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As the landscape of computing advances, system designers are increasingly exploring methodologies that leverage higher
levels of heterogeneity to enhance performance within constrained size, weight, power, and cost parameters. CEDR stands as
an ecosystem facilitating productive and eicient application development and deployment across heterogeneous computing
systems. It fosters the co-design of applications, scheduling heuristics, and accelerators within a uniied framework. Our goal
is to present CEDR as a promising environment for lifting the barriers to research on heterogeneous systems and addressing
the broader challenges within domain speciic architectures. We introduce CEDR and discuss the evolutionary design decisions
underlying its programming model. Subsequently, we explore its utility for broad range of users through design sweeps on
of-the-shelf heterogeneous platforms across scheduling heuristics, hardware compositions, and workload scenarios.
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1 Introduction

The continued stagnation of transistor scaling is leading to a resurgence of research into foundational assumptions
in computer architecture design, leading to what Hennesey and Patterson term ła new golden age for computer
architecturež [1]. While techniques such as pipelining, prefetching, and out-of-order execution have yielded
performance gains for general-purpose processors, their eicacy is reaching a plateau. Hence, the quest for
a solution prompts an inquiry into the potential of heterogeneity. Heterogeneous computing, a concept well-
recognized in the ield, ofers diverse architectural strategies, including big.LITTLE CPU designs and GPU/FPGA
accelerators, each exploiting SIMD and pipelining to varying degrees. Nevertheless, these approaches often fall
short when benchmarked against application-speciic integrated circuit (ASIC) designs. Moreover, achieving
generalized heterogeneity across diverse computational tasks remains a formidable challenge.
Domain-Speciic Architectures (DSAs) are one promising avenue by which this architectural innovation is

manifesting to meet tomorrow’s computational demands. The motivation of such devices is fairly simple: in
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a general-purpose computing context, heterogeneous computing systems are diicult to program and utilize
efectively. The hypothesis with DSAs, then, is that by restricting the applications used on a given system to
a particular domain, it becomes more feasible to build productive software and programming abstractions for
the inalized hardware. Domain-speciic System-on-Chips (DSSoCs) represent a specialized subset tailored for
embedded systems applications. The overarching objectives of DSAs encompass synergizing general-purpose
processors with specialized accelerators within constrained computational domains. This strategic alignment
aims to augment programmability beyond the conines of traditional heterogeneous systems, facilitating energy-
eicient execution and afording lexibility within the designated domain. The architectural challenges [2]
inherent in developing DSAs span multiple layers, encompassing hardware design, resource management, and
programming paradigms [3ś9]. At the programming layer, the integration and representation of new applications,
alongside debugging and insight-gathering methodologies, pose signiicant considerations. Efective resource
management mechanisms are imperative to optimize shared compute platforms, ensuring eicient utilization of
available resources.

System designers are continuously exploring design methodologies that harness increased levels of heterogene-
ity towards pushing the boundaries of achievable performance gains. Optimizing a heterogeneous computing
system is a multi-dimensional and complex design space exploration problem particularly in scenarios where
algorithms, data types, and processing resources and their availability vary dynamically. We have developed
CEDR (Compiler-integrated Extensible DSSoC Runtime) [10ś12], an open-source 1, uniied compilation, and
runtime framework designed for heterogeneous systems. This framework empowers users to develop, compile,
and deploy applications on of-the-shelf heterogeneous computing platforms seamlessly, eliminating the need for
users to possess specialized hardware expertise throughout the process. CEDR is scalable as it allows execution
of thousands of jobs, lexible as it is able to execute arbitrary interleaved workloads across pools of arbitrary
accelerators. CEDR supports the integration of a wide variety of diferent scheduling heuristics. All these features
together allow performing comprehensive design space exploration and co-design of application schedulers
and accelerators in one uniied environment. Importantly, this framework is portable across a wide range of
Linux-based systems, ensuring that efort to migrate across systems is minimal for all developers involved. We
have conducted evaluations of this runtime system across a diverse array of platforms, including various FPGA
systems such as the Xilinx ZCU-102 and GPU systems such as the NVIDIA Jetson AGX. Furthermore, we have
integrated other compute frameworks like GNU Radio and PyTorch, alongside preliminary work with custom
RISC-V architectures emulated on FPGAs. Its utility has been successfully tested and independently evaluated by
several industry and academic partners with their applications.
This paper presents the lecture titled "CEDR: A Novel Runtime Environment for Accelerator-Rich Heteroge-

neous Architectures," which was delivered during the "Education Classes" session of the "2023 Embedded Systems
Week" [13]. Our lecture caters to audiences with diverse backgrounds and varying levels of expertise, providing an
opportunity for exploration and study of computing in heterogeneous context. We organize the paper as follows.
Before delving into the technical details of our runtime, we start our discussions by establishing background on
the broader challenges and approaches within DSA research in Section 2. We then give an overview of CEDR
in Section 3 and discuss the design decisions made throughout the evolution of the framework [10ś12]. We
then present in-depth exploration of its productive programming and deployment methodology tailored for
three distinct user types in Section 4. First and foremost, we guide the naive application developer, aiming to
harness acceleration within heterogeneous environments, through the process of utilizing CEDR to adapt their
reference C/C++ applications for execution on heterogeneous computing systems [14, 15]. Moving on, the lecture
transitions to the perspective of the system designer, illustrating how performance evaluations can be conducted
through design sweeps encompassing various hardware compositions while accommodating dynamically arriving

1Available at: https://github.com/UA-RCL/CEDR
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workload scenarios. Lastly, we delve into the realm of the resource management developer, demonstrating how
to integrate a new scheduler and evaluate its performance concerning a speciied workload and hardware compo-
sition [16, 17]. Throughout these scenarios that target application developers, system designers and resource
management heuristic developers, the common thread is lifting the barriers to research and enabling productive
application development and deployment on heterogeneous systems. Finally we present our conclusions and
future work in Section 5.

2 Overview of Domain-Specific Architecture Research

Hardware components integral to domain-speciic architecture (DSA) construction include ixed-function acceler-
ators, specialized processors, and general-purpose processors. Fixed-function accelerators are dedicated hardware
units optimized for speciic kernels, such as neural network inference or signal processing algorithms. Specialized
processors ofer a more generalized approach, capable of accelerating a library of kernels within a speciic do-
main. Examples include coarse-grained reconigurable architectures (CGRAs) and systolic array processors [18].
These processors typically comprise clusters of processing elements interconnected with conigurable networks.
General-purpose processors, such as x86, Arch64, or RISC-V cores, remain indispensable in DSAs for executing
non-accelerated tasks or novel kernels not optimized for specialized accelerators. An example is the Boom RISC-V
core [19], featuring out-of-order execution capabilities alongside baseline RISC-V support. An often-overlooked
but critical aspect of DSAs is on-chip interconnects, facilitating eicient data movement among interconnected
processors [20]. Various interconnect types, including network-on-chip systems and packet-switched buses, play
a vital role in optimizing data transfer within the system. Resource management is another crucial aspect of
DSA design, necessitating supervisory scheduling to address resource contention. While traditional operating
systems excel in homogeneous systems, they often fall short in heterogeneous SoC environments [21]. Poor
scheduling decisions can negate the performance gains achieved through kernel acceleration, underscoring
the importance of efective resource management strategies. Resource management in DSAs presents several
challenges that include include heterogeneity, the need to handle continuous data lows with regular deadlines,
and dynamically interleaving applications. Heterogeneity within DSAs complicates scheduling by enlarging
the search space and removing the symmetry present in homogeneous contexts. Unlike standard homogeneous
CPUs, where tasks exhibit consistent execution times regardless of the resource, heterogeneous architectures
require more nuanced scheduling approaches. Many DSA applications operate on continuous data lows with
strict deadlines, necessitating schedulers capable of managing such streams eiciently while accommodating
sporadically arriving tasks. Dynamic interleaving of applications in DSAs complicates oline expert analysis and
necessitates the development of schedulers capable of producing execution traces comparable in quality to those
crafted by experts. Scheduling in DSA architectures is inherently an NP-complete problem [22], posing challenges
in identifying quality solutions. Approaches to address this problem fall into three categories: optimization-based
methods [23, 24], heuristic methods [25ś30], and machine learning-based methods [31, 32]. It’s also essential to
recognize that resource management in DSAs extends beyond task scheduling. Preserving energy and prolonging
battery life are crucial considerations, necessitating the inclusion of dynamic thermal and power management
(DTPM) and dynamic voltage and frequency scaling (DVFS) policies. These policies enable processing elements
to regulate their thermal and power requirements by adjusting voltage and frequency based on current system
conditions. Additionally, ensuring reliability in DSAs remains an open area of research, highlighting the multifac-
eted nature of resource management in these systems. When considering programming for DSAs, it becomes
apparent that building fast processors alone does not suice if the programming environment is overly complex
and inaccessible to prospective programmers. Typically, such architectures come with extensive data sheets, often
spanning thousands of pages, making it challenging for programmers to comprehend the architecture, let alone
utilize it efectively. In overall, programming environments for DSAs should possess certain key characteristics:
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• Accessibility: Programming environments should enable efective utilization of architecture resources by
users with limited hardware knowledge. They should strive to simplify the programming process, ensuring
accessibility to a broader range of users.

• Performance and Eiciency: These environments should prioritize performant and energy-eicient execu-
tion, guiding users towards optimal resource allocation decisions rather than forcing them into suboptimal
choices.

• Portability: Ideally, programming environments should support portably performant code, allowing the
same code to run seamlessly across multiple heterogeneous platforms without degradation in performance.

When designing programming approaches for DSAs, it’s essential to consider four key user categories:

• Application Programmers: These users possess programming knowledge and understand the algorithms
they are trying to map. They are willing to invest efort in modifying their code to suit the architecture,
making them early adopters of the technology.

• Application Users: Unlike programmers, these users lack background knowledge in algorithms but have a
pool of previously developed applications they wish to deploy. They seek relatively performant solutions
that leverage the heterogeneity of the system.

• Performance Programmers: Users in this category have strict power or execution constraints and are adept
at modifying their code to optimize performance for the architecture. They are willing to invest time in
reading architecture manuals to maximize their performance.

• Performance Users: Similar to performance programmers, these users have strict requirements but lack
the background or ability to modify their code. They heavily rely on the programming methodology and
compiler to meet their performance goals.

An ideal programming environment for DSAs would cater to the needs of all these user categories. In the
case of CEDR, eforts have been directed towards building a runtime system that accommodates the diverse
requirements of users, aiming to strike a balance between accessibility, performance, and eiciency across various
user proiles.

3 Design Overview of CEDR

As illustrated in Figure 1, the CEDR ecosystem includes a compiler frontend where users prepare their applications
using API-based programming model using C or C++ and the compiler low prepares application binaries for
execution on the target heterogeneous system. The back-end runtime system receives user applications through
a dedicated job submission process that goes through a shared memory channel to the runtime that executes as a
background job in the Linux user-space on the target hardware platform. CEDR ofers several key features for
application developers and designers of heterogeneous computing systems as listed below:

• Portable across a wide range of Linux systems and commercially of the shelf heterogeneous SoC systems
relying primarily on POSIX APIs for platform-speciic code implementation and has been deployed and
validated on rich set of platforms such as Zynq UltraScale+ MPSoC ZCU102, Virtex UltraScale+ VCU128,
Virtex 7 FPGA VC707, NVIDIA Jetson AGX Xavier, Synopsys HAPS100, OKdo ROCK 5, Genesys 2 Kintex-7
and Odroid XU4.

• Scalable and lexible to support executing arbitrary interleaved workloads scaling to thousands of applica-
tions across pool of CPU cores and diferent accelerators.

• Plug-and-play interfaces to support integration of a wide variety of scheduling heuristics, enabling compre-
hensive design space exploration and co-design of application schedulers and accelerators within a uniied
environment.
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3.1 Programming Approach

In the programming environment, users provide their applications in C or C++, and various compilation ap-
proaches are employed to produce CEDR applications. These applications are then submitted through a dedicated
job submission process to the CEDR runtime, which operates as a background job on the managed system.
The runtime coniguration speciies the scheduling heuristic and available accelerator binaries for dispatching
accelerated tasks. The CEDR runtime executes applications in a runtime loop on various processing elements
and generates multiple types of output logs to facilitate analysis of the execution low and performance metrics.

One programming methodology supported by CEDR is DAG-based execution. In this approach, applications are
represented as directed acyclic graphs (DAGs), where each node corresponds to a computational task within the
application. Nodes supporting accelerator dispatch may have multiple implementations. The role of the scheduler
is to select the appropriate implementation for execution based on the system’s current state. Since dependencies
are captured within the DAG, the scheduler can determine the order of task execution without extensive program
analysis, as precedence of tasks are encoded directly in the metadata of the binary format. In CEDR’s JSON format,
crucial sections include a variables section utilized to enable management of application memory. Variables,
along with their memory allocation and possibly initial values, can be declared. This allows CEDR to handle
memory management for DAG nodes’ arguments, potentially facilitating future memory optimization strategies.
Another component in the JSON format is the DAG node section, where each node contains a list of arguments
required by its implementation functions, predecessors, successors, and platforms with associated functions for
executing the task on speciic accelerators or CPUs.

Building DAGs can be time-consuming. CEDR ofers two main approaches for constructing these applications
as illustrated with Figure 2. The irst approach is an automated compilation tool low, which relies on dynamic
instrumentation and tracing of the baseline application. This methodology involves behavioral analysis based on
the observed execution characteristics of the application. CEDR utilizes a framework called TraceAtlas [33] for this
purpose. TraceAtlas instruments the binary to understand transitions between LLVM basic blocks, recording the
sequence of these transitions. It then clusters portions of the program into kernels based on this data, providing
identiied kernels and basic memory analysis. Using LLVM, the original application can be partitioned into
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Fig. 2. Programming Methodologies

DAG nodes according to the boundaries of these kernels. Architecture-speciic optimizations, such as enabling
accelerators and implementing patterns, can be applied at this stage. Finally, the JSON DAG and the binary
object of the application are generated for use with CEDR. The second approach to preparing DAG-based
applications involves handcrafted compilation, where expert tuning and transformation are employed to optimize
the application for CEDR’s DAG-based representation. While this approach ofers signiicant performance
beneits by allowing explicit deinition of parallelism and heterogeneity, it is a labor-intensive process that
CEDR aims to minimize in the future. As the development of DAG-based methodologies progressed, limitations
became apparent. Neither automated transformation nor handcrafted DAGs are perfect solutions. Automated
transformation struggles with generalizing across various use cases, while handcrafting for realizing optimized
DAGs is inherently complex. Moreover, the strict adherence to a DAG model imposes limitations, particularly
regarding cyclic program structures. Many desirable program structures, such as loops, involve cycles, which
cannot be represented in a strict DAG model. For instance, a simple for loop iterating over input data and
processing it through a sequence of kernels, where some kernels depend on the results of previous ones, cannot
be accurately captured without allowing cycles in the graph representation.

Due to these challenges, we introduced and developed an API-based programming methodology focusing on
user productivity and allow users to develop and deploy their applications without having to follow hand-crafting
based optimization methodology. The core idea is to deine a library of APIs, such as FFT , matrix multiplication,
FIR kernels, allowing users to invoke those functions in their implementations and pass arguments in a standard
manner and programming environment they are familiar with. Conceptually, the program is segmented into
non-kernel portions, where application reaches a barrier and API call is dispatched to CEDR to manage that task
and support execution of heterogeneous tasks on domain-speciic resources. Upon completion of these tasks,
indicated by a barrier, the non-kernel portion of the application continues execution as illustrated in Figure 3.
Practically, this approach involves writing code where API calls, like FFT on input and output bufers, serve as
barriers. These calls are akin to initializing a barrier and invoking an asynchronous task dispatch function, where
the task type and input parameters are passed to CEDR. Subsequently, the program waits for the completion of
the dispatched task on the designated resource.
All implementations of CEDR APIs are housed within a library called libCEDR as illustrated with Figure 4.

This library comprises hardware-agnostic API calls coupled with a pool of platform-speciic implementations
that can be dynamically enabled or disabled based on the available hardware on the target system. For instance,
the platform-agnostic FFT API call can be linked to CPU or accelerator implementations internally. libCEDR
is designed to allow the use of the same source code for veriication outside of CEDR’s runtime environment.
By linking in CPU implementations of tasks, users can validate their applications independently. Transitioning
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Fig. 3. API-based programming model

Fig. 4. CEDR-API implementation and support

to execution within CEDR’s runtime environment involves building the application as a shared object and
adjusting compilation lags. This enables execution on various platforms supported by CEDR by simply adjusting
the shared object containing backend accelerator implementations. The directory structure typically includes
libCEDR, with CEDR.h containing platform-agnostic headers for all APIs, and several modules containing CPU
and hardware accelerator backend implementations. The usage low involves inserting CEDR-speciic API calls
into the application source code, compiling libCEDR sources into a static CPU-only library, and combining them
to produce a standalone ELF binary for validation purposes during development. Developers can iterate on their
implementations, check for functional correct execution in each design iteration and converge to a inal form.
Once functional correctness is achieved, the code can be compiled for execution within CEDR’s runtime.

Fig. 5. Non-blocking API execution in CEDR

The compilation process generates a shared object that is handed of to the CEDR runtime along with the
libCEDR library containing all backend implementations. Task synchronization is crucial tomaintaining functional
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Table 1. List of built-in applications in CEDR.

Application Description Number of APIs

Radar Correlator Compares radar echoes with reference signals to identify targets
or patterns of interest

3 FFTs

Pulse Doppler Enables simultaneous target detection and velocitymeasurement 512 FFTs

WiFi TX Involves transmitting data over WiFi networks to establish wire-
less connectivity

100 FFTs

Temporal Mitigation Minimizes interference caused by overlapping or conlicting
temporal signals

4 GeMMs

Synthetic Aperture
Radar

Uses radar antenna motion to create high-resolution images of
the radar scene

1,537 FFTs and 768
ZIPs

Lane Detection Identiies and tracks the lanes on a road, aiding in autonomous
driving systems

24580 FFTs

correctness in the user application. The CEDR APIs, as mentioned earlier, allow for initializing barriers and
asynchronously enqueuing tasks to CEDR. These tasks encode the API type, arguments, and the associated
barrier. While waiting for task completion, the application synchronously waits for the barrier. This methodology
ensures that kernel executions within CEDR’s runtime loop occur asynchronously in diferent threads relative
to the baseline user application. Without this synchronization methodology, there would be a risk of the code
expecting results before they are available. CEDR provides two types of APIs to accommodate diferent user needs.
For users focused on maximizing parallelism and performance, non-blocking APIs are available as illustrated
with Figure 5. These APIs allow for the asynchronous submission of tasks, enabling parallel scheduling and
dispatching within CEDR. On the other hand, blocking APIs are provided for baseline users who prioritize
leveraging heterogeneity without necessarily maximizing parallelism. These users prefer synchronous execution
and do not require extensive parallelism optimization. In summary, CEDR ofers two programming methodologies
to cater to diferent user preferences and application requirements.

CEDR provides several built-in applications summarized in Table 1 spanning signal processing, communications,
and autonomous vehicles domains. Radar Correlator detects targets or patterns of interest by correlating received
echoes with transmitted radar pulses. Pulse Doppler Radar measures not only distance but also velocity of
the object using radar technology. Wi-Fi transmit chain (WiFiTX) handles processing for transmitting Wi-Fi
frames. Temporal Mitigation mitigates interference caused by overlapping signals in time, enabling extraction
and processing of speciic signals. Synthetic Capture Radar utilizes radar to generate images. Lane Detection
identiies and tracks lane lines on roads. All these applications vary in terms of their control low structures,
demand for accelerators, and degree of concurrency during their execution. Therefore, when coupled together,
they enable users to generate workloads to stress the system resources. While CEDR includes these pre-built
applications, users can also develop and integrate their own applications. Additionally, existing applications can
be ported to CEDR by following one of the two programming methodologies discussed earlier.

3.2 Runtime Flow

Below, we outline the main runtime loop within CEDR and discuss how tasks are managed by CEDR through
queues formed at worker thread level as illustrated with Figure 6. Applications are submitted to the CEDR runtime
via a helper process, where they are parsed and launched. In the case of API-based applications, a new thread
is spawned on the system to execute the main function of the application. As the application progresses, API
functions are called, pushing tasks into CEDR management threads’ ready queue. The scheduler then schedules
these tasks to available resources. Each resource in the system, whether it’s a CPU or an accelerator, is broadly
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Fig. 6. Worker thread-level management of tasks in the user application.

represented by a worker thread. When a worker thread assigned to a CPU receives a task, it directly executes
it. For instance, if the task is to run an FFT using the CPU implementation, the CPU worker thread executes
it, records execution metrics, and pushes the completed task back onto the output queue. Conversely, if the
resource is an accelerator, the worker thread acts as a management CPU core for that accelerator. It conigures the
accelerator, manages data movement, and waits for completion notices. Once completed, it transfers necessary
data back and pushes the task onto the output queue. This worklow ensures eicient scheduling and execution
of tasks across available resources within the CEDR runtime environment.
The task scheduling mechanism within CEDR is supported by a library of schedulers listed in Table 2, each

ofering distinct strategies. Among these schedulers we note the Heterogeneous Earliest Finish Time (HEFT) [25]
algorithm that is used as a reference algorithm for heterogeneous environments to this date. We implemented
runtime version of this method [16] that is referred to as ������ . In order to ofer rapid decision making
capability in real time resource management scenarios, we also implemented the hardware-based������ [17] and
integrated with CEDR. CEDR ofers distinct plug and play interfaces for integrating new scheduling heuristics and
methodologies. One such use case is the integration of machine learning based schedulers [31], where sophisticated
scheduling heuristics such as HEFT, ETF or EFT can be used to generate data in CEDR framework for a given
workload scenario and train an Imitation Learning (IL) model. These schedulers leverage decision trees and
deep neural network implementations. They learn from past scheduling decisions and adaptively schedule tasks
based on learned patterns, aiming to optimize resource utilization and performance. These schedulers collectively
contribute to enhancing CEDR’s task scheduling capabilities, catering to various application requirements and
system conigurations.

ACM Trans. Embedd. Comput. Syst.
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Table 2. List of built-in schedulers in CEDR.

Algorithms Class

Round-Robin Software

Random Software

Earliest Task First Software

Earliest Finish Time Software

Minimum Execution Time Software

Real-time Heterogeneous Earliest Finish Time Software and Hardware

Imitation Learning (IL) based Decision Trees Machine Learning

Imitation Learning (IL) based Deep Neural Networks Machine Learning

Fig. 7. Accelerator management and integration

Accelerators within the system are managed by dedicated threads due to inherent limitationsÐmost accelerators
lack the capability to independently execute threads. Moreover, operating systems lack standardized abstractions
for representing arbitrary accelerators, which complicates their management. While eforts have been made
to deine interfaces for GPUs and PCI Express devices, the landscape remains sparse, especially in embedded
systems housing ixed-function accelerators like FFT units.

Our approach has been to associate accelerators with supporting CPU threads to circumvent these limitations.
However, the data transfer methodology varies depending on the accelerator’s requirements. In our experimenta-
tion, particularly on FPGA-based platforms, we’ve predominantly utilized userspace DMA bufers via a library
called UDMA-buf, along with DMA engines embedded in FPGA programmable fabric. DMA bufers serve a
crucial role in facilitating data transfer to accelerators. Since many accelerators are incompatible with virtual
memory, data must be staged in contiguous memory. This involves deining a physical base address in DDR and
specifying a length for data transfer. However, challenges arise when considering virtual memory segmentation
by operating system pages, often leading to fragmented data representation from the accelerator’s perspective.
To address this, DMA bufers enable the declaration of physically contiguous memory bufers larger than the
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OS page size, facilitating eicient data staging for transfer into accelerators by DMA engines. For example, as
illustrated with Figure 7, in the context of an FFT IP core, data is copied from a virtual memory-based array into
a DMA bufer. Subsequently, the DMA engine, coupled with the FFT accelerator, orchestrates data transfer and
processes the input. Finally, the output is copied back from the UDMA bufer to the output array. Despite these
advancements, optimizing data movement remains a focal point for future exploration. Zero-copy transfers to
accelerators or u-dma-bufers could mitigate data transfer overhead. This may entail developing heap algorithms
atop u-dma-bufers to enable direct memory allocation, eliminating the need for intermediate data movement.
Additionally, optimizing worker threads awaiting accelerator completion is imperative to minimize CPU resource
consumption. Techniques such as eicient thread yielding mechanisms and leveraging signaling mechanisms
like interrupts could enhance overall system eiciency.

CEDR ofers robust support for platform performance monitoring and workload proiling, essential for design
space exploration and application development. This capability is facilitated through the integration of PAPI
(Performance Application Programming Interface), enabling the reading of hardware-level performance counters
directly within CEDR. With PAPI, users can conduct low-level proiling and workload characterization for
every task within an application, all without necessitating code modiications. Whether employing the DAG-
based or API-based methodology, users submit task nodes to CEDR. Within the worker threads responsible
for task execution, performance counter measurements commence before the dispatch function is invoked for
either the CPU or accelerator. These performance counters encompass a wide array of metrics, tailored to suit
diverse proiling needs. For instance, on platforms like the ZCU-102 FPGA from Xilinx, users can select from a
comprehensive list of 113 counters. Metrics may include instructions executed, branch operations, cache hits,
cache misses, and more. Data collected from these performance counters can be aggregated at both the application
and individual task levels. At the application level, counter values are summed across all tasks, providing a
holistic view of performance. Conversely, at the task level, speciic counters can be tailored to each task, enabling
ine-grained proiling tailored to the task’s requirements. This proiling capability proves invaluable in various
scenarios, such as designing memory management techniques where metrics like cache loads and cache misses
serve as key optimization indicators. Overall, CEDR’s support for performance monitoring and workload proiling
empowers users with comprehensive insights into system behavior and performance characteristics.
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(a) (b)

Fig. 9. High latency workload composed of WiFi TX and Pulse Doppler applications arriving dynamically on a system

composed of 3 CPUs and 1 FFT , where system is oversubscribed (injection rate 2000 Mbps). Workload involves total of 2610

FFT tasks scheduled with the (a) MET scheduler and (b) EFT scheduler.

In our experiments, we compared the runtime overhead between the API-based and the DAG-based CEDR as
illustrated in Figure 8. We conducted these experiments on a platform featuring the ZCU-102 FPGA, equipped
with three CPU cores, one FFT accelerator, and one MMULT or GEMM accelerator, all managed by a simple
round-robin scheduler. Our workload setup involved running batches of ive Wi-Fi TX applications and ive Pulse
Doppler applications repetitively, with varying injection rates to simulate diferent data processing speeds. As the
injection rate increased, relecting a higher data processing load, we observed a saturation trend in the runtime
overhead. Speciically, our indings revealed a notable reduction in runtime overhead, approximately 20%, with
the API-based CEDR compared to its DAG-based counterpart. This reduction in overhead signiies the eiciency
gained by the API-based approach, attributable to factors such as reduced dependency tracking and streamlined
memory management during application initialization. To quantify the runtime overhead, we measured the
makespan of the overall workload, calculated as the duration between the end of the last workload batch and the
start of the irst batch. During idle periods, when the system is not actively computing tasks, we accounted for
the runtime overhead incurred. Our analysis considered the ratio of time spent by the runtime performing tasks
against the total computation time, which is inherently lower at lower injection rates due to fewer tasks being
processed. It’s important to note that the y-axis in our data represents the overhead amortized among a larger
number of jobs, rather than the duration of each individual task or job. As the injection rate increases, more tasks
are processed concurrently, leading to a gradual increase in overhead, which is spread across a greater number
of jobs, hence the observed trend. In essence, our experiments highlight the eicacy of the API-based CEDR in
minimizing runtime overhead, particularly under varying data processing loads, showcasing its suitability for
diverse application scenarios.

4 Use-cases of CEDR for DSA Research

4.1 Is acceleration always the best choice?

In this experiment, we aimed to evaluate the performance impact of diferent scheduling strategies on a workload
consisting of Wi-Fi TX and Pulse Doppler applications. Speciically, we compared the performance of two
schedulers: Minimum Execution Time (MET) and another scheduler (let’s call it EFT), which prioritizes task
dispatch based on the processing element with the lowest estimated execution time for each task, regardless of
the processing element’s current workload. Under the MET scheduler, tasks are dispatched to the processing
element with the lowest estimated execution time, favoring accelerators whenever possible. For instance, if a
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Fig. 10. Design space exploration across scheduling heuristics, workload complexity variations and hardware configurations

CPU core has an estimated execution time of 100 milliseconds, while an accelerator can complete the same
task in 10 milliseconds, the scheduler will always choose the accelerator. Our experiment involved running
the workload at an injection rate of 2000 megabits per second, representing a relatively high data processing
load. The performance comparison illustrated in Figure 9 revealed signiicant insights. The overall makespan
of the workload under the MET scheduler was approximately 350 milliseconds. However, when employing the
EFT-based approach, which distributes tasks more evenly across all available cores, even if locally suboptimal
decisions are made for some tasks, we observed a notable improvement in execution time. Speciically, the number
of FFT tasks launched on the FFT accelerator decreased from 2610 to 1165, indicating a more balanced distribution
of tasks across ARM cores. This balanced distribution led to an almost 100-millisecond reduction in execution time
compared to the MET scheduler. These indings underscore the importance of considering workload distribution
strategies in heterogeneous systems. While prioritizing accelerators may seem advantageous initially, a more
balanced approach can often lead to improved overall performance, especially under varying workload conditions.

4.2 Large Scale Design Space Exploration

In large-scale design space explorations facilitated by runtime environments like CEDR, researchers and devel-
opers can conduct comprehensive evaluations of various scheduling heuristics and hardware conigurations.
Such experiments serve multiple purposes, including assessing the performance of new scheduling algorithms,
comparing diferent heuristics under identical conditions, and evaluating the impact of hardware accelerators
on diverse workloads. One key application of these experiments is for researchers developing new scheduling
heuristics. By running simulations on the same hardware conigurations and workloads, developers can gauge
the efectiveness of their algorithms relative to existing heuristics. They can also assess how their algorithms
perform across diferent platforms, identifying scenarios where they excel or fall short. Another use case involves
hardware accelerator developers seeking to evaluate the impact of their accelerators on workload performance.
By testing their accelerators with a variety of scheduling heuristics or application workloads, developers can gain
insights into the efectiveness of their hardware in speeding up diferent types of tasks. In a speciic experiment
conducted with CEDR, as illustrated with Figure 10, a design space sweep was performed, encompassing 3,480
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Fig. 11. GNURadio workflow implementing radar correlator with FFT function calls

conigurations and executing over 10 million tasks on a Xilinx ZCU-102 FPGA within three hours. Such scale of
experiment is not feasible with cycle accurate simulators. Furthermore, the execution time trends and perfor-
mance characteristics are measured based on deployment of real life applications on commercial of the shelf
platforms. This particular experiment involved varying parameters in terms of scheduling heuristic, application
injection rate, and hardware coniguration (including the number of CPU cores and enabled accelerators). The
color-coding in the resulting 3D plot indicates the scheduler used for each coniguration. A notable inding
from the experiment was the observed behavior of the ETF scheduler. Despite being theoretically promising,
this scheduler exhibited signiicant overhead as the system became highly oversubscribed. As the number of
hardware resources increased, the execution time scaled upwards due to the scheduler needing to choose between
more resources. Moreover, the time per scheduling decision increased with the data rate, eventually saturating
at approximately 80 milliseconds of scheduling overhead per application. A detailed analysis of the scheduling
overhead for the most heterogeneous hardware coniguration revealed the challenges faced by certain schedulers,
particularly in environments with a high task count and diverse accelerators. This analysis provided valuable
insights into the scalability and performance characteristics of diferent scheduling heuristics, shedding light on
their suitability for various workload scenarios.

4.3 GNURadio and CEDR

A user group that could beneit from exploring CEDR is developers working with the GNURadio framework.
GNURadio is an open-source framework used for building radio and communications applications. With CEDR,
developers can enhance the capabilities of GNURadio by incorporating heterogeneous computing resources
seamlessly. An out-of-tree module called GR-CEDR has been developed [14] for GNURadio, enabling integration
with CEDR functionalities. Out-of-tree modules are add-ons to GNURadio that are compiled separately from the
main source code and loaded dynamically. GR-CEDR introduces custom low graph blocks that utilize CEDR APIs
to implement various signal processing tasks. These low graphs can be constructed graphically using GNURadio’s
visual representation, where diferent blocks represent signal processing kernels connected together as illustrated
with Figure 11. Alternatively, developers can write code directly in C/C++ or Python and convert it using Cython.
CEDR dynamically schedules and dispatches these blocks onto heterogeneous resources, providing transparent
heterogeneity to GNU Radio users. An important experiment conducted with GR-CEDR involved running a
GNURadio application alongside other CEDR applications (WiFi TX and SAR) as illustrated with Figure 12. The
experiment demonstrated efective resource sharing among diferent applications without impacting the behavior
of GNURadio application. Even though GNURadio is unaware of being executed in a heterogeneous environment,
CEDR optimally distributes resources, ensuring cooperative system utilization. As shown in the experiment
output, GNURadio applications can produce meaningful results, such as estimating the range in a radar correlator
application. This seamless integration of CEDR with GNU Radio empowers developers to leverage heterogeneous
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Fig. 12. Deployment of GNURadio workflow on heterogenous systems with WiFi TX and SAR applications on a system

composed of 3 CPUs and 2 FFT accelerators. In the early phase of the experiment two applications are arriving to the system

(WiFi TX and SAR) along with the GNU radio application (Radar Correlator). System is able to schedule all tasks of the three

applications. Non GNU-radio applications are injected later in the experiment to stress the system and CEDR is able to cope

with the dynamically changing workload.

Table 3. PyTorch application CEDR-API map

Application CEDR-API

ZIP CONV_2D CONV_1D GEMM

OD 54,496 54,496

VGG 1,634,496 1,634,496 3

Speech 8,224 8,224 1

computing resources without needing to understand platform speciics. Moreover, CEDR facilitates portability
across multiple platforms, requiring only a library update for backend implementations. This capability opens
new possibilities for enhancing the performance and versatility of GNURadio applications.

4.4 PyTorch and CEDR

Another user group that could beneit from CEDR integration is PyTorch developers. There are two primary use
cases where PyTorch developers might ind CEDR valuable. Firstly, while GPU acceleration is widespread among
diferent neural network frameworks, PyTorch developers may have scenarios where they need to run multiple
simultaneous networks concurrently. For example, a system involving object detection, speech recognition, and
object localization simultaneously. In such cases, dynamically distributing the workload among all available
processing elements, rather than greedily mapping all tasks to the GPU, could result in better overall performance.
CEDR’s dynamic scheduling capabilities make it suitable for eiciently utilizing various processing elements
in such scenarios. Secondly, while GPU adoption is prevalent, FPGA deployment for PyTorch models is less
mature. PyTorch developers interested in exploring energy-eicient FPGA execution for embedded systems could
leverage CEDR integration as CEDR ofers a pathway for PyTorch models to be executed on FPGAs eiciently.
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Fig. 13. Multiple PyTorch models running simultaneously (VGG, OD, and Speech) using 3 CPU, 1 C2D, and 1 ZIP accelerators

with EFT scheduler

A framework was developed to integrate PyTorch models into CEDR. An example workload was demonstrated
on a system with three CPU cores, one 2D convolution accelerator, and one zip accelerator for vector addition
and multiplication. The workload consisted of three diferent neural networks, each performing various inference
tasks. Object Detection (OD) is a modiied version of the U-Net network [34] with a pre-trained autoencoder.
It identiies positions of cars within an input image and generates an output image with marked car locations.
Visual Geometry Group (VGG) VGG model recognizes objects within an input image. Speciically, it utilizes the
Imagenette Dataset [35], which is a subset of the larger ImageNet Dataset [36]. Speech Classiication (SC) model
detects a spoken word within the audio, and generates the corresponding word as text output. It is trained and
evaluated using the Speech Commands Dataset [37]. Characteristics of these applications are listed in Table 3.
The framework allowed these networks to cooperatively share system resources in a way that was not

previously possible. Figure 13 displays a chart illustrating the assignment of tasks to the system resources during
the initial 10-second interval of the experiment. We observe that between around 6.5-second and 10-second time
frames, all three models (OD, VGG, and Speech) are running simultaneously and CEDR is able to manage pairing
the system resources with the tasks of each application. The integration has been tested on the ZCU-102 FPGA
and the NVIDIA Jetson platforms, showcasing its versatility across diferent hardware environments.

4.5 RISC-V and CEDR

Another use case involves exploring RISC-V architecture and composing heterogeneous systems tailored for
speciic applications as shown in Figure 14. In this scenario, the user is interested in leveraging accelerators
and CPUs customized for the RISC-V architecture to build eicient systems. RISC-V presents opportunities for
creating domain-tailored CPU architectures, ofering avenues for exciting advancements. Given the absence
of a general OS-level abstraction for accelerators, management of accelerators by CPUs remains a necessity.
Therefore, customizing the CPUs on the system becomes crucial. This customization may involve incorporating
big RISC-V cores for compute-intensive tasks and small RISC-V cores optimized for managing accelerators. By
minimizing the hardware units in the smaller cores, resources and power budgets can be eiciently allocated to
implement more potent accelerators.
Preliminary experiments have been conducted with CEDR on an emulated RISC-V system using the Rocket

Core CPU [38] pipelines as shown in Figure 15. The system comprises two compute cores and varying numbers of
FFT accelerators, each managed by smaller RISC-V cores. Results indicate that compared to previous experiments,
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Fig. 14. System composed of heterogeneous set of RISC-V cores
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Fig. 15. RISC-V based CPU cores coupled with a pool of accelerators emulated on the ZCU102 FPGA running the WiFi TX

and Pulse Doppler applications with respect to various injection rate and scheduling policies

where increasing heterogeneous resources led to contention issues and negative impacts on application execution
time, the introduction of customized accelerator management cores has yielded positive outcomes. Speciically,
there has been a decrease in average execution time for tasks, indicating improved parallelism and leveraging of
system heterogeneity. In summary, exploring RISC-V architecture and customizing CPUs for speciic applications
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can lead to more eicient and powerful heterogeneous systems. CEDR provides a platform for conducting such
experiments and optimizing system conigurations for optimal performance.

4.6 Kernel Development and Integration with CEDR

We have developed a rich set of tutorials [39] with code-based demonstrations for diferent user types who
wish to utilize CEDR for application development and deployment on heterogeneous SoCs. As the FPGAs are
being embedded in all layers of computing infrastructure from edge to HPC scale, system designers continue to
explore design methodologies that leverage increased levels of heterogeneity to push performance within the
target performance goals or constraints. Recently we presented a tutorial [40] catering to audiences with diverse
backgrounds and varying levels of expertise, providing an opportunity for exploration and study of FPGA-based
computing in heterogeneous contexts. The tutorial starts with an overview of CEDR, followed by an in-depth
exploration of its productive programming and deployment methodology tailored for three distinct user types.
First and foremost, we guide the naive application developer, aiming to harness FPGA-based acceleration within
heterogeneous environments, through the process of utilizing CEDR to adapt their reference C/C++ applications
for execution on FPGA-integrated systems. Moving on, the tutorial transitions to the perspective of the system
designer, illustrating how performance evaluations can be conducted through design sweeps encompassing
various hardware compositions while accommodating dynamically arriving workload scenarios. Lastly, we delve
into the realm of the resource management developer, demonstrating how to integrate a new scheduler and
evaluate its performance concerning a speciied workload and hardware composition. Throughout these scenarios
that target application developers, system designers and resource management heuristic developers, the common
thread is lifting the barriers to research and enabling productive application development and deployment on
FPGA-integrated heterogeneous systems. The tutorial adopts a hands-on approach utilizing the Xilinx ZCU-102
platform, enabling participants to gain practical experience on systems that amalgamate ARM CPU cores with
FPGA accelerators. The tutorial set [39] includes step by step low with running examples for setting up CEDR
and utilizing it for the following scenarios:

• Introducing an API call to a baseline C++ application.
• Design space exploration by varying number of compute resources across diferent scheduling heuristics
in dynamically arriving workload scenarios.

• Integrating and evaluating scheduling heuristic with CEDR and conducting performance evaluation with
dynamically arriving workload scenarios.

• Hands-on exercises for experimenting with a new application that relies on key computation kernels such
as FFT, GEMM, Convolution, Vector addition or Vector multiplication on GPU and FPGA based SoCs.

• Integrating a new accelerator to the SoC, introducing the new API and integration with CEDR, and inally
application development with the new API to utilize the accelerator.

4.7 Comparative Analysis

We group runtime systems into three classes covering homogeneous or single-ISA heterogeneous environ-
ments [41ś44], multi-ISA or accelerator-rich environments [3, 6, 7, 45, 46], and compiler integrated ecosys-
tems [11, 42, 43, 47]. Particularly for accelerator rich and heterogenous architectures, runtime design ap-
proaches [6, 45, 48] are notable but they lack ability to support scheduling policy development and non-blocking
execution. Kim et al. [49] present IRIS, a heterogeneous runtime system that ofers resource discovery, adaptive
scheduling, data movement, and programming model capabilities. Hardware agnostic and adaptive scheduling
approach presented in [50] targets machine learning kernels on heterogeneous architectures. In summary, CEDR
ofers an integrated environment that uniquely combines application programming, scheduling, and execution
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into a single extensible framework that is portable and lexible. Through a hardware agnostic application devel-
opment and deployment experience on any Linux based heterogeneous system it is designed to lift the barriers
to research on heterogeneous computing for application developers, system designers and resource management
heuristic developers.

5 Future Directions & Conclusions

In conclusion, CEDR represents a signiicant advancement in domain-speciic architecture research, ofering
a unique set of capabilities. However, numerous challenges remain to be addressed across various fronts. In
resource management, the quest for optimal policies tailored to speciic use cases will continue, recognizing that
a one-size-its-all solution is unlikely. Eforts will focus on designing more lightweight and resource-optimal
techniques. For accelerators, ongoing work will involve automating the generation of software support for new
hardware accelerators, thereby reducing development time and enhancing eiciency. On the programming side,
there is a pressing need to make heterogeneity more accessible, ensuring that developers can leverage diverse
hardware resources seamlessly. In data low management, eforts will be directed towards enabling dependent
tasks to route data lows directly between accelerators, bypassing complex memory hierarchies such as DRAM to
minimize latency.

5.1 Memory Management

In many heterogeneous devices, the availability and composition of memory resources can be as heterogeneous,
if not more so, than the compute units themselves. To extract the maximal performance on such systems,
heterogeneous runtimes and their corresponding programming interfaces should be designed with comprehensive
methods of representing and allocating memory to diferent regions within the device in order to minimize
communication overheads and maximize compute intensity. Following an approach like that taken by the CEDR-
API runtime, a possible path here would be the design of a set of łCEDR Mallocž capabilities. Such capabilities
could be made aware of the underlying set of scratchpads and memories on a given compute platform and allow
data to be allocated via heap-based allocation techniques directly onto the most relevant memories for their
computation. If coupled with intelligent heterogeneity-aware heap algorithms, such an approach has the potential
to enable a wide range of performance gains within and across accelerator boundaries without excessively
burdening the programmer with understanding the details of their platforms’ memory architecture.

5.2 Streaming Dataflow Management

Beyond the static memory management approaches of a łCEDR Mallocž methodology, many DSSoC systems are
additionally intended to operate on continuous streams of data (for instance, RF systems processing incoming
data of a variety of analog to digital converters (ADCs)). Such systems would see little beneits from a static
memory allocation methodology as the speciic data being processed is rather short-lived. Instead, allocation must
be performed by considering the full life cycles of the running applications’ datalows. Such studies are likely
made easier through graph-based representations such as those leveraged in DAG CEDR, but if coupled with
program analysis frameworks or extended API methodologies that allow for submitting application subgraphs
with each invocation of CEDR rather than single tasks at a time, there is also strong potential for such studies to
be built on productive baselines like CEDR-API.

5.3 Extensible Sotware Representations

The most productive software framework is the one a programmer is most familiar with. Consequently, there is a
large amount of future work that can be explored in the vein of enabling extensible software representations that
allow users to bring their code to heterogeneous systems with as few modiications as possible. One path here is
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to build extensible hooks from CEDR into the programming frameworks that users are familiar with (such as
PyTorch [51], GNURadio [52], or Tasklow [53]) such that users can port their code with little efort by building
bridges towards them. Another more ambitious path is to continue developing and integrating cutting-edge
application analysis and partitioning tools ś such as next-generation iterations of TraceAtlas [54] ś that enable
machine understanding of code.

5.4 Heterogeneity-Aware Compiler Design

As the needs of heterogeneous hardware have applied pressure on runtime designers to adjust for the complexi-
ties of heterogeneous resource management, runtimes now are now applying pressure back towards compiler
designers to include all relevant information ś such as data low and dependency analysis or hardware-speciic
representations of application tasks ś in their binaries to enable resource management policies to arbitrate
efectively. Advancements in machine understanding of code will be critical in enabling progress here as they can
be leveraged to perform tasks such as automatic kernel detection, runtime dependency analysis, or heterogeneity-
aware compiler transformations of user applications. This pressure from runtimes to compilers calls for new
approaches that can generalize platform-agnostic intermediate representation (IR) representations into represen-
tations that are tailored for the needs of the underlying heterogeneous management policies and hardware. Such
advancements will enable closing the loop on the design of heterogeneous compilers, runtimes, and hardware.
Only then will users of such systems be able to rapidly harness the computational eiciency aforded through
heterogeneous architectures with the same ease as general purpose platforms.

5.5 Security of Heterogenous Systems

Runtime systems managing heterogeneous architectures creates a complex challenge in understanding and
learning the underlying and representative characteristics of the entire system comprehensively. Therefore,
security is a crucial consideration for architectures like DSAs, where the integration of diverse accelerators
and specialized processors may introduce new vulnerabilities and attack surfaces that need to be addressed
as discussed in a recent survey [55]. Diferentiating normal and abnormal application behavior is particularly
challenging in heterogeneous computing systems given the diverse execution characteristics inluenced by factors
such as varying programming models, diversity of Processing Elements (PEs), and dynamically changing resource
allocation decisions [56]. CEDR ofers ability to capture features systematically across the hardware, application,
runtime, and scheduler layers. Although not explored yet, we believe that CEDR framework can be extended
to expose the correlations among the system layers in a uniied ecosystem. Furthermore, mechanisms, such as
secure boot processes, data encryption, access control, and secure communication protocols should be carefully
designed and implemented in DSAs to protect sensitive data and ensure system integrity.

5.6 Scalability Challenges

The runtime worklow executes continuously as CEDR management thread and for each application task a
worker thread is spawned during the execution. The centralized worker-thread model poses as a limitation for
CEDR for systems with large number of PEs. In this section we expose the scalability challenges and discuss a
solution strategy.
The management thread parses application binaries, tracks the state of PEs, and monitors the execution of

application tasks [12]. All tasks whose dependencies are resolved get placed in a ready queue as illustrated with
Figure 16. When multiple tasks appear in the ready queue at the same time either due to arrival of multiple
applications or concurrent tasks within an application, management of the ready queue is handled by mutexes
labeled as � in Figure 16. For the tasks that are in the ready queue, the integrated scheduler determines the
PE to invoke each task and places those tasks to the to-do queue of the assigned PE. Similarly, when multiple
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tasks are scheduled, mutexes are required for the to-do queues as well. These mutexes serialize the execution.
When a worker thread is spawned, it handles the execution and data low management of that speciic task
on the designated PE. CEDR utilizes direct memory access (DMA) blocks and AXI4-Stream protocol [57]. The
udmabuf [58] is used to setup contiguous bufers and handle data transfers between the host CPUs and PEs. In a
CPU-core limited environment with large number of PEs and application tasks, the worker-thread model results
with increased number of context switches to manage each spawned worker thread. Incorporating light-weight
CPU cores tailored for thread management tasks only can reduce the burden on CPU cores that are designated as
PEs [59]. However, the tradeof between reduction in context switching and hardware overhead associated with
the lightweight CPU cores is an open research problem.

Overall, while CEDR has made signiicant strides, the journey towards fully realizing the potential of domain-
speciic architectures continues, with ongoing research and innovation driving progress in overcoming these
challenges.
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