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Abstract

Automotive traffic-related air pollution (TRP) imposes an increasing health burden with global 

urbanization. Gestational and early child exposure to urban TRP is associated with higher risk of 

autism spectrum disorders and schizophrenia, as well as low birth weight. While cardio-respiratory 

effects from exposure are well documented, cognitive effects are only recently becoming widely 

recognized. This review discusses effects of TRP on brain and cognition in human and animal 

studies. The mechanisms underlying these epidemiological associations are studied with rodent 

models of pre- and neonatal exposure to TRP, which show persisting inflammatory changes and 

altered adult behaviors and cognition. Some behavioral and inflammatory changes show male bias. 

Rodent models may identify dietary and other interventions for neuroprotection to TRP.
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1. Introduction

Air pollution from fossil fuel combustion is increasingly recognized for its globally adverse 

effects on health throughout life. We focus here on traffic-related air pollution (TRP) from 

roadways in urban settings, for which there is strong epidemiological association with 

cardiovascular and pulmonary morbidity and mortality [1-4]. Moreover, TRP shows 

increasing evidence for impact on the brain. Thus, pre- and neonatal developmental exposure 

to TRP increases risk for low birth weight, and numerous cognitive detriments, including 

autism spectrum disorders (ASD), schizophrenia, delayed development and cognitive 

impairment [5-8]. The risks for these disorders are especially high during development, and 

pollution exposure during gestation can alter development and create lifelong deficits.

First, we discuss epidemiological data on the effects of TRP exposure during gestational 

development, including impaired fetal growth, as this is often associated with cognitive 

defects, and the effects of TRP exposure on later life cognition are reviewed. Rodent models 

are evaluated, as well as the relevant data produced from those models in this nascent field.
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2. Overview of TRP

We review two broad groups of TRP: the airborne particulate matter (PM) and the vapor 

(gaseous) phase, with emphasis on the particulate matter component of TRP. Urban TRP PM 

is a complex and heterogeneous mixture that includes residues from fossil fuel combustion, 

organic chemicals, trace metals, nitrate, and sulfate. There are also airborne components 

from brake linings and the vehicular chassis, as well as roadway components and dust. The 

recognized size classes of airborne PM range from coarse PM (> 10 μm diameter) to 

microscopic classes with aerodynamic diameters less than 2.5 μm (PM2.5) and 0.1 μm, 

(PM0.1). For each class, primary emissions are transformed from exposure to sunlight and 

atmospheric ozone and nitric oxides during diurnal and seasonal cycles. While coarse PM 

are largely trapped by the upper airways, smaller PM can impact the brain directly from 

olfactory neurons in the nasal mucosa, as well as by systemic effects from the lower airways 

[9]. The smaller PM sizes are associated with many pathological effects of air pollution 

[10,11]. Although some studies lump the two smaller size classes under PM10, all three 

categories have notable adverse effects, as well as different distributions in space and 

dispersion characteristics.

Of the three categories of particulate matter, PM2.5 (fine PM) has received the most 

attention, with current US EPA standards [12] of 12 μg/m3. The EPA has not yet addressed 

PM0.1 (UFP, or ultrafine particulates). This class of TRP warrants attention in public health 

because of experimental evidence for its greater cytotoxicity [13,14], potentially due to the 

greater penetration through cell membranes [15]. One reason UFP has not been fully 

appreciated is due to monitoring technology of PM based on weight and not particle number, 

where it is a large percentage of the total PM. We note alternate terminology of nanoscale 

PM, PM0.2, which encompasses a larger portion of the ultrafine particles, and is considered 

alongside UFP in this review. UFP is associated with numerous adverse health effects, and 

comprises the majority of all PM in combustion-derived exhaust [15]. Their small size 

facilitates the crossing of physiological barriers, including the blood-brain barrier and the 

placenta as discussed below [6,9,16].

For discussion of developmental exposure, we briefly note that adverse health effects of air 

pollution exposure increase with closeness to major road [10,17]. UFP was reduced by 

approximately 80% at a distance of 150 meters from the roadway [11]. Neither PM2.5 nor 

PM10 decreased substantially within 150 meters [18], and are decreased by less than 20% at 

a distance of 400 m vs. 50 m from a roadway [19]. The rate of dilution of UFP was 

correlated with increased cardiopulmonary mortality, inversely with distance from roadways 

[10].

3. Epidemiology

3.1. Low birth weight

Because developmental cognitive defects are often associated with fetal growth retardation, 

it is important that TRP can impact fetal growth. Associations between air pollution 

exposure in gestation and impaired fetal growth continue to emerge. In particular, PM2.5 is 

associated with low birth weight (LBW) (< 2,500 g), preterm birth, and small gestational 
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size [20]. However, the critical period for exposure during pregnancy and threshold for these 

effects remain undefined. We discuss select large-scale studies of PM exposure during 

gestation. Also see the comprehensive review of Shah and Balkhair [20].

A large Los Angeles based study (n = 220,528) showed 5% greater risk of LBW from PM2.5 

exposure, with a range of 2.4 μg/m3 [7]. Other studies used ultrasound to determine the 

gestational timing of LBW association with air pollution. The largest of these studies 

(17,660 pregnancies) showed the most consistent association PM10 exposure during days 

91–120 of pregnancy, where high PM10 correlated with smaller abdominal circumference, 

heard circumference, and femur length [21]. Though this study did not find association with 

nitric oxide (NO2) exposure, other studies associated exposures of NO2 > 38 μg/m3 with 

reduced fetal size, femur length, and biparietal distance, even when high NO2 was recorded 

only for weeks 12–20 [22,23]. Other studies associated elevated PM10 exposure with 

preterm birth [23,24,25]. A potential mechanism underlying LBW is oxidative stress from 

maternal exposure during pregnancy to TRP, e.g. increased placental DNA adducts [26].

Obesity is also showing association with air pollution components, which may contribute to 

diabetes and the metabolic syndrome [27]. Adults (n = 5,228) exposed to NO2 showed 17% 

higher risk of diabetes mellitus in the top vs. lowest quintile, differing by 4 ppb [28]. There 

are also correlations between PM10 exposure and the white blood cell count, a marker for 

systemic inflammation [29].

3.2. Cognitive changes

Epidemiological studies of TRP show negative associations with adult cognition [5,30,31] 

and brain development [5,30,31,32]. In particular, pre- and postnatal exposure to urban TRP 

is correlated with autism spectrum disorders (ASD), schizophrenia, and impaired cognitive 

development. We briefly summarize these findings.

ASD was associated with local gradients in components of TRP, mainly PM2.5. Two studies 

utilizing the California based CHARGE (Childhood Autism Risks from Genetics and the 

Environment) database found about 2-fold higher odds ratio (OR), for development of ASD, 

when living near a freeway during the 3rd trimester, and at delivery (< 309 m defined as 

near, with > 1,419 m as reference group) [31,33]. Exposure during the first postnatal year 

was associated with 3-fold higher OR for ASD [31]. PM2.5 had an OR of 2.08 for 

gestational exposure, and 2.12 for exposure in the first year of life [31,33]. Similarly, the 

Nurses' Health Study, a national sample, showed an OR of 2.0 for prenatal diesel particulate 

exposure, top vs. bottom quintile (PM2.5 4.40 vs. 0.60 μg/m3) [34]. Contrarily, a study of 

Swedish twins did not find association of TRP with ASD (PM10 3.3–4.2 μg/m3); however, 

this study measured a broader size range of particles [2]. An analysis of 35 pollution 

components showed higher OR for ASD after exposure to methylene chloride, quinolone, 

and styrene, but not after diesel PM, or polycyclic aromatic hydrocarbons (PAHs) [35]. The 

authors noted that the control group had impairments of speech and language, which may 

have biased the results towards null findings.

Schizophrenia risk is also sensitive to TRP in top vs. bottom quintiles of urbanicity 

(population density) during gestation, but not during childhood [30]. A study of traffic 
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volume and urbanicity (household crowding, social stressors) concluded that only traffic 

volume exposure at birth predicted schizophrenia (OR of 4.40 for the top vs. lowest quintile 

of traffic exposure) [5]. Both studies agree that only exposure during the gestational period 

correlated with increased risk.

TRP exposure during development is also associated with subclinical cognitive effects, 

including lower mental development, increased anxiety and depressive behavior, and 

attentional problems [32,36,37]. A Spanish national study showed decreased mental 

development for infants of mothers exposed during pregnancy to elevated NO2 and benzene 

[36]. Importantly for potential interventions, this association was attenuated in mothers who 

self-reported a high intake of antioxidant rich foods. We also note the benchmark study of 

Perera et al. 2003 [38] on PAH levels for Hispanics and African Americans in New York 

City, which was the first to utilize personal monitors for PAH levels, with greater precision 

than citywide measurements. Developmental measurements at birth associated high PAH (> 

average 3.7 ng/m3 in maternal blood) with a 9% decrease in birth weight, and a 2% decrease 

in head circumference. The OR for cognitive developmental delay, at 36 months from PAH 

exposure during gestation was 2.89, for the top vs. bottom quintile [37]. By age 6–7 years, 

individuals in the top exposure quintile were more anxious and depressed (OR 1.45), with 

more attentional problems (OR 1.28, top vs. bottom quintile) [32]. For DSM-IV oriented 

anxiety problems, the OR was a striking 4.59 [32].

4. Rodent models

4.1. Experimental approaches

Several labs have developed rodent models studying the developmental effects of TRP 

exposure, but no single paradigm has become widely accepted. The main findings (Tables 1–

6) include effects on brain morphology, behavior, inflammatory markers, and 

neurotransmitters. Four experimental paradigms are currently used (Table 1): direct diesel 

exhaust inhalation, diesel exhaust particle (DEP) oropharyngeal aspiration, the Concentrated 

Air Particles delivery System (CAPS), and filter-trapped nano-sized ambient reaerosolized 

particles. Most studies used inhalation, while one lab used direct oropharyngeal aspiration of 

DEP.

Diesel exhaust: Pregnant mice were exposed to the whole exhaust stream from a diesel 

engine, diluted to concentrations ranging from 0.171–3.0 mg/m3. Auten et al. 2012 [47] and 

Bolton et al. 2012 [48] utilized a 6.4 hp direct injection single cylinder 320-cc Yanmar L70V 

diesel generator, operating at a constant 3600 rpm. Yokota et al. 2009 [39] used a 2369-cc 

diesel engine, operating at 1050 rpm. The exhaust includes volatile gaseous components, 

notably CO, SO2, and NO2. Unlike other exposure paradigms, these particles are not filtered 

by size, and retain native charges. The direct diesel exhaust paradigm is missing other real 

world pollutants from vehicular traffic, e.g. rubber from tire erosion, brake lining debris, and 

reaerosolized dust from roadways. Moreover diesel engine exhaust can represent only one 

type of vehicle, and the particles are being directly emitted and thus did not undergo the 

secondary reactions from heat and sun exposure, which develop as a function of time after 

emission.
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Diesel exhaust particles (DEP)

Oropharyngeal Aspiration: (Auten et al. 2012 [47]) This is the only non-inhalation 

paradigm used in the prenatal studies. Diesel exhaust particles are collected from a single 

cylinder diesel engine, and then 50 μg of diesel exhaust particles (DEP) are suspended in 50 

μL of PBS with 0.05% Tween-20 and delivered by oropharyngeal aspiration. Importantly, 

this delivery method bypasses nasal inhalation.

Reaersolized Inhalation: (Hougaard et al. 2008 [40]) Obtained from the National Institute 

of Standards and Technology, Standard Reference Material 2975, these particles are 

obtained from a diesel powered forklift, and are re-aerosolized for inhalation delivery 

[40,41]. Importantly, the re-aerosolized DEP, like the resuspended DEP for oropharyngeal 

aspiration, lack gaseous and volatile components. Also, because the particles are suspended 

in water, they are depleted of insoluble PM. Elimination of insoluble particulate matter is of 

special relevance, as this includes black carbon and polycyclic aromatic hydrocarbons 

(PAHs).

CAPS (Concentrated Ambient Particle System): Ultrafine fractioned particulate matter is 

concentrated next to a roadway for direct real time delivery at 10–20 times ambient 

concentration [42]. CAPS maintain ambient components, including gases and volatiles, and 

the native charges of the particles. Importantly, condensing the particles does not alter their 

natural size distributions, and does not amplify aggregation [13,42]. Limitations of this 

system are its dependence on the current traffic patterns, which fluctuate diurnally and 

seasonally.

Filter-trapped nano-sized PM from urban TRP: This paradigm, developed by Constantinos 

Sioutas at the University of Southern California [43], collects ambient air particulate matter, 

PM0.2, on the roadside next to a high traffic source with a high-volume ultrafine particle 

sampler on 0.2 μm pore Teflon filters. Collections are made for 4–6 weeks in the fall to 

encompass the range of temperatures and moisture in Southern California [44,45]. The 

collection is continuous and includes secondary transformations during the diurnal cycle. 

Besides combustion products, the sample includes reaerosolized roadway dust, and traces 

from brake lining and tire erosion that are < 0.2 μm. The filters are sonicated in distilled 

water to yield a suspension, which is stored frozen until use. The reaerosolized PM has 

average particle size of 60 nm at a density of 350 μg/m3, which is about 25× greater than 

ambient concentrations of that size range of particle [44,45]. The resuspension lacks ambient 

gases and is depleted in water insoluble organic species including PAHs and black carbon 

[43]. We designated these materials as nPM (nanoparticulate matter) in distinction from the 

size class of ambient UFP in the literature. After re-aerosolization, rodents are exposed to 

nPM together with ambient pollutants in the exposure room, which are 35–50% below 

outdoor ambient levels, while control animals have this air filtered by HEPA filters.

In summary, each experimental paradigm represents trade-offs. While DE is the most readily 

obtained, they are model emissions of one engine type and lack secondary atmospheric 

transformations of ambient pollution. The CAPS fully capture TRP for PM, gases, and 

volatiles, but vary diurnally and seasonally. The nPM capture diurnal variations, but the 
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resuspension is deficient in black carbon (BC) and PAH among other water insoluble 

organic compounds.

4.2. Body weight

Epidemiological findings of air pollution on birth weight are corroborated in some rodent 

models (Table 2). Mice exposed to 3.0 mg/m3 DEP had decreased fetal weight as early as 

gestational day (GD) 18 (equivalent to the human third trimester) [46]. Several studies 

observed a weight decrease four weeks after birth in mice exposed to DEP (Table 3) [40,47]. 

Finally, two studies observed a reversal later in life, with increased weight at four months of 

age in mice [48], and at eight weeks in rats [49]. Decreased weight at weaning [40,47], 

combined with increased weight later in life [48,49], corresponds with previously 

documented rebounding in weight after a prenatal stressor [50]. Air pollution also has an 

additive effect on weight when exposure occurs in utero, followed by a high fat diet (HFD = 

45% calories from fat) after birth (Table 4) [48,51]. The prenatal DEP + HFD treated mice 

showed significant weight gain over high fat diet alone, a compounding effect similar to 

what was observed for inflammatory responses (increased cytokines, microglial activation) 

[48,51]. Males in both replicates showed greater weight gain from treatment [48,51]. 

However, females showed 4.4× greater weight gain for the first experiment [48], and no 

change in the second [51]. Notably, the first experiment used diesel exhaust inhalation, while 

the second employed oropharyngeal aspiration of DEP, which excludes gas components. 

Thus, it is possible that either a species lost in the conversion to suspended diesel particles, 

or the inhalation delivery route caused the weight gain. The high fat postnatal group showed 

insulin resistance with elevated serum insulin in the males [48,51]. Females showed only a 

change in serum leptin, while males did not show any differences from pollution exposure.

Exposure to highly polluted ambient Beijing air (75.3 μg/m3) caused, worsened lipid profiles 

and weight gain in both rat mothers and offspring [49]. Pregnant dams had higher low-

density lipoprotein (LDL), total cholesterol, triglyceride, and overall weight. Pups had 

increased weight at eight weeks, and worsened lipid profiles, with increased LDL, total 

cholesterol, and triglyceride, and decreased in HDL. Rodent models also corroborated mid-

life and gestational weight effects [27,48,51,52].

4.3. Behavioral changes

Behavioral changes from developmental pollution exposure include cognitive and locomotor 

deficits (Table 2). Cognitive deficits include depressive symptoms, impaired short-term 

memory, and decreased response rates for fixed interval sixty-second (FI60) reward tests 

[53,54]. Mice exposed in utero to nPM showed increased immobility on a tail suspension 

test, which is a marker for depression [54]. Only males were vulnerable, with a decreased 

delay until first period of immobility, and 2.6× longer immobility versus control, which 

implicates activation of the amygdala [55,56]. Correspondingly, prenatal exposure to DEP 

(maternal oropharyngeal DEP aspiration) increased adult amygdala levels of monoamine 

neurotransmitters (dopamine, dopamine metabolites, and serotonin) [57]. However, the 

oropharyngeal DEP model did not alter adult forced swim performance, another marker for 

depression considered equivalent to tail suspension [48]. This discrepancy could be due to 

the different age at assessment (8 mo vs. 4 mo), or the different pollutant models.
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Impaired short-term memory was observed in neonatal mice exposed to CAPS, from 

postnatal day (PND) 4–7 and 10–13 and assessed at 2 months of age by the novel object 

recognition test. In the one-hour posttest, CAPS exposed mice spent more time with the 

familiar versus novel object, indicative of impaired short-term memory [53]. The FI60 test, a 

model of impulsivity, showed decreased response and run rates, but only for males [53]. 

Despite smaller overall response rates, there was no significant difference in learning. In a 

separate experiment, conducted with the same exposure protocols, a secondary dose of 

pollution from PND 56–60 caused deficits in a fixed interval waiting for reward test, a 

classic model of impulsivity control [58]. These experiments included CAPS exposure on 

postnatal days 4–7 and 10–13. The sensitivity to neonatal exposure is important because 

neonatal rodent nervous systems are relatively less mature compared to humans [59].

Deficits in short-term memory of neonatal CAPS exposure may be mediated by 

glutamatergic changes. Glutamate levels in the hippocampus, which is critical for spatial 

learning and memory, were increased 1.26-fold in the male CAPS exposed mice [58]. 

Though the effect returned to baseline by eight weeks of age, the transient glutamatergic 

increase during development could cause persisting effects, including excitotoxicity. 

Detailed studies of hippocampal circuit functions, e.g. LTP, and synaptic density are needed. 

Increased inflammatory cytokine levels (Il-6, IL-1b, TNF-a) are also relevant to behavioral 

deficits through their impact on synaptic plasticity. These cytokines showed complex 

changes in different brain regions in mice exposed to neonatal CAPS [58,60]. For example, 

TNF-a modulates glutamate, and potentiates the cell to glutamatergic excitotoxicity [61], 

which could alter short-term memory later in life.

Locomotor deficits from prenatal exposure to pollutants include decreased spontaneous 

motor activity and impaired balance (Table 4) [39,48,57,62]. Intriguingly, only males have 

shown decreased spontaneous motor activity in studies from several labs that include ages 

from 5 weeks to 5 months [39,60,62]. Decreased spontaneous motor activity at age 2 months 

in CAPS studies was only observed when paired with a second treatment from PND 56–60 

(Table 4) [53]. Balance was impaired on the rotating rod test in prenatally exposed male 

mice at 5 weeks [57]. These mice also had decreased latency in the cliff avoidance test [57]. 

The impaired performance on these two balance tests is not attributable to differences in 

body weight [57]; only Bolton et al. 2012 reported weight differences [51]. We note that a 

shift from direct exposure to diesel exhaust to the oropharyngeal DEP in the same lab did 

not to replicate these effects [51].

4.4. Gross brain morphology

Gross brain weight has not shown sensitivity to prenatal exposure to nPM [54]. However, 

one study of neonatal exposure to concentrated ambient TRP reported gross enlargement of 

the lateral ventricles, particularly in males [63]. The nPM prenatally exposed mice revealed 

no gross brain abnormalities, but quantitation is needed. Cerebral vasculature has just begun 

to receive attention in air pollution models. After maternal intranasal exposure to black 

carbon, young adult mice had focal induction of GFAP in astrocyte endfeet on capillary 

endothelia and altered arterial macrophage granules [64]. These reports point to structural 

changes that could underlie cognitive dysfunctions from prenatal exposure.

Woodward et al. Page 7

AIMS Environ Sci. Author manuscript; available in PMC 2016 April 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.5. Neuronal changes

We note a major gap between the body of epidemiological evidence for TRP associations 

with brain development and the scant information on neuronal changes in animal models of 

prenatal TRP exposure. Reports on neuronal changes are scattered among different 

neurotransmitters, often in different brain regions, giving little cohesion of results (Table 5). 

Dopamine levels in the cerebral cortex illustrate the diversity. Mice exposed to prenatal 

diesel exhaust had lower cortical dopamine for males at 3 weeks, but no change at six weeks 

[57]. However, the same exposure paradigm in a different lab showed increased cortical 

dopamine at 5 weeks [62]. These studies used > 5-fold different levels of DEP density. The 

turnover of dopamine, estimated by the ratio of the catabolite DOPAC to dopamine, 

(DOPAC: DA) was higher in neonatally CAPS exposed male mice at two and eight weeks 

[58].

Neurotransmitter changes reported for adult rodent TRP exposures have not been borne out 

by prenatal exposures, potentially indicating different mechanisms. We observed decreased 

glutamate receptor 1 (GLUR1) in the hippocampus in mice exposed to nPM at age three 

months [43]. However, prenatal exposure did not alter hippocampus GLUR1 at eight months 

[54]. Neonatal exposure to DEP transiently increased hippocampal glutamate at two weeks, 

with return to baseline by eight weeks [58].

Cortical neurons harvested from one day old pups prenatally exposed to nPM showed 

impaired differentiation and neurite initiation, with fewer stage 3 neurons, compared to 

controls [54]. These pilot studies give a model for linking developmental exposure to 

alterations in neurons and glia.

4.6. Inflammatory changes

Inflammation may be a major mediator of maternal systemic and placental responses to air 

pollution exposure [60]. Systemic inflammation in the mother increases circulating 

inflammatory cytokines, influencing the development of the fetus, through methods such as 

the activation of microglia (Table 6) [48,65]. As noted above for neuronal changes, there is a 

need for similar protocols across labs in the investigation of inflammatory effects.

Prenatal exposure of mice to diesel exhaust rapidly increased cytokines (IL-1b, IL-6, IL-10, 

and TNF-a) on GD18 [47,48]. Microglial activation is suggested by increased chemokines 

CCL2/MCP-1 and CX3CL1/Fractalkine [48]. After CAPS neonatal exposure, 

proinflammatory cytokines (IL-6, IL-1b, TNF-a) were decreased at 2 weeks in males [58]. 

However, by eight weeks, a full month after the cessation of exposure, IL-1b and TNF-a 

rebounded to levels 1.4-fold above control's in midbrain [58]. Females showed a different 

time course, with little upregulation immediately following exposure, yet still showing 

delayed increases a month later. This effect was brain region specific: unlike the midbrain, 

the striatum had lower cytokines at the same times [58]. These sex differences in cytokine 

responses between different brain regions clearly show that inflammatory effects of 

pollution exposure must be studied in terms of brain pathways and cannot be generalized to 

the entire brain.

Woodward et al. Page 8

AIMS Environ Sci. Author manuscript; available in PMC 2016 April 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Glial inflammatory responses are detected by the astrocyte specific GFAP (intermediate 

filament glial fibrillary acidic protein) and the microglial marker of IBA1 (ionized calcium-

binding adapter molecule 1). These responses were observed in neonatal exposures, and 

prenatal exposures compounded with a secondary stimulus. Neonatal mouse exposures from 

PND 4–7 and 10–13 increased GFAP in the hippocampus, corpus callosum, and anterior 

commissure in females, while males responded with decreased GFAP [58]. These 

measurements were made immediately following exposure, at two weeks. IBA1 was 

upregulated in the hippocampus and corpus callosum for males, at eight weeks and 9 

months, respectively [53,58]. Females showed no change for IBA1. Adult mice of several 

genotypes showed brain inflammatory responses, with induction of IL-1a and TNFa, and 

activation of microglia and astrocytes [13].

Inhalation of prenatal diesel exhaust, as well as oropharyngeal aspiration of DEP, did not 

elicit any changes in GFAP or IBA1 in mice, examined at six months of age [48,51]. 

However a high fat diet (HFD) starting at 4 months and lasting for six weeks, along with the 

prenatal DE exposure, increased IBA1, but not GFAP [48]. IBA1 was increased in 

hypothalamus, dentate gyrus, amygdala, and the CA1 of the hippocampus for males [48]. 

Females showed changes only in the hypothalamus and dentate gyrus [48]. This 

upregulation of IBA1 supports the hypothesis of air pollution exposure during gestation as 

an enhancer for later life environmental insults: the DE+HFD group responded more than 

either treatment alone, with changes in brain regions that did not change with only one of the 

treatments (Table 3). The two-hit hypothesis postulates that the first insult primes the system 

[48,60]. While inflammation may not be activated by a single insult, the second 

inflammatory challenge may cause a disproportionately larger response.

4.7. Sex differences

Sex differences are apparent in rodent responses to prenatal exposure, with greater male 

vulnerability observed. For open field activity, only male mice showed deficits [48]. For the 

tail suspension test, a measure of depressive behavior, only males were responsive, with no 

effect for females [54]. Further sex differences were shown in secondary treatments (Table 

3). Release of inflammatory cytokines is profoundly affected by sex, a trend even more 

pronounced with the addition of a secondary insult. When prenatal diesel exposure is 

combined with either six weeks HFD, or nest restriction from gestational day (GD) 14–19, 

male mice show significant effects in numerous cytokines and chemokines, while females 

show no changes [51,66]. The combination of prenatal diesel exposure and adult high fat 

diet increased serum insulin, insulin resistance, and IL-1b, again only in male mice [51]. 

Brain inflammatory proteins CD11b, TLR4, and CXC3CR1 were increased only in males 

[51]. Likewise, only males had increased peripheral macrophage infiltration in the 

hypothalamus [51]. Furthermore, for nest restriction paired with diesel exposure, only males 

showed decreased contextual fear recall, and changes in brain TLR4, caspase-1, IL-1b, and 

IL-10 [28]. Finally, in the combination of PND 4–7, 10–13, and 55–60 CAPS exposure, only 

males showed increased IBA1 staining in the corpus callosum [53]. These experimental 

findings demonstrate greater male vulnerability to pollution exposure, especially when 

combined with a second insult.
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4.8. Nanoparticles in utero

One hypothesis for the mechanism underlying air pollution's physiological effects is unique 

to the nanoscale particulate matter component. It is possible that the particles might be able 

to cross the placental barrier to directly interact with the fetus, which develops a blood-brain 

barrier by gestational day 16 [67]. There is experimental evidence for transplacental transfer 

of nano-size PM. Titanium dioxide nanoparticles (25–70 nm dia) subcutaneously delivered 

to pregnant mice on GD 3, 7, 10 and 14, were detected in male brains and testes six weeks 

postnatally [68]. Thus, model nanoparticles can cross both the maternal placenta and the 

blood-brain barrier of the developing fetus. Ex vivo models with human placenta and 

polystyrene beads show strong size dependency, with 50 and 80 nm beads rapidly crossing 

the placenta, possibly by simple diffusion; larger beads > 240 nm do not cross [69]. 

However, this ex vivo model does not represent potential modification of PM by proteins 

and lipids, which create a bio-corona, altering the movement of the nanoparticles [70]. 

Engineered nanoparticles of this size show 1000-fold range of translocation to the brain 

(0.00006% to 0.03%) [63,71]. Although particles may cross secondary barriers (placenta, 

blood-brain), their inhalation or ingestion does not necessarily allow transport to these 

secondary barriers. This is of relevance because most experiments inject the particles into 

the animal, bypassing the lungs. The small size of nanoparticles is important, as particles < 

34 nm rapidly translocate from lung to mediastinal lymph node [72]. Notable, negatively 

charged particles accumulated in secondary organs more than positively charged particles 

[73].

The placenta may be more vulnerable to nanoparticle entry later in gestation, when the 

placental wall has thinned and is more vascularized, but also early in gestation before the 

placenta is fully formed [50]. The period after the placenta is formed, but before maternal-

fetal circulatory systems are fully developed, could be less vulnerable to pollution exposure, 

due to minimal blood flow to the fetus. Nanoparticles may even cause fetal damage without 

penetrating the placenta, e.g. in vitro, nanoparticles can cause DNA damage even when they 

do not cross a cell barrier [74]. We note that these are not exclusionary hypotheses, and both 

may potentially be occurring.

4.9. Protective measures

In the urban realities of 21st Century populations, it is not possible to prevent prenatal 

exposure to TRP by restricting household or school proximity to roadways. Thus, we must 

consider other means to limit detrimental effects of prenatal TRP exposure. Diet 

optimization may be a pragmatic approach. As a precedent, higher maternal consumption of 

fruits and vegetables was associated with better mental development in exposure to benzene 

and NO2 [36]. Supplementation with anti-oxidants, e.g. the omega-3 fatty acid, 

docosahexaenoic acid, may blunt TRP induced oxidative stress [75]. While such 

interventions could attenuate effects, real solutions must come from technical advancements 

to lower the use of fossil fuels. Combustion engines can be made more efficient, while 

petroleum itself can be replaced by methanol, which produces fewer particles during 

combustion [76].
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5. Conclusions

Traffic related air pollution is correlated with numerous detrimental health outcomes: 

increased cardiovascular mortality from adulthood exposures, and low birth weight and 

cognitive disorders from gestational exposure. These epidemiological observations are 

largely verified in animal models. The field is emergent with only a handful of labs 

worldwide studying animal models. There are huge gaps in the understanding of how TRP 

affects the brain. Specifically, neuronal changes, both in protein and morphology, and 

potential epigenetic modifications, are lacking. Another challenge comes from the different 

experimental paradigms between labs, particularly the source of PM and delivery regimen. 

Relatively few observations have been corroborated across labs. Even so, there is a clear 

trend for numerous adverse cognitive effects from pollution exposure during development, 

and future studies hold many promises.
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Table 2
Prenatal exposure: body weight, behavior, and cell-molecular responses

Study Exposure protocol Weight, gross changes Behavior Cell-molecular changes

Diesel exhaust direct

Bolton et al 2012 [48], 
2013 [66]; GD 18 (♂ 
+ ♀)

0.5 or 2.0 mg/m3 4 
h/d; GD 7–17

Weight at 4 m:
♂—1.1
♀—NC

Bolton 2012 
[48]: Open 
field activity 
at 4 m: ♂—
0.7 ♀—NC
Bolton 2013 
[66]: NC in 
forced swim

CCL2/MCP-1—3.5 CX3CL1/fractaline—1.5

Auten et al 2012 [47] 
GD 18 (♂ + ♀)

0.5 or 2.0 mg/m3 4 
h/d; GD 9–17

Weight at 4 w:
0.5 mg/m3 (♂ + ♀) 0.9
2.0 mg/m3 (♂ + ♀) NC

eotaxin: 4
KC: 6
RANTES: 10 +

Fujimoto et al 2005 
[46]; GD 14

0.3, 1.0, or 3.0 mg/m3 

12 h/d; GD 2–13
↑ placental weight (♂, 
♀—1.0 mg/m3)
↓ fetal weight (♂, ♀—
3.0 mg/m3)

Yokota et al 2013 [57] 
♂ only- behavior at 5 
w

1.0 mg/m3 8 h/d; GD 
2–17

↓ Retention 
time on 
rotating rod 
Cliff 
avoidance 
latency to 
jump 0.68

Yokota et al 2009 [39] 
5 w-behavior

1.0 mg/m3 8 h/d; GD 
2–17

Spontaneous 
motor 
activity: ♂—
0.83

Suzuki et al 2010 [62] 
5 w

0.171 mg/m3, 8 h/d, 5 
d/w GD 2–16

↓ 
Spontaneous 
locomotor 
activity

DEP

Hougaard et al 2008 
[40] —19 w (♂ + ♀)

19 mg/m3 DEP 1 h/d; 
GD 9–19

Weight at 4 w: 0.9 No effect in 
the Morris 
water maze

No indication of any DNA damage, nor 
inflammation

CAPS

Allen et al 2013 [79], 
Allen et al 2014a [53]

15–240 μg/m3 4 h/d ; 
PND 4–7

♂ ↓ Response 
rates for FI60 
(6 mo)

PND 60 & 10–13 4 h/d; PND 
56–60

Novel object 
performance 
(6 mo): ♂—
0.5, ♀—0.8

Allen et al 2014b [58] 
2 w or 8 w

200,000 particles/cm3 

96 μg/m3 4 h/d PND 
4–7 & 10–13

Lateral ventricle size: 
PND14: ♂ 3.2 PND55: 
♂ 1.8

GFAP PND 14:
Hipp: ♂—0.5, ♀—1.9
CC: ♂—NC, ♀—1.5
IBA1 PND 55:
Hipp: ♂—NC, ♀—NC
AC: ♂—1.3, ♀—NC

Filter-trapped nPM

Davis et al 2013 [54] 
—8 m

350 μg/m3 5 h/d 3 
d/w, 10 w

Tail 
suspension 
immobility 8 
m: ♂—2.6, ♀
—NC

PD3—JNK1 (♂, ♀) 0.7
Hipp GLU—NC
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Abbreviations: AC, Anterior commissure; CAPS, Concentrated Ambient Particle System; CC, Corpus callosum; CCL2, Chemokine (C-C motif) 
ligand 2; CX3CL1, Chemokine (C-X3-C motif) ligand 1; DEP, diesel exhaust particles; FI60, Fixed interval reward 60 sec; GFAP, Glial fibrillary 
acidic protein; GD, Gestation day; GLU, Glutamate; Hipp, Hippocampus; IBA1, ionized calcium binding adaptor molecule 1; JNK-1, c-Jun N-
terminal kinase 1; KC, keratinocyte chemoattractant; m, months; MCP-1, monocyte chemotactic protein 1; NC, no change; RANTES, regulated on 
activation, normal T cell expressed and secreted; w, weeks.
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Table 3
Shared responses to traffic related air pollution across multiple experiments

Shared responses No Change

Body weight Auten 2012 [47] ↓ 4 w (DE), Bolton 2012 [48] ↑ 5 m (DE), Fujimoto 2005 
[46] ↓ GD 14 (DE), Hougaard 2008 [40] ↓ 4 w (DEP), Sugamata 2006 
[77] ↓ 4 w (DE), Umezawa 2011 [78] ↓ 8 w (DE), Wei unpub↓ [49] 2 w & 
3 w (Beijing Air)

Allen 2014a [53], Bolton 2014 
[51], Davis 2013 [54], 
Hougaard 2009 [41], Suzuki 
2010 [62], Yokata 2013 [57]

Spontaneous locomotor activity Bolton 2012 [48] ↓ 5 m (DE), Hougaard 2009 [41] ↓ 8 w (DE), Suzuki 
2010 [62] ↓ 5 w (DE), Yokata 2009 [57] ↓ 5 w (DE)

Allen 2013 [79], Allen 2014a 
[53], Bolton 2014 [51], Davis 
2013 [54]

Cortex-dopaminergic Allen 2014a [53] ↓ 9 m (PND 55 CAPS), Allen 2014b [58] ↑ 2 w & 8 w 
(PND 14 CAPS), Suzuki 2010 [62] ↑ 5 w (DE), Yokata 2013 [57] ↓ 3 w 
(DE)

Microglial activation Allen 2014a [53] ↑ 9 m (PND14 + 55 CAPS), Allen 2014b [58] ↑ 8 w 
(CAPS), Bolton 2012 [48] ↑ GD 18 (DE), Bolton 2014 [51] ↑ 6 w (DEP + 
HFD)

Bolton 2013 [66]

Abbreviations: CAPS, Concentrated Ambient Particle System; DE, diesel exhaust; DEP, diesel exhaust particles; HFD, high fat diet; PND, 
Postnatal day
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