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Abstract 

Purpose - There is an increasing interest in airfoils that modify their shape to adapt at the flow conditions. The study aims at the evaluation of the 
optimal 4-digit NACA airfoil that maximizes the lift-over-drag ratio for a constant lift coefficient of 0.6, from Re= 1 O" to 3 x 106

• 

Design/methodology/approach - The authors consider a y Re8, transition mode! and a K - w shear stress transport turbulence mode! with a 
covariance matrix adaptation evolutionary optimization algorithm. The shape is adapted by radial basis functions mesh morphing using four 
parameters (angle of attack, thickness, camber and maximum camber position). The objective of the optimization is to find the airfoil that enables a 
maximum lift-over-drag ratio for a target lift coefficient of 0.6. 
Findings - The computation of the optimal airfoils confirmed the expected increase with Re of the lift -over-drag ratio. However, although the 
observation of efficient biological fliers suggests that the thickness increases monotonically with Re, the authors find that it is constant but for a 1 .5 
per cent step increase at Re = 3 x 1 os. 
Practical implications - The authors propose and validate an efficient high-fidelity method for the shape optimization of airfoils that can be 
adopted to define robust and reliable industrial design procedures. 
Originality/value - lt is shown that the difference in the numerical error between two-dimensional and three-dimensional simulations is negligible, 
and that the numerical uncertainty of the two-dimensional simulations is sufficiently small to confidently predict the aerodynamic forces across the 
investigated range of Re.

Keywords Covariance matrix adaptation evolution strategy, Optimal airfoil thickness, Radial basis functions, 
Reynolds-averaged Navier-Stokes simulations, Transitional models, Verification and validation 

Paper type Research paper 

Introduction 

In recent years, there has been an increasing interest in 

morphing airfoils that can operate efficiently across a wide 

range of Reynolds numbers (Re). For example, a tidal 

turbine blade operates in a periodic tidal stream and, every 3 

h, Re varies from 104 to 106
. The blade efficiency would be 

significantly enhanced if its sectional airfoil could adapt its 

shape to the flow conditions (Tully and Viola, 2016).The 

benefit of adopting a variable airfoil geometry has been 

proven in several applications, including aircraft wings and 

helicopter rotors (Stanewsky, 200 l; Barbarino et al., 2011; 

Kuder et aL, 2013) and wind and tidal turbine blades 

(Hansen et al., 2006; Barlas and van Kuik, 2010; Lachenal, 

Daynes, and Weaver, 2013; Tully and Viola, 2016). 

Although the research field of airfoil design (Smith, 1975; 

Lissaman, 1983; Selig, 2003) and multi objective 

optimization (Hicks and Henne, 1978; Drela, 1998; Srinath 

and Mittal, 2010; Minervino et al., 2016) is well established, 

the optimization across a wide range of Reis an open area of 

research. In fact, most of the methods typically used for 

airfoil optimization have been originally developed to mode! 

specific flow conditions and have been validated only in a 

limited range of Re. The aim of this paper is to identify and 

assess a computational fluid dynamics (CFD) method that 

can be efficiently coupled with an optimization strategy and 

that is capable to correctly predict the airfoil performance 

fromRe 104 to 3 x 106
. 

Reynolds number effects 

lncreasing Re can lead to laminar to turbulent transition of the 

boundary layer, and this could postpone or prevent separation. 

As an example, for a small increase in Re from 2 x 105 to 4 x 105
, 

the lift coefficient CL of a half cylinder section switches from 0.5 

to 0.5 due to the transition in the boundary layer (Bot et al., 

2016). At low Re, rough airfoils allow hlgher maximum lift to 

drag ratio than smooth airfoils due to roughness promoting 



Menter, 2005), which is an LCTM that can be used with the
k v shear stress transport (SST) turbulence model for
Reynolds averaged Navier Stokes (RANS) simulations. This
transition model is based on two transport equations: one for
the intermittency, which allows the growth of the natural
instabilities along streamlines, and one for the transition
momentum thickness, which allows the effect of free stream
turbulence to penetrate into the boundary layer.

Objectives and structure of the paper
In this work, we assess the potentialities offered by the g Reu t

transition model for airfoil optimization across a range of Re
that spans from 104 to 3 � 106. The airfoil geometry and the
angle of attack are optimized using an evolutionary
optimization strategy coupled with radial basis functions mesh
morphing for the mesh adaption onto the new shape. The
geometry is constrained to a 4 digit National Advisory
Committee for Aeronautics (NACA) airfoil, which is defined
by the thickness t, the camber f and the chordwise coordinate of
the maximum camber position xf. The objective of the
optimization is to find the airfoil that enables a maximum lift
over drag ratio for a target lift coefficient of 0.6, which is
arbitrarily chosen as a typical value for cruising flight.
We consider bidimensional unsteady RANS (2D URANS)

simulations and we perform verification and validation (V&V)
of the force coefficients. The verification enables the
quantification of the uncertainty due to the numerical error, i.e.
the error between the numerical solution and the exact solution
of the system of equations solved. The validation allows the
determination of the modelling error, which represents the
degree to which these equations and boundary and initial
conditions are an accurate representation of the real physics.
The numerical uncertainty is assessed for both a reference test
case of an SD7003 airfoil, for which experimental data are
available, and for the optimal 4 digit NACA airfoils. We further
investigate the numerical error comparing 2D URANS
simulations with 3DURANS, LES andXfoil.
The rest of the paper is structured as follows. In the Method

section, we present the 2D URANS solver setup, how it is
coupled with the optimization algorithm, how we assess the
numerical uncertainty and the modelling error. In the Results
section, first, we present the numerical uncertainty for the
reference test case and for the 4 digit NACA airfoils, and the
analysis of the modelling error for the reference test case.
Successively we discuss the optimal shapes of the 4 digit
NACA airfoils, the trends with Re of the lift to drag ratio and
the optimal thickness. The main outcomes of this work are
summarized in theConclusions section.

Method

In this section, we present the method of the study. First we
provide an overview of the 2D URANS simulations and of the
optimization problem, and successively we discuss how we
estimate the numerical and themodelling errors.

2DURANS solver setup
We solve the 2D URANS equations for Newtonian fluids and
incompressible flow for an airfoil in open air using a segregated
finite volume solver (Ansys Fluent version 17.2). We use the

transition (McMasters and Henderson, 1980). As an interesting 
example, it has been argued that the peaks and valleys of some 
insect wings, such as the dragonfly Anisoptera, could be functional 
in promoting transition and thus delaying separation (Hu and 
Tamai, 2008).
Transition may occur through three types of mechanisms. 

For a low level of free stream turbulence, Tollmien Schlichting 
waves or cross flow instability may grow into turbulence. If 
laminar separation occurs, the Kelvin Helmholtz instability in 
the separated shear layer might lead to turbulence. Finally, a 
high level of free stream turbulence can penetrate into the 
boundary layer and enable bypass transition.
If transition occurs in the shear layer at sufficiently high Re 

(typically higher than 5 � 104; Carmichael, 1981), transition 
might enable reattachment and the formation of a long type 
laminar separation bubble (LSB). The long type LSB has an 
elongated shape, it covers a significant proportion of the chord 
length and it is associated with a lower lift and higher drag than 
the inviscid solution (Crabtree, 1959). When the Reynolds 
number based on the displacement thickness and the outer 
velocity at the separation point increases above a critical value 
(Klanfer and Owen, 2018), or when the pressure recovery across 
the turbulent mixing region decreases below a critical value 
(Crabtree, 1959), then the long type LSB bursts in a short type 
LSB. The latter is thinner and shorter than the long type LSB, it 
has minimum effect on the pressure distribution (Crabtree, 1959; 
Ward, 1963) and the form factor decreases as much as when 
transition occurs in the attached boundary layers (McMasters 
and Henderson, 1980). The flow separation and the occurrence 
of the two different types of LSB make the aerodynamic force 
trends highly non linear and difficult to predict.

Available numerical methods
Modelling the laminar to turbulent transition is one of the key 
challenges of CFD and, as shown in the previous section, it is of 
paramount importance to correctly predict the aerodynamic 
forces at transitional Re. Between the different methods that 
have been used for modelling transition, from the less 
computationally expensive to those that resolve more physics, 
there are linear stability theory, low Reynolds number 
turbulent models, the local correlation based transition models 
(LCTMs), large eddy simulations (LESs), detached eddy 
simulations (DESs) and direct numerical simulations (DNSs). 
A critical comparison between these methods is available in, for 
instance, Pasquale et al., 2009. The methods based on linear 
stability theory, such as the eN method (Smith, 1956; Mack, 
1977; Ingen, 2008), are incompatible with large free stream 
turbulence levels and cannot predict bypass transition. Low 
Reynolds number turbulent models are based on the wall 
induced damping of turbulent viscosity and are unable to 
predict the growth of natural instabilities along streamlines. On 
the other hand, LES (Sagaut and Deck, 2009), DES (Squires, 
2004; Spalart, 2009) and even more DNS (Moin and Mahesh, 
1998; Wu and Moin, 2009) can resolve transition mechanisms, 
but their computational costs (Celik, 2003; Sagaut and Deck, 
2009) are currently incompatible with optimization algorithms 
that require the evaluation of a large number of candidates.
The LCTMs could, in principle, predict correctly all the 

transition mechanisms (Menter et al., 2006). In particular, in 
this paper, we test the g Reu t transition model (Langtry and



min J Xð Þ ¼ CD 1 1
CL

0:6

� �2

s:t: X � XLB

X � XUB (1)

whereX (f/c, xf/c, t/c, a),XLB (0, 0.2, 0.04, 0),XUB (0.12,
0.8, 0.18, 12) and a are degrees. The coefficientsCD andCL are
the time averaged drag and lift forces, respectively, divided by
the dynamic pressure and the chord. The forces are computed
over a period spanning from 80c=U1 to 160c=U1, whereU1 is
the free stream flow speed. The symbol � (p, respectively)
indicates that each element of the left hand side vector is
greater (smaller, respectively) than each element of the right
hand side vector. The aim of the second term on the right hand
side of equation (1) is to penalize the deviations of CL from its
target value of 0.6. In other words, a set of optimal design
values X0 is looked for, such that a compromise is found
between minimizing CD and deviating from CL 0.6. Different
penalty terms would lead to different optima; however, the
magnitude of these differences is such that they can be assumed
negligible in the present context.
The initial guessed values isX0 (0.04, 0.4, 0.12, 2). The use

of bounds onX limits the search to a range of realistic values. The
optimal solution lies in the interior of the bounded domain and
not on the bounds. The objective function is evaluated with the
flow solver, which is coupled with a stochastic gradient free
optimization algorithm (Chapin et al., 2011). A covariance
matrix adaptation evolution strategy is used for its robustness and
effectiveness in handling noisy, non linear, multimodal objective
functions (Hansen et al., 2011). Gradient free algorithms are well
suited when dealing with noisy functions or when the evaluation
of the cost function and of the constraints (when applicable) is
computationally expensive.
Figure 1 shows an example of convergence history of the

design variables and force coefficients at Re 106.
Computations run in parallel on eight cores on a Linux
workstation based on Intel Xeon E5 of 2.4 GHz with 32 GB of
RAM. For every Re, the optimization converges to an optimum
airfoil with less than 1,000 evaluations and with a wall clock
time of the order of 1 h per evaluation.

Unum ¼ U2
g 1U2

t 1U2
r

q
1Uc (2)

Uncertainty due to the grid
The method to compute Ug and Ut is conceptually identical. To
compute Ug, a number of simulations ng > 3 with different grid
resolutions are performed. The reference grid, for which the
uncertainty is computed, can be either uniformly refined or
uniformly coarsened. We define the relative step size hi as the
ratio between the cell sizes of the i th grid and the reference grid,
and f i as the ratio between the force coefficients computed with
the i th grid and the reference grid (Figure 2).When h! 0, the fit
of f i should converge to a horizontal asymptote f f 0 with the
order p of the adopted numerical scheme. Given that different
schemes are used to solve the coupled system of equations, p is
generally unknown.Therefore, a curve:

f hð Þ ¼ chp 1 f 0 (3)

is fitted through the set of f i. More than three grids should be
computed, and therefore, the parameters c, p and f 0 can be
estimated by the least squares method. We also compute the
standard error of the fit:

s fit ¼
Xng

1
f i f hið Þ� �
N

s
(4)

where f (hi) is the value of the function f evaluated in hi, and
N ng 3 is the number of degrees of freedom of the fit.

g Reu t transition model and the k v SST turbulence model. 
The numerical schemes are second order accurate both in space 
and time and implicit in time. The domain is 20c � 20c, where  c 
is the length of the airfoil’s chord. A parametric C type 
structured mesh is built near the airfoil, surrounded by an 
unstructured triangular mesh. The mesh is adapted onto the 
new shape using a radial basis function mesh morphing software 
(RBF Morph Ansys Fluent Add On) for every tested geometry 
according to the approach presented in Biancolini et al. (2014, 
2016) and  Biancolini (2018). For each Re, the grid is uniformly 
scaled to achieve a non dimensional wall coordinate y1 � 0.5. 
We use a no slip condition on the airfoil surface. We prescribe 
uniform velocity on the upstream and bottom boundaries, 
where the turbulence intensity is I 1 per cent and the turbulent 
length scale is Lt 0.005c, and a constant pressure on the 
downstream and upper boundaries.

Optimization algorithm
We solve the following optimization problem:

Uncertainty quantification
We perform the V&V of the CL and CD computed with 2D 
URANS simulations. We consider the test case of an SD7003 
airfoil at a 4° andRe 6� 104, for which experimental data are 
available in the literature. These conditions are particularly 
challenging for CFD simulations because of the presence of a 
long LSB,  whose size and  position  are affected  by  the  background  
turbulence. The measured forces were corrected for the blockage 
effect of the finite cross sectional area of the wind tunnel facility 
and, hence, we use the same large computational domain size as 
the 2D URANS simulations used for the optimization of the 
airfoil. The same boundary conditions as for the optimization are 
used, but for the onset turbulent intensity and turbulent length 
scale that are set as for the experiments of Selig (1995) to I 0.10  
per cent and Lt 0.0025c.

The numerical uncertainty is quantified using the method 
proposed by Viola et al. (2013), which is based on the trends of 
CL and CD for different values of the time step, grid size, 
precision of the machine and number of iterations. This 
method was initially developed for yacht sail aerodynamics, but 
it can be applied to any other application. The method is as 
follows.

The 95 per cent confidence interval of any computed value 
f cfd (in this paper, f cfd is either CL or CD) is given by f cfd 

6Unumf cfd, where the numerical uncertainty Unum is the 
combination of the uncertainties due to the grid (Ug), the time 
step (Ut), the round off error (Ur) and the convergence (Uc):



The extrapolated value f 0 is the expected value of f for an
infinitely fine grid. This allows estimating the error of the
reference grid (Figure 2) as:

d ¼ j1 f 0j (5)

The grid uncertainty is then given by:

Ug ¼ 1:25 d 1s fit (6)

where 1.25 is a safety factor taken from the work of Roache
(1998).
Themain limitations of the proposedmethod are that we apply

the least squares method when the standard deviation of the error
is not constant, but it increases with h. This could be overcome,
for instance, by doing the logarithmic of equation (3) and then
using a linear fit instead of a non linear fit. However, given than
f 0 is unknown, its value should be optimized minimizing the
residuals of the fit, making the V&V unnecessarily
overcomplicated.
Table I shows the number of cells and the maximum y1 of

the first cell centre for each grid, while Figure 3(a) shows the
reference grid (Grid 4) in the near wall region. This grid has the
same chordwise and wall normal resolution as the 2D URANS
simulations of the optimal airfoils.

Other sources of uncertainty
A virtually identical procedure is used to computeUt, where six
different time steps substitute the different grids used for the

computation of Ug. The reference time step is Dt 0.05c/U1,
where a range ofDt from 0.0025c=U1 to 2.48c=U1 is explored.
The uncertainty due to the convergenceUc is the 95 per cent

confidence interval in the estimate of the mean force coefficient
in the time interval from 80c=U1 to 160c=U1:

Uc ¼ 1:646
s

Nit
p (7)

where s is the standard deviation of the Nit 1,600
observations within this time interval.
The round off error is estimated by running the simulations

in both single and double precision. Denoted with f r, the ratio
between the force coefficients computed in single and double
precision, we estimate the error as:

d r ¼ j1 f rj (8)

and we compute the uncertainty as:

Ur ¼ 3 d r (9)

where 3 is a safety factor.
As discussed in the Results section, the grid uncertainty of

the SD7003 airfoil is one order of magnitude larger than the
other uncertainties. Therefore, for the optimum 4 digit NACA
airfoils at Re 104, 105 and 106, we consider only the grid
uncertainty. For each Re, the grid is uniformly refined twice by
halving every cell.

Modelling error
Validation
The validation against experimental data allows an estimate of
the modelling error of f cfd. This is given by the difference
between the total error E and the validation uncertainty Uval,
which are defined as:

E ¼ f cfd f exp (10)

and

Uval ¼ U2
num 1U2

exp

q
(11)

where f exp is the experimental estimate and Uexp is the
experimental uncertainty. If |E| > Uval, then the numerical
error has the sign of E. Conversely, if |E|� Uval, then f cfd is

Figure 1 Example of convergence history for Re = 106 of (a) the design variables and (b) the force coefficients

Figure 2 Schematic diagram of the method to compute the grid and
time step uncertainties



validated at the level ofUval and the modelling error is relatively
too small to be assessed.

Comparison with other models
To gain more insight into the modelling error, we compare the
aerodynamic forces, the surface pressures and the velocity field
computed with different models: Xfoil, 2D URANS, 3D
URANS and LES. Unfortunately, the experimental results of
Selig (1995) do not include information on the flow field;
therefore, we compare with the measurements of Ol et al.
(2005), which instead do not include force measurements. We
also consider a slightly higher turbulence intensity, I 0.28 per
cent, to compare our results with those of Zhang et al. (2008).
Xfoil is an inviscid linear vorticity panel code coupled with a

two equation lagged dissipation integral method (Drela, 1989).
Transition is computed with the eN method. Following the
experimental correlations proposed by Mack (1977) and Ingen
(2008), we set the Ncrit value to 5.7 corresponding to the free
stream turbulence intensity of the wind tunnel (Zhang et al.,
2008). The grid resolution and solver setting are kept as
consistent as possible between the different Navier Stokes
models, so that the differences between 2D URANS and 3D
URANS can largely be attributed to the additional dimension,
and the differences between 3D URANS and LES can be
attributed to the turbulencemodel.
The domain size and the turbulent intensity used for this

comparison are different from those used for the V&V because
of the different experimental conditions. The experiments of
Selig (1995) included an accurate measure of the aerodynamic
forces and, therefore, are used for the V&V, whereas Zhang
et al. (2008) performed flow measurements with particle image
velocimetry (PIV), and thus, we use these tests for the analysis
of the modelling error. PIV measurements cannot be corrected
for the blockage effect, and hence, the computational domain
matches the test section of this latter experiment, that is 6.25c
long, 1.65c wide and 1.25c high. As this study of the modelling
error focuses on the flow field near the foil and not on the
aerodynamic forces, which were not measured during the
experiment, we used a relatively short domain in the spanwise
direction. This could lead to overestimating the drag. Hence,

future work might include a sensitivity study of the effect of the
streamwise computational domain size.
We set a no slip condition on the airfoil surface, a Dirichlet

type velocity condition on the upstream boundary, a symmetry
condition on the top and bottom boundaries and a Neumann
type pressure condition on the outlet boundary. For the 3D
URANS and LES simulations, we set a symmetry condition on
the side boundaries. If we used a no slip condition for the side
walls of the computational domain, we would have to resolve
the boundary layer on the walls of the facility. Conversely, the
use of the symmetry condition allows focusing the grid
resolution in the region near the airfoil.
To achieve a grid that is consistent between the three models

Dirichlet type 2D URANS, 3D URANS and LES Dirichlet
type we build a new multi block structured grid [Figure 3(b)],
where the resolution near the airfoil is the same as the reference
grid [Figure 3(a)]. This new grid used for the 2DURANSmodel
is extruded spanwise by one third of the airfoil chord to make a
3D grid that is equally suitable for the 3D URANS and LES
models. In general, grid requirements for URANS and LES are
very different. In particular, the grid spacing in both the
streamwise and spanwise directions must be lower for LES than
URANS. In the present case, however, a high streamwise grid
resolution is used across the whole foil for the 2D URANS
simulations to accurately resolve separation and reattachment,
which occurs at different positions along the chord at every Re.
Further, the grid used for the 3D URANS simulations is made
with high spanwise resolution,making it also suitable for the LES
simulation. The 2D grid has 6.4� 103 cells, whereas the 3D grid
has 6� 106 cells. The thickness of the near wall cells in the wall
normal direction is Dy 4 � 10– 4c, which allows y1 < 1. The
streamwise cell aspect ratio is Dx/Dy 2 and the spanwise cell
aspect ratio is Dz=Dy 7. A grid study was not performed for the
3DRANSandLES, and it should be considered for future work.
For the LES, we use a dynamic Smagorinsky Lilly model for

the sub grid stresses, a bounded central differencing scheme for
the spatial derivatives, a second order implicit scheme for the
unsteady term in the momentum equation and a SIMPLE
algorithm for time marching with Dt 0.0025c=U1. A spectral
synthesizer method (Smirnov et al., 2001) is used to achieve

Table I Tested grids of the SD7003 airfoil at Re = 6� 104, a = 4°, I = 0.10 per cent

Grid 1 Grid 2 Grid 3 Grid 4 (ref) Grid 5 Grid 6

Number of cells 3.3� 103 6.4� 103 4.3� 104 5.4� 104 1.3� 105 4.7� 105

Maximum y1 2 1 0.5 0.1 0.1 0.05

Figure 3 Reference grids around the SD7003 airfoil used for the estimation of (a) the numerical uncertainty of the 2D URANS simulations and (b) the
modelling error by comparison of the 2D URANS, 3D URANS and LES models



CL CD

Experiments (Selig, 1995) 0.570 0.017
2D URANS 0.584 0.0208
Ug 0.8% 0.1%
Ut <10–5 <10–5

Ur <10–5 <10–5

Uc <10–5 <10–5

Unum 0.8% 0.1%
|E| 2.5% 22%
Uexp 1.5% NA
Uval 1.7% NA
Validated at a level of Uval ? No NA

Re 104 105 106

Number of cells 23,000 34,000 64,000
Max (y1) 0.4 0.07 0.01
CL 0.57 0.64 0.60
CD 0.0397 0.0141 0.00425
Ug of CL (%) 8.4 3.1 0.003
Ug of CD (%) 19.3 6.2 2.1

onset turbulence with I 0.285 per cent and Lt 0.0075c. The 
turbulence intensity decays from the inlet to the airfoil location, 
where I 0.280 per cent as reported in the experiments.

Results

The results are organized as follows. First, we discuss our 
estimate of the numerical and modelling errors. Successively 
we present the results of the optimization for different Re. 
Finally, we discuss the trends of the maximum efficiency and 
optimum thickness across with Re.

Uncertainty quantification
Table II summarizes the results of the V&V of the 2D 
URANS computations. The numerical uncertainty of CL is 
Unum 0.8 per cent, whereas the experimental uncertainty is 
Uexp 1.5 per cent (Selig, 1995), which results in a validation 
uncertainty of Uval 1.7 per cent. The absolute value of the 
error on the CL, |E| 2.5 per cent, is higher than Uval, and  
thus, CL is not validated at the level of 1.7 per cent. The 
simulation over estimates CL, but the error is not much higher 
than the validation uncertainty, leading to a low confidence in 
the sign of the modelling error. This error is further 
investigated in the next section.
The numerical uncertainty of CD is 0.1 per cent. 

Unfortunately, Selig (1995) did not provide a value for the 
experimental uncertainty, and thus, CD could not be validated. 
The absolute error of CD is similar to the one of CL, which is 
about 0.5 per cent of the dynamic pressure. However, given the 
smaller absolute value of CD compared with CL, the relative 
error of CD is significant. For the present application, an error 
of 22 per cent is sufficiently small compared with the 
differences in CD of ca. 300 per cent for every tenfold increase 
in Re (cf. Table III).
For both CL and CD, the grid uncertainty is one order of 

magnitude higher than the other uncertainties, and thus, 
Unum � Ug. We assume that the other sources of numerical 
uncertainties are negligible also for the 4 digit NACA airfoils. 
Therefore, we compute only Ug for the optimal airfoils. We 
consider Re 104, 105 and 106. Table III shows the number 
of cells, the maximum y1 and grid uncertainties  for  the  
reference grid at each Re. As for the SD7003 airfoil at 
Re 6 � 104, the grid uncertainties are higher for CD than for

Table II V&V on the SD7003 airfoil at Re = 6 � 104, a = 4°, I = 0.10 per 
cent

CL. Ug decreases with Re both for CL and CD. The 
uncertainties computed for the SD7003 airfoil at Re 6  � 104 

are similar to those computed for the optimum 4 digit NACA 
foil at Re 105. The maximum uncertainty is Ug of CD (19.3 per 
cent) for the lowest tested Re (104). Recalling that CD 
decreases by about 300 per cent for a tenfold increase in Re, the 
maximum value of Ug of CD is sufficiently small to compute the 
trend of CD across the proposed range of Re.

Modelling error
To investigate the source of the modelling error, we compare 
the flow fields computed with our simulations and the 
experimental and numerical results of other authors. Table IV 
shows CL, CD and the chordwise coordinates of the separation 
point (xs), of the transition point (xt) and of the reattachment 
point (xr). The transition point is defined as the locum where 
hu0v0i=U2 ¼ 10�3, where u0 and v0 are the velocity fluctuations in 
the dra

1
g and lift directions, respectively.

Between this set of results, all numerical simulations 
overpredict CL and CD by a similar amount. The minimum CL 

is computed by our 2D URANS simulations, whereas only 
Xfoil predicts a slightly lower CD than 2D URANS. All 
numerical simulations predict an earlier separation point 
than the experiments, and a similar transition and 
reattachment point. This analysis suggests that the modelling 
error is not due to the 3D effect or to the turbulence model.
We further investigate the modelling error considering a 

different set of experiments (Zhang et al., 2008), where the 
turbulence intensity is I 0.28 per cent instead of I 0.10 per 
cent. We model these experiments with Xfoil, 2D URANS, 3D 
URANS and LES. Table V shows a summary of the results. All 
models overpredict CL by more than the 2D URANS 
simulations, and only Xfoil predicts a closer CD to the 
experimental value. With the higher turbulence intensity, xs=c is 
well predicted by all models. Both URANS simulations made a 
similar prediction.
For both values of turbulence intensity, the transition 

point xt=c is better predicted by LES. The region of turbulent 
flow near the airfoil is shown by the contour of hu0v0i=U2 in 
Figure 4, which also includes the experimental 

1
results (Zhang 

et al., 2008). LES also predicts a higher growth rate of 
turbulent fluctuations than the other models, resulting in an 
earlier reattachment and a thinner turbulent boundary layer 
(cf. also Figure 5).
Figure 5 shows the shape of the LSB and the growth of the 

reattached boundary layer through streamlines and contours of 
non dimensional flow speed juj/U1, where juj is the 
magnitude of the velocity vector. The shorter LSB and the 
thinner reattached boundary layer of the LES solution result in 
a higher

Table III Reference grids and Ug for the optimum 4-digit NACA airfoils



L and lower D. Figure 6a shows the pressure coefficient Cp

along the chord of the airfoil. LES and 2D URANS predicted
the lowest and the highest pressure plateau, which is correlated
with the LSB, and themaximum andminimum L, respectively.
The reattachment is correlated with the point of maximum
pressure gradient downstream of the plateau. Figure 6(b)
shows large differences between the streamwise Cf values
computed by the different models. The reattached thinner and
more energetic boundary layer predicted by LES is correlated
with a significantly increased Cf. However, this does not result
in a higherD because the friction drag is more than one order of
magnitude smaller than the pressure drag.
In conclusion, a comparison of the experimental flow

measurements and the LES, 3D URANS and 2D URANS
solutions shows that although LES provides the most accurate
solution, the bidimensionality of the 2D URANS simulations
does not lead to a significant increase in the modelling error
when compared with 3D URANS. Importantly, the 2D
URANS simulations are capable of correctly predicting the
general features of the LSB.

Optimum airfoil shapes
As the above results have grown our confidence in the
numerical results achieved with 2D URANS simulations, we
now consider the optimum airfoil geometry computed for
different Re. For each Re from 104 to 3 � 106, Figure 7
shows the optimum geometry and the correlated velocity
field juj/U1. At the lowest value of Re investigated, Re 104,
the boundary layer is laminar and the optimum airfoil
presents a very small curvature for most of the chord to delay
separation, which occurs on the upper side at xs=c 0.81.
Downstream of the separation point, the curvature increases
to generate lift. At Re 3 � 104, laminar separation does not
occur; therefore, a higher curvature may be exploited in the
first half of the chord for lift generation. The flatter trailing
edge then prevents separation over the second half of the
chord. At Re 105, we find a long LSB. Near the leading
edge, a high curvature provides lift but in this case promotes
separation (xs=c 0.25), whereas downstream of the
separation point, the airfoil has almost no curvature to
promote turbulent reattachment (xr=c 0.65) and the
formation of a long LSB. At Re 3 � 105, a more uniform
curvature allows the separation point to be further
downstream (xs=c 0.61); transition occurs closer to the
separation point, leading to a shorter LSB (xr=c 0.75) and
an advantageous thinner wake. At Re 106, transition
occurs in the attached boundary layer; the turbulent
boundary layer remains attached along the entire airfoil. An
almost constant curvature on the upper side leads to a very
thin wake and low drag. Finally, at the highest Re evaluated,
Re 3 � 106, the increased resilience of the turbulent
boundary layer to separation allows the area of highest
curvature, and thus highest adverse pressure gradient, to be

Table IV Comparison with other authors for the SD7003 airfoil at Re = 6� 104, a = 4°, I = 0.10 per cent

Model Reference I CL CD xs=c xt=c xr=c

Exp Selig (1995) 0.10 0.570 0.017 NA NA NA
Exp Ol et al. (2005) 0.10 NA NA 0.30 0.53 0.62
Xfoil Present results 0.10 0.618 0.019 0.22 0.54 0.57
2D URANS Radespiel et al. (2007) 0.08 0.60 0.020 NA 0.57 0.62
2D URANS Present results 0.10 0.584 0.0208 0.20 0.50 0.70
LES Catalano and Tognaccini (2010) 0.10 0.63 0.0225 0.21 0.53 0.65

Table V Summary of results for the SD7003 airfoil at Re = 6 � 104,
a = 4°, I = 0.28 per cent

Model Reference I CL CD xs=c xt=c xr=c

Exp Zhang et al. (2008) 0.28 NA NA 0.21 0.40 0.51
Xfoil Present results 0.28 0.605 0.018 0.24 0.48 0.52
2D URANS Present results 0.28 0.586 0.0222 0.18 0.46 0.64
3D URANS Present results 0.28 0.669 0.0237 0.21 0.45 0.63
LES Present results 0.28 0.670 0.0219 0.22 0.42 0.57

Figure 4 Contours of Reynolds stresses around the SD7003 airfoil tested at Re = 6� 104, a = 4°, I = 0.28 per cent



moved furthest toward the trailing edge. This again has the
additional advantage of minimizing wake thickness and thus
drag.

Maximum efficiency
The wake’s thickness, which is correlated with the drag,
decreases monotonically with Re despite the complex
relationship between the flow field, the airfoil geometry and the
Reynolds number. Noting that CL 0.6 at every Re, the
decrease in wake thickness results in an increase of L/DwithRe.
In Figure 8, we compare our results (black filled dots) achieved

optimizing the airfoil shape for every Re, with those of other
authors who tested individual airfoils across a range of Re. For
example, McMaster and Henderson (1980) identified an
interval of Re between 104 and 106 (region between solid lines
marked with dots), where the L/D of most smooth airfoils
increases from less than 10 to more than 100. Conversely,
rough foils have a more gentle increase of L/D versus Re (region
between short dash lines marked with waves), due to their
ability to promote transition near the leading edge. Similarly,
Schmitz (1967) found that flat plates have a smoother L/D
trend (long dash line) because leading edge separation
promotes transition.

Figure 5 Contours of velocity and streamlines around the SD7003 airfoil at Re = 6� 104, a = 4°, I = 0.28 per cent

Figure 6 (a) Pressure coefficient and (b) streamwise friction coefficient for the SD7003 airfoil tested at Re = 6� 104, a = 4°, I = 0.28 per cent

Figure 7 Contours of flow speed around the optimum airfoils for different Re



At the lowest Re tested, Re 104, the 4 digit NACA airfoils
perform better than flat plates. However, the visual
extrapolation of our results toward lower Re suggests that, at
Re 103, a 4 digit NACA airfoil would have similar
performance than a flat plate. Our optimal airfoils have higher
L/D than those presented byMcMaster and Henderson (1980)
at Re 104 and 3 � 104 and similar L/D at Re 105 and 106.
This is not surprising given that the foils that McMaster and
Henderson tested were optimized for critical and supercritical
Re. Only specialized airfoils that adopt a “laminar rooftop”,
such as those developed by Liebeck (1978), allow much higher
efficiency at highRe.

Optimum thickness
It has been observed that thinner airfoils allow higher efficiency
than thicker airfoils at low Re. Lilienthal (1911), who studied
bird wings at low Re, noted for the first time that curved thin
plates performed better than thick airfoils. When the influence
of Re was then better understood, it was found that airfoil
efficiency increases with Re, and eventually exceeds that of thin
plates (Schmitz, 1967). Sunada et al. (1997, 2002) tested a
range of airfoils and flat and curved plates at Re 4 � 103 and
found that, at such low Re, the curved plates are the most

efficient. Lissaman (1983) compared wing sections of efficient
fliers at increasing Re: from insects, through birds, to aircrafts,
and noted that the thickness to chord ratio of these sections
increased with Re. Figure 8 shows the efficiency of the
dragonfly Anisoptera, the pigeon Columbidae, the SD7003 and
the NACA4412, which all fit the trend suggested by
McMasters andHenderson (1980) for smooth airfoils.
The proposed monotonic increase of t/c with Re is not

confirmed by present results. In fact, as shown in Figure 9(a),
t/c is roughly a step function of Re, with the step occurring
between Re 105 and 3 � 105; the point from which with
increasing Re, the boundary layer remains attached along the
entire airfoil. The trend of xf=c with Re is also non monotonic:
xf=c decreases when trailing edge separation occurs, and then
increases for higher Re [Figure 9(b)]. Conversely, f=c � 3 per
cent for every Re. Therefore, we conclude that to generate a
constant CL 0.6, the optimal camber remains constant,
whereas the angle of attack is varied to achieve the desired lift.

Conclusions

In this paper, we propose a numerical model for the
optimization of airfoils across a range of Reynolds numbers
(Re) from 104 to 3 � 106. We consider 2D unsteady

Figure 8 Airfoil efficiency for a range of Reynolds numbers from the literature and present results

Figure 9 Trends of the design variables with Re
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incompressible flow, a g Reu t transition model with a k v 
SST turbulence model, and we couple the fluid solver with a 
covariance matrix adaptation evolutionary optimization 
algorithm. We use this approach to find the optimal 4 digit 
NACA airfoil that maximizes the lift over drag ratio allowing 
an arbitrary chosen lift coefficient of 0.6.
We investigate the numerical and modelling errors 

performing 3D simulations with the same numerical setup, 
large eddy simulations and Xfoil simulations, in addition to 
comparisons with experimental data available in the 
literature. We show that the 2D simulations allow the 
prediction of the separation, transition and reattachment 
within approximately 10 per cent of the chord compared 
with experimental data. In the range of validity of Xfoil, i.e. 
when natural laminar to turbulent transition occurs and 
separation is limited within an LSB, it shows  comparable  
performances. The 3D simulations do not offer a significant 
improvement compared with the 2D simulations, whereas 
the large eddy simulations allow a better prediction of the 
transition and reattachment locations.
At transitional Reynolds numbers, the largest numerical 

uncertainty is the one due to the grid resolution and it decreases 
with Re. For the lift coefficient, it ranges from 8 per cent to 
0.003 per cent, and for the drag coefficient, it ranges from 19 
per cent to 2 per cent. We find approximately the same grid 
uncertainties also for a similar test case of an SD7003 airfoil at 
Re 6  � 104, where experimental data are available. For this 
case, the uncertainties due to the time resolution, the round off 
error and the convergence are all more than one order of 
magnitude smaller. These levels of uncertainty are sufficiently 
small to evaluate the performances of an airfoil across the range 
of Re considered. In fact, the lift over drag ratio of the optimal 
4 digit NACA airfoils increases by 300 per cent for every 
tenfold increase in Re.
It has been observed that the thickness to chord ratio of 

wing sections of efficient fliers, both man made and natural, 
increases monotonically with Re. Our results, however, 
show that the optimal thickness does not increase 
monotonically. On the  contrary, it  is almost constant  at low  
and high Re and shows a step increase when Re is sufficiently 
high to prevent separation or to allow reattachment and the 
formation of an LSB. To generate a constant lift coefficient, 
which is largely dictated by angle of attack and camber, the 
angle of attack decreases monotonically with Re, whereas  
the camber remains ca. 3 per cent at every Re. These  results  
suggest that the airfoil shapes of insect and bird wings, that 
are the consequence of natural evolution, may not be 
aerodynamic optima when considering solely the 
maximization of lift to drag ratio.
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