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Abstract

This article is devoted to the experimental and theoretical modeling of a fluid structure instability that
affects the axial balancing system cavities of spatial turbo-pumps. After having explained the design of the
laboratory experiment that mimics the real industrial set-up, we describe the observation of the instability
that emerges due to the coupling of acoustic modes of a fluid cavity with the deformations of a metallic disc
that closes the cavity when a flow passes through the system.

The system bifurcates towards a vibrational state via a Hopf bifurcation that can be super critical or sub
critical, depending on the flow rate and inlet aperture. The experimental arrangement is fully described and
tested in order to build a theoretical model that predicts very well the observed threshold of the instability.

Therefore, we expect our model to be predictive for real industrial cases.

1. Introduction

In the aerospace industry, turbo-pumps as illustrated in figure 1 (a) are equipped with very high speed
rotating turbines whose rotating frequency can be as high as 100,000 rpm. Their role is to fuel the combustion
chamber of the rocket engine with a high flow rate of propellant at optimized pressure. Because of the
extreme hydrodynamic regimes encountered in these machines, the axial position of the rotors cannot be
solely realized by mechanical components such as ball bearings. Therefore, to operate in this regime of
intense mechanical loading, the force balance is ensured by the derivation of a part of the propellant flow
into a cavity behind the rotor called an hydrostatic bearing or an Axial Balancing System (ABS) [2, 3].
This rotor-stator cavity is delimited radially by an inner and an outer valve positioned respectively at the
periphery of the rotor and at its center. The equilibrium of dynamic pressure is responsible for the axial
positioning of the rotor. However, in certain specific conditions, the response of the compressible fluid to
the rotor displacements and/or deformations can lead to vibrations and instabilities. Verhille and Le Gal
[4, 5] considered an ABS with a rigid and axially mobile rotor and showed the appearance of a low frequency
instability where the rotor oscillates axially.

In the present study, we consider a second kind of instability involving the deformability of the rotor.
So far, two kinds of instability have been observed. The first one is induced by the rotation of the disc and
it involves the rotor flexibility and its coupling with the flow generated by the rotation. It has been studied
in the context of high speed magnetic hard drives [6, 7]. It results in the growth of non axisymmetric
deformation modes. The second instability, which is studied here, is due to the coupling between the
deformations of the disc and the modulation of the pressure drop across the valve due to these deformations.
This instability does not require any rotation of the disc or of the fluid and both axisymmetric and non-
axisymmetric modes can be excited. In the present study we focus on the axisymmetric modes that are
relevant in the context of spatial turbo-pumps. These complex interactions between hydrodynamic and solid
structures may be critical for turbo-pumps. Thus, a better understanding of the fluid/structure interactions
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in rotor/stator systems plays a key role to improve the reliability and the performance of spatial turbo-
pumps.

The paper is organised as follows. Section 2 describes the design and the characteristics of the exper-
imental setup that allows us to investigate this instability in well controlled conditions. Then, sections 3
and 4 are devoted respectively to the full characterisation of the setup and to the description of the observed
instability. To analyse this fluid/structure instability, we develop a model presented in section 5.

2. Experimental setup

2.1. Design principles

The setup under study in the present work is composed of a disk, clamped at its center, whose upper
side near its outer edge is very close to an annular surface (Fig. 1). Above the disk an admission tube is used
to inject air at high flow rate. After passing through the thin annular opening, the inner valve, the air flows
into a cavity under the disk before going through an exit orifice. Under a given air flow, the system reaches
an equilibrium state, characterised by an axisymmetric bending deformation of the disk, thus adjusting the
pressure drop through the inner valve. Under some conditions the system presents an instability resulting in
self sustained oscillations of the disk. Determining the conditions under which this instability occurs is the
goal of the paper. Note that, in our study the disk does not rotate, as it will be shown later, the instability
does not require its rotation.
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Figure 1: (a) Example of Liquid Oxygen turbo-pump with Axial Balancing System framed in red [8].( b) Simplified model
of the Axial Balancing System. The flow is depicted with the blue arrows. The motion of the disk (sketched in light green)
changes the gap a and thus changes the flow condition. This motion may couple with a fluctuating cavity pressure Pc thus
triggering an instability.

In practice, several criteria have to be satisfied to observe the desired instability. To maximise the
amplitude of the axisymetric vibration mode of the disc, it is beneficial to tune the shape and the frequency
of the acoustic mode in the cavity with the ones of the normal mode of the disk. The eigenfrequencies for
the acoustic cavity ωf and for the axisymmetric bending mode of the disc ωd are

ωf = λf
c0
R

(1)

ωd = λd

(
1

R

)2
√

D

ρdh
(2)

where D = Eh3/12(1− ν2) is the bending modulus of the disc of thickness h, ρd is its density, E the Young
modulus and ν the Poisson coefficient. λf and λd are two numbers that characterise the acoustic and the
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elastic modes. They depend on the boundary conditions in the setup. When these two frequencies are equal
the thickness of the disc is given by

h = R
λf
λd

c0
cd

√
12(1− ν2), (3)

where c0 is the speed of sound in the working fluid and cd = (E/ρd)1/2.
The geometry of the inner valve is also a key element in the dynamics of the system. The pressure drop

across the valve can be written ∆P = ξ(a,Re)ρV 2
0 where ρ is the fluid density, V0 is the mean velocity

proportional to the flow rate Q0 and ξ(a,Re) the non-dimensional coefficient of the pressure drop that
depends on the geometry of the valve and especially on the valve aperture a and on the flow conditions. As
we shall see in section 5 the threshold of the instability strongly depends on the stiffness of the valve. Our
setup is designed to allow for a change of the initial valve opening a0, i.e. the opening at rest, without air
flow. From this threshold, one can define a critical flow rate above which the system is unstable. In our
facility, this critical flow rate should be lower than 11 L/s (i.e. 40 m3/h) constraining the geometry of the
valve.

Laser sensor

Inlet pipe

Pressure sensor

Inductive sensor
Air outlet

Loudspeaker

(a) (b)

(c)

Axial balancing system
(inner valve, disk,
cavity)

Figure 2: (a) Photograph of the setup with the 50 cm long inlet pipe having a 170 mm inner diameter. (b) Disc fixed above
the cavity. The upper part of the cavity has been removed. (c) The bottom part of the cavity cavity with 3 inductive sensors,
2 laser sensors, one pressure port, 2 microphones and one loudspeaker that can be replaced by a visualisation window.

For the sake of simplicity of the experimental setup, we decide to work with air at ambient temperature.
The disc is made of stainless steel with a density ρd = 7700 kg.m−3, a Young modulus E = 203 GPa and a
Poisson coefficient ν = 0.3. Gravity is negligible. The radius of the disc is R = 90 mm and its thickness is
h = 4 mm. The disk is held by a 300 mm in diameter hub that partially fills the acoustic cavity of height
H = 5 mm and radius 95 mm. The walls of the cavity and the upper part of the inlet valve are made of the
same steel as the disc to avoid differential thermal dilatation. Pictures of the experimental setup are shown
in figure 2.

The valve aperture is controlled by a ring positioned between the bottom of the cavity and the upper
part of the inlet valve. We can choose between four different rings with calibrated thicknesses of 9.00, 9.05,
9.10 and 9.15 mm and several intermediate rings made of paper with a thickness of 0.09 mm. The 9.00 mm
thickness ring is used to control the initial position of the disc by imposing a0 = 0 mm. The air flow enters
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in the cavity by the inner valve and exits to ambiant air at the center of the cavity through an annulus
around the hub that is drilled by eight 10 mm diameter holes.

2.2. Instrumentation

To characterise the instability several sensors are installed on the setup to measure the different param-
eters. Upstream of the cavity, a flow meter (Krohn H250-RR) measures the flow rate crossing the cavity
within the range 0.35 – 35 m3/h. As can be seen on the left of Figure 2, an upstream cavity (50 cm long
and 170 mm in diameter) is used as a tranquillising chamber upstream the ABS cavity. The clean dry air
flow crossing the cavity is provided by a compressor with a maximal pressure of 7× 105 Pa. The flow rate
is controlled by several valves which allow both a fine tuning of the desired flow rate and a short transient
time to reach the stationary state. A differential pressure sensor (NXP MPX5500) is used to measure the
pressure drop at the inlet valve within the range of 0-500 kPa, with a sensibility of 9 mV/kPa and with
a response time of 1 ms. Two microphones, one omnidirectional and one unidirectional, provided by PUI
Audio, are mounted flush to the cavity floor. They measure the acoustic modes within the range of 0.2-
2 kHz. The vibrations of the disc are measured with two laser position sensors (Keyence LK-H052) located
at the same radius r = 7 cm but separated by an angle of 90◦ or 135◦. The acoustic modes of the cavity are
initially characterised with a loud speaker K12.25 provided by Visaton, mounted flush on the bottom of the
cavity which correspond to the stator in a rotor-stator cavity (see Figure 2 c). All the data are digitalized
simultaneously at 10 kHz with a NI 6220 acquisition card.

3. Setup characterization

3.1. Characterization of bending modes and acoustic modes

Preliminary to the stability study of the axial balancing system, we perform different test to characterize
the system. With the disk held in position, we proceed to ping-tests by gently tapping the disk and recording
its response with the two laser vibrometers. We describe here the measurements made in the presence of the
enclosure, i.e. in the presence of the acoustic cavity underneath the disk and of the upper surface including
the inner valve upper surface.

The response of the disk to the ping test is shown in figure 3. The signal is strongly damped. The
periodogram exhibits peaks at 485 Hz, 606 Hz, 740 Hz, 1576 Hz. The theoretical values [9] expected for an
annular disk clamped at ri = 15 mm and free at R = 90 mm with the material properties given in section
2.1 are 528 Hz for the mode with one Nodal Diameter (1ND), 586 Hz for the axisymmetric mode (0ND), 742
Hz for the mode 2ND and 1523 Hz for the mode 3ND showing a good agreement with the measured values.
As will be discussed in details later, a key ingredient in the estimation of the instability threshold will be the
damping associated with the vibration of the disk. To estimate the damping coefficient of the axisymmetric
mode, we compute the Fourier spectra of the displacement signal for short subsets and then measure the
decay in time of the amplitude of the 0ND mode [10] at frequency f0 = 606 Hz. The results of the analysis
are shown in the inset of figure 3. The exponential decay of the amplitude of the 0ND mode at short times
is characterized by a decay rate τ−1d = 78 s−1, leading a damping coefficient ζd = τd/(2πf0) = 0.021.

The ping tests have been performed with a clamping torque applied to the upper bolt holding the disk
of 70 N.m. Tests have shown that if the clamping torque is lowered the damping is stronger. The value of
70 N.m was chosen to avoid possible wrapping of the disk. We attribute the unusually high value of the
damping coefficient to the coupling between the disk vibration and the fluid motion in the thin gap between
the disk and the upper surface (i.e. the inner valve). During disk vibration air has to be repetitively sucked
in and expelled from the thin interval, and without the upper surface, the damping coefficient was measured
lower (by a factor approximately equal to ten).

In addition, to characterize the acoustic modes of the cavity in the absence of flow, a white noise is
generated by the loudspeaker and the variations of pressure in the cavity are measured by the microphone.
Two main peaks have been identified in the pressure spectrum. The main one around 2330 Hz corresponds
to the first azimutal mode. The second one in the range 575−830 Hz corresponds to an axisymmetric mode
of the cavity and is close to the first axisymmetric bending mode of the disk.
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Figure 3: (a) Signal measured during a ping test by one of the laser vibrometer. (b) The periodogram of this signal (computed)
between t = 0 and t = s. The peak corresponding to the axisymmetric mode at 606 Hz is marked by an arrow. (Inset)
Computing periodograms on subset of the signal of lengths 51 ms, the decay rate of the mode at 606 Hz can be determined.
The red line corresponds to the exponential fit of the points above noise level. The decay rate is τ−1

d = 78 s−1.

In presence of an air flow, acoustic modes of the tranquillising chamber are also excited. To avoid a
coupling between these modes and the modes of the disc, a piece of foam in the upper half part of the
pipe has been added shifting the chamber modes around 350 Hz minimizing the coupling with the bending
modes.

3.2. Characterization of the inner valve

A detailed characterization of the inner valve, i.e. the narrow annular section through which the fluid
flows into the acoustic cavity, will prove to be crucial in our analysis. In the experimental setup we record
the pressure drop ∆P for different flow rates Q0 and initial apertures a0. The pressure drop is measured
between two sensors located in the admittance chamber above the disk and in the acoustic cavity at r = 90
mm. As the flow rate Q0 is increased, the pressure drop increases and the disc bends due to the pressure
difference ∆P between its two sides. With the assumption of an elastic response, the transverse displacement
field uz(r) is linear with the pressure difference ∆P . The solution for an annulus free at r = R and clamped
at r = αR with α < 1 reads [11]

uz(r) =
∆P R4

64D

{
r4

R4
− 8

r2

R2
log
( r
R

)
+K1

r2

R2
+K2 log

( r
R

)
+K3

}
, (4)

where the three constants K1,2,3 depend on the aspect ratio α and the Poisson ratio ν and are determined
using the boundary conditions (Appendix A). We assume here that the pressure in the cavity is uniform.

The measurement of the displacement uz(r) at r = 72 mm is in good agreement with this theory, as seen
in Figure 4.a). The deviation from linear behaviour observed for ∆P > 4000 Pa corresponds to an unstable
regime where vibrations are observed. We can use the stationary solution 4 to compute the valve aperture
a = a0 + uz(R).

The pressure drop across the valve can be written ∆P = ρ0V
2
0 f(α,Re), with V0 = Q0/πR

2 where the
function f depends on the aperture α = a/R and on the Reynolds number Re = aV0/µ, with µ the dynamic
viscosity. There is no simple way to determine the function f but correlation formula are commonly used [12].
Here we use the formula

∆P

ρV 2
0

= C1
C2α

1/2 +Re

α2Re
, (5)
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Figure 4: (a) Transverse displacement of the disc measured by the laser sensors at r = 72 mm as a function of the differential
pressure across the inner valve for different valve apertures a0. The blue curve represents the theoretical solution of equation 4.
(b) Pressure loss across the valve ∆P/(ρV 2

0 ) as a function of the non dimensional parameter of Eq.( 5) with C1 = 0.128 and
C2 = 54.7.

where C1 = 0.1519 and C2 = 99.85 are obtained by fitting the experimental data. Eq. (5) offers a fair
description of the experimental data over the range of α and Re explored in the experiment (Fig. 4).

4. Description of the instability

4.1. Critical flow rate

Figure 5(a) presents a typical evolution of the disc vibration when the flow rate increases slowly up to
values above the instability threshold. We observe a rapid increase of the amplitude of vibration when the
threshold is crossed (near t = 1 ms). The critical flow rate is defined by the flow rate for which the amplitude
of vibration is 4 times larger than the rms of the noise without flow. The evolution of the critical flow rate
with the valve aperture has been investigated experimentally. It is represented in Figure 5.b) and compared
with the theoretical predictions determined in section 5. This curve will be discussed in more details during
the derivation of the analytical model.

As shown in figure 7.c), the frequency of the excited mode is around 610 Hz close to the threshold. This
frequency and the analysis of the phase shift between the two vibration sensors evidence that the excited
mode is indeed the axisymmetric bending mode.

4.2. Bifurcation

Figure 6 represents two typical evolutions of the maximum and minimum values of the transverse de-
formation of the disc, measured at r = 72 mm. For small apertures, Fig 6 (a), the behaviour is typical of
a supercritical bifurcation. Below the threshold (Q < Qc), vibrations are negligible. Above the threshold
Q > Qc, the amplitude of vibration Avib increases continuously as Avib = (Q − Qc)

1/2 for Q & Qc. The
oscillations are symmetrical around the equilibrium position of the disc for intermediate flow rates (here
between 0.55 and 0.8 L/s). For higher flow rates, vibrations become asymmetrical when the disc comes into
contact with the upper part of the cavity. This occurs when the amplitude of vibrations are greater than
the mean valve aperture.
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Figure 5: (a) Time evolution of the disc displacement uz (top) measured at r = 72 mm and the flow rate (bottom) for an
initial aperture a0 = 170 µm . The amplitude of the vibrations increases when the flow rate crosses the critical flow rate (near
t = 1.0 s). (b) Evolution of the critical flow rate as a function of the valve nominal aperture a0.

For larger apertures, the transition becomes subcritical and a small hysteresis is observed, see Fig. 6 (b).
The hysteresis is repeatable and each point represents a stationary regime.

For large apertures, for which higher flow rate can be reached before crossing the critical one, we also
observe oscillations of small amplitude as shown in Fig. 6 (b). We argue that such small amplitude vibrations
are induced by the turbulent flow and not the instability as they do not present the characteristic growth
as it is observed in the preceding cases. They do not present the characteristic growth associated with an
amplitude. A critical flow rate can still be observed. Above the threshold, the amplitude of vibration is
almost six times greater than before the bifurcation and does not seem to depend on the flow rate. At this
stage, the disc comes into contact with the upper part of the cavity.

The signature of a supercritical bifurcation is also observed on the growth rate of the most unstable mode.
To estimate this timescale, we fit the amplitude of vibration by an exponential law Avib(t) = A0 exp(−t/τ),
as seen in Fig. 7 (a) when the flow rate varies rapidly from Q = 0 to Q = Qf . The evolution of the growth
rate 1/τ is presented in Figure 7 (b). The growth rate increases first linearly with Qf −Qc before reaching
a steady value, here τ ' 26 ms for a0 = 40 µm. The saturation of the growth rate may either be due to the
establishment of the flow inside the cavity or to the complete closing of the valve when the disc collides the
upper part of the valve. This evolution of the growth rate is accompanied by a slight modification of the
frequency of vibration, as shown on Figure 7.(c). At threshold, the pulsation is close to 610 Hz and reaches
frequency as high as ∼ 655 Hz for the largest flow rate.

5. Theoretical interpretation

5.1. Governing equations

To gain insight into the dynamics of the Axial Balancing System we propose here a simplified model
coupling a deformable disc, an acoustic cavity and an inner valve whose aperture depends on the disc motion.
We build a model taking into account these different ingredients to emphasize the key parameters in this
system. The general approach used in the present study of a turbo-pump is similar to the description of
wind musical instruments with vibrating reed valves such as clarinets [13, 14]. It consists in the coupling
between an acoustic cavity and an elastic deformable element whose motion influences the flow in the cavity.
If the general principles are similar in the two systems (wind instrument and turbo-pump) the geometry
and the flow conditions are different.
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Figure 6: Evolution of the amplitude of the displacement of the disc in r = 72 mm as the flow rate changes. The red symbols
are for the higher position of the disc (larger aperture), and the blue ones are for the lower position (smaller aperture). (a)
Displacement for an initial valve aperture a0 = 45 µm. A supercritical bifurcation occurs at Q0 ≈ 0.55 L/s. (b) Displacement
for an initial valve aperture a0 = 170 µm. The bifurcation is subcritical. (c) For larger initial valve aperture a0 = 185 µm
oscillations with limited amplitudes are observed before a sharp transition to vibration of high amplitude. The different graphs
share the same scale for the displacement.

We consider a simplified model as illustrated in figure 1 (b). We approximate the Axial Balancing System
as a cylindrical cavity enclosing a disc of radius R clamped in r = 0. The thickness of the disc h is assumed
to be small enough (h� R) so that the elastic response of the plate can be described by the Kirchoff-Love
elastic plate theory. Nonlinear terms will not be considered as the deformations remain small. The inner
valve is characterized by its aperture, a, between the upper wall of the cavity and the disc. Cylindrical
coordinates will be used and the study is restricted to axisymmetric modes.

The description of the dynamics is based on the coupling between the pressure in the lower cavity and
the transverse vibrations of the disc. In the lower cavity, the fluid dynamics is described by the classical
acoustic wave equation

1

c02
∂2~v

∂t2
−∆~v = 0, (6)

where ~v is the velocity field and c0 is the speed of sound. The acoustic modes are coupled with the
deformation of the disc through the boundary condition as discussed later.

The vibrations of the disc are described by the bending wave equation with a forcing coming from the
differential pressure acting on each face of the disc [15]

ms
∂2uz
∂t2

+D∇4uz = Pin − Pc (7)

where uz is the local displacement in the axial direction, Pin is the constant and uniform pressure above the
disc, Pc is the pressure field in the cavity at the boundary of the disk, which depends on the fluid velocity
~v, see figure 1.b). ms = ρdh and D = Eh3/12(1− ν2) are respectively the surface density and the bending
modulus of the disc where ρd is the density, E the Young modulus and ν the Poisson coefficient. We note
that we do not consider the radial deformation of the disc nor the centrifugal force that may be relevant for
a disc rotating at high speeds. They are not relevant in our experimental setup. Moreover, the gravitational
force is neglected in this study as it is much smaller than the pressure force (Pin − Pc)S where S is the
surface of the disc.

The inner valve controls the pressure drop ∆P = Pin − Pc(R) according to Eq. (5). The pressure drop
across the valve thus relates the flow rate and the pressure in the cavity and it depends on the deformation
of the disc through the variable a = a0 + uz(R).
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Figure 7: (a) Evolution of the amplitude of the vibrations as a function of time after a fast flow increment from 0 to 9.72 L/s
with a0 = 170 µm (blue circles). The red curve represents the fit by the exponential function. (b)1/τ (top) and minimal and
maximal displacement of the disc in r = 72 mm (bottom) as a function of the flow rate Qf for a0 = 45 µm. (c) Evolution of
the measured frequency with the differential pressure accross the inner valve.

5.2. Single mode oscillations of the disc

The general form of the equation for the disc (7) must be solved with the space dependent pressure Pc.
To obtain a simplified system we use an energetic formulation. The kinetic energy of the disc writes

K =
1

2

∫ R

0

ms

(
∂uz
∂t

)2

2πrdr (8)

The potential elastic energy for the bending disc writes

V =
1

2

∫ R

0

D

[(
∂2uz
∂r2

+
1

r

∂uz
∂r

)2

− 2(1− ν)
∂2uz
∂r2

(
1

r

∂uz
∂r

)]
2πrdr (9)

The work of pressure forces writes

W =

∫ R

0

(Pin − Pc)uz2πrdr (10)

It is customary to obtain an approximate formulation amenable to numerical resolution by introducing
an ansatz for the displacement field of the form uz(r, t) =

∑
ak(t)φk(r) where the φk are a given set of

linearly independent approximation functions (see e.g. [16]). In the present work we use the simplest form
of this approach and we focus on a simple form

uz(r, t) = w(t)
( r
R

)2
(11)

This form provides a simple approximation for the first mode of the disc (though it does not verify the
boundary conditions – free moment and free shear force – at r = R). Using this form and performing the
derivative yields an equation

mẅ + kw = Pin − Peff (12)

with
m = 2ms/3, k = 16D(1 + ν)/R4

and an effective pressure

Peff =
2

πR2

∫ R

0

Pc(r)
( r
R

)2
2πrdr (13)
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We note here that this approach does not take into account dissipation that will be heuristically incor-
porated later. We note also that this simplified approach predicts a free vibration eigenfrequency ωapp =
(D/µR4)1/2[24(1 + ν)]1/2 ≈ 5.58(D/µR4)1/2 while the exact analytic solution, yields ω ≈ 3.752(D/µR4)1/2

[9].
To explore the possibility of an instability developing in the Axial Balancing System we consider the sum

between a stationary state, called ”reference state” hereafter, and a random perturbation with a zero mean
materialized by a tild over the variable (see e.g. [1]).

5.3. Reference state

To explore the possibility of an instability developing in the Axial Balancing System, we consider a
stationary state we first consider the stationary state associated with a constant flow rate Q0 = πR2V0. The
flow in the cavity is then obtained from the continuity equation

vr(r) = VR
R

r
=

Q0

2πHr
= V0

R2

2Hr
(14)

with VR = Q0/(2πRH). We have assumed that the small deflection of the disc is negligible compared to H.
The pressure field in the lower cavity is given by Bernoulli’s relation

P0(r)− P0(R) =
1

2
ρ0V

2
R

[
1− (R/r)2

]
(15)

The pressure field can be used to compute the effective pressure from eq. (13)

Peff = P0(R)− 1

2
ρ0V

2
R = P0(R)− 1

2
ρ0V

2
0

(
R

2H

)2

(16)

To close the system we use the characteristic equation of the inner valve (eq. 5)

∆P0 = Pin − P0(R) = ρ0V
2
0 C1

C2α
1/2
0 +Re0
α2
0Re0

(17)

where α0 = (a0 + w0)/R and Re0 = ρ0V0(a0 + w0)/µ yielding an equation for the displacement in the
reference state w0

kw0 = Pin − P0(R) +
1

2
ρ0V

2
R = ρ0V

2
0

{
C1
C2α

1/2
0 +Re0
α2
0Re0

+
1

2

(
R

2H

)2
}

(18)

We note that the second term in the brace is negligible compared to the first one.
The value of w0 can be computed from this equation for a given set of parameters. The result is shown

in figure 8, together with experimental measurements. Despite the simplifying hypotheses, the agreement
between theory and the measurements is good. We note that for small values of V0, an asymptotic solution
at leading order in V0 writes w0 ∼ C1C2µV0/(ka0)(R/a0)3/2

5.4. Stability analysis

The experiment is characterized by the appearance of self sustained oscillations as the flow rate reaches
a critical value. To study the threshold we perform here a perturbation analysis of the reference state. A
perturbation of the system is added on the stationary state calculated earlier:

w(t) = w0 + w̃(t) (19)

Q(t) = πR2V0 + Q̃(t) (20)

Pc(r, t) = P0(r) + P̃c(r, t) (21)
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Figure 8: The displacement of the disc w0 in the reference state for different values of the initial opening a0. The solid
lines show the solutions of eq. (18) and the dots show experimental measurements (note that the measured displacements are
multiplied by (9/7)2 because measurements were performed at r = 72 mm and not at the outer edge R = 90 mm. See also
eq. 11). For the computations we use the geometry and the material properties for the disk given in the text (section 2) and
for the fluid ρ0 = 1.29 kg m−3, µ = 18.1 × 10−6 Pa s.

The dynamics of the disk is given by the relation deduced from eq. (12)

¨̃w + 2ζdωd
˙̃w + ω2

dw̃ = − 1

m
˜Peff (22)

where ωd = (k/m)1/2. The damping term 2ζdωd
˙̃w is not present in eq. (12). We introduce it to account

for the damping of the vibrations of the disk. The damping coefficient ζd can be deduced directly from the
estimation of the damping of the vibrations of the disk presented in section 3.2 and in Fig. 3.

To allow for a better understanding of the stability of the system, we adopt a simple model for the
acoustic cavity. We consider that the cavity behaves like an acoustic resonator near the first eigenfrequency.
The derivation of the model is detailed in Appendix B and in this section we use the following form to
describe the cavity near its resonance

¨̃PR + 2ζcωc
˙̃PR + ω2

c P̃R = Z0
1

τc

˙̃Q (23)

where P̃R(t) = P̃c(R, t) and Z0 = ρ0c0/(πR
2) is the acoustic impedance associated with the cavity. The

resonator is characterized by its eigenfrequency ωc whose values is typically a constant of order 1 times the
characteristic frequency c/R, by a damping coefficient ζc that depends on the exit condition, and by a time
constant τc that characterizes the stiffness of the cavity. The different parameters depend on the geometry
of the cavity and can be determined by using the method of Appendix B. In addition to this relation we
assume that in the regime under study, the effective pressure is related to the pressure at r = R by a linear
relationship ˜Peff = γP̃R. The value of γ is also an outcome of the analysis of Appendix B.

Finally the behaviour of the inner valve is linearised. Starting from eq. (5) a linear relationship between
the pressure perturbation at the exit of the inner valve P̃R = P̃c(R, t), the perturbation flow rate Q̃ and the
perturbation of the position w̃ reads

Q̃ = −AP̃R +Bw̃ (24)

where

A =
πR2

ρ0V0

Re0 α
2
0

C1

(
2Re0 + C2 α

1/2
0

) and B = πRV0
4Re0 + 5C2 α

2
0

2α0

(
2Re0 + C2 α

1/2
0

) (25)

A and B vary with the imposed flow rate Q0 = πR2V0. In the limit of small flow rate (Q0 → 0),

A ≈ πa5/20 R1/2/(C1C2µ), B ≈ 5πR2V0/(2a0) (26)
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Using Eq. (24), the system formed by Eqs. (22) and (23) has two unknown variables, w̃(t) and P̃R(t). To

study the stability of the reference state, we look for solutions of the form
(
w̃(t), P̃R(t)

)
=
(
ŵ, P̂R

)
exp(st).

The growth rate s is then given by the characteristic equation

s4 +A2s
3 +A3s

2 +A4s+A5 = 0 (27)

where

A2 = 2ζcωc + 2ζdωd +
AZ0

τc

A3 = ω2
c + ω2

d + 2ζdωd

(
2ζcωc +

AZ0

τc

)
A4 = 2ζdωdω

2
c + ω2

d

(
2ζcωc +

AZ0

τc

)
+
B Z0γ

mτc

A5 = ω2
cω

2
d

All the coefficients Ai are positive. When Q0 = 0, B is zero and the two damped oscillators described
by Eqns (22) and (23) are not coupled. The polynomial has four complex roots, conjugate by pairs with
negative real parts. We assume here that the damping coefficients are not too high, a condition fulfilled in
the experiment (otherwise real negative eigenvalues may be obtained).

As Q0 increases, the eigenvalues move (continuously). The solution can become unstable when two
complex eigenvalues cross the imaginary axis with a non-zero imaginary part (a single real eigenvalue crossing
in zero is not possible because A5 > 0). The evolution of the real and imaginary parts of the eigenvalues is
shown in figure 9 for a set of parameters deduced from the experiment.
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Figure 9: Evolution of the real and imaginary parts of the eigenvalues (solutions of Eq. 27). The system is stable for low flow
rates with four complex eigenvalues (conjugate by pair) with negative real parts. As the flow rate increases a pair of eigenvalues
crosses the imaginary axis. For the figure the geometrical parameters and material properties of section 2 are used with the
properties of the cavity obtained in Appendix B and given in figure B.11. The damping coefficient of the disk is ηd = 0.025
and the initial aperture is a0 = 50 µm.

It is then straightforward to show (Appendix C) that the stability is maintained when

S = A2A3A4 −A2
4 −A5A

2
2 < 0 (28)

The different terms that appear in the stability equation evolve when Q0 changes. Eq. (28) presents a
complicated variation with the different physical parameters and it is not easy to extract a general relation
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for the critical flow rate for a given set of parameters. However, using the physical parameters of the
experiment, it is possible to determine the value of the critical flow rate for each value of the initial valve
aperture a0. In figure 10 we present a stability boundary in the plane (a0, Q0). The system is unstable
above the stability threshold. The theoretical value is compared with the measurements and it shows a good
agreement for the measured value of the structural damping ζd.
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 ( m)

0

2
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6

8
Q

 (m
/s

)

Figure 10: Stability threshold for the Axial Balancing System (solid line) obtained from Eq. (28). Above the critical flow rate
Q0 the system is unstable. The boundary is computed for the parameters of section 2 and the properties of the cavity obtained
in Appendix B and given in figure B.11. The damping coefficient of the disk is ζd = 0.021, the dots represent the critical flow
rates measured in the experiment and the dashed line shows the approximate solution of Eq. (32).

5.5. Approximate stability boundary

Finally it is worth examining a simplified situation. Using the approximations for small flow rates given
in Eq. (26), the stability variable S takes a simpler form. This approach emphasizes the importance of
the valve stiffness B = ∂Q/∂w that triggers the instability through the term A2

4 in Eq. (28). With the
approximations of Eq. (26), A does not change with the flow rate and we define

ζ ′c = ζc +
AZ0

2τcωc

A4 is the only variable varying with Q0 and the stability equation can be written

−A2
4 +A2A3A4 −A5A

2
2 = 0 (29)

with an associated solution

A4 =
A2

2

(
A3 +

√
A2

3 − 4A5

)
(30)

The other solution (with a “−” in front of the square root) lead to a negative flow rate and is not considered
in this analysis. An additional simplification is obtained by writing A3 ≈ ω2

c + ω2
d, i.e. discarding the term

which is multiplied by the small factor η′cηd. With this approximation, we obtain

A4 ≈
A2

2

(
ω2
c + ω2

d +
√

(ω2
c − ω2

d)2
)

= A2 max(ω2
c , ω

2
d) (31)

Finally replacing A4 we obtain a stability condition

� if ωc > ωd,
5Q0

2a0

Z0γ

mτc
. 2η′cωc(ω

2
c − ω2

d) (32)
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� if ωd > ωc,
5Q0

2a0

Z0γ

mτc
. 2ηdωd(ω2

d − ω2
c ) (33)

This approximate formula emphasizes the different conditions that influences the instability threshold. The
instability occurs at lower flow rates for small damping, for matched eigenfrequency between the disk and
the cavity and for a small response time of the cavity τc. Quantitatively the validity of this approximation
is limited to small values of Q0 (see 10) and thus cannot be used in practical design situations.

6. Conclusion

The instability of a deformable disc in an Axial Balancing System of a turbopump was demonstrated in
a well controlled experiment. By matching the eigenfrequencies of an acoustic cavity and a deformable disk
and by carefully controlling the inner valve geometry, we were able to trigger self-sustained oscillations. We
emphasize here the efficiency of the resonant interactions that lead to significant oscillations of the rigid disk.
We provide a complete characterization of the experimental system to allow for comparison with models or
numerical simulations.

We propose a model to study the coupling between the axisymmetric modes of the disk and the cavity.
The model is used to compute the critical flow rate at which the stationary state of the disk becomes
unstable. The prediction of the model is compared with the critical flow rate determined in the experiment
and it shows a very good agreement. These results attest the validity of our analytical interpretation that
involves a competition between two coupled oscillators, the acoustic cavity and the disc, and emphasizes the
role of the stiffness of the inner valve.

The model was validated for a specific range of pressure loss and flow condition. An exact formulation of
the pressure loss through the inner valve may be used to extend the stability condition to a specific geometry
of the Axial Balancing System. In addition a further improvement to the predictive aspect of the model
would be to improve the model to allow for the determination of the damping of the disk.

Finally, it is worth noting that non-axisymmetric mode may also become unstable (at higher flow rates).
Our analysis could be adapted to account for such cases but this is out of the scope of the present study.

The authors wish to acknowledge Giuseppe Fiore from the CNES (French space agency) and Martin Seive
and David Testa from Ariane Group for scientific discussions during this research collaboration founded by
the CNES under contract RT-CT-253-0000-1804-CNES.

Appendix A. Static solution for an annular disk with a uniform pressure drop across its faces

The solution for a disk clamped at αR (with α < 1) and free at R with a uniform pressure difference
∆P applied to its faces reads

w(r) =
∆P R4

64D

{
r4

R4
− 8

r2

R2
log
( r
R

)
+K1

r2

R2
+K2 log

( r
R

)
+K3

}
, (A.1)

with

K1 = 2
−α4(1− ν) + 2α2(1− ν) + 4α2(1− ν) log(α) + ν + 3

α2(1− ν) + 1 + ν
,

K2 = 4α2 −α2(ν + 1) + 4(ν + 1) log(α)− 1 + ν

α2(1− ν) + 1 + ν
,

K3 = α2 α
4(1− ν) + α2(3ν − 5) + 4

[
α2(ν + 1) + ν + 3

]
log(α)− 16(ν + 1) log2(α) + 2(ν + 3)

α2(1− ν) + 1 + ν

This form is compared with the measurements in Fig. 4.
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Appendix B. Acoustic cavity

In this section, we propose a model to characterise the response of the acoustic cavity. Since the forcing
and the viscous terms are neglected in the wave equation 6, the velocity field is irrotational and it is
convenient to solve equation (6) using the velocity potential ψ defined as ~v = ~∇ψ. The acoustic equation
then becomes

1

c20

∂2ψ

∂t2
−∆ψ = 0 (B.1)

We consider that the geometry of the cavity is imposed i.e. we neglect the influence of the small
displacement of the disc on the boundary condition at z ≈ 0. The different boundary conditions for an
harmonic perturbation write

vz(r, z = 0) = 0 (B.2)

vr(r = R, z) = −V̂Q exp(−iωt) (B.3)

vr(r = 0, z) = 0 (B.4)

vz(r, z = H) = V̂xH(r −Rx) exp(−iωt) (B.5)

where H(x) = 1 if x < 0 and 0 otherwise. We assumed that the motion of the disc does not significantly
modify the acoustic response of the cavity and therefore we enforce no motion at the contact with the
disc. In addition we consider that the entry conditions result in a plug flow with a uniform radial velocity
V̂Q = Q̂/(2πRH) and that the output of the cavity is also characterized by a plug flow with an harmonic

exit flow rate Q̂x exp(−iωt) localised in r ≤ Rx with a velocity V̂x = Q̂x/(πR
2
x) where Rx is the radius of

the exit section.
Considering equation (B.1) in cylindrical coordinates and looking for the harmonic response, we can

write it under the form of a Bessel equation [17, 18]. Considering only the axisymmetric modes, the solution
writes

ψ =
∑
k

J0(pkr)
1

2

[
Ake

qkz +Bke
−qkz

]
e−iωt (B.6)

with p2k = q2k + (ω/c0)2, where qk is the wave number in the axial direction z. The pk’s form a discrete set
imposed by the boundary conditions as shown below. J0 is the zero order Bessel function of the first kind,
and the magnitudes Ak and Bk are to be determined with the boundary conditions.

In the specific radial and axial directions, the velocities vr and vz are obtained from the derivative of ψ
in r and z respectively. Equation B.2 yields Bk = Ak leading to

vr =
∑
k

−pk J1(pkr)Ak cosh(qkz)e
−iωt (B.7)

vz =
∑
k

qk J0(pkr)Ak sinh(qkz)e
−iωt (B.8)

To enforce the boundary condition B.3 we write the solution for vr under the form

vr =

{
−p0A′0J1(p0r) +

∞∑
k=1

−pk J1(pkr)Ak cosh(qkz)

}
e−iωt (B.9)

with A′0 = V̂Q/[p0J1(p0R)] and p0 = ω/c0. For all other modes, the pk form a discrete set of values verifying
J1(pkR) = 0 for k = 1, 2, · · · . The equation J1(λ) = 0 has an infinity of discrete solutions λk, the zeros of
the Bessel function J1. The general solution then writes,

ψ =

{
A′0J0(p0r) +A0 cosh(q0z) +

∞∑
k=1

J0(pkr)Ak cosh(qkz)

}
e−iωt (B.10)
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with q0 = i(ω/c0).
We now impose the condition B.5. We consider a harmonic output flow rate Q̂x exp(−iωt) resulting in

vz = V̂x exp(−iωt) for r < Rx and vz = 0 otherwise, with V̂x = Q̂x/(πR
2
x)

The coefficients Ak can be determined by using the relation∫ R

0

r J0(pkr) J0(pk′r) dr =
1

2
R2J2

0 (pkR)δ(k − k′) (B.11)

that holds because J1[pkR] = 0 (see e.g. [19]) and one obtains for k = 1, 2, ...

Ak = V̂x
2RxJ1(pkRx)

pkqkR2J2
0 (pkR) sinh(qkH)

(B.12)

and

A0 = V̂x
R2

x

q0R2 sinh(q0H)
(B.13)

The pressure field in the cavity that couples with the vibration of the disk can then be obtained through
the relation Pc = −ρ0∂Ψ/∂t in z = 0.

In the following, the non dimensional quantities will be used

ω̃ =
ωc0
R
, η =

H

R
, σ =

Rx

R
(B.14)

together with the variables r̃ = r/R and z̃ = z/H and the solution for the velocity potential can be written

ψ =

{
Q̂

πR
Ã′0J0(p̃0r̃) +

Q̂x

πR
Ã0 cosh(q̃0z̃) +

Q̂x

πR

∞∑
k=1

Ãk J0(p̃kr̃) cosh(q̃kz̃)

}
e−iωt (B.15)

p̃0 = ω̃, q̃0 = iηω̃, p̃k = λk, q̃k = η
√
λ2k − ω̃2 (B.16)

where λk is a zero of the J1 Bessel function and

Ã′0 =
1

2ηp̃0J1(p̃0)
, Ã0 =

η

q̃0 sinh(q̃0)
, Ãk =

2ηJ1(p̃kσ)

σp̃kq̃k sinh(q̃k)J2
0 (p̃k)

, (B.17)

The acoustic field depends on the exit flow rate Q̂x that is not known a priori. We consider that the
exit conditions are those of a massless piston, thus assuming a homogeneous exit velocity. Computing the
impedance associated with such condition is a classical problem of acoustics (see e.g. [20]) and the impedance
can be written

Zx =
P̂x

Q̂x

=
ρ0c0
πR2

x

(ax − ibx) = Z0
1

σ2
(ax − ibx) (B.18)

with, for Rx small compared with the wavelength,

ax =
1

2

(
ωRx

c

)2

=
1

2

(
ω̃

σ

)2

and bx =
8

3π

(
ωRx

c

)
=

8

3π

(
ω̃

σ

)
Here, the characteristic impedance of the cavity is Z0 = (ρ0c0)/(πR2).

To address the dynamics of the system the impedance Ze in r = R should be computed. Since the
acoustics has been computed with an exit flow rate Qx one can use the two formal relationship

Px = iZ0(αxQ+ βxQx) (B.19)

PR = iZ0(αeQ+ βeQx) (B.20)
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In these equations, Px is the (mean) pressure at the exit section (r ≤ Rx, z = H) and the coefficients αx

and βx can be computed using Eq. (B.10)

αx = ω̃Ã′0
2J1(p̃0σ)

p̃0σ
(B.21)

βx = ω̃

{
Ã0 cosh(q̃0η) +

∞∑
k=1

Ãk cosh(q̃kη)
2J1(p̃kσ)

p̃kσ

}
(B.22)

PR is the pressure at the entry section (r = R, z = 0), and, using Eq. (B.10),

αe = ω̃Ã′0J0(p̃0) (B.23)

βe = ω̃

{
Ã0 +

∞∑
k=1

ÃkJ0(p̃k)

}
(B.24)

Combining eqns. (B.19) and (B.20) with eq. (B.18) yields

Ze =
PR

Q
= Z0

(
iαe − βe

αx

Zx/Z0 − iβx

)
(B.25)

The different coefficients α and β can be computed by performing the summation numerically for a given
set of parameters. The quantity of interest is Ze. It depends on the geometry (i.e. the parameters η and σ)
and Z0. To make the analysis more concrete, we plot the input impedance for a set of parameters related
to the experimental setup in Figure B.11.
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Figure B.11: Non dimensional input impedance Ze/Z0 and effective impedance Zeff/Z0 for R = 90 mm, H = 5 mm, Rx = 14.1
mm. The dots show the real and imaginary parts obtained by computing the sums with 300 modes. The continuous lines show
the approximation by a resonator (eq. B.26) with ωc = 0.976 c0/R, ηc = 0.0129, τc = 0.0461 R/c0 and γ = 0.575.

To perform the stability analysis of the whole system, a simplified form is useful. We note that the
dynamics of the cavity near its first resonance is well approximated by a damped resonator of the form

Ze = Z0
−iω/τc

ω2
c − ω2 − 2iηcωcω

(B.26)
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where τc is a typical time scale of the cavity, ωc is the frequency of the first resonance of te cavity and ηc is
a damping coefficient associated with acoustic radiation through the exit orifice.

Finally, it is worth noting that a similar computation can be performed for the effective pressure Peff

(the equivalent pressure acting on the disk)

Peff =
1

πR2

∫ R

0

2πrP (r, z = 0, t)
( r
R

)2
dr (B.27)

Similar results can be found and in particular, we obtain that in the regime of interest, the effective pressure
can be written Peff = γPR.

To make the simplified more quantitative, we use the different geometrical parameters of the experiment
and notably the value Rx = 14.1 mm that was determined by using the relation πR2

x = Sx where Sx is the
total area of the exit orifices. With these values we obtain (see also Fig. B.11)

τc =
R

c0
0.0461105, ωc =

c0

R
0.976313, ηc = 0.0129, γ = 0.5749 (B.28)

Appendix C. Stability criterion

In the marginally stable state, when a pair of eigenvalues have a zero real part, the characteristic
polynomial can be written

(s− a1 + ib1)(s− a1 − ib1)(s+ ib2)(s− ib2) = 0 (C.1)

When expanding and identifying with the form 27 one obtains

A2 = −2a1, A3 = a21 + b21 + b22, A4 = −2a1b
2
2, A5 = b22(a11 + b21) (C.2)

To obtain a solution of this set of equations, a necessary condition is

A2A3A4 −A2
4 −A5A

2
2 = 0 (C.3)

Therefore, this equation acts as a stability boundary.
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