐻1 ∶∗ 𝜃𝜃𝜃1 ≠∗ 𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃2, (9)

is given by
𝑊𝑚,𝑛 = 𝑚𝑛

𝑚 + 𝑛 ( ∗ ̂�1−∗ ̂�2)
𝑇⎛⎜

⎝

𝑚I−1
𝐹 (∗ ̂�1,0�1)
𝑚 + 𝑛 +

𝑛I−1
𝐹 (∗ ̂�2,0�2)
𝑚 + 𝑛

⎞⎟
⎠

−1

(∗ ̂�1−∗ ̂�2)

= 𝑚𝑛 (∗ ̂�1−∗ ̂�2)
𝑇(𝑚I−1

𝐹 (∗ ̂�1,0�1) + 𝑛I−1
𝐹 (∗ ̂�2,0�2))−1 (∗ ̂�1−∗ ̂�2) .

We can observe that, when r = p we have 𝐼𝐼𝐼−1
𝐹 (∗𝜃𝜃𝜃1,0𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃1) = 𝐼𝐼𝐼−1

𝐹 (∗𝜃𝜃𝜃1,0 𝜃𝜃𝜃2) = 𝐼𝐼𝐼−1
𝐹 (𝜃𝜃𝜃0), with 𝜃𝜃𝜃1 = 𝜃𝜃𝜃2 = 𝜃𝜃𝜃0 and the

Wald test statistic becomes

𝑊𝑚,𝑛 = 𝑚𝑛
𝑚 + 𝑛 ( ̂𝜃𝜃𝜃1 − ̂𝜃𝜃𝜃2)

𝑇 𝐼𝐼𝐼𝐹((0) ̂𝜃𝜃𝜃) ( ̂𝜃𝜃𝜃1 − ̂𝜃𝜃𝜃2) , (10)

where (0) ̂𝜃𝜃𝜃 denotes the MLE of 𝜃𝜃𝜃0 based on the pooled sample.
As an example, in the case of two normal populations, with known variances 𝜎2

1 and 𝜎2
2 , we can test 𝐻0 ∶

𝜇1 = 𝜇2 by the Wald test statistic

𝑊𝑚,𝑛 = 𝑚𝑛 (𝜇̂1 − 𝜇̂2)
2

𝑚𝜎2
1 + 𝑛𝜎2

2
= (𝜇̂1 − 𝜇̂2)

2

𝜎2
1

𝑛 + 𝜎2
2

𝑚

.

Although it has several nice optimum properties, it is highly non-robust in presence of outliers even in any one
sample. Here, we will generalize this classical Wald test to make it robust through replacing the non-robust
MLEs by the corresponding robust MDPDEs. In the following we will present the results for r = p, i.e., to test
for the hypothesis in eq. (1). The case r = p can be studied in a similar way.

Let us assume (1) ̂𝜃𝜃𝜃𝛽 and (2) ̂𝜃𝜃𝜃𝛽 denote the MDPDEs of 𝜃𝜃𝜃1 and 𝜃𝜃𝜃2 respectively, obtained by minimizing the
DPD with tuning parameter 𝛽 for each of the two samples separately. Further, under the null hypothesis 𝐻0 ∶
𝜃𝜃𝜃1 = 𝜃𝜃𝜃2 = 𝜃𝜃𝜃0 in eq. (1), we can consider the two samples pooled together as one i.i.d. sample of size 𝑚+𝑛 from a
population having density function 𝑓𝜃𝜃𝜃0

; let (0) ̂𝜃𝜃𝜃𝛽 denote the corresponding MDPDE of 𝜃𝜃𝜃0 with tuning parameter
𝛽 based on the pooled sample. Note that, all the three estimators (1) ̂𝜃𝜃𝜃𝛽 , (2) ̂𝜃𝜃𝜃𝛽 and (0) ̂𝜃𝜃𝜃𝛽 should coincide with
𝜃𝜃𝜃0 asymptotically under 𝐻0 with probability tending to one. Assuming identifiability of the model family, the
difference between the two estimators (1) ̂𝜃𝜃𝜃𝛽 and (2) ̂𝜃𝜃𝜃𝛽 gives us an idea of the distinction between the two samples
and hence indicate any departure from the null hypothesis. So, we define a generalized Wald-type test statistic
by

𝑇(𝛽)
𝑚,𝑛 = 𝑛𝑚

𝑛 + 𝑚 ((1) ̂𝜃𝜃𝜃𝛽 −(2) ̂𝜃𝜃𝜃𝛽)𝑇
ΣΣΣ𝛽 ((0) ̂𝜃𝜃𝜃𝛽)−1 ((1) ̂𝜃𝜃𝜃𝛽 −(2) ̂𝜃𝜃𝜃𝛽) . (11)

Note that, at 𝛽 = 0, all the MDPDEs used coincide with corresponding MLEs and hence the generalized Wald-
type test statistic 𝑇(𝛽)

𝑚,𝑛 coincides with the classical Wald test statistic 𝑊𝑚,𝑛 given in eq. (10).

2.1 Asymptotic properties

In order to perform any statistical test, we first need to derive the asymptotic distribution of the test statistics
under 𝐻0. Using the asymptotic properties of the MDPDEs presented in Section 1.1, we can easily obtain the
asymptotic null distribution of the proposed test statistics 𝑇(𝛽)

𝑚,𝑛 which is presented in the following theorem.
Throughout the rest of the paper, we will assume Conditions (A)–(D) of Lehmann [8][p. 429] about the assumed
model family which we will refer as “Lehmann conditions”. Also, we consider the following assumption.

Assumption (A):

1. 𝑚
𝑚+𝑛 → 𝜔 ∈ (0, 1) as 𝑚, 𝑛 → ∞

2. The asymptotic variance-covariance matrix ΣΣΣ𝛽(𝜃𝜃𝜃) of the MDPDE with tuning parameter 𝛽 is continuous in
𝜃𝜃𝜃.

Theorem 2.1
Suppose the model density satisfies the Lehmann and Basu et al. conditions, and Assumption (A) holds. Then the

asymptotic distribution of 𝑇(𝛽)
𝑚,𝑛 under the null hypothesis in eq. (9) is 𝜒2

𝑝, the chi-square distribution with p degrees of
freedom.
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The asymptotic null distribution of the test in [3] is a linear combination of chi-square distribution and hence
it is somewhat difficult to obtain the critical values of their test in practice. On the contrary, our proposed tests
have a simple chi-square limit under the null hypothesis and hence are much easier to perform. Our proposal
provides, in this sense, an advantageous procedure for testing.

However, when the null hypothesis is not correct, i.e., 𝜃𝜃𝜃1 ≠ 𝜃𝜃𝜃2, then the pooled estimator (0) ̂𝜃𝜃𝜃𝛽 no longer
converges to 𝜃𝜃𝜃1 or 𝜃𝜃𝜃2; rather it will then converge in probability to a new value 𝜃𝜃𝜃3, say, which is a function of 𝜃𝜃𝜃1,
𝜃𝜃𝜃2 and 𝜔. For example, if the estimators are additive in sample data, e.g. sample mean, then 𝜃𝜃𝜃3 = (1−𝜔)𝜃𝜃𝜃1+𝜔𝜃𝜃𝜃2.
Define 𝑙∗𝜃𝜃𝜃3,𝛽

(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) = (𝜃𝜃𝜃1 − 𝜃𝜃𝜃2)𝑇ΣΣΣ𝛽(𝜃𝜃𝜃3)−1(𝜃𝜃𝜃1 − 𝜃𝜃𝜃2). Then we have the following result.

Theorem 2.2
Suppose the model density satisfies the Lehmann and Basu et al. conditions, and Assumption (A) holds. Then, as

𝑚, 𝑛 → ∞, we have for any 𝜃𝜃𝜃1 ≠ 𝜃𝜃𝜃2

√ 𝑚𝑛
𝑚 + 𝑛 [𝑙∗(0) ̂𝜃𝜃𝜃𝛽,𝛽((1) ̂𝜃𝜃𝜃𝛽,(2) ̂𝜃𝜃𝜃𝛽) − 𝑙∗𝜃𝜃𝜃3,𝛽

(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)] ℒ⟶𝑚,𝑛→∞ 𝑁 (0, 4𝜎2
𝜃𝜃𝜃3,𝛽

(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)) ,

where 𝜎2
𝜃𝜃𝜃3,𝛽

(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) = (𝜃𝜃𝜃1 − 𝜃𝜃𝜃2)𝑇ΣΣΣ𝛽(𝜃𝜃𝜃3)−1 [𝜔ΣΣΣ𝛽(𝜃𝜃𝜃1) + (1 − 𝜔)ΣΣΣ𝛽(𝜃𝜃𝜃2)]ΣΣΣ𝛽(𝜃𝜃𝜃3)−1(𝜃𝜃𝜃1 − 𝜃𝜃𝜃2).

This theorem leads to an approximation to the power function 𝜋(𝛽)
𝑚,𝑛,𝛼(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) = 𝑃 (𝑇(𝛽)

𝑚,𝑛 > 𝜒2
𝑝,𝛼) of the pro-

posed Wald-type tests for testing eq. (9) at the significance level 𝛼, where 𝜒2
𝑝,𝛼 denotes the (1− 𝛼)-th quantile of

the 𝜒2
𝑝 distribution.

Corollary 2.3
Under the assumption of Theorem 2.2, we have

𝜋(𝛽)
𝑚,𝑛,𝛼(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) = 1 − Φ𝑛

⎛⎜⎜⎜
⎝

√𝑛+𝑚
𝑛𝑚

2𝜎𝜃𝜃𝜃3,𝛽(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)
[𝜒2

𝑝,𝛼 − 𝑛𝑚
𝑛 + 𝑚𝑙∗𝜃𝜃𝜃3,𝛽

(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)]⎞⎟⎟⎟
⎠

, 𝜃𝜃𝜃1 ≠ 𝜃𝜃𝜃2,

for a sequence of distributions Φ𝑛(⋅) tending uniformly to the standard normal distribution Φ(⋅).

The corollary also helps us to determine the sample size requirement for our proposed test to achieve any
pre-specified power level. Further, we have 𝜋(𝛽)

𝑚,𝑛,𝛼(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) → 1 for any 𝜃𝜃𝜃1 ≠ 𝜃𝜃𝜃2 as 𝑚, 𝑛 → ∞. Hence the proposed
test with rejection rule {𝑇(𝛽)

𝑚,𝑛 > 𝜒2
𝑝,𝛼} is consistent.

Corollary 2.4
Under the assumption of Theorem Theorem 2.2, the proposed Wald-type test is consistent in the Fraser’s sense.

Next, we look at the performance of the proposed test under contiguous alternatives. Now, in case of two
sample problem, we can have different types of contiguous alternatives. For example, we can assume 𝜃𝜃𝜃2 to be
fixed and 𝜃𝜃𝜃1 converging to 𝜃𝜃𝜃2 so that 𝐻′

1,𝑛 ∶ 𝜃𝜃𝜃1 = 𝜃𝜃𝜃1,𝑛 = 𝜃𝜃𝜃2 + 𝑛− 1
2ΔΔΔ1 for some p-vector ΔΔΔ1 of non-zero reals such

that 𝜃𝜃𝜃2 + 𝑛− 1
2ΔΔΔ1 ∈ Θ. Conversely, we can have 𝜃𝜃𝜃1 to be fixed and 𝐻″

1,𝑚 ∶ 𝜃𝜃𝜃2 = 𝜃𝜃𝜃2,𝑚 = 𝜃𝜃𝜃1 + 𝑚− 1
2ΔΔΔ2 for some

ΔΔΔ2 ∈ ℝ𝑝 − {000} with 𝜃𝜃𝜃1 + 𝑚− 1
2ΔΔΔ2 ∈ Θ. Here, we consider a general form of the contiguous alternative given by

𝐻1,𝑛,𝑚 ∶ 𝜃𝜃𝜃1 = 𝜃𝜃𝜃1,𝑛 = 𝜃𝜃𝜃0 + 𝑛− 1
2ΔΔΔ1, 𝜃𝜃𝜃2 = 𝜃𝜃𝜃2,𝑚 = 𝜃𝜃𝜃0 + 𝑚− 1

2ΔΔΔ2, (ΔΔΔ1,ΔΔΔ2) ∈ ℝ𝑝 × ℝ𝑝 − {(000𝑝,000𝑝)}, (12)

for some fixed 𝜃𝜃𝜃0 ∈ Θ. Note that, putting ΔΔΔ2 = 000 in eq. (12) we get 𝐻′
1,𝑛 back from 𝐻1,𝑛,𝑚, whereas ΔΔΔ1 = 000

yields 𝐻″
1,𝑚. The following theorem gives the asymptotic distribution of the proposed test statistics 𝑇(𝛽)

𝑚,𝑛 under
this general contiguous alternatives 𝐻1,𝑚,𝑛.

Theorem 2.5
Suppose the model density satisfies the Lehmann and Basu et al. conditions and the assumption (A) holds. Then the

asymptotic distribution of 𝑇(𝛽)
𝑚,𝑛 under the contiguous alternative 𝐻1,𝑛,𝑚 given by eq. (12) is 𝜒2

𝑝(𝛿𝛽), the non-central chi-
square distribution with p degrees of freedom and non-centrality parameter 𝛿𝛽 = 𝑊𝑊𝑊(ΔΔΔ1,ΔΔΔ2)𝑇ΣΣΣ𝛽(𝜃𝜃𝜃0)−1𝑊𝑊𝑊(ΔΔΔ1,ΔΔΔ2) with
𝑊𝑊𝑊(ΔΔΔ1,ΔΔΔ2) = [√𝜔ΔΔΔ1 − √1 − 𝜔ΔΔΔ2].

We can easily obtain the asymptotic power 𝜋𝛽(ΔΔΔ1,ΔΔΔ2) under the contiguous alternatives 𝐻1,𝑛,𝑚 from the
above theorem. In particular, denoting the distribution function of a random variable Z by 𝐹𝑍, we have

𝜋𝛽(ΔΔΔ1,ΔΔΔ2) = 1 − 𝐹𝜒2𝑝(𝛿𝛽)(𝜒2
𝑝,𝛼). (13)
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Example 2.1 (Testing equality of two Normal means with known equal variances)
We first present the simplest possible case of testing two normal means with known equal variance 𝜎2. Here

the model family is ℱ = {𝑁(𝜃, 𝜎2) ∶ 𝜃 ∈ ℝ} with 𝜎 being known. In this case, the asymptotic variance Σ𝛽(𝜃) of

the MDPDE with tuning parameter 𝛽 is given by Σ𝛽(𝜃) = (1+ 𝛽2

1+2𝛽)
3/2

𝜎2. Hence, our generalized Wald-type
test statistics has a much simpler form in this case given by

𝑇(𝛽)
𝑚,𝑛 = 𝑚𝑛

𝑚 + 𝑛 (1 + 𝛽2

1 + 2𝛽)
−3/2

⎛⎜⎜
⎝

(1) ̂𝜃𝛽 −(2) ̂𝜃𝛽
𝜎

⎞⎟⎟
⎠

2

,

and it has 𝜒2
1 asymptotic distribution under 𝐻0. Note that, at 𝛽 = 0, this test statistic coincides with the

classical Wald-test statistic 𝑊𝑚,𝑛 = 𝑚𝑛
𝑚+𝑛 (

(1) ̂𝜃0−(2) ̂𝜃0
𝜎 )

2
= 𝑚𝑛

𝑚+𝑛 ( 𝑋̄−𝑌̄
𝜎 )

2
, where 𝑋̄ and 𝑌̄ are the sample means of

𝑋1, … , 𝑋𝑚 and 𝑌1, … , 𝑌𝑛 respectively.
Clearly, these tests are consistent for any 𝛽 ≥ 0 by Corollary 2.4. Further, the asymptotic power of the pro-

posed test under contiguous alternatives 𝐻1,𝑚,𝑛 can be easily obtained as

𝜋𝛽(Δ1,Δ2) = 1 − 𝐹𝜒2
1(𝛿𝛽)(𝜒2

1,𝛼),

with 𝛿𝛽 = (1+ 𝛽2

1+2𝛽)
−3/2

𝜎−2𝑊(Δ1,Δ2)2.Table 1 presents the values of 𝜋𝛽(Δ1,Δ2) over 𝛽 ∈ [0, 1] for different
values of 𝑊(Δ1,Δ2). Note that, whenever 𝑊(Δ1,Δ2) = 0, the alternative coincides with null and hence we get
back the level of the test and as 𝑊(Δ1,Δ2) increases the power also increases as expected. Clearly, this asymptotic
power decreases as 𝛽 increases but this loss is not significant at small positive values of 𝛽. This fact is quite
intuitive as the classical Wald-test at 𝛽 = 0 is asymptotically most powerful under pure model. But, as we will
see in the next two subsections, we can gain much higher robustness with respect to the outliers at the cost of
this small loss in asymptotic power.

Table 1: Asymptotic contiguous power of the proposed Wald-type test at 95% level for testing equality of two normal
means as in Example 2.1 with known common 𝜎2 = 1.

β
WΔ1,Δ2 0 0.1 0.3 0.5 0.7 0.9 1

0 0.050 0.050 0.050 0.050 0.050 0.050 0.050
1 0.170 0.169 0.160 0.150 0.140 0.131 0.127
2 0.516 0.511 0.484 0.449 0.413 0.380 0.364
3 0.851 0.847 0.821 0.784 0.742 0.698 0.677
5 0.999 0.999 0.998 0.996 0.992 0.985 0.981

2.2 Influence function of the wald-type test statistics

The robustness of any two sample test is relatively complicated compared to the one sample case because,
here, one may have contamination in either of the two sample or even in both the samples. Let us first derive
the Hampel’s influence function (IF) of the two sample Wald-type test statistics to study the robustness of the
proposed test. Consider the set-up of previous subsection and denote 𝐺1 = 𝐹𝜃𝜃𝜃1

and 𝐺2 = 𝐹𝜃𝜃𝜃2
. Then, ignoring the

multiplier 𝑛𝑚
𝑛+𝑚 , we can define the statistical functional corresponding to the proposed Wald-type test statistics

𝑇(𝛽)
𝑚,𝑛 as

𝑇𝛽(𝐺1, 𝐺2) = (𝑈𝑈𝑈𝛽(𝐺1) − 𝑈𝑈𝑈𝛽(𝐺2))𝑇
ΣΣΣ−1

𝛽 (𝜃𝜃𝜃0) (𝑈𝑈𝑈𝛽(𝐺1) − 𝑈𝑈𝑈𝛽(𝐺2)) ,

where 𝑈𝑈𝑈𝛽 is the MDPDE functional defined in Section 1.1.
Now consider the contaminated distributions 𝐺1,𝜀 = (1 − 𝜀)𝐺1 + 𝜀∧𝑥 and 𝐺2,𝜀 = (1 − 𝜀)𝐺2 + 𝜀∧𝑦 where 𝜀

is the contaminated proportion and x, y are the point of contamination in the two samples respectively. Then
the Hampel’s first-order influence function of our test functional, when the contamination is only in the first
sample, is given by

𝐼𝐹(1)(𝑥; 𝑇𝛽, 𝐺1, 𝐺2) = � 𝜕
𝜕𝜀𝑇𝛽(𝐺1,𝜀, 𝐺2)∣

𝜀=0
= 2(𝑈𝑈𝑈𝛽(𝐺1) − 𝑈𝑈𝑈𝛽(𝐺2))𝑇ΣΣΣ−1

𝛽 (𝜃𝜃𝜃0)ℐ ℱ (𝑥;𝑈𝑈𝑈𝛽, 𝐺1).
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Similarly, if there is contamination only in the second sample, then the corresponding IF is given by

𝐼𝐹(2)(𝑦; 𝑇𝛽, 𝐺1, 𝐺2) = � 𝜕
𝜕𝜀𝑇𝛽(𝐺1, 𝐺2,𝜀)∣

𝜀=0
= −2(𝑈𝑈𝑈𝛽(𝐺1) − 𝑈𝑈𝑈𝛽(𝐺2))𝑇ΣΣΣ−1

𝛽 (𝜃𝜃𝜃0)ℐ ℱ (𝑦;𝑈𝑈𝑈𝛽, 𝐺1).

Finally, if we assume that the contamination is in both the samples, Hampel’s IF turns out to be

𝐼𝐹(𝑥, 𝑦; 𝑇𝛽, 𝐺1, 𝐺2) = � 𝜕
𝜕𝜀𝑇𝛽(𝐺1,𝜀, 𝐺2,𝜀)∣

𝜀=0
= 2(𝑈𝑈𝑈𝛽(𝐺1) − 𝑈𝑈𝑈𝛽(𝐺2))𝑇ΣΣΣ−1

𝛽 (𝜃𝜃𝜃0)𝐷𝐷𝐷𝛽(𝑥, 𝑦),

where 𝐷𝐷𝐷𝛽(𝑥, 𝑦) = [ℐ ℱ (𝑥;𝑈𝑈𝑈𝛽, 𝐺1) − ℐ ℱ (𝑦;𝑈𝑈𝑈𝛽, 𝐺2)] . Now, in particular, if we assume the null hypothesis to
be true with 𝐺1 = 𝐺2 = 𝐹𝜃𝜃𝜃1

, then 𝑈𝑈𝑈𝛽(𝐺1) = 𝑈𝑈𝑈𝛽(𝐺2) = 𝜃𝜃𝜃1. Therefore, all the above three types of influence
function will be zero at the null hypothesis in eq. (9), which implies that the Wald-type tests are not robust for
all 𝛽 ≥ 0. This is clearly not informative about the robustness of the tests as we all know the non-robust nature
of 𝑇(0)

𝑚,𝑛 (which is the classical Wald test statistic 𝑊𝑚,𝑛).
Therefore, we need to consider the second order influence function for this case of two sample problem.

When there is contamination only in the first sample, the corresponding second order IF is given by

𝐼𝐹(1)
2 (𝑥; 𝑇𝛽, 𝐺1, 𝐺2) = 𝜕2

𝜕2𝜀𝑇𝛽(𝐺1,𝜀, 𝐺2)∣ �𝜀=0

= 2(𝑈𝑈𝑈𝛽(𝐺1) − 𝑈𝑈𝑈𝛽(𝐺2))𝑇ΣΣΣ−1
𝛽 (𝜃𝜃𝜃0)ℐ ℱ2(𝑥;𝑈𝑈𝑈𝛽, 𝐺1)

+ 2ℐ ℱ (𝑥;𝑈𝑈𝑈𝛽, 𝐺1)𝑇ΣΣΣ−1
𝛽 (𝜃𝜃𝜃0)ℐ ℱ (𝑥;𝑈𝑈𝑈𝛽, 𝐺1).

For the particular case of null distribution 𝜃𝜃𝜃1 = 𝜃𝜃𝜃2, it simplifies to

𝐼𝐹(1)
2 (𝑥; 𝑇𝛽, 𝐹𝜃𝜃𝜃1

, 𝐹𝜃𝜃𝜃1
) = 2ℐ ℱ (𝑥;𝑈𝑈𝑈𝛽, 𝐹𝜃𝜃𝜃1

)𝑇ΣΣΣ−1
𝛽 (𝜃𝜃𝜃0)ℐ ℱ (𝑥;𝑈𝑈𝑈𝛽, 𝐹𝜃𝜃𝜃1

).
Similarly, if the contamination is in the second sample only, then the second order IF simplifies to

𝐼𝐹(2)
2 (𝑦; 𝑇𝛽, 𝐹𝜃𝜃𝜃1

, 𝐹𝜃𝜃𝜃1
) = 2ℐ ℱ (𝑦;𝑈𝑈𝑈𝛽, 𝐹𝜃𝜃𝜃1

)𝑇ΣΣΣ−1
𝛽 (𝜃𝜃𝜃0)ℐ ℱ (𝑦;𝑈𝑈𝑈𝛽, 𝐹𝜃𝜃𝜃1

).
Note that these two IFs are bounded with respect to the contamination points x or y if and only if the IF of the
corresponding MDPDE used is bounded; but it is the case for all 𝛽 > 0 under most common parametric models.
Hence for any 𝛽 > 0, the proposed test gives robust inference with respect to contamination in any one of the
samples. However, at 𝛽 = 0 the MDPDE becomes the non-robust MLE having unbounded influence function
and so using that estimator makes the classical Wald test statistic to be highly non-robust also.

Finally for the case of contamination in both samples, the corresponding second order IF is given by

𝐼𝐹2(𝑥, 𝑦; 𝑇𝛽, 𝐺1, 𝐺2) = � 𝜕
2

𝜕2𝜀𝑇𝛽(𝐺1,𝜀, 𝐺2,𝜀)∣
𝜀=0

= 2(𝑈𝑈𝑈𝛽(𝐺1) − 𝑈𝑈𝑈𝛽(𝐺2))𝑇ΣΣΣ−1
𝛽 (𝜃𝜃𝜃0) [ℐ ℱ2(𝑥;𝑈𝑈𝑈𝛽, 𝐺1) − ℐ ℱ2(𝑦;𝑈𝑈𝑈𝛽, 𝐺2)]

+ 2𝐷𝐷𝐷𝛽(𝑥, 𝑦)𝑇ΣΣΣ−1
𝛽 (𝜃𝜃𝜃0)𝐷𝐷𝐷𝛽(𝑥, 𝑦).

In particular, at the null hypothesis 𝜃𝜃𝜃1 = 𝜃𝜃𝜃2, we have

𝐼𝐹2(𝑥, 𝑦; 𝑇𝛽, 𝐹𝜃𝜃𝜃1
, 𝐹𝜃𝜃𝜃1

) = 2𝐷𝐷𝐷𝛽(𝑥, 𝑦)𝑇ΣΣΣ−1
𝛽 (𝜃𝜃𝜃0)𝐷𝐷𝐷𝛽(𝑥, 𝑦).

Note that if x = y then 𝐷𝛽(𝑥, 𝑦) = 0 and hence this second order influence function is zero implying the robust-
ness of the proposed test with any values of the parameter; this is expected intuitively as the same contamination
in both the samples nullifies each other for testing the equivalence of the two samples as in eq. (9). However,
if x≠y, then the influence function of our test is bounded if and only if the difference 𝐷𝛽(𝑥, 𝑦) between the in-
fluence functions of the MDPDEs used is bounded. This happens whenever the IF of the MDPDE is bounded,
i.e., at 𝛽 > 0.
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Figure 1: Second order influence function of the proposed Wald-type test statistics and corresponding gross error sen-
sitivity 𝛾𝛽,1 under contamination only in first sample for testing equality of two normal means as in Example 2.1 with
known common 𝜎2 = 1.

Example 2.2 (Continuation of Example 2.1)
Let us again consider the previous example on testing two normal means as in Example 2.1. We have seen

that the proposed Wald-type tests are consistent for all 𝛽 ≥ 0 but their power against contiguous alternatives
decreases slightly as 𝛽 increases. Now let us verify the claimed robustness of these tests.

Clearly, the first order IFs of the test statistics will always be zero. For contamination only in the first sample,
the second order IF of the test statistic 𝑇𝛽 at the null hypothesis in eq. (9) has a simpler form given by

𝐼𝐹(1)
2 (𝑥; 𝑇𝛽, 𝐹𝜃1

, 𝐹𝜃1
) = 2

𝜎2 (1 + 2𝛽)3/2 (𝑥 − 𝜃1)2𝑒
− 𝛽(𝑥−𝜃1)2

𝜎2 .

Figure 1a presents the plot of this second order IF for different values of 𝛽 ∈ [0, 1]. It is evident from the figure
that the second order IF is unbounded at 𝛽 = 0 implying the non-robustness of the classical Wald test statistic;
but it is bounded for all 𝛽 > 0 implying the robustness of our proposals. Further, Figure 1b presents the plot of
the maximum possible influence of infinitesimal contamination on the test statistics, known as the “gross error
sensitivity”, computed as

𝛾𝛽,1 = sup
𝑥

∣∣𝐼𝐹(1)
2 (𝑥; 𝑇𝛽, 𝐹𝜃1

, 𝐹𝜃1
)∣∣ = 2

𝜎3√𝛽
(1 + 𝛽

1 + 𝛽) 𝑒− √𝛽
𝜎 .

It clearly shows that the robustness of our proposed test statistics increases as 𝛽 increases (since 𝛾𝛽,1 decreases).
Thus, just like the trade-off between efficiency and robustness of MDPDE, the parameter 𝛽 again controls the
trade-off between asymptotic contiguous power and robustness for the proposed MDPDE based test statistics.

Similar inferences can also be drawn for contamination only in the second sample.
Next consider the case when there is contamination in both the samples. In this case, the second order IF is

given by

𝐼𝐹2(𝑥, 𝑦; 𝑇𝛽, 𝐹𝜃1
, 𝐹𝜃1

) = 2
𝜎2 (1 + 2𝛽)3/2 [(𝑥 − 𝜃1)𝑒− 𝛽(𝑥−𝜃1)2

2𝜎2 − (𝑦 − 𝜃1)𝑒− 𝛽(𝑦−𝜃1)2

2𝜎2 ]
2

.

The plot of 𝐼𝐹2(𝑥, 𝑦; 𝑇𝛽, 𝐹𝜃1
, 𝐹𝜃1

) have been presented in Figure 2, which clearly show the robust nature of our
proposals at 𝛽 > 0 and the non-robust nature of the classical Wald test (at 𝛽 = 0) unless x = y. By looking at the
maximum possible influence in this case, we can again see that, even under contamination in both the samples,
the robustness of our proposed Wald-type test statistics increases as 𝛽 increases.

Figure 2: Second order influence function of the proposed Wald-type test statistics under contamination in both the sam-
ples for testing equality of two normal means as in Example 2.1 with known common 𝜎2 = 1.

2.3 Power and level influence functions

The robustness of a test statistic, although necessary, may not be sufficient in all the cases since the performance
of any test is finally measured through its level and power. In this section, we consider the effect of contami-
nation on the asymptotic power and level of the proposed Wald-type tests. Due to consistency, the asymptotic
power against any fixed alternative will be one. So, we again consider the contiguous alternatives 𝐻1,𝑚,𝑛 given
by eq. (12) along with contamination over these alternatives. Following Hampel et al. [9], the effect of contam-
inations should tend to zero, as the alternatives tend to the null (i.e., 𝜃𝜃𝜃1,𝑛 → 𝜃𝜃𝜃0 and 𝜃𝜃𝜃2,𝑚 → 𝜃𝜃𝜃0 as 𝑚, 𝑛 → ∞)
at the same rate to avoid confusion between the neighborhoods of the two hypotheses (also see [7, 10–13] for

8
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some one sample applications). Further, in case of the present two sample problem, the contamination can be
in any one sample or in both the samples. When the contamination is only in the first sample, we consider the
corresponding contamination distribution for the first population as

𝐹𝐿
1,𝑛,𝜀,𝑥 = (1 − 𝜀

√𝑛) 𝐹𝜃𝜃𝜃0
+ 𝜀

√𝑛 ∧𝑥 𝐹𝑃
1,𝑛,𝜀,𝑥 = (1 − 𝜀

√𝑛) 𝐹𝜃𝜃𝜃1,𝑛
+ 𝜀

√𝑛∧𝑥,

for the level and power calculations respectively along with the usual uncontaminated distributions for the
second population. Then the corresponding level influence function (LIF) and the power influence function
(PIF) at the null 𝜃𝜃𝜃1 = 𝜃𝜃𝜃2 = 𝜃𝜃𝜃0 are given by

𝐿𝐼𝐹(1)(𝑥; 𝑇𝛽, 𝐹𝜃𝜃𝜃0
) = lim𝑚,𝑛→∞

𝜕
𝜕𝜀𝑃(𝐹𝐿

1,𝑛,𝜀,𝑥,𝐹𝜃𝜃𝜃0 )(𝑇(𝛽)
𝑚,𝑛 > 𝜒2

𝑝,𝛼)∣�𝜀=0,

𝑃𝐼𝐹(1)(𝑥; 𝑇𝛽, 𝐹𝜃𝜃𝜃0
) = lim𝑚,𝑛→∞

𝜕
𝜕𝜀𝑃(𝐹𝑃

1,𝑛,𝜀,𝑥,𝐹𝜃𝜃𝜃2,𝑚 )(𝑇(𝛽)
𝑚,𝑛 > 𝜒2

𝑝,𝛼)∣�𝜀=0.

Similarly, when contamination is assumed to be only in the second sample, then we take the uncontaminated
distributions for the first population and the contaminated distribution for the second population as

𝐹𝐿
2,𝑚,𝜀,𝑦 = (1 − 𝜀

√𝑚) 𝐹𝜃𝜃𝜃0
+ 𝜀

√𝑚 ∧𝑦 𝐹𝑃
2,𝑚,𝜀,𝑦 = (1 − 𝜀

√𝑚) 𝐹𝜃𝜃𝜃2,𝑚
+ 𝜀

√𝑚∧𝑦,

for the level and power calculations respectively. Corresponding LIF and PIF at the null 𝜃𝜃𝜃1 = 𝜃𝜃𝜃2 = 𝜃𝜃𝜃0 are given
by

𝐿𝐼𝐹(2)(𝑦; 𝑇𝛽, 𝐹𝜃𝜃𝜃0
) = lim𝑚,𝑛→∞

𝜕
𝜕𝜀𝑃(𝐹𝜃𝜃𝜃0 ,𝐹𝐿

2,𝑚,𝜀,𝑦)(𝑇(𝛽)
𝑚,𝑛 > 𝜒2

𝑝,𝛼)∣ �𝜀=0,

𝑃𝐼𝐹(2)(𝑦; 𝑇𝛽, 𝐹𝜃𝜃𝜃0
) = lim𝑚,𝑛→∞

𝜕
𝜕𝜀𝑃(𝐹𝜃𝜃𝜃1,𝑛 ,𝐹𝑃

2,𝑚,𝜀,𝑦)(𝑇(𝛽)
𝑚,𝑛 > 𝜒2

𝑝,𝛼)∣�𝜀=0.

Finally, while considering contamination in both the samples with above contaminated distributions, we define
the corresponding LIF and PIF as

𝐿𝐼𝐹(𝑥, 𝑦; 𝑇𝛽, 𝐹𝜃𝜃𝜃0
) = lim𝑚,𝑛→∞

𝜕
𝜕𝜀𝑃(𝐹𝐿

1,𝑛,𝜀,𝑥,𝐹𝐿
2,𝑚,𝜀,𝑦)(𝑇(𝛽)

𝑚,𝑛 > 𝜒2
𝑝,𝛼)∣�𝜀=0,

𝑃𝐼𝐹(𝑥, 𝑦; 𝑇𝛽, 𝐹𝜃𝜃𝜃0
) = lim𝑚,𝑛→∞

𝜕
𝜕𝜀𝑃(𝐹𝑃

1,𝑛,𝜀,𝑥,𝐹𝑃
2,𝑚,𝜀,𝑦)(𝑇(𝛽)

𝑚,𝑛 > 𝜒2
𝑝,𝛼)∣�𝜀=0.

First let us derive the asymptotic distribution of the proposed Wald-type test statistics 𝑇(𝛽)
𝑚,𝑛 under the con-

taminated distributions. Let us define Δ̃ΔΔ𝑖 = ΔΔΔ𝑖 + 𝜀ℐ ℱ (𝑥𝑖;𝑈𝑈𝑈𝛽, 𝐹𝜃𝜃𝜃0
) for i = 1,2 with 𝑥1 = 𝑥 and 𝑥2 = 𝑦. Then we

have the following theorem.

Theorem 2.6
Suppose the model density satisfies the Lehmann and Basu et al. conditions and Assumption (A) holds. Then the

asymptotic distribution of 𝑇(𝛽)
𝑚,𝑛 under any contaminated contiguous alternative distributions (𝐷1, 𝐷2) is 𝜒2

𝑝 (𝜆) where 𝜆
is the parameter of non-centrality given by 𝜆 = 𝑊𝑊𝑊𝑇

𝜀 ΣΣΣ𝛽(𝜃𝜃𝜃0)−1𝑊𝑊𝑊𝜀, where

𝑊𝑊𝑊𝜀 = 𝑊𝑊𝑊 (Δ̃ΔΔ1,ΔΔΔ2) , if (𝐷1, 𝐷2) = (𝐹𝑃
1,𝑛,𝜀,𝑥, 𝐹𝜃𝜃𝜃2,𝑚

),
= 𝑊𝑊𝑊 (ΔΔΔ1, Δ̃ΔΔ2) , if (𝐷1, 𝐷2) = (𝐹𝜃𝜃𝜃1,𝑛

, 𝐹𝑃
2,𝑚,𝜀,𝑦),

= 𝑊𝑊𝑊 (Δ̃ΔΔ1, Δ̃ΔΔ2) , if (𝐷1, 𝐷2) = (𝐹𝑃
1,𝑛,𝜀,𝑥, 𝐹𝑃

2,𝑚,𝜀,𝑦).
(14)

From the above theorem, we get the asymptotic power of the proposed Wald-type tests under the contami-
nated contiguous alternatives as

𝜋𝛽(ΔΔΔ1,ΔΔΔ2; 𝜀) = 𝑃(𝐷1,𝐷2) (𝑇(𝛽)
𝑚,𝑛 > 𝜒2

𝑝,𝛼) = 1 − 𝐹
𝜒2𝑝(𝑊𝑊𝑊𝑇

𝜀 ΣΣΣ𝛽(𝜃𝜃𝜃0)−1𝑊𝑊𝑊𝜀)
(𝜒2

𝑝,𝛼).
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Using infinite series expansion of a non-central chi-square distribution function [14], we get

𝜋𝛽(ΔΔΔ1,ΔΔΔ2; 𝜀) =
∞
∑
𝑣=0

𝐶𝑣 (𝑊𝑊𝑊𝜀,ΣΣΣ𝛽(𝜃𝜃𝜃0)−1) 𝑃 (𝜒2
𝑝+2𝑣 > 𝜒2

𝑝,𝛼) ,

where 𝐶𝑣(𝑡𝑡𝑡,𝐴𝐴𝐴) =
(𝑡𝑡𝑡𝑇𝐴𝐴𝐴𝑡𝑡𝑡)𝑣

𝑣! 2𝑣 𝑒− 1
2 𝑡𝑡𝑡𝑇𝐴𝐴𝐴𝑡𝑡𝑡.

In particular, substituting 𝜀 = 0 in the above theorem, we get back Theorem Theorem 2.5 on the asymptotic
contiguous power of our tests and hence expression eq. (13) can be written as

𝜋𝛽(ΔΔΔ1,ΔΔΔ2) = 𝜋𝛽(ΔΔΔ1,ΔΔΔ2;000𝑝) =
∞
∑
𝑣=0

𝐶𝑣 (𝑊𝑊𝑊(ΔΔΔ1,ΔΔΔ2),ΣΣΣ𝛽(𝜃𝜃𝜃0)−1) 𝑃 (𝜒2
𝑝+2𝑣 > 𝜒2

𝑝,𝛼) .

Further, substitutingΔΔΔ1 = ΔΔΔ2 = 000𝑝, we get the asymptotic level of our Wald-type tests under the contamina-
tion as 𝛼𝜀 = 𝜋𝛽(000,000; 𝜀).

Now we can define the power influence functions of our proposed tests which is nothing but
� 𝜕
𝜕𝜀𝜋𝛽(ΔΔΔ1,ΔΔΔ2; 𝜀)∣

𝜀=0
under standard regularity conditions. Using the infinite series expression of a non-central

chi-square distribution function, we can derive an explicit form of the PIFs as presented in the following theo-
rem.

Theorem 2.7
Suppose the model density satisfies the Lehmann and Basu et al. conditions, and Assumption (A) holds. Then the power

influence functions of our proposed Wald-type tests are given by

𝑃𝐼𝐹(1)(𝑥; 𝑇𝛽, 𝐹𝜃𝜃𝜃0
) = √𝜔𝐾∗

𝑝 (𝛿𝛽)𝑊𝑊𝑊(ΔΔΔ1,ΔΔΔ2)𝑇ΣΣΣ𝛽(𝜃𝜃𝜃0)−1ℐ ℱ (𝑥;𝑈𝑈𝑈𝛽, 𝐹𝜃𝜃𝜃0
),

𝑃𝐼𝐹(2)(𝑦; 𝑇𝛽, 𝐹𝜃𝜃𝜃0
) = √1 − 𝜔𝐾∗

𝑝 (𝛿𝛽)𝑊𝑊𝑊(ΔΔΔ1,ΔΔΔ2)𝑇ΣΣΣ𝛽(𝜃𝜃𝜃0)−1ℐ ℱ (𝑦;𝑈𝑈𝑈𝛽, 𝐹𝜃𝜃𝜃0
),

𝑃𝐼𝐹(𝑥, 𝑦; 𝑇𝛽, 𝐹𝜃𝜃𝜃0
) = 𝐾∗

𝑝 (𝛿𝛽)𝑊𝑊𝑊(ΔΔΔ1,ΔΔΔ2)𝑇ΣΣΣ𝛽(𝜃𝜃𝜃0)−1𝑊𝑊𝑊 (ℐ ℱ (𝑥;𝑈𝑈𝑈𝛽, 𝐹𝜃𝜃𝜃0
), ℐ ℱ (𝑥;𝑈𝑈𝑈𝛽, 𝐹𝜃𝜃𝜃0

)) ,

where 𝛿𝛽 and 𝑊𝑊𝑊(ΔΔΔ1,ΔΔΔ2) are as defined in Theorem Theorem 2.5 and

𝐾∗
𝑝(𝑠) = 𝑒− 𝑠

2
∞
∑
𝑣=0

𝑠𝑣−1

𝑣! 2𝑣 (2𝑣 − 𝑠) 𝑃 (𝜒2
𝑝+2𝑣 > 𝜒2

𝑝,𝛼) .

Note that the PIFs are also a function of the influence function of the MDPDE used and hence they are
bounded whenever 𝛽 > 0. Thus the proposed tests will be robust for all 𝛽 > 0. However, at 𝛽 = 0, these PIFs
will be unbounded (unless there is contamination at the same points x = y in both the samples) which proves
the non-robust nature of the classical Wald test.

Note that, although there is no direct relationship between the IF of test statistics with the corresponding
PIF in general, in this present case they are seen to be related indirectly via the IF of the MDPDE. So, using a
robust MDPDE with 𝛽 > 0 in the proposed Wald-type tests will make both the test statistics and its asymptotic
power robust under infinitesimal contamination.

Finally, we can find the level influence function of the proposed Wald-type tests either starting from 𝛼𝜀 and
following the same steps as in the case of PIFs or just by substituting ΔΔΔ1 = ΔΔΔ2 = 000 in the expression of the PIFs
given in Theorem 2.7. In either case, since 𝑊𝑊𝑊(000,000) = 000, it turns out that

𝐿𝐼𝐹(1)(𝑥; 𝑇𝛽, 𝐹𝜃𝜃𝜃0
) = 0, 𝐿𝐼𝐹(2)(𝑦; 𝑇𝛽, 𝐹𝜃𝜃𝜃0

) = 0, 𝐿𝐼𝐹(𝑥, 𝑦; 𝑇𝛽, 𝐹𝜃𝜃𝜃0
) = 0,

provided the corresponding IF of 𝑈𝑈𝑈𝛽 is bounded, which is true at 𝛽 > 0. Hence the asymptotic level of our
Wald-type tests is always stable with respect infinitesimal contamination. This fact was also expected as we are
using the asymptotic critical values for testing.

Example 2.3 (Continuation of Examples 2.1 and 2.1)
Let us again consider the problem of testing for normal means as in Examples 2.1 and 2.6. As seen above,

the level influence function is always zero implying the level robustness of our proposed Wald-type test for all
𝛽 > 0. Next, to study the power robustness, we compute the functions 𝑃𝐼𝐹(1)(𝑥; 𝑇𝛽, 𝐹𝜃0

) and 𝑃𝐼𝐹(𝑥, 𝑦; 𝑇𝛽, 𝐹𝜃0
)

numerically for different values of 𝛽 with 𝜃0 = 0 and plot them over the contamination points x and y in Figure
3. 𝑃𝐼𝐹(2)(𝑦; 𝑇𝛽, 𝐹𝜃0

) has the same nature as 𝑃𝐼𝐹(1)(𝑥; 𝑇𝛽, 𝐹𝜃0
). The figures clearly show the robustness of the

proposed Wald-type tests with 𝛽 > 0, where the robustness increases (i.e., maximum possible PIF decreases) as
𝛽 increases. Further, all the PIFs at 𝛽 = 0 are unbounded implying the non-robust nature of the classical Wald
test.
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Figure 3: Power influence functions of the proposed Wald-type test statistics at 95% level for testing equality of two nor-
mal means as in Example Example 2.2 (Continuation of Example 2.1) with known common 𝜎2 = 1, 𝑊(Δ1,Δ2) = 2 and
𝜔 = 0.5 (n = m).

3 General composite hypotheses with two samples

In the previous section, we have considered the simplest two sample problem which tests for equality of all the
model parameters. However, in practice, we need to test many different complicated hypotheses which cannot
be solved just by considering the Wald-type test statistic 𝑇(𝛽)

𝑚,𝑛 defined in the previous section. For example,
in many real life problems, we are only interested in a proper subset of the parameters ignoring the rest as
nuisance parameters; example includes popular mean test taking variance parameter unknown and nuisance.
Further, in case of testing for multiplicative heteroscedasticity of two samples, we have to test if the ratio of
variance parameters equals a pre-specified limit with means being unknown and nuisance. Neither of them
belongs to the problem considered in the previous section.

In this section, we will consider a general class of hypotheses involving two independent samples, which
would include most of the above real life testing problems. Suppose 𝜓𝜓𝜓(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) denote a general function from
ℝ𝑝 × ℝ𝑝 to ℝ𝑟. Then, considering the set-up of the previous section, we want to develop a family of robust tests
for the general class of hypothesis given by

𝐻0 ∶ 𝜓𝜓𝜓(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) = 000𝑟 against 𝐻1 ∶ 𝜓𝜓𝜓(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) ≠ 000𝑟. (15)

In particular, the problem of testing normal mean with unknown variance can be seen as a particular case of
the above general set-up with𝜓𝜓𝜓((𝜇1, 𝜎2

1 ), (𝜇2, 𝜎2
2 )) = 𝜇1−𝜇2. Further, to test for multiplicative heteroscedasticity,

we can take 𝜓𝜓𝜓((𝜇1, 𝜎2
1 ), (𝜇2, 𝜎2

2 )) = 𝜎2
1

𝜎2
2

− 𝐶0 for some known constant 𝐶0 and apply the above general set-up. It
is interesting to note that, this general class of hypotheses in eq. (15) also contains the simple hypothesis in eq.
(9) as its special case with 𝜓𝜓𝜓(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) = 𝜃𝜃𝜃1 − 𝜃𝜃𝜃2.

Now, to define a robust Wald-type test statistics for this general set-up, we again consider the MDPDEs of
𝜃𝜃𝜃1 and 𝜃𝜃𝜃2 with tuning parameter 𝛽 as given by (1) ̂𝜃𝜃𝜃𝛽 and (2) ̂𝜃𝜃𝜃𝛽 based on the individual samples separately. Note
that, whenever 𝐻0 is true, we should have 𝜓𝜓𝜓((1) ̂𝜃𝜃𝜃𝛽,(2) ̂𝜃𝜃𝜃𝛽) ≈ 000𝑟 in large sample and so its observed value provide
the indication of any departure from the null hypothesis. Using its asymptotic variance-covariance matrix as a
normalizing factor, we define the corresponding Wald-type test statistic as

𝑇(𝛽)
𝑚,𝑛 = 𝑛𝑚

𝑛 + 𝑚 𝜓𝜓𝜓 ((1) ̂𝜃𝜃𝜃𝛽,(2) ̂𝜃𝜃𝜃𝛽)𝑇
Σ̃ΣΣ𝛽((1) ̂𝜃𝜃𝜃𝛽,(2) ̂𝜃𝜃𝜃𝛽)−1𝜓𝜓𝜓 ((1) ̂𝜃𝜃𝜃𝛽,(2) ̂𝜃𝜃𝜃𝛽) , (16)

11

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
Ghosh et al. DE GRUYTER

where Σ̃ΣΣ𝛽(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) = 𝜔ΨΨΨ1(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)𝑇ΣΣΣ𝛽(𝜃𝜃𝜃1)ΨΨΨ1(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) + (1 − 𝜔)ΨΨΨ2(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)𝑇ΣΣΣ𝛽(𝜃𝜃𝜃2)ΨΨΨ2(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) with

ΨΨΨ𝑖(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) = 𝜕
𝜕𝜃𝜃𝜃𝑖

𝜓𝜓𝜓(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)𝑇 , 𝑖 = 1, 2.

Note that, at 𝛽 = 0, the Wald-type test statistics 𝑇(0)
𝑚,𝑛 is again nothing but the classical Wald test statistics for

the general hypothesis eq. (15) and hence our proposal is indeed a generalization of the classical Wald test.
Interestingly, although the general hypothesis contains the hypothesis eq. (9) as its special case, the Wald-

type test statistics 𝑇(𝛽)
𝑚,𝑛 with 𝜓𝜓𝜓(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) = 𝜃𝜃𝜃1−𝜃𝜃𝜃2 is not the same as the Wald-type test statistics 𝑇(𝛽)

𝑚,𝑛 considered in
the previous section. However, whenever ΣΣΣ𝛽(𝜃𝜃𝜃) is linear in the parameters, these two Wald-type test statistics
coincide asymptotically with probability tending to one. In this section, we present the properties of the statistics
𝑇(𝛽)

𝑚,𝑛 with general 𝜓𝜓𝜓-function satisfying the following assumption.
Assumption (B):

– ΨΨΨ𝑖(𝜃𝜃𝜃1, 𝜃𝜃𝜃2), i = 1,2, exist, have rank r and are continuous with respect to its arguments.

3.1 Asymptotic properties

We again start with the asymptotic null distribution of the proposed Wald-type test statistics 𝑇(𝛽)
𝑚,𝑛 in order to

obtain the required critical values for the test.

Theorem 3.1
Suppose the model density satisfies the Lehmann and Basu et al. conditions and Assumptions (A) and (B) hold. Then,

under the null hypothesis in eq. (15), 𝑇(𝛽)
𝑚,𝑛 asymptotically follows a 𝜒2

𝑟 distribution.

Therefore, the level-𝛼 critical region for the proposed test based on 𝑇(𝛽)
𝑚,𝑛 for testing eq. (15) is given by

𝑇(𝛽)
𝑚,𝑛 > 𝜒2

𝑟,𝛼.

Next, in order to consider an approximation to the asymptotic power for this general test based on 𝑇(𝛽)
𝑚,𝑛, we

are going to use the following function

𝑙∗(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) = 𝜓𝜓𝜓(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)𝑇Σ̃ΣΣ𝛽(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)−1𝜓𝜓𝜓(𝜃𝜃𝜃1, 𝜃𝜃𝜃2).

Theorem 3.2
Suppose the model density satisfies the Lehmann and Basu et al. conditions and Assumptions (A)-(B) hold. Then,

whenever 𝜓𝜓𝜓(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) ≠ 000𝑟, we have

√ 𝑚𝑛
𝑚 + 𝑛 [𝑙∗((1) ̂𝜃𝜃𝜃𝛽,(2) ̂𝜃𝜃𝜃𝛽) − 𝑙∗(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)] ℒ⟶𝑚,𝑛→∞ 𝑁 (0, 4𝑙∗(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)) , as 𝑚, 𝑛 → ∞.

Note that, from the above theorem, we can easily obtain an approximation to the power function of the
proposed level-𝛼 Wald-type tests based on 𝑇(𝛽)

𝑚,𝑛 as

̃𝜋𝑚,𝑛,𝛼
(𝛽)(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) = 𝑃 (𝑇(𝛽)

𝑚,𝑛 > 𝜒2
𝑟,𝛼) = 1 − Φ𝑛

⎛⎜⎜⎜
⎝

√𝑛+𝑚
𝑛𝑚

2√𝑙∗(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)
[𝜒2

𝑟,𝛼 − 𝑛𝑚
𝑛 + 𝑚𝑙∗(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)]⎞⎟⎟⎟

⎠
,

for a sequence of distributions Φ𝑛(⋅) tending uniformly to the standard normal distribution Φ(⋅), whenever
𝜓𝜓𝜓(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) ≠ 000𝑟.

In such cases, it can be easily checked that ̃𝜋𝑚,𝑛,𝛼
(𝛽)(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) → 1 as 𝑚, 𝑛 → ∞. This proves the consistency of

our proposed tests.

Corollary 3.3
Under the assumptions of Theorem Theorem 3.2, the proposed Wald-type tests based on 𝑇(𝛽)

𝑚,𝑛 are consistent.
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Now, let us study the performance of the proposed general two-sample Wald-type tests under the con-
tiguous alternative hypotheses. As discussed in the previous section, there could be different choices for the
contiguous alternative hypotheses for any general null hypothesis. Here, following the similar idea as in the
alternatives in eq. (12), we consider the general form of the contiguous alternatives given by

𝐻1,𝑛,𝑚 ∶ 𝜃𝜃𝜃1 = 𝜃𝜃𝜃1,𝑛 = 𝜃𝜃𝜃10 + 𝑛− 1
2ΔΔΔ1, 𝜃𝜃𝜃2 = 𝜃𝜃𝜃2,𝑚 = 𝜃𝜃𝜃20 + 𝑚− 1

2ΔΔΔ2, (ΔΔΔ1,ΔΔΔ2) ∈ ℝ𝑝 × ℝ𝑝 − {(000𝑝,000𝑝)}, (17)

for some fixed (𝜃𝜃𝜃10, 𝜃𝜃𝜃20) ∈ Θ0 = {(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) ∈ Θ×Θ ∶ 𝜓𝜓𝜓(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) = 0}. The asymptotic distribution of 𝑇(𝛽)
𝑚,𝑛 under

these alternatives 𝐻1,𝑚,𝑛 has been presented in the following theorem.

Theorem 3.4
Suppose the model density satisfies the Lehmann and Basu et al. conditions and Assumptions (A)-(B) hold. Then the

asymptotic distribution of 𝑇(𝛽)
𝑚,𝑛 under 𝐻1,𝑛,𝑚 in eq. (17) is 𝜒2

𝑟 (𝛿𝛽), where

𝛿𝛽 = 𝑊𝑊𝑊𝜓𝜓𝜓(ΔΔΔ1,ΔΔΔ2)𝑇Σ̃ΣΣ𝛽(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)−1𝑊𝑊𝑊𝜓𝜓𝜓(ΔΔΔ1,ΔΔΔ2)

with 𝑊𝑊𝑊𝜓𝜓𝜓(ΔΔΔ1,ΔΔΔ2) = [√𝜔ΨΨΨ1(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)𝑇ΔΔΔ1 + √1 − 𝜔ΨΨΨ2(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)𝑇ΔΔΔ2] .

The above theorem directly helps us to obtain the asymptotic power 𝜋𝛽(ΔΔΔ1,ΔΔΔ2) of our general Wald-type

tests based on 𝑇(𝛽)
𝑚,𝑛 under the contiguous alternatives 𝐻1,𝑛,𝑚 in eq. (17) as

𝜋𝛽(ΔΔΔ1,ΔΔΔ2) = 1 − 𝐹𝜒2𝑟(𝛿𝛽)(𝜒2
𝑟,𝛼).

3.2 Robustness properties

Let us now study the robustness properties of the proposed general two-sample Wald-type tests based on 𝑇(𝛽)
𝑚,𝑛.

We first consider the influence function of the Wald-type test statistics. Define the statistical functional corre-
sponding to 𝑇(𝛽)

𝑚,𝑛 ignoring the multiplier 𝑛𝑚
𝑛+𝑚 as

𝑇𝛽(𝐺1, 𝐺2) = 𝜓𝜓𝜓 (𝑈𝑈𝑈𝛽(𝐺1),𝑈𝑈𝑈𝛽(𝐺2))𝑇
Σ̃ΣΣ𝛽

−1(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)𝜓𝜓𝜓 (𝑈𝑈𝑈𝛽(𝐺1),𝑈𝑈𝑈𝛽(𝐺2)) ,

where 𝑈𝑈𝑈𝛽 is the corresponding MDPDE functional. Then, we can derive the first and second order influence
functions of the Wald-type test statistics following the derivations similar to that of Section 2.2. So, here we will
skip those derivations for brevity and present only the final results in the following theorem.

Theorem 3.5
Consider the notations of Section 2.2. Under the null hypothesis in eq. (15) with 𝐺1 = 𝐹𝜃𝜃𝜃10

, 𝐺2 = 𝐹𝜃𝜃𝜃20
and

𝜓𝜓𝜓(𝜃𝜃𝜃10, 𝜃𝜃𝜃20) = 0, the first and second order influence functions of our general two-sample Wald-type test statistics are
given as follows:

For contamination only in the i-th sample (i = 1,2) at the point 𝑥𝑖 (𝑥1 = 𝑥, 𝑥2 = 𝑦)

𝐼𝐹(𝑖)(𝑥𝑖; 𝑇𝛽, 𝐹𝜃𝜃𝜃10
, 𝐹𝜃𝜃𝜃20

) = 0,

𝐼𝐹(𝑖)
2 (𝑥𝑖; 𝑇𝛽, 𝐹𝜃𝜃𝜃𝑖0

, 𝐹𝜃𝜃𝜃20
) = 2ℐ ℱ (𝑥𝑖;𝑈𝑈𝑈𝛽, 𝐹𝜃𝜃𝜃10

)𝑇ΨΨΨ𝑖(𝜃𝜃𝜃10, 𝜃𝜃𝜃20)𝑇Σ̃ΣΣ𝛽(𝜃𝜃𝜃10, 𝜃𝜃𝜃20)−1

ΨΨΨ𝑖(𝜃𝜃𝜃10, 𝜃𝜃𝜃20)ℐ ℱ (𝑥𝑖;𝑈𝑈𝑈𝛽, 𝜃𝜃𝜃𝑖0).

For contamination in both the samples

𝐼𝐹(𝑥, 𝑦; 𝑇𝛽, 𝐹𝜃𝜃𝜃10
, 𝐹𝜃𝜃𝜃20

) = 0

𝐼𝐹2(𝑥, 𝑦; 𝑇𝛽, 𝐹𝜃𝜃𝜃10
, 𝐹𝜃𝜃𝜃20

) = 2𝑄𝑄𝑄𝛽(𝑥, 𝑦)𝑇Σ̃ΣΣ𝛽(𝜃𝜃𝜃10, 𝜃𝜃𝜃20)−1𝑄𝑄𝑄𝛽(𝑥, 𝑦).

with 𝑄𝑄𝑄𝛽(𝑥, 𝑦) = ΨΨΨ1(𝜃𝜃𝜃10, 𝜃𝜃𝜃20)𝑇ℐ ℱ (𝑥;𝑈𝑈𝑈𝛽, 𝐹𝜃𝜃𝜃10
) +ΨΨΨ2(𝜃𝜃𝜃10, 𝜃𝜃𝜃20)𝑇ℐ ℱ (𝑦;𝑈𝑈𝑈𝛽, 𝐹𝜃𝜃𝜃20

).
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Clearly, as in the previous case of simple two sample problem in Section 2.2, here also the first order IF
of the test statistics are always zero and hence non-informative about their robustness. However, their second
order IFs are clearly bounded whenever the IF of the corresponding MDPDE is bounded which holds for all
𝛽 > 0. Thus, the proposed general two sample Wald-type tests with any 𝛽 > 0 yield robust solution under
contamination in either of the samples or in both. Further, in case of contamination in both the samples, if
the IF of the MDPDE is not bounded (at 𝛽 = 0), then also the corresponding second order IF can be bounded
generating robust inference provided the term 𝑄𝑄𝑄𝛽(𝑥, 𝑦) is bounded. One example of such situation arises in case
of the simpler problem of Section 2 under the choice x = y, because in that caseΨΨΨ1(𝜃𝜃𝜃10, 𝜃𝜃𝜃20) = −ΨΨΨ2(𝜃𝜃𝜃10, 𝜃𝜃𝜃20) = 𝐼𝐼𝐼𝑝,
the identity matrix of oder p, and hence 𝑄𝑄𝑄𝛽(𝑥, 𝑦) becomes identically zero.

Next, we consider the effect of contamination on the asymptotic power and level of the proposed general
Wald-type tests based on 𝑇(𝛽)

𝑚,𝑛. For this general case, we consider the contiguous alternatives 𝐻1,𝑚,𝑛 as defined in
eq. (17) but now with the null baseline parameter values as 𝜃𝜃𝜃10 and 𝜃𝜃𝜃20 for the two samples respectively instead
of the common 𝜃𝜃𝜃0 and define the level and power influence functions using the corresponding contaminated
distributions as in Section 2.3. Following theorem presents the asymptotic distribution of the test statistics under
the contiguous and contaminated distributions, where Δ̃ΔΔ𝑖s (i = 1,2) are as defined in Section 2.3.

Theorem 3.6
Suppose the model density satisfies the Lehmann and Basu et al. conditions and Assumptions (A)-(B) hold. Then, the

asymptotic distribution of the general Wald-type test statistics 𝑇(𝛽)
𝑚,𝑛 under any contaminated contiguous alternative distri-

butions (𝐷1, 𝐷2) is non-central chi-square with r degrees of freedom and non-centrality parameter 𝑊𝑊𝑊∗𝜀
𝑇
Σ̃ΣΣ𝛽(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)−1𝑊𝑊𝑊∗𝜀 ,

where

𝑊𝑊𝑊∗𝜀 = 𝑊𝑊𝑊𝜓𝜓𝜓(Δ̃ΔΔ1,ΔΔΔ2), if (𝐷1, 𝐷2) = (𝐹𝑃
1,𝑛,𝜀,𝑥, 𝐹𝜃𝜃𝜃2,𝑚

),
= 𝑊𝑊𝑊𝜓𝜓𝜓(ΔΔΔ1, Δ̃ΔΔ2), if (𝐷1, 𝐷2) = (𝐹𝜃𝜃𝜃1,𝑛

, 𝐹𝑃
2,𝑚,𝜀,𝑦),

= 𝑊𝑊𝑊𝜓𝜓𝜓(Δ̃ΔΔ2, Δ̃ΔΔ2), if (𝐷1, 𝐷2) = (𝐹𝑃
1,𝑛,𝜀,𝑥, 𝐹𝑃

2,𝑚,𝜀,𝑦).

The above theorem can be used to get the asymptotic power of the proposed general two-sample Wald-
type tests under the contiguous contaminated alternatives in terms of an infinite series following Section 2.3
(arguments after 2.6). This can be also simplified by substituting 𝜀 = 0 or ΔΔΔ1 = ΔΔΔ2 = 000𝑝 to get asymptotic power
under contiguous alternatives or the asymptotic level under contiguous contamination respectively. Further,
the resulting infinite series expressions can now be used to obtain the power and level influence functions for
this general case. Since the derivations are the same as that of Theorem 2.7, for brevity, we will only present the
resulting expressions skipping the details in the following Theorem.

Theorem 3.7
Suppose the model density satisfies the Lehmann and Basu et al. conditions, and Assumptions (A)–(B) hold. Then we

have the following results for the proposed Wald-type test functional 𝑇𝛽 for testing the general two-sample hypothesis in
eq. (15).

The power influence functions are given by

𝑃𝐼𝐹(1)(𝑥; 𝑇𝛽, 𝐹𝜃𝜃𝜃10
, 𝐹𝜃𝜃𝜃20

) = √𝜔𝐾∗
𝑟 (𝛿𝛽)𝑊𝑊𝑊𝜓𝜓𝜓(ΔΔΔ1,ΔΔΔ2)𝑇Σ̃ΣΣ𝛽(𝜃𝜃𝜃0)−1

ΨΨΨ1(𝜃𝜃𝜃10, 𝜃𝜃𝜃20)𝑇ℐ ℱ (𝑥;𝑈𝑈𝑈𝛽, 𝐹𝜃𝜃𝜃10
),

𝑃𝐼𝐹(2)(𝑦; 𝑇𝛽, 𝐹𝜃𝜃𝜃10
, 𝐹𝜃𝜃𝜃20

) = √1 − 𝜔𝐾∗
𝑟 (𝛿𝛽)𝑊𝑊𝑊𝜓𝜓𝜓(ΔΔΔ1,ΔΔΔ2)𝑇Σ̃ΣΣ𝛽(𝜃𝜃𝜃0)−1

ΨΨΨ2(𝜃𝜃𝜃10, 𝜃𝜃𝜃20)𝑇ℐ ℱ (𝑦;𝑈𝑈𝑈𝛽, 𝐹𝜃𝜃𝜃20
),

𝑃𝐼𝐹(𝑥, 𝑦; 𝑇𝛽, 𝐹𝜃𝜃𝜃10
, 𝐹𝜃𝜃𝜃20

) = 𝐾∗
𝑟 (𝛿𝛽)𝑊𝑊𝑊𝜓𝜓𝜓(ΔΔΔ1,ΔΔΔ2)𝑇Σ̃ΣΣ𝛽(𝜃𝜃𝜃0)−1

𝑊𝑊𝑊𝜓𝜓𝜓 (ℐ ℱ (𝑥;𝑈𝑈𝑈𝛽, 𝐹𝜃𝜃𝜃10
), ℐ ℱ (𝑦;𝑈𝑈𝑈𝛽, 𝐹𝜃𝜃𝜃20

)) ,

where 𝛿𝛽 and 𝑊𝑊𝑊𝜓𝜓𝜓(ΔΔΔ1,ΔΔΔ2) are as defined in Theorem 3.4 and 𝐾∗
𝑟 (𝑠) is as defined in Theorem 2.7.

Provided the IF of the MDPDE 𝑈𝑈𝑈𝛽 is bounded, the level influence functions are given by

𝐿𝐼𝐹(1)(𝑥; 𝑇𝛽, 𝐹𝜃𝜃𝜃10
, 𝐹𝜃𝜃𝜃20

) = 0, 𝐿𝐼𝐹(2)(𝑦; 𝑇𝛽, 𝐹𝜃𝜃𝜃10
, 𝐹𝜃𝜃𝜃20

) = 0, 𝐿𝐼𝐹(𝑥, 𝑦; 𝑇𝛽, 𝐹𝜃𝜃𝜃10
, 𝐹𝜃𝜃𝜃20

) = 0.

Note that for the general two-sample hypothesis eq. (15) also, the LIFs and the PIFs of our proposed test are
bounded whenever the influence function of the MDPDE used is bounded which holds for all 𝛽 > 0. Thus, our
proposal with 𝛽 > 0 is robust also for testing any general two-sample problem.
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3.3 Special case: Testing partial homogeneity with nuisance parameters

Let us consider a simplified and possibly the most common special case of the general hypothesis in eq. (15),
where we test for partial homogeneity of the two samples assuming some parameters to be nuisance. Math-
ematically, let us consider the partition of the parameters 𝜃𝜃𝜃1 = (∗𝜃𝜃𝜃𝑇

1 ,0 𝜃𝜃𝜃𝑇
1 )

𝑇
and 𝜃𝜃𝜃2 = (∗𝜃𝜃𝜃𝑇

2 ,0 𝜃𝜃𝜃𝑇
2 )

𝑇
as in the

beginning of Section 2, but now we assume both, 0𝜃𝜃𝜃1 and 0𝜃𝜃𝜃2, to be unknown and nuisance parameters. Under
these notations, we consider the hypothesis of partial homogeneity as given by

𝐻0 ∶ ∗𝜃𝜃𝜃1 = ∗𝜃𝜃𝜃2 against 𝐻1 ∶ ∗𝜃𝜃𝜃1 ≠ ∗𝜃𝜃𝜃2, (18)

with 0𝜃𝜃𝜃1 and 0𝜃𝜃𝜃2 being unknown under both hypotheses. Note that, this special case contains the problem
of testing normal mean with unknown variances with ∗𝜃𝜃𝜃𝑖 being the mean and 0𝜃𝜃𝜃𝑖 being the variance parameter
for each i = 1,2. In practice we can either assume 0𝜃𝜃𝜃1 =0 𝜃𝜃𝜃2 (e.g., equal variances) or 0𝜃𝜃𝜃1 ≠0 𝜃𝜃𝜃2 (e.g., unequal
variances). Here, we will consider the general case assuming 0𝜃𝜃𝜃1 ≠0 𝜃𝜃𝜃2; other case can also be dealt similarly.

Note that the hypothesis eq. (18) is indeed a special case of the general hypothesis in eq. (15) with 𝜓𝜓𝜓(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) =
∗𝜃𝜃𝜃1 − ∗𝜃𝜃𝜃2. Hence, the proposed MDPDE based Wald-type test statistics for testing eq. (18) is given by

𝑇(𝛽)
𝑚,𝑛 = 𝑛𝑚

𝑛 + 𝑚 ((1)∗ ̂𝜃𝜃𝜃𝛽 −(2)∗ ̂𝜃𝜃𝜃𝛽)𝑇 [𝜔ΣΣΣ11𝛽 ((1) ̂𝜃𝜃𝜃𝛽) + (1 − 𝜔)ΣΣΣ11𝛽 ((2) ̂𝜃𝜃𝜃𝛽)]
−1

((1)∗ ̂𝜃𝜃𝜃𝛽 −(2)∗ ̂𝜃𝜃𝜃𝛽) , (19)

where (1)∗ ̂𝜃𝜃𝜃𝛽 and (2)∗ ̂𝜃𝜃𝜃𝛽 are the first r-components of the MDPDEs (1) ̂𝜃𝜃𝜃𝛽 = ((1)∗ ̂𝜃𝜃𝜃𝑇
𝛽 ,(1)0 ̂𝜃𝜃𝜃𝑇

𝛽)𝑇 and (2) ̂𝜃𝜃𝜃𝛽 =
((2)∗ ̂𝜃𝜃𝜃𝑇

𝛽 ,(2)0 ̂𝜃𝜃𝜃𝑇
𝛽)𝑇 of 𝜃𝜃𝜃1 and 𝜃𝜃𝜃2 respectively andΣΣΣ11𝛽 (𝜃𝜃𝜃) denotes the r×r principle minor of the asymptotic variance-

covariance matrixΣΣΣ𝛽(𝜃𝜃𝜃) = ⎛⎜
⎝

ΣΣΣ11𝛽 (𝜃𝜃𝜃) ΣΣΣ12𝛽 (𝜃𝜃𝜃)
ΣΣΣ12𝛽 (𝜃𝜃𝜃)𝑇 ΣΣΣ22𝛽 (𝜃𝜃𝜃)

⎞⎟
⎠

. Also note that Assumption (B) always holds for the hypothesis

eq. (18). Following Theorem Theorem 3.1, the asymptotic distribution of 𝑇(𝛽)
𝑚,𝑛 in eq. (19) under the null hypoth-

esis in eq. (18) is 𝜒2
𝑟 and the test is consistent against any fixed alternatives by Corollary Corollary 3.3. To study

the asymptotic contiguous power in this case, we consider the contiguous alternatives

𝐻′
1,𝑛,𝑚 ∶ ∗𝜃𝜃𝜃1 = ∗𝜃𝜃𝜃0 + 𝑛− 1

2ΔΔΔ1, ∗𝜃𝜃𝜃2 = ∗𝜃𝜃𝜃0 + 𝑚− 1
2ΔΔΔ2, (ΔΔΔ1,ΔΔΔ2) ∈ ℝ𝑟 × ℝ𝑟 − {(000𝑟,000𝑟)}, (20)

for some fixed ∗𝜃𝜃𝜃0 ∈ Θ. Then, by Theorem 3.4, the asymptotic distribution of the Wald-type test statistics 𝑇(𝛽)
𝑚,𝑛

in eq. (19) under 𝐻′
1,𝑛,𝑚 in eq. (20) is a non-central chi-square distribution with r degrees of freedom and non-

centrality parameter ∗𝛿𝛽 = 𝑊𝑊𝑊(ΔΔΔ1,ΔΔΔ2)𝑇 [𝜔ΣΣΣ11𝛽 ((1) ̂𝜃𝜃𝜃𝛽) + (1 − 𝜔)ΣΣΣ11𝛽 ((2) ̂𝜃𝜃𝜃𝛽)]
−1

𝑊𝑊𝑊(ΔΔΔ1,ΔΔΔ2) from which the power
can be calculated easily.

Next, for examining robustness properties, we define the corresponding test functional following Section
3.2 as given by

𝑇𝛽(𝐺1, 𝐺2) = (∗𝑈𝑈𝑈𝛽(𝐺1) −∗ 𝑈𝑈𝑈𝛽(𝐺2))𝑇 [𝜔ΣΣΣ11𝛽 ((1) ̂𝜃𝜃𝜃𝛽) + (1 − 𝜔)ΣΣΣ11𝛽 ((2) ̂𝜃𝜃𝜃𝛽)]
−1

(∗𝑈𝑈𝑈𝛽(𝐺1) −∗ 𝑈𝑈𝑈𝛽(𝐺2)) ,

where ∗𝑈𝑈𝑈𝛽 denotes first r-components of the minimum DPD functional 𝑈𝑈𝑈𝛽. Then, we can get the IF for this
test statistics from Theorem Theorem 3.5. In particular, the first order influence function is identically zero for
any kind of contamination and hence non-informative. And its second order influence function for contamina-
tion in i-th sample at the point 𝑥𝑖 (i = 1,2) is given by

𝐼𝐹(𝑖)
2 (𝑥𝑖; 𝑇𝛽, 𝐹𝜃𝜃𝜃𝑖0

, 𝐹𝜃𝜃𝜃20
) = 2ℐ ℱ (𝑥𝑖;∗ 𝑈𝑈𝑈𝛽, 𝐹𝜃𝜃𝜃10

)𝑇 [𝜔ΣΣΣ11𝛽 ((1) ̂𝜃𝜃𝜃𝛽) + (1 − 𝜔)ΣΣΣ11𝛽 ((2) ̂𝜃𝜃𝜃𝛽)]
−1 ℐ ℱ (𝑥𝑖;∗ 𝑈𝑈𝑈𝛽, 𝜃𝜃𝜃𝑖0).

and the same for contamination in both samples is given by

𝐼𝐹2(𝑥, 𝑦; 𝑇𝛽, 𝐹𝜃𝜃𝜃10
, 𝐹𝜃𝜃𝜃20

) = 2 ∗𝑄𝑄𝑄𝛽(𝑥, 𝑦)𝑇 [𝜔ΣΣΣ11𝛽 ((1) ̂𝜃𝜃𝜃𝛽) + (1 − 𝜔)ΣΣΣ11𝛽 ((2) ̂𝜃𝜃𝜃𝛽)]
−1 ∗𝑄𝑄𝑄𝛽(𝑥, 𝑦),

with ∗𝑄𝑄𝑄𝛽(𝑥, 𝑦) = ℐ ℱ (𝑥; ∗𝑈𝑈𝑈𝛽, 𝐹𝜃𝜃𝜃10
) − ℐ ℱ (𝑦; ∗𝑈𝑈𝑈𝛽, 𝐹𝜃𝜃𝜃20

). Similarly, following Theorem 3.7, the level influence
functions are always zero and the power influence functions under contiguous contamination in each sample
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separately or in both the samples are respectively given by

𝑃𝐼𝐹(1)(𝑥; 𝑇𝛽, 𝐹𝜃𝜃𝜃10
, 𝐹𝜃𝜃𝜃20

) = √𝜔𝐾∗
𝑟 (∗𝛿𝛽)𝑊𝑊𝑊(ΔΔΔ1,ΔΔΔ2)𝑇 [𝜔ΣΣΣ11𝛽 ((1) ̂𝜃𝜃𝜃𝛽) + (1 − 𝜔)ΣΣΣ11𝛽 ((2) ̂𝜃𝜃𝜃𝛽)]

−1

ℐ ℱ (𝑥; ∗𝑈𝑈𝑈𝛽, 𝐹𝜃𝜃𝜃0
),

𝑃𝐼𝐹(2)(𝑦; 𝑇𝛽, 𝐹𝜃𝜃𝜃10
, 𝐹𝜃𝜃𝜃20

) = √1 − 𝜔𝐾∗
𝑟 (∗𝛿𝛽)𝑊𝑊𝑊(ΔΔΔ1,ΔΔΔ2)𝑇 [𝜔ΣΣΣ11𝛽 ((1) ̂𝜃𝜃𝜃𝛽) + (1 − 𝜔)ΣΣΣ11𝛽 ((2) ̂𝜃𝜃𝜃𝛽)]

−1

ℐ ℱ (𝑦; ∗𝑈𝑈𝑈𝛽, 𝐹𝜃𝜃𝜃0
),

𝑃𝐼𝐹(𝑥, 𝑦; 𝑇𝛽, 𝐹𝜃𝜃𝜃10
, 𝐹𝜃𝜃𝜃20

) = 𝐾∗
𝑟 (∗𝛿𝛽)𝑊𝑊𝑊(ΔΔΔ1,ΔΔΔ2)𝑇 [𝜔ΣΣΣ11𝛽 ((1) ̂𝜃𝜃𝜃𝛽) + (1 − 𝜔)ΣΣΣ11𝛽 ((2) ̂𝜃𝜃𝜃𝛽)]

−1

× 𝑊𝑊𝑊 (ℐ ℱ (𝑥; ∗𝑈𝑈𝑈𝛽, 𝐹𝜃𝜃𝜃0
), ℐ ℱ (𝑥; ∗𝑈𝑈𝑈𝛽, 𝐹𝜃𝜃𝜃0

)) ,

where ∗𝛿𝛽 and ∗𝑈𝑈𝑈𝛽 are as defined previously in this subsection. The nature of these PIFs are exactly the
same as in the previous cases and indicates robustness of our proposals with 𝛽 > 0.

Example 3.1 (Testing equality of two Normal means with unknown and unequal variances)
We again consider the example of comparing two normal means (say 𝜇1 and 𝜇2), but now with unknown

and unequal variances (say 𝜎2
1 and 𝜎2

2 ) for the two populations. Hence the model family is ℱ = {𝑁(𝜇, 𝜎2) ∶ 𝜃𝜃𝜃 =
(𝜇, 𝜎)𝑇 ∈ ℝ × [0, ∞)} and we want to test for the hypothesis

𝐻0 ∶ 𝜇1 = 𝜇2 against 𝐻1 ∶ 𝜇1 ≠ 𝜇2, (21)

with 𝜎2
1 and 𝜎2

2 being unknown under both hypotheses. Let us denote the MDPDEs based on the i-th sample
(i = 1,2) as (𝑖) ̂𝜃𝜃𝜃𝛽 = ((𝑖)𝜇̂𝛽,(𝑖) 𝜎̂𝛽)𝑇 and its asymptotic variance matrix ΣΣΣ𝛽(𝜃𝜃𝜃) is given by

ΣΣΣ𝛽(𝜇, 𝜎) =
⎛⎜⎜⎜⎜
⎝

(1+ 𝛽2

1+2𝛽)
3/2

𝜎2 0

0 (1+𝛽)2
(2+𝛽2)2 { 2𝜁𝛽

(1+2𝛽)5/2 − 𝛽2}

⎞⎟⎟⎟⎟
⎠

,

with 𝜁𝛽 = 1+ 3𝛽 + 5𝛽2 + 7𝛽3 + 6𝛽4 + 2𝛽5. Then, noting that the hypothesis eq. (21) is of the form eq. (18), our
proposed generalized Wald-type test statistics eq. (19) simplifies to

𝑇(𝛽)
𝑚,𝑛 = 𝑚𝑛

𝑚 + 𝑛 (1 + 𝛽2

1 + 2𝛽)
−3/2 ((1)𝜇̂𝛽 −(2) 𝜇̂𝛽)2

(𝜔(1)𝜎̂2
𝛽 + (1 − 𝜔)(2)𝜎̂2

𝛽)
, (22)

whose null asymptotic distribution is 𝜒2
1 from Theorem Theorem 3.1. In the particular case of 𝛽 = 0, we have

𝑇(0)
𝑚,𝑛 = 𝑚𝑛

𝑚 + 𝑛
((1)𝜇̂0 −(2) 𝜇̂0)

2

(𝜔(1)𝜎̂2
0 + (1 − 𝜔)(2)𝜎̂2

0)
= 𝑚𝑛

𝑚 + 𝑛
(𝑋̄ − 𝑌̄)2

(𝜔𝑠2𝑋 + (1 − 𝜔)𝑠2𝑌)
,

where 𝑋̄ and 𝑌̄ are the sample means and 𝑠2𝑋 and 𝑠2𝑌 are the sample variances of 𝑋1, … , 𝑋𝑛 and 𝑌1, … , 𝑌𝑚
respectively, and this is nothing but the classical MLE based Wald test statistic.

We can now study the asymptotic and robustness properties of these proposed Wald-type tests following
the theoretical results derived in this section. However, due to the asymptotic independence of the MDPDEs of
𝜇 and 𝜎 under normal model, all the properties of the Wald-type test statistics in eq. (22) turn out to be similar in
nature to those of the proposed Wald-type test with known 𝜎 as discussed in Examples 2.1, 2.6 and Example 2.2
(Continuation of Example 2.1) with the common variance 𝜎2 there replaced by [𝜔𝜎2

1 + (1 − 𝜔)𝜎2
2 ] in the present

case. This fact can also be observed intuitively by noting that the Wald-type test statistics in eq. (22) have a similar
form as the corresponding Wald-type test statistics for known common 𝜎2 case (in Example 2.1) with the known
value there being replaced by [𝜔(1)𝜎̂2

𝛽 + (1 − 𝜔)(2)𝜎̂2
𝛽]. So, we will skip these details for the present general case

for brevity. However, examining them, one can easily verify that, in this case of unknown and unequal variances
also, the asymptotic contiguous power of the proposed Wald-type test decreases only slightly as 𝛽 increases
(exactly in the same rate as in Table 1) but the robustness increases significantly having bounded (second order)
influence functions of the Wald-type test statistics and bounded power and level influence functions for all
𝛽 > 0.
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4 The cases of one-sided alternatives

As we have mentioned in the introduction (Section 1), majority of common practical applications of the two-
sample problems are in comparing the treatment and control groups in any experimental or clinical trials or any
observational studies among two such groups of population. However, in most of such cases, researchers want
to test weather there is any improvement in the treatment group over the control groups due to the treatment
effects. For example, one might be interested to test if the success rate of cure (modeled by binomial probability
model) is reduced, or if the number of attacks of a disease (modeled by Poisson model) decreases in the treat
group, or some continuous biomarkers like blood pressure etc. (modeled by normal model) changes in the
targeted direction from control to treatment group. All of them lead to the one-sided alternatives in contrast
to the omnibus two-sided alternatives considered so far in this paper. Although the case of general one-sided
alternatives with vector parameters are much difficult to define and dealt with and hence need more targeted
future research, our proposal of robust Wald-type tests in this paper can be easily extended for comparing any
scalar parameters with one-sided alternatives. Noting that all the above motivating practical scenarios indeed
deal with scalar parameter comparison, in this section we extend our proposal to these particular one sample
problems.

In general, we consider the class of one-sided version of eq. (15) with r = 1. So, 𝜓(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) is a real function of
the parameters and we develop the robust test for the one-sided hypothesis given by

𝐻0 ∶ 𝜓(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) = 0 against 𝐻1 ∶ 𝜓(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) > 0. (23)

Note that the one sided version of the simple two-sided hypothesis in eq. (9) with scalar parameters (p = 1),
that contains the motivating examples for Poisson and binomial models and normal model with known vari-
ances, belong to this general class eq. (23). Also, this general class of hypotheses contains many more useful
cases like testing for increase (or decrease) in normal means with unknown variances.

For testing the one sided hypothesis eq. (23), we define the corresponding robust Wald-type test statistics
by taking a signed square-root of our two-sided Wald-type test statistics 𝑇(𝛽)

𝑚,𝑛 in eq. (16)

𝑇(𝛽)𝑃
𝑚,𝑛 = 𝑠𝑔𝑛 (𝜓 ((1) ̂𝜃𝜃𝜃𝛽,(2) ̂𝜃𝜃𝜃𝛽)) √𝑇(𝛽)

𝑚,𝑛 = √ 𝑛𝑚
𝑛 + 𝑚

𝜓 ((1) ̂𝜃𝜃𝜃𝛽,(2) ̂𝜃𝜃𝜃𝛽)

√Σ̃𝛽((1) ̂𝜃𝜃𝜃𝛽,(2) ̂𝜃𝜃𝜃𝛽)
, (24)

where sgn( ⋅ ) denotes the sign function and note that Σ̃𝛽(𝜃𝜃𝜃𝛽, 𝜃𝜃𝜃𝛽) is a scalar for r = 1. Then, we have the
following null asymptotic distribution.

Theorem 4.1
Under the assumptions of Theorem Theorem 3.1, the asymptotic null distribution of the one-sided test statistics 𝑇(𝛽)𝑃

𝑚,𝑛
for testing eq. (23) is standard normal.

Following the above theorem, the level-𝛼 critical region for testing the one-sided hypothesis in eq. (23) is
given by {𝑇(𝛽)𝑃

𝑚,𝑛 > 𝑧1−𝛼}, where 𝑧1−𝛼 denotes the (1 − 𝛼)-th quantile of the standard normal distribution.
Further, as in the case of two-side alternatives, we can also derive an power approximation of these proposed

Wald-type tests at any fixed alternative (𝜃𝜃𝜃1, 𝜃𝜃𝜃2) satisfying 𝜓(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) > 0 as follows:

̃𝜋𝑚,𝑛,𝛼
(𝛽)𝑃(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) = 𝑃 (𝑇(𝛽)𝑃

𝑚,𝑛 > 𝑧1−𝛼)

= 𝑃
⎛⎜⎜⎜⎜
⎝

√ 𝑛𝑚
𝑛 + 𝑚

[𝜓 ((1) ̂𝜃𝜃𝜃𝛽,(2) ̂𝜃𝜃𝜃𝛽) − 𝜓 (𝜃𝜃𝜃1, 𝜃𝜃𝜃2)]

√Σ̃𝛽((1) ̂𝜃𝜃𝜃𝛽,(2) ̂𝜃𝜃𝜃𝛽)
> 𝑧1−𝛼 − √ 𝑛𝑚

𝑛 + 𝑚
𝜓 (𝜃𝜃𝜃1, 𝜃𝜃𝜃2)

√Σ̃𝛽(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)

⎞⎟⎟⎟⎟
⎠

= 1 − Φ𝑛
⎛⎜⎜⎜
⎝

𝑧1−𝛼 − √ 𝑛𝑚
𝑛 + 𝑚

𝜓 (𝜃𝜃𝜃1, 𝜃𝜃𝜃2)
√Σ̃𝛽(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)

⎞⎟⎟⎟
⎠

,

for a sequence of distributionsΦ𝑛(⋅) tending uniformly to the standard normal distributionΦ(⋅), since under
the alternative parameter values (𝜃𝜃𝜃1, 𝜃𝜃𝜃2)

√ 𝑛𝑚
𝑛 + 𝑚

[𝜓 ((1) ̂𝜃𝜃𝜃𝛽,(2) ̂𝜃𝜃𝜃𝛽) − 𝜓 (𝜃𝜃𝜃1, 𝜃𝜃𝜃2)]

√Σ̃𝛽((1) ̂𝜃𝜃𝜃𝛽,(2) ̂𝜃𝜃𝜃𝛽)
ℒ⟶𝑚,𝑛→∞ 𝑁(0, 1).
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Now, since 𝜓 (𝜃𝜃𝜃1, 𝜃𝜃𝜃2) > 0 under the alternatives in eq. (23), we have ̃𝜋𝑚,𝑛,𝛼
(𝛽)𝑃(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) → 1 as 𝑚, 𝑛 → ∞ and

hence the proposed Wald-type tests are consistent for the one-sided alternatives also.
Next to study the contiguous power of the proposed Wald-type tests, we can consider the class of contigu-

ous alternatives in eq. (17) but now with (ΔΔΔ1,ΔΔΔ2) being such that 𝜓 (𝜃𝜃𝜃1,𝑛, 𝜃𝜃𝜃2,𝑚) > 0 for all m,n. This can be
equivalently (asymptotic) expressed in terms of the sequence of alternatives

𝐻𝑃
1,𝑚,𝑛 ∶ 𝜓 (𝜃𝜃𝜃1,𝑛, 𝜃𝜃𝜃2,𝑚) = √𝑚 + 𝑛

𝑚𝑛 𝑑, (25)

with 𝑑 = 𝑊𝜓 (ΔΔΔ1,ΔΔΔ2) > 0. The following theorem then gives the asymptotic distribution of our Wald-type
test statistics under the contiguous alternatives in eq. (25) and the corresponding asymptotic power.

Theorem 4.2
Under the assumptions of Theorem 3.4, the asymptotic distribution of 𝑇(𝛽)𝑃

𝑚,𝑛 in eq. (24) under the sequence of con-
tiguous alternatives in eq. (25) is normal with mean 𝑑/√Σ̃𝛽(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) and variance 1. Hence, the corresponding asymptotic
contiguous power of the proposed Wald-type tests is given by

𝜋𝑃
𝛽 (ΔΔΔ1,ΔΔΔ2) = 𝜋𝑃

𝛽 (𝑑) = 1 − Φ(𝑧1−𝛼 − 𝑑/ �√Σ̃𝛽(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)) .

Now we can also derive the robustness properties of the proposed Wald-type tests against one-sided alter-
natives by defining the corresponding statistical function as

𝑇𝛽
𝑃(𝐺1, 𝐺2) = 𝜓 (𝑈𝑈𝑈𝛽(𝐺1),𝑈𝑈𝑈𝛽(𝐺2)) / �√Σ̃𝛽(𝜃𝜃𝜃10, 𝜃𝜃𝜃20).

Then, under the assumptions of Theorem Theorem 3.5 with contamination in only i-th sample at the point 𝑥𝑖
(i = 1,2), the first order influence function of the proposed Wald-type test statistics at the null hypothesis in eq.
(23) is given by

𝐼𝐹(𝑖)(𝑥𝑖; 𝑇𝛽
𝑃, 𝐹𝜃𝜃𝜃10

, 𝐹𝜃𝜃𝜃20
) = ΨΨΨ𝑖(𝜃𝜃𝜃10, 𝜃𝜃𝜃20)𝑇ℐ ℱ (𝑥𝑖;𝑈𝑈𝑈𝛽, 𝜃𝜃𝜃𝑖0)/ �√Σ̃𝛽(𝜃𝜃𝜃10, 𝜃𝜃𝜃20),

and the same for contamination in both the samples is given by

𝐼𝐹(𝑥1, 𝑥2; 𝑇𝛽
𝑃, 𝐹𝜃𝜃𝜃10

, 𝐹𝜃𝜃𝜃20
) = 𝑄𝛽(𝑥1, 𝑥2)/ �√Σ̃𝛽(𝜃𝜃𝜃10, 𝜃𝜃𝜃20),

with 𝑄𝛽(⋅, ⋅) being as defined in Theorem Theorem 3.5 (but is a scalar now). Note that, unlike the two-sided
hypotheses, here the first order influence function of the proposed Wald-type test statistics is non-zero. Further,
it is bounded whenever te IF of the corresponding MDPDE is bounded, i.e., only for 𝛽 > 0 and unbounded at
𝛽 = 0 implying the robustness of our proposal with 𝛽 > 0.

In order to derive the corresponding level and power influence functions, we consider the same set of hy-
pothesis as in Section 3.2 but now with the restriction 𝜓 (𝜃𝜃𝜃1,𝑛, 𝜃𝜃𝜃2,𝑚) > 0 for all m,n under the alternative se-
quence, which is ensured by assuming 𝑊𝜓 (ΔΔΔ1,ΔΔΔ2) > 0. Then, the following theorem gives the asymptotic

distribution of the one-sided test statistics 𝑇(𝛽)𝑃
𝑚,𝑛 under the contiguous contaminated distributions.

Theorem 4.3
Under the assumptions of Theorem 3.2, the asymptotic distribution of 𝑇(𝛽)𝑃

𝑚,𝑛 under any contaminated contiguous alter-
native distributions (𝐷1, 𝐷2) is normal with mean 𝑊𝑊𝑊∗𝜀/ �√Σ̃𝛽(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) and variance 1, where 𝑊𝑊𝑊∗𝜀 is as defined in Theorem
3.2 for different (𝐷1, 𝐷2).

Using above theorem and following the arguments similar to those for the two-sided alternatives in Section
3.2, we can get the power influence functions for this case of one-sided alternatives also, which is presented in
the next theorem.

Theorem 4.4
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Under the assumptions of Theorem 3.7, the power influence functions of our proposed Wald-type test functional 𝑇𝑃
𝛽

for testing the one-sided hypothesis in eq. (23) are given by

𝑃𝐼𝐹(1)(𝑥; 𝑇𝛽, 𝐹𝜃𝜃𝜃10
, 𝐹𝜃𝜃𝜃20

) =
√𝜔

√Σ̃𝛽(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)
𝜙 ⎛⎜⎜⎜

⎝
𝑧1−𝛼 −

𝑊𝜓 (ΔΔΔ1,ΔΔΔ2)

√Σ̃𝛽(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)
⎞⎟⎟⎟
⎠
ΨΨΨ1(𝜃𝜃𝜃10, 𝜃𝜃𝜃20)𝑇ℐ ℱ (𝑥;𝑈𝑈𝑈𝛽, 𝐹𝜃𝜃𝜃10

),

𝑃𝐼𝐹(2)(𝑦; 𝑇𝛽, 𝐹𝜃𝜃𝜃10
, 𝐹𝜃𝜃𝜃20

) =
√1 − 𝜔

√Σ̃𝛽(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)
𝜙 ⎛⎜⎜⎜

⎝
𝑧1−𝛼 −

𝑊𝜓 (ΔΔΔ1,ΔΔΔ2)

√Σ̃𝛽(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)
⎞⎟⎟⎟
⎠
ΨΨΨ2(𝜃𝜃𝜃10, 𝜃𝜃𝜃20)𝑇ℐ ℱ (𝑦;𝑈𝑈𝑈𝛽, 𝐹𝜃𝜃𝜃20

),

𝑃𝐼𝐹(𝑥, 𝑦; 𝑇𝛽, 𝐹𝜃𝜃𝜃10
, 𝐹𝜃𝜃𝜃20

) =
√1

√Σ̃𝛽(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)
𝜙 ⎛⎜⎜⎜

⎝
𝑧1−𝛼 −

𝑊𝜓 (ΔΔΔ1,ΔΔΔ2)

√Σ̃𝛽(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)
⎞⎟⎟⎟
⎠

𝑊𝜓 (ℐ ℱ (𝑥;𝑈𝑈𝑈𝛽, 𝐹𝜃𝜃𝜃10
), �

�ℐ ℱ (𝑦;𝑈𝑈𝑈𝛽, 𝐹𝜃𝜃𝜃20
)) .

Note that, the nature of these PIFs with respect to the contamination points x and y are exactly same as
those in the case of two-sided alternatives except for a multiplicative constant. In particular, they are bounded
whenever the influence function of the MDPDE used is bounded, i.e., at 𝛽 > 0, implying robustness of our
proposal.

Finally, we can get the level influence functions from the above theorem by substituting ΔΔΔ1 = ΔΔΔ2 = 000 in the
expressions of PIFs. Note that, in this case of one-sided hypothesis testing, the LIFs are not identically zero, but
they are bounded only for 𝛽 > 0 implying again the level stability of our proposed Wald-type tests.

For illustration, we will again present the case of normal model with one-sided alternatives in the following
example. Other motivating models with relevant data examples will be provided in the next section.

Example 4.1 (Comparing two Normal means against one-sided alternatives)
Let us again consider the two-sample problem under normal model with unknown and unequal variances

as in Example 3.1, but now with the one-sided alternatives so that our target hypothesis is

𝐻0 ∶ 𝜇1 = 𝜇2 against 𝐻1 ∶ 𝜇1 > 𝜇2, (26)

with the variance parameters 𝜎1 and 𝜎2 being unknown for both hypotheses. Considering the notations of
Example 3.1, our proposed test statistics 𝑇(𝛽)𝑃

𝑚,𝑛 is then given by

𝑇(𝛽)𝑃
𝑚,𝑛 = √ 𝑚𝑛

𝑚 + 𝑛 (1 + 𝛽2

1 + 2𝛽)
−3/4 ((1)𝜇̂𝛽 −(2) 𝜇̂𝛽)

√𝜔(1)𝜎̂2
𝛽 + (1 − 𝜔)(2)𝜎̂2

𝛽

, (27)

which has standard normal asymptotic distribution under the null. Clearly this statistic also coincides with
the corresponding classical Wald test statistic at 𝛽 = 0. Since the test is consistent at any fixed alternatives, we
consider the contiguous alternatives 𝐻𝑃

1,𝑚,𝑛 ∶ 𝜓(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) = 𝜇1 − 𝜇2 = √𝑚+𝑛
𝑚𝑛 𝑑 with d & 0, under which the test

statistics has asymptotic distribution as normal with mean (1+ 𝛽2

1+2𝛽)
−3/4

𝑑 [𝜔𝜎2
1 + (1 − 𝜔)𝜎2

2 ]− 1
2 and variance

1. Corresponding asymptotic contiguous power at different values of d and 𝛽 with 𝜎2
1 = 𝜎2

2 = 1 and 𝜔 = 0.5
(n = m) is presented in Table 2. Note that, as expected this power decreases only slightly as 𝛽 increases (note the
similarity with Table 1).

Table 2: Asymptotic contiguous power of the proposed Wald-type tests at 95% level for testing equality of two normal
means against one-sided alternatives as in Example 4.1.

β
d 0 0.1 0.3 0.5 0.7 0.9 1

0 0.050 0.050 0.050 0.050 0.050 0.050 0.050
1 0.260 0.258 0.247 0.233 0.219 0.207 0.201
2 0.639 0.634 0.608 0.574 0.538 0.503 0.487
3 0.912 0.909 0.891 0.865 0.833 0.798 0.780
5 1.000 1.000 0.999 0.998 0.997 0.994 0.991
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Further, the influence function of the proposed Wald-type test statistics in this case of one-sided alternatives
simplifies to

𝐼𝐹(𝑖)
2 (𝑥𝑖; 𝑇𝛽

𝑃, 𝐹𝜃𝜃𝜃10
, 𝐹𝜃𝜃𝜃20

) = [𝜔𝜎2
10 + (1 − 𝜔)𝜎2

20]
− 1

2 (1 + 2𝛽)3/4 (𝑥𝑖 − 𝜇𝑖0)𝑒
− 𝛽(𝑥𝑖−𝜇𝑖0)2

2𝜎2
𝑖0 ,

and

𝐼𝐹2(𝑥1, 𝑥2; 𝑇𝛽
𝑃, 𝐹𝜃𝜃𝜃10

, 𝐹𝜃𝜃𝜃20
) = (1 + 2𝛽)3/4

√𝜔𝜎2
10 + (1 − 𝜔)𝜎2

20

⎡⎢
⎣
(𝑥1 − 𝜇10)𝑒

− 𝛽(𝑥1−𝜇10)2

2𝜎2
10 − (𝑥2 − 𝜇20)𝑒

− 𝛽(𝑥2−𝜇20)2

2𝜎2
20 ⎤⎥

⎦
.

Note that these influence functions are square roots of the corresponding influence functions under two-sided
alternatives in Example Example 2.2 (Continuation of Example 2.1) except for a multiplicative constant. Fur-
ther, by the general theory developed above, the corresponding PIFs and LIFs in this case can be shown to be
also a constant multiplication of the corresponding PIFs in the two-sided case presented in Example Example
2.2 (Continuation of Example 2.1). Therefore, the boundedness nature of all these influence functions for the
one-sided alternative will be similar to those presented in Figure 1a and Figure 3, i.e., bounded at 𝛽 > 0 and
unbounded at 𝛽 = 0. These again imply the robustness of our proposal with 𝛽 > 0 over the classical Wald test
at 𝛽 = 0.

5 Real life applications

5.1 Poisson model for clinical trial: Adverse events data

In our first example we will consider the application of the proposed Wald-type tests with Poisson model to
the adverse event data in an Asthma clinical trial conducted by Kerstjens et al. [15][Table 3]. In this two phase
randomized controlled trials, 912 patients having asthma and receiving inhaled glucocorticoids and LABAs
had been divided into treatment and control groups of the two trials and were randomly assigned a total dose
of 5 g tiotropium (treatment group) or suitable placebo (control group) once daily for 48 weeks. Then, Kerstjens
et al. [15] investigated the effect of this combined treatment on patient’s lung function and exacerbations.

Table 3: No of Different adverse events reported in Trial 2 of the Kerstjens et al. [15] clinical trail study.

Treatment 91 49 19 12 12 3 13 10 6 3 3 7 6 5 4 4 3 2 0
Control 109 58 20 13 10 10 6 4 5 7 5 1 2 4 4 5 2 2 1

Here we will consider the data on 19 reported adverse effect on the patients in trail 2 of this study, presented
in Table 3, that can be modeled by a Poisson distribution with mean 𝜃. Note that the first two entry for both the
groups (corresponding to the events of Asthma and Decreased rate of peak expiratory flow) clearly stands out as
outliers from the remaining observations. Hence, in presence of these two observations the MLE of the Poisson
parameters 𝜃1 and 𝜃2 in treatment and control groups (15 and 18.47 respectively) turns out to be drastically
different from the MLEs without them (8.82 and 9.65 respectively). However the robust MDPDEs with larger 𝛽
remains stable (see Table 4). Clearly, the number of average adverse effect decreases from control to treatment
group; but to check how significant this change is, one might be interested in testing the one-side hypothesis

𝐻0 ∶ 𝜃2 = 𝜃1 against 𝐻1 ∶ 𝜃2 > 𝜃1. (28)

We have applied our proposed Wald-type tests for this problem, as developed in Section 4, to both the full
dataset and after deleting the first two outliers from both the groups; the resulting p-values are presented in
Figure 4a. Clearly, the classical Wald test results in completely different inference due to the inclusion of these
outlying observations – it’s p-value becomes significant from non-significant inference without them (at 95%
level). On the other hand, proposed MDPDE based robust Wald-type tests with 𝛽 > 0 gives stable results (accept
the null hypothesis) even in presence of outlying observations.

Table 4: MDPDEs of Poisson parameter 𝜃 for the Adverse Events Data in Table 3.

(β)
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Group 0 0.1 0.3 0.5 0.7 0.9 1

With Treatment 15.00 7.25 6.94 6.35 5.86 6.05 5.70
Outlier Control 18.47 8.25 7.75 7.56 7.53 7.41 7.81
Without Treatment 8.82 7.47 6.44 6.20 6.14 5.58 6.58
Outlier Control 9.65 7.97 7.63 7.61 7.56 7.68 7.75

5.2 Poisson model for experimental trial: Drosophila data

We next consider another application to the Poisson model with data from an controlled experimental trial with
Drosophila flies producing occasional spurious counts. The dataset contains two independent samples on the
numbers of recessive lethal mutations observed among the daughters of male flies who are exposed either to
a certain degree of chemical to be screened (treatment group) or to control conditions. This dataset has been
previously analyzed by many statisticians including Woodru et al. [17], Simpson [16], Basu et al. [3] who have
shown that the response data can be modeled by Poisson distribution, but there are two outlying observations
in one sample that affects the likelihood based inference and so the classical Wald test. See Basu et al. [3][Table
7] for the dataset and the MDPDEs of the Poisson parameters.

Here, we will apply the proposed Wald-type tests for comparing the Poisson parameters for the two samples,
say 𝜃1 and 𝜃2, through testing the one-sided hypothesis in eq. (28). The resulting p-values are presented in Figure
4b. Clearly, in presence of outliers, the classical rejects the null hypothesis indicating that the average number
of mutation is significantly more for the second sample, which is the opposite of the true inference obtained
after removing these outliers from the second sample. But, the proposed MDPDE based Wald-type tests with
𝛽 ≥ 0.1 produce robust results even in presence of outliers accepting the null hypothesis.

Figure 4: P-values of the proposed Wald-type tests under the real data examples with outliers (solid line) and without
outliers (doted line).
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5.3 Normal model for clinical trial: Infant platelet count data

We will now present another clinical trial example from Karpatkin et al. [18] to illustrate the applications under
the normal model. This clinical trial was conducted to study if the infant platelet count can be increased by
giving steroids to the mothers with autoimmune thrombocytopenia during pregnancy. The study consists of
19 mothers with 12 being given steroid (treatment group) and 7 not given steroid (control group) and the
corresponding infant platelet counts (in thousands, per mm3) after delivery are given in Table 5. These can be
modeled by a normal model with means 𝜃1, 𝜃2 and the variances 𝜎2

1 , 𝜎2
2 for the treatment and control groups

respectively. Then, the primary research problem can be solved by testing the one-sided hypothesis in eq. (28)
with 𝜎2

1 and 𝜎2
2 being unknown.

Table 5: Infant Platelet count after delivery (in thousands, per mm3) in the Karpatkin et al. [18] clinical trail study.

Treatment 120 124 215 90 67 126 95 190 180 135 399 65
Control 12 20 112 32 60 40 18

The p-values for this testing problem obtained by applying the proposed Wald-type tests, as described in
Example 4.1, are presented in Figure 4c for different 𝛽 ≥ 0. One can easily observe that there is a large outlier
value of 399 (thousands) in the treatment group that affects the classical Wald test (at 𝛽 = 0). However, our
MDPDE based proposal with 𝛽 > 0 produces stable p-value ignoring the effect of the outlying observation.

5.4 Normal model for health study: Hair Zn content data

Two-sample test under the normal model has many possible applications from which we now present a health
study to examine the impact of polluted urban environment over individual health in Sri Lanka. The dataset
consist of the zinc (Zn) content of the hair of two independent samples taken from urban (polluted) and rural
(unpolluted) Sri Lanka and our target is to check if the Zn content is more for polluted urban residents impacting
their health conditions. The dataset was presented in Basu et al. [5][Table 6] and it has been shown their that
each sample can be modeled by normal distributions with means 𝜃𝑖 and variance 𝜎2

𝑖 (i = 1,2 for rural and urban
groups respectively) except for two possible outliers. There is one outlier in each of the samples that affects the
MLE based inference while testing for the targeted hypothesis eq. (28) of comparing 𝜃1 and 𝜃2 with unknown
𝜎2
1 and 𝜎2

2 .
We have applied the proposed MDPDE based Wald-type test for this problem following Example 4.1 and

the resulting p-values are presented in Figure 4d. Clearly, the significance increase of the zinc contents in urban
residents cannot be identified by the classical Wald-test in presence of outliers, but our proposal with 𝛽 ≥ 0.1
gives stable and correct inference ignoring the effect of the outliers.

5.5 Normal model for quality control: Cloth manufacturing data

Our third and final example with normal model will be in the context of quality control based on the data
from the Levi-Strauss clothing manufacturing plant. The dataset consists of 22 measurements on run-up (a
percentage measure of wastage in cloth) for each of two particular mills supplying cloths to the plant [5][Table
1]. To control the quality of the cloths, the plant want to test for the consistency of the run-up measures from the
two mills. Since the sample from each mill can be modeled by normal distribution with mean 𝜃𝑖 and variance
𝜎2

𝑖 (i = 1,2), the objective is then to test for the both sided hypothesis

𝐻0 ∶ 𝜃1 = 𝜃2 against 𝐻1 ∶ 𝜃1 ≠ 𝜃2, (29)

with 𝜎2
1 and 𝜎2

2 being unknown under both cases. However, as illustrated in [5], the dataset contains 3 po-
tential outliers that make the MLE based inference highly non-robust. Hence the classical Wald test rejects the
null hypothesis in presence of outliers whereas it accept the null after removing the outliers. When we apply the
proposed MDPDE based Wald-type problem, following the description as in Example 3.1, the corresponding
p-values (reported in Figure 4e) becomes highly stable for 𝛽 ≥ 1.5 rejecting the null hypothesis even in presence
of the outliers.
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5.6 Exponential model for reliability testing: Components life-time data

We will end this section with an example of exponential model used in reliability testing between two sets of
products’ lifetimes. We will use the (simulated) data from Perng [19] which consist of the lifetimes (in thousand
of hours) of a particular electronic components produced by two different processes (see Table 6). Each sample
can be then modeled by exponential distributions with mean 𝜃𝑖 (i = 1,2). Our objective in reliability testing of
the manufacturing process is to test whether the lifetimes for both the process have the same distributions, i.e.,
if 𝜃1 = 𝜃2 against the both-sided alternatives as in the hypothesis eq. (29). It has been observed that there is no
significant difference in the distributions of both the processes and so the null hypothesis should be accepted
by any standard test.

Table 6: Lifetimes (in thousand of hours) of a particular electronic components produced by two different processes [19].

Process 1 0.044 0.134 0.142 0.158 0.216 0.625 0.649 0.658 1.062 1.140 1.159 1.238
Process 2 0.060 0.174 0.237 0.272 0.335 0.391 0.670 0.902 1.543 1.615 2.013 2.309

Since there is no outliers in this dataset, in order to study the robustness aspect of our proposal we add
one outlying value of 20 (assuming a decimal is misplaced by one digit from 2.0) in the second sample. The
resulting p-values obtained by the proposed Wald-type tests for both the pure data and with this artificial
outlier are presented in Figure 4f for different 𝛽. Clearly, the classical Wald test changes drastically by rejecting
null due to insertion of only one outlying observations, but our proposed Wald-type tests with 𝛽 ≥ 0.1 remains
stable and still accept the null hypothesis robustly in presence of the outlier.

6 Simulation study and the choice of tuning parameter β
Finally, to examine the finite sample performances of our Wald-type tests, we have performed several simulation
studies with all the models considered in the previous section for real datasets. However, noting the similarity
of the results for different models, for brevity, here we will report the results from only one simulation study
under normal model with two-sided alternatives.

We simulate 1000 pairs of samples, each of size n = 50, independently drawn from 𝑁(𝜃𝑖, 1) distributions
(i = 1,2) and perform the proposed Wald-type tests for testing 𝐻0 ∶ 𝜃1 = 𝜃2 against the two-sided alternative
𝐻1 ∶ 𝜃1 ≠ 𝜃2, first assuming the variances to be known (both equal to 1) and then for unknown and possibly
unequal variances, following Examples 2.1 and 3.8, respectively. Then, we compute the empirical sizes and
powers of the proposed test under such pure data over 1000 iterations, where for size calculation we have
taken 𝜃1 = 𝜃2 = 0 and for power calculation 𝜃1 = 0, 𝜃2 = 1. Next, to study the robustness of these tests, we
contaminate 100𝜀% of the second sample in each iteration (for 𝜀 = 0.1,0.15,0.2) by observations from a 𝑁(𝜃𝑐, 1)
distribution and repeat the above simulation to compute empirical sizes and powers under contamination.
We have taken 𝜃𝑐 = 3 and −3 for studying the robustness of size and power, respectively. Note that these
contamination distributions are not very far from the corresponding true distributions and hence generate
reasonably common practical situations. The resulting empirical sizes and powers are reported in Figure 5.
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Figure 5: Empirical sizes and powers of the proposed Wald-type tests for testing equality of two normal means with both
the known and unknown variance case at sample size n = 50 under pure data (solid line) and with contamination of 10%
(dash-doted line), 15% (doted line) and 20% (dashed line).

It can be easily observed from Figure 5 that the size and power of the proposed Wald-type tests under
pure data change (increase and decrease, respectively) only very slightly with increasing 𝛽, but their stabilities
increase significantly. In particular, under contamination, both size and power of the tests near 𝛽 = 0, the
classical Wald test, are heavily affected. But larger positive values of 𝛽 make these measures much more stable
for both the known and unknown variance cases. However, for the cases of known (and correctly specified)
variances we get highly stable results even for 𝛽 as low as 0.3 or 0.4, whereas we need 𝛽 ≈ 0.5, 0.6 for similar
stability in the case of unknown variances. This is intuitively expected since under the present contamination
schemes the variance estimates also change and we need stronger downweighting to get overall stable inference
with larger values of 𝛽.

To further illustrate the advantages of our proposed tests compared to the non-parametric Wilcoxon rank-
sum test, we have repeated the above simulation exercise to derive the corresponding empirical sizes and pow-
ers of the Wilcoxon test. This Wilcoxon test is equivalent to the two-sample Mann-Whitney test and is the most
commonly used default method for robust two-sample tests of hypotheses. The resulting values of its empiri-
cal sizes and powers are reported in Table 6 along with the same for the classical Wald test and the proposed
MDPDE based Wald-type tests at some particular 𝛽 assuming equal but unknown variances. It is evident from
Table 6 that the non-parametric Wilcoxon test is slightly robust compared to the classical Wald test but it still
has a high degree of non-robustness under higher contamination levels. Our proposed Wald-type tests with
larger 𝛽 > 0 perform much more robustly compared to both the Wald test and the Wilcoxon test under con-
taminated data and perform very competitively under pure data. These observations appear to indicate that,
when the parametric model is even approximately correct, our proposed tests indeed serve as very useful and
significantly improved simple robust alternatives to the existing likelihood based or non-parametric solutions
for the two-sample problems arising frequently in biostatistics and many other disciplines.

Table 7: Empirical sizes and powers for the classical Wald test, the non-parametric Wilcoxon rank-sum test and the pro-
posed MDPDE based Wald-type tests at different 𝛽 under pure and contaminated data (assuming equal but unknown
variances).

Cont. Wald Wilcoxon MDPDE based Wald-Type tests with β
Prop. Test Test 0.1 0.3 0.5 0.7 1

Size 0% 0.049 0.047 0.049 0.053 0.052 0.052 0.058
10% 0.209 0.116 0.163 0.104 0.079 0.069 0.064
15% 0.466 0.248 0.374 0.228 0.155 0.106 0.075
20% 0.652 0.395 0.556 0.408 0.289 0.187 0.119

Power 0% 1.000 1.000 1.000 1.000 0.999 0.993 0.979
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10% 0.628 0.908 0.747 0.904 0.961 0.970 0.959
15% 0.292 0.728 0.416 0.681 0.859 0.926 0.937
20% 0.138 0.492 0.209 0.403 0.641 0.793 0.874

Throughout all our example and simulations above, we have notices that the tuning parameter 𝛽 controls
between robustness of the proposed Wald-type tests and its asymptotic contiguous power under pure data. So,
we need to chose 𝛽 properly for any practical applications. In particular we note that, in most of the example
models, the loss in power is not significant enough at small positive 𝛽, whereas we get highly robust inferences
for 𝛽 ≥ 0.3 (except for few cases with very high contaminations where we may need 𝛽 ≈ 0.4, 0.5). Therefore, an
empirical suggestion for the choice of 𝛽 in any application suspecting some contamination could be within the
range 𝛽 ∈ [0.3, 0.5] for generating robust inference without significant loss in power.

Although this ad hoc empirical choice of 𝛽 works well enough in most practical datasets suspectable to
outliers, many practitioners will prefer a data-driven choice of 𝛽 in case of no idea on the level of contamination
in dataset that might produce a better trade-off. In this respect, we note that the performance of the proposed
Wald-type tests directly depends on that of the MDPDE (with tuning parameter 𝛽) used in constructing the
test statistics. In particular the asymptotic contiguous power of the proposed test has the same nature as the
asymptotic efficiency of the corresponding MDPDE whereas all the robustness measures of our tests directly
depend on the robustness of the MDPDE through its influence function. So, a suitable data-driven choice of 𝛽
for our Wald-type test statistics also can be equivalently formed by adjusting the trade-off between efficiency
and robustness of the MDPDE used. For this second problem, Warwick and Jones [20] proposed to minimize
an estimator of MSE of the MDPDE to chose optimum 𝛽. Based on the first sample 𝑋1, … , 𝑋𝑛, they proposed to
minimize the estimated MSE

𝑀𝑆𝐸𝑛(𝛽) = ((1) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃𝑃
𝛽)

𝑇
((1) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃𝑃

𝛽) + 1
𝑛𝑇𝑟𝑎𝑐𝑒 ( ̂𝐽𝐽𝐽−1

𝛽,𝑛𝐾𝐾𝐾𝛽,𝑛 ̂𝐽𝐽𝐽−1
𝛽,𝑛) (30)

over 𝛽, where 𝜃𝜃𝜃𝑃
𝛽 is a pilot estimator of the target parameter and ̂𝐽𝐽𝐽𝛽,𝑛 and 𝐾𝐾𝐾𝛽,𝑛 are estimators of the matrices

𝐽𝐽𝐽𝛽 and 𝐾𝐾𝐾𝛽 respectively, which can be easily obtained from their expressions by substituting 𝜃𝜃𝜃 by the MDPDE
and integrations by sample means.

Although there is no direct choice for 𝜃𝜃𝜃𝑃
𝛽, Warwick and Jones [20] suggested, based on an extensive simula-

tion studies, that the MDPDE with 𝛽 = 1 can serve the purpose well for the i.i.d. set-up and we will stick to that
suggestion for the present case also (the non-i.i.d. cases have been studied in [21, 22]). However, the problem in
the present two-sample case is that, the optimum 𝛽 obtained by minimizing 𝑀𝑆𝐸𝑛(𝛽) based on the first sample
may not be the same as that obtained for the second sample due to possible different level of contaminations.
As a standard solution, we propose the minimization of the total estimated MSE, the sum of the MSE estimates
based on two samples separately, over 𝛽 ∈ [0, 1] to obtain the optimum choice of the tuning parameter for the
present two-sample testing problem.

Figure 6: Histograms for optimally chosen tuning parameter 𝛽 under normal models with different contamination levels.

We have implemented this proposal for the above simulation study with normal model to check its effective-
ness. Figure 6 presents the histograms of the 1000 selected optimum 𝛽 following this proposal for the normal
model with known and equal variances under the simulation scheme used for studying size stability above (in
Figure 5). Clearly, the mode of these optimum 𝛽s shift from 0 to 1 as the contamination proportion increases
yielding the expected trade-off between the power and robustness based on the level of contaminations.

7 Concluding remarks

In this paper, we have considered the problem of testing with two independent samples of i.i.d. observations
and proposed a class of robust Wald-type tests for both simple and composite hypothesis testing. These Wald-
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type tests are constructed using the robust minimum density power divergence estimators of the underlying
parameters in each sample. The asymptotic and robustness properties of the proposed Wald-type tests have
been discussed along with their applications to several important real-life problems like clinical trial, medical
experiment, reliability testing and many more.

Our focus in this paper has been on robust two sample tests. Nonparametric methods and robust methods
share some common goals, yet robust methods are inherently different from nonparametric methods as they
are essentially parametric, although they allow the parametric model to be only approximately true. It is well
known that when a parametric model does hold, the parametric procedures are much more efficient compared
to the nonparametric methods. However, when the parametric model holds only approximately, the robust
methods are still often substantially more efficient in doing inference about the major component of the data
generating distribution compared to nonparametric methods. This has been amply demonstrated by the simu-
lations reported in Table 7. And while parametric models may never “exactly” fit the data, they often provide
reasonable “approximate” fits to many practical data sets. So we expect that our method will have a better scope
of application in real problems compared to classical parametric methods, and will have greater efficiency in
many cases compared to nonparametric methods; in either case, our method will have better robustness prop-
erties.

Although we have discussed all possible types of general two-sample hypotheses, in this paper, we have
restricted our attention to the cases where each of the two independent samples is identically distributed. The
natural extension of this work will be to develop robust tests for hypotheses involving two independent sam-
ples from non-homogeneous populations; this also has many practical applications including comparing the
regression lines between two groups of patients in a fixed design clinical trial. Also, one could further explore
the possibility of robust hypothesis testing using the minimum density power divergence estimators for two
paired samples or for more than two sample cases. we hope to pursue some of this possible extensions in our
future research.

8 Proof of Results

8.1 Proof of Theorem 2.1

Using the asymptotic distribution of √𝑛((1) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃1) and √𝑛((2) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃2), we have

√ 𝑚𝑛
𝑚 + 𝑛 ((1) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃1)

ℒ⟶𝑚,𝑛→∞ 𝑁(000𝑝, 𝜔ΣΣΣ𝛽(𝜃𝜃𝜃1))

and

√ 𝑚𝑛
𝑚 + 𝑛 ((2) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃2)

ℒ⟶𝑚,𝑛→∞ 𝑁(000𝑝, (1 − 𝜔)ΣΣΣ𝛽(𝜃𝜃𝜃2)).

Hence under 𝐻0 ∶ 𝜃𝜃𝜃1 = 𝜃𝜃𝜃2 = 𝜃𝜃𝜃0, we get

√ 𝑚𝑛
𝑚 + 𝑛 ((1) ̂𝜃𝜃𝜃𝛽 −(1) ̂𝜃𝜃𝜃𝛽) ℒ⟶𝑚,𝑛→∞ 𝑁(000𝑝,ΣΣΣ𝛽(𝜃𝜃𝜃0)).

Further, under 𝐻0, (0) ̂𝜃𝜃𝜃𝛽
𝒫→ 𝜃𝜃𝜃0 as 𝑚 + 𝑛 → ∞. Then the theorem follows using the continuity of the matrix

ΣΣΣ𝛽(𝜃𝜃𝜃). □
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8.2 Proof of Theorem 2.2

Note that, (0) ̂𝜃𝜃𝜃𝛽
𝒫⟶𝑛,𝑚→∞ 𝜃𝜃𝜃3 and hence the asymptotic distribution of 𝑙∗(0) ̂𝜃𝜃𝜃𝛽,𝛽((1) ̂𝜃𝜃𝜃𝛽,(2) ̂𝜃𝜃𝜃𝛽) is the same as that of

𝑙∗𝜃𝜃𝜃3,𝛽
((1) ̂𝜃𝜃𝜃𝛽,(2) ̂𝜃𝜃𝜃𝛽). Now, a suitable Taylor series expansion leads to

𝑙∗𝜃𝜃𝜃3,𝛽
((1) ̂𝜃𝜃𝜃𝛽,(2) ̂𝜃𝜃𝜃𝛽) − 𝑙∗𝜃𝜃𝜃3,𝛽

(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) = ((1) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃1)
𝑇 𝜕

𝜕𝜃𝜃𝜃1
𝑙∗𝜃𝜃𝜃3,𝛽

(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) + ((2) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃2)
𝑇 𝜕

𝜕𝜃𝜃𝜃2
𝑙∗𝜃𝜃𝜃3,𝛽

(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)

+𝑜𝑃 (||(1) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃1||2) + 𝑜𝑃 (||(2) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃2||2)

= 2 ((1) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃1)
𝑇
ΣΣΣ𝛽(𝜃𝜃𝜃3)−1(𝜃𝜃𝜃1 − 𝜃𝜃𝜃2) − 2 ((2) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃2)

𝑇

ΣΣΣ𝛽(𝜃𝜃𝜃3)−1(𝜃𝜃𝜃1 − 𝜃𝜃𝜃2)
+𝑜𝑃 (||(1) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃1||2) + 𝑜𝑃 (||(2) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃2||2)

= 2 [((1) ̂𝜃𝜃𝜃𝛽 −(2) ̂𝜃𝜃𝜃𝛽) − (𝜃𝜃𝜃1 − 𝜃𝜃𝜃2)]
𝑇
ΣΣΣ𝛽(𝜃𝜃𝜃3)−1(𝜃𝜃𝜃1 − 𝜃𝜃𝜃2)

+𝑜𝑃 (||(1) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃1||2) + 𝑜𝑃 (||(2) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃2||2) .

Then, the theorem follows from the above expression by noting that

√ 𝑚𝑛
𝑚 + 𝑛 [((1) ̂𝜃𝜃𝜃𝛽 −(2) ̂𝜃𝜃𝜃𝛽) − (𝜃𝜃𝜃1 − 𝜃𝜃𝜃2)] ℒ⟶𝑛,𝑚→∞ 𝒩 (0, [𝜔ΣΣΣ𝛽(𝜃𝜃𝜃1) + (1 − 𝜔)ΣΣΣ𝛽(𝜃𝜃𝜃2)]) ,

as 𝑚, 𝑛 → ∞ at any 𝜃𝜃𝜃1 ≠ 𝜃𝜃𝜃2. Here, the last convergence follows from the asymptotic distributions of the MDPDEs
(1) ̂𝜃𝜃𝜃𝛽 and (2) ̂𝜃𝜃𝜃𝛽. □

8.3 Proof of Theorem 2.5

Using the asymptotic distribution of √𝑛((1) ̂𝜃𝜃𝜃𝛽 −𝜃𝜃𝜃1,𝑛) and √𝑛((2) ̂𝜃𝜃𝜃𝛽 −𝜃𝜃𝜃2,𝑚) under 𝐻1,𝑛,𝑚 and continuity ofΣΣΣ𝛽(𝜃𝜃𝜃0),
we have (2) ̂𝜃𝜃𝜃𝛽

𝒫⟶𝑚→∞ 𝜃𝜃𝜃0,

√ 𝑚𝑛
𝑚 + 𝑛 ((1) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃0)

ℒ⟶𝑚,𝑛→∞ 𝑁(√𝜔ΔΔΔ1, 𝜔ΣΣΣ𝛽(𝜃𝜃𝜃0))

and

√ 𝑚𝑛
𝑚 + 𝑛 ((2) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃0)

ℒ⟶𝑚,𝑛→∞ 𝑁(√1 − 𝜔ΔΔΔ2, (1 − 𝜔)ΣΣΣ𝛽(𝜃𝜃𝜃0)).

Hence, under 𝐻1,𝑛,𝑚, we get

√ 𝑚𝑛
𝑚 + 𝑛 ((1) ̂𝜃𝜃𝜃𝛽 −(1) ̂𝜃𝜃𝜃𝛽) ℒ⟶𝑚,𝑛→∞ 𝑁(√𝜔ΔΔΔ1 − √1 − 𝜔ΔΔΔ2,ΣΣΣ𝛽(𝜃𝜃𝜃0)),

from which the theorem follows immediately. □

8.4 Proof of 2.6

We will only prove the case (𝐷1, 𝐷2) = (𝐹𝑃
1,𝑚,𝜀,𝑥, 𝐹𝑃

2,𝑛,𝜀,𝑦). Other two cases will follow similarly.
Let us denote 𝜃𝜃𝜃∗

1,𝑛 = 𝑈𝑈𝑈𝛽(𝐹𝑃
1,𝑚,𝜀,𝑥) and 𝜃𝜃𝜃∗

2,𝑚 = 𝑈𝑈𝑈𝛽(𝐹𝑃
2,𝑛,𝜀,𝑦). Then using the continuity of ΣΣΣ𝛽(𝜃𝜃𝜃0), we get under

(𝐷1, 𝐷2) = (𝐹𝑃
1,𝑚,𝜀,𝑥, 𝐹𝑃

2,𝑛,𝜀,𝑦), the asymptotic distribution of √𝑛((1) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃∗
1,𝑛) and √𝑛((2) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃∗

2,𝑚) are both p-
variate normal with mean zero and variance ΣΣΣ𝛽(𝜃𝜃𝜃0). Further, a suitable Taylor series expansion yields

𝜃𝜃𝜃∗
1,𝑛 = 𝜃𝜃𝜃1,𝑛 + 𝜀

√𝑛ℐ ℱ (𝑥;𝑈𝑈𝑈𝛽, 𝐹𝜃𝜃𝜃1,𝑛
) + 𝑜(𝑛−1/2)

= 𝜃𝜃𝜃0 + ΔΔΔ1
√𝑛 + 𝜀

√𝑛ℐ ℱ (𝑥;𝑈𝑈𝑈𝛽, 𝐹𝜃𝜃𝜃1,𝑛
) + 𝑜(𝑛−1/2)

= 𝜃𝜃𝜃0 + Δ̃ΔΔ1
√𝑛 + 𝑜(𝑛−1/2).

27

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
Ghosh et al. DE GRUYTER

Similarly, we have

𝜃𝜃𝜃∗
2,𝑚 = 𝜃𝜃𝜃0 + Δ̃ΔΔ2

√𝑛 + 𝑜(𝑛−1/2).

Combining all these, we get

√ 𝑚𝑛
𝑚 + 𝑛 ((1) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃0)

ℒ⟶𝑚,𝑛→∞ 𝑁(√𝜔Δ̃ΔΔ1, 𝜔ΣΣΣ𝛽(𝜃𝜃𝜃0))

and

√ 𝑚𝑛
𝑚 + 𝑛 ((2) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃0)

ℒ⟶𝑚,𝑛→∞ 𝑁(√1 − 𝜔Δ̃ΔΔ2, (1 − 𝜔)ΣΣΣ𝛽(𝜃𝜃𝜃0)).

Hence, under (𝐷1, 𝐷2) = (𝐹𝑃
1,𝑚,𝜀,𝑥, 𝐹𝑃

2,𝑛,𝜀,𝑦), we get

√ 𝑚𝑛
𝑚 + 𝑛 ((1) ̂𝜃𝜃𝜃𝛽 −(1) ̂𝜃𝜃𝜃𝛽) ℒ⟶𝑚,𝑛→∞ 𝑁(√𝜔Δ̃ΔΔ1 − √1 − 𝜔Δ̃ΔΔ2,ΣΣΣ𝛽(𝜃𝜃𝜃0))

and hence the theorem follows immediately. □

8.5 Proof of Theorem 3.1

Using suitable Taylor series expansion, we get

𝜓𝜓𝜓((1) ̂𝜃𝜃𝜃𝛽,(2) ̂𝜃𝜃𝜃𝛽) = 𝜓𝜓𝜓(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) +ΨΨΨ1(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)𝑇((1) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃1) +ΨΨΨ2(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)𝑇((2) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃2)
+ 𝑜𝑃 (||(1) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃1||) + 𝑜𝑃 (||(2) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃2||) .

Now, from the asymptotic distribution of √𝑛((1) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃1) and √𝑛((2) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃2) it follows that

√ 𝑚𝑛
𝑚 + 𝑛ΨΨΨ1(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)𝑇 ((1) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃1)

ℒ⟶𝑚,𝑛→∞ 𝑁(0, 𝜔ΨΨΨ1(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)𝑇ΣΣΣ𝛽(𝜃𝜃𝜃1)ΨΨΨ1(𝜃𝜃𝜃1, 𝜃𝜃𝜃2))

and

√ 𝑚𝑛
𝑚 + 𝑛ΨΨΨ2(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)𝑇 ((2) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃2)

ℒ⟶𝑚,𝑛→∞ 𝑁(0, (1 − 𝜔)ΨΨΨ2(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)𝑇ΣΣΣ𝛽(𝜃𝜃𝜃2)ΨΨΨ2(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)).

Hence under 𝐻0 ∶ 𝜓𝜓𝜓(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) = 000𝑟, we get

√ 𝑚𝑛
𝑚 + 𝑛𝜓𝜓𝜓 ((1) ̂𝜃𝜃𝜃𝛽,(2) ̂𝜃𝜃𝜃𝛽) ℒ⟶𝑚,𝑛→∞ 𝑁(000𝑟, Σ̃ΣΣ𝛽(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)).

Finally, by the consistency of the MDPDEs and the continuity of the matrices ΨΨΨ1, ΨΨΨ2 and ΣΣΣ𝛽, it follows that
Σ̃ΣΣ𝛽((1) ̂𝜃𝜃𝜃(2)

𝛽 ̂𝜃𝜃𝜃𝛽) 𝒫→ Σ̃ΣΣ𝛽(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) as 𝑚 + 𝑛 → ∞, from which the theorem follows immediately. □

8.6 Proof of Theorem 3.2

Using an appropriate Taylor series expansion, we get

𝑙∗((1) ̂𝜃𝜃𝜃𝛽,(2) ̂𝜃𝜃𝜃𝛽) − 𝑙∗(𝜃𝜃𝜃1, 𝜃𝜃𝜃2 = ((1) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃1)
𝑇 𝜕

𝜕𝜃𝜃𝜃1
𝑙∗(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) + ((2) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃2)

𝑇 𝜕
𝜕𝜃𝜃𝜃2

𝑙∗(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)

+ 𝑜𝑃 (||(1) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃1||2) + 𝑜𝑃 (||(2) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃2||2)

= 2 ((1) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃1)
𝑇
ΨΨΨ1(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)Σ̃ΣΣ𝛽(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)−1𝜓𝜓𝜓(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) + 2 ((2) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃2)

𝑇
ΨΨΨ2(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)Σ̃ΣΣ𝛽(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)−1𝜓𝜓𝜓(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)

+ 𝑜𝑃 (||(1) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃1||2) + 𝑜𝑃 (||(2) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃2||2)

= 2 [ΨΨΨ1(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)𝑇 ((1) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃1) +ΨΨΨ2(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)𝑇 ((2) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃2)]
𝑇
Σ̃ΣΣ𝛽(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)−1𝜓𝜓𝜓(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)

+ 𝑜𝑃 (||(1) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃1||2) + 𝑜𝑃 (||(2) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃2||2) .

Then, the theorem follows from the asymptotic distributions of the MDPDEs (1) ̂𝜃𝜃𝜃𝛽 and (2) ̂𝜃𝜃𝜃𝛽. □
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8.7 Proof of 3.4

Using the asymptotic distribution of √𝑛((1) ̂𝜃𝜃𝜃𝛽 −𝜃𝜃𝜃1,𝑛) and √𝑛((2) ̂𝜃𝜃𝜃𝛽 −𝜃𝜃𝜃2,𝑚) under 𝐻1,𝑛,𝑚 and continuity ofΣΣΣ𝛽(𝜃𝜃𝜃0),
we have, as 𝑚, 𝑛 → ∞, (2) ̂𝜃𝜃𝜃𝛽 →𝒫 𝜃𝜃𝜃0,

√ 𝑚𝑛
𝑚 + 𝑛 ((1) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃10)

ℒ⟶𝑚,𝑛→∞ 𝑁(√𝜔ΔΔΔ1, 𝜔ΣΣΣ𝛽(𝜃𝜃𝜃1))

and

√ 𝑚𝑛
𝑚 + 𝑛 ((2) ̂𝜃𝜃𝜃𝛽 − 𝜃𝜃𝜃20)

ℒ⟶𝑚,𝑛→∞ 𝑁(√1 − 𝜔ΔΔΔ2, (1 − 𝜔)ΣΣΣ𝛽(𝜃𝜃𝜃2)).

Hence, following the proof of  Theorem 2.5, we get under 𝐻1,𝑛,𝑚

√ 𝑚𝑛
𝑚 + 𝑛𝜓𝜓𝜓 ((1) ̂𝜃𝜃𝜃𝛽,(2) ̂𝜃𝜃𝜃𝛽) ℒ⟶𝑚,𝑛→∞ 𝑁 ([√𝜔ΨΨΨ1(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)𝑇ΔΔΔ1 + √1 − 𝜔ΨΨΨ2(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)𝑇ΔΔΔ2] , Σ̃ΣΣ𝛽(𝜃𝜃𝜃1, 𝜃𝜃𝜃2)) ,

from which the theorem follows immediately. □

8.8 Proof of Theorems 3.2 and 3.7

These proofs are similar to that of Theorems 2.6 and 2.7 and hence omitted. □
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