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The family of consecutive-type reliability systems is under investigation. More specifically, an up-to-date presentation of almost all
generalizations of the well-known consecutive k-out-of-n: F system that have been proposed in the literature is displayed, while
several recent and fundamental results for each member of the aforementioned family are stated.

1. Introduction

A linear (circular) consecutive 𝑘-out-of-𝑛: 𝐹 system consists
of 𝑛 components which are linearly (circularly) arranged
and the system fails if and only if at least 𝑘 consecutive
components fail. The most popular applications of these
systems pertain to computer network, telecommunication,
pipeline network modeling, engineering, or integrated cir-
cuitry design. The consecutive 𝑘-out-of-𝑛: 𝐹 system has
been subject of substantial research interest for many years
and a lot of generalizations have been suggested in order
to accommodate more flexible operation principles. For a
detailed presentation of the consecutive 𝑘-out-of-𝑛:𝐹 systems
and some generalizations, the interested reader is referred to
the excellent monograph of Kuo and Zuo [1] or the work of
Chang et al. [2].

Let 𝑇 be the lifetime of a reliability system with 𝑛 com-
ponents and 𝑋1, 𝑋2, . . . , 𝑋𝑛

its components’ lifetimes. If we
assume that 𝑋1, 𝑋2, . . . , 𝑋𝑛

are exchangeable (and therefore
identically distributed but not necessarily independent), the
signature of the system is defined as the probability vector
(𝑠1(𝑛), 𝑠2(𝑛), . . . , 𝑠𝑛(𝑛)) with

𝑠
𝑖
(𝑛) = 𝑃 (𝑇=𝑋

𝑖:𝑛
) , 𝑖 = 1, 2, . . . , 𝑛, (1)

where 𝑋1:𝑛 ≤ 𝑋2:𝑛 ≤ ⋅ ⋅ ⋅ ≤ 𝑋
𝑛:𝑛

are the order statistics of
the sample 𝑋1, 𝑋2, . . . , 𝑋𝑛

. It can be easily verified that, in
the exchangeable case, the signature of a reliability system

depends only on its structure and not on the specific underly-
ing distribution of𝑋

𝑖
. In other words, 𝑠

𝑖
(𝑛) is the proportion

of permutations, among the 𝑛! equally likely permutations of
𝑋1, 𝑋2, . . . , 𝑋𝑛

, which result in a minimal cut set failing upon
the occurrence of𝑋

𝑖:𝑛
.

The signature of the system, which was first introduced
by Samaniego [3], is closely related to many well-known
reliability characteristics, a fact turning it to a very useful tool
for studying coherent systems and their ageing properties. For
example, the reliability polynomial of a structure can be easily
expressed in terms of its signature.More precisely, Samaniego
[3] proved that for any coherent system with independent
and identical components which have absolutely continu-
ous cumulative density functions, system’s reliability can be
expressed as

𝑅 (𝑡) = 𝑃 (𝑇> 𝑡) =

𝑛

∑

𝑖=1
𝑠
𝑖
(𝑛) 𝑃 (𝑋

𝑖:𝑛
> 𝑡) . (2)

Navarro and Rychlik [4] proved that the above represen-
tation also holds true when the lifetimes 𝑋1, 𝑋2, . . . , 𝑋𝑛

have an absolutely continuous exchangeable distribution (this
property had been mentioned earlier by Kochar et al. [5]).
Moreover, Eryilmaz and Bayramoglu [6] used the system
signature in order to evaluate the extreme residual lifetimes
of the remaining components after the complete failure of the
system.

Both reliability function and signature of a structure
can be evaluated based on either recursive formulas or
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explicit expressions. In some cases, where neither of the
aforementioned methods can be established for a specific
system, approximating and limiting results are available. In
the present review article, the family of consecutive-type
reliability systems is under investigation. More specifically,
Section 2 offers an up-to-date presentation of almost all
generalizations of the well-known consecutive 𝑘-out-of-𝑛: 𝐹
system that have been proposed and studied in the literature.
For each structure, the corresponding fundamental work and
selected results are displayed either briefly or in detail. In
Section 3, applications of these reliability systems in several
fields are described, while Section 4 presents a full-detailed
diagram which connects the aforementioned structures by
giving the information under which conditions a system can
be treated as a special case of another one.

2. Family of Consecutive-Type
Reliability Systems

In this section, we study in detail almost all generalizations of
the well-known consecutive 𝑘-out-of-𝑛: 𝐹 systems that have
been proposed in the literature till now. For each reliability
structure that is included in the family of consecutive-
type systems, the general operational structure is described,
while several important and some recent relevant results are
displayed.

2.1.𝑚-Consecutive-𝑘-out-of-𝑛:𝐹 Systems. An𝑚-consecutive-
𝑘-out-of-𝑛:𝐹 system consists of 𝑛 components and fails if and
only if there exist at least 𝑚 nonoverlapping runs of 𝑘 con-
secutive failed components. This system was first introduced
by Griffith [7] and since then it has attracted a considerable
research attraction. In the sequel, we present the main results
appearing in the literature, such as recurrence relations and
closed formulas for the evaluation of the reliability function
and signature vector of𝑚-consecutive-𝑘-out-of-𝑛: 𝐹 systems.
It is worth mentioning that the aforementioned system
generalizes the well-known consecutive-𝑘-out-of-𝑛:𝐹 system
(for𝑚 = 1), while for 𝑘 = 1 the𝑚-consecutive-𝑘-out-of-𝑛: 𝐹
system reduces to an ordinary𝑚-out-of-𝑛: 𝐹 system.

2.1.1. Recursive Schemes for the Reliability of𝑚-Consecutive-𝑘-
out-of-𝑛: 𝐹 Systems. The following theorems provide recur-
rence for the calculation of reliability of an𝑚-consecutive-𝑘-
out-of-𝑛: 𝐹 system.

Theorem 1 (Papastavridis [8]). Let 𝑅
𝐿

𝑚,𝑘,𝑛
(𝑝1, 𝑝2, . . . , 𝑝𝑛)

denote the reliability function of a linear𝑚-consecutive-𝑘-out-
of-𝑛: 𝐹 system, where 𝑝

𝑖
is the reliability of its 𝑖th component.

Then 𝑅𝐿
𝑚,𝑘,𝑛

(𝑝1, 𝑝2, . . . , 𝑝𝑛) satisfies the following recurrence
relation:
𝑅
𝐿

𝑚,𝑘,𝑛
(𝑝1, 𝑝2, . . . , 𝑝𝑛) = 𝑅

𝐿

𝑚,𝑘,𝑛
(𝑝1, 𝑝2, . . . , 𝑝𝑛)

−

𝑚

∑

𝑠=1
𝑝
𝑛−𝑠𝑘

𝑠𝑘

∏

𝑖=1
𝑞
𝑛−𝑠𝑘+𝑖

[𝑅
𝐿

𝑚−𝑠+1,𝑘,𝑛−𝑠𝑘−1 (𝑝1, 𝑝2, . . . , 𝑝𝑛)

− 𝑅
𝐿

𝑚−𝑠,𝑘,𝑛−𝑠𝑘−1 (𝑝1, 𝑝2, . . . , 𝑝𝑛)] ,

(3)

where 𝑛 ≥ 𝑘𝑚 + 1 and 𝑅𝐿0,𝑘,0(𝑝1, 𝑝2, . . . , 𝑝𝑛) = 0.

In order to launch the above recurrence scheme, a set of
initial of conditions would be necessary. Observing that for
𝑛 ≥ 𝑘 + 1 the following ensues

𝑅
𝐿

1,𝑘,𝑛 (𝑝1, 𝑝2, . . . , 𝑝𝑛) = 𝑅
𝐿

1,𝑘,𝑛−1 (𝑝1, 𝑝2, . . . , 𝑝𝑛)

− 𝑝
𝑛−𝑘

(1−𝑝
𝑛−𝑘+1) ⋅ ⋅ ⋅ (1−𝑝𝑛)

⋅ 𝑅
𝐿

1,𝑘,𝑛−𝑘−1 (𝑝1, 𝑝2, . . . , 𝑝𝑛)

(4)

while

𝑅
𝐿

𝑚,𝑘,𝑚𝑘
(𝑝1, 𝑝2, . . . , 𝑝𝑛) = 1−

𝑛

∏

𝑖=1
(1−𝑝

𝑖
) , (5)

we have at hand the set of initial values needed to evaluate
reliability of the system.

Note that for the i.i.d case (e.g., 𝑝1 = 𝑝2 = ⋅ ⋅ ⋅ = 𝑝𝑛 = 𝑝),
the recurrence of Theorem 1 reduces to the following form:

𝑅
𝐿

𝑚,𝑘,𝑛
(𝑝)

= 𝑅
𝐿

𝑚,𝑘,𝑛−1 (𝑝)

−

𝑚

∑

𝑠=1
𝑝𝑞

𝑠𝑘

[𝑅
𝐿

𝑚−𝑠+1,𝑘,𝑛−𝑠𝑘−1 (𝑝) −𝑅
𝐿

𝑚−𝑠,𝑘,𝑛−𝑠𝑘−1 (𝑝)] ,

𝑛 ≥ 𝑘𝑚 + 1.

(6)

Theorem 2 (Alevizos et al. [9]). Let 𝑅𝐶
𝑚,𝑘,𝑛

(𝑝1, 𝑝2, . . . , 𝑝𝑛)
denote the reliability function of a circular 𝑚-consecutive-𝑘-
out-of-𝑛: 𝐹 system, where 𝑝

𝑖
(𝑞

𝑖
= 1 − 𝑝

𝑖
) is the reliability

(unreliability) of its 𝑖th component. Then 𝑅𝐶
𝑚,𝑘,𝑛

(𝑝1, 𝑝2, . . . , 𝑝𝑛)
satisfies the following recurrence:

𝑅
𝐶

𝑚,𝑘,𝑛
(𝑝1, 𝑝2, . . . , 𝑝𝑛) = 𝑝𝑛𝑅

𝐿

𝑚,𝑘,𝑛−1 (𝑝1, 𝑝2, . . . , 𝑝𝑛)

− 𝑝
𝑛
− 𝑞

𝑛
𝑅
𝐶

𝑚,𝑘,𝑛−1 (𝑝1, 𝑝2, . . . , 𝑝𝑛)

−

𝑚

∑

𝑠=1

𝑠𝑘−1
∑

𝑖=0
(𝑞1𝑞2 ⋅ ⋅ ⋅ 𝑞𝑖𝑝𝑖+1)

⋅ (𝑞
𝑛
𝑞
𝑛−1 ⋅ ⋅ ⋅ 𝑞𝑛−𝑠𝑘+𝑖+1𝑝𝑛−𝑠𝑘+𝑖)

× (𝑅
𝐿,𝑖+2
𝑚−𝑠+1,𝑘,𝑛−𝑠𝑘−2 (𝑝1, 𝑝2, . . . , 𝑝𝑛)

−𝑅
𝐿,𝑖+2
𝑚−𝑠,𝑘,𝑛−𝑠𝑘−2 (𝑝1, 𝑝2, . . . , 𝑝𝑛)) ,

(7)

where 𝑛 ≥ 𝑘𝑚 + 2 and 𝑅𝐿,𝑖+2
𝑑,𝑘,𝑐

(𝑝1, 𝑝2, . . . , 𝑝𝑛) denotes the
reliability of a linear 𝑑-consecutive-𝑘-out-of-𝑐: 𝐹 subsystem
with components 𝑖 + 2, 𝑖 + 3, . . . , 𝑛 − 𝑠𝑘 + 𝑖 − 1.

To launch the above recursive scheme, a set of initial of
conditions would be necessary. Observing that the following
ensue

(i) 𝑅𝐶
𝑚,𝑘,𝑛

= 1, for 𝑛 < 𝑘𝑚,

(ii) 𝑅𝐶
𝑚,𝑘,𝑛

= 1 −∏𝑛

𝑖=1𝑞𝑖, for 𝑛 = 𝑘𝑚,

(iii) 𝑅𝐶
𝑚,𝑘,𝑛

= 1 −∏𝑛

𝑖=1𝑞𝑖 −∑
𝑛

𝑖=1 𝑞1𝑞2 ⋅ ⋅ ⋅ 𝑞𝑖−1𝑝𝑖𝑞𝑖+1 ⋅ ⋅ ⋅ 𝑞𝑛, for
𝑛 = 𝑘𝑚 + 1,
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we have at hand the set of initial values needed to evaluate
reliability of the system.

Note that for the i.i.d case (e.g., 𝑝1 = 𝑝2 = ⋅ ⋅ ⋅ = 𝑝𝑛 = 𝑝),
the recurrence of Theorem 2 reduces to the following form:

𝑅
𝐶

𝑚,𝑘,𝑛
(𝑝) = 𝑝𝑅

𝐿

𝑚,𝑘,𝑛−1 (𝑝) − 𝑝− 𝑞𝑅
𝐶

𝑚,𝑘,𝑛−1 (𝑝)

−

𝑚

∑

𝑠=1

𝑠𝑘−1
∑

𝑖=0
𝑝
2
𝑞
𝑠𝑘

(𝑅
𝐿

𝑚−𝑠+1,𝑘,𝑛−𝑠𝑘−2 (𝑝)

−𝑅
𝐿

𝑚−𝑠,𝑘,𝑛−𝑠𝑘−2 (𝑝)) , 𝑛 ≥ 𝑘𝑚 + 2.

(8)

It is worth mentioning that the computational complexity of
recurrence included in Theorem 1 is equal to 𝑂(𝑛𝑚), while the
corresponding one for equations ofTheorem 2 equals𝑂(𝑛𝑘𝑚3

).

2.1.2. Exact Formulas for the Reliability of 𝑚-Consecutive-
𝑘-out-of-𝑛: 𝐹 Systems. The following theorems offer closed
expressions for the evaluation of reliability of an 𝑚-
consecutive-𝑘-out-of-𝑛: 𝐹 system.

Theorem 3 (Papastavridis [8]). Let 𝑅𝐿
𝑚,𝑘,𝑛

(𝑝) denote the relia-
bility function of a linear 𝑚-consecutive-𝑘-out-of-𝑛: 𝐹 system,
where 𝑝 is the common reliability of its i.i.d. components. Then
𝑅
𝐿

𝑚,𝑘,𝑛
(𝑝) is given as follows:

𝑅
𝐿

𝑚,𝑘,𝑛
(𝑝) =

𝑠
∗

∑

𝑠=𝑚

𝑛

∑

𝑖=𝑠𝑘

(
𝑠 + 𝑛 − 𝑖

𝑠
)𝑁 (𝑖 − 𝑠𝑘, 𝑛 − 𝑖 + 1)

⋅ (1−𝑝)𝑖 𝑝𝑛−𝑖,

(9)

where 𝑛 ≥ 𝑘𝑚, 𝑠∗(𝑥) denotes the greatest integer lower bound
of 𝑥 and𝑁(𝑖, 𝑗) can be expressed as

𝑁(𝑖, 𝑗) =

𝑗

∑

𝑠=0
(−1)𝑠 (

𝑗

𝑠
)(

𝑖 + 𝑗 − 1 − 𝑠𝑘
𝑖 − 𝑠𝑘

) . (10)

Theorem 4 (Makri and Philippou [10]). Let 𝑅𝐿
𝑚,𝑘,𝑛

(𝑝) denote
the reliability function of a linear 𝑚-consecutive-𝑘-out-of-𝑛: 𝐹
system composed by i.i.d. components, where𝑝 is their common
reliability. Then 𝑅𝐿

𝑚,𝑘,𝑛
(𝑝) is given as follows:

𝑅
𝐿

𝑚,𝑘,𝑛
(𝑝)

=

𝑚−1
∑

𝑥=0

𝑘−1
∑

𝑖=0
∑

𝑥1 ,𝑥2,...,𝑥𝑘

(
𝑥1 + 𝑥2 + ⋅ ⋅ ⋅ + 𝑥𝑘 + 𝑥

𝑥1, 𝑥2, . . . , 𝑥𝑘, 𝑥
)

⋅ (1−𝑝)𝑛 (
𝑝

1 − 𝑝
)

𝑥1+𝑥2+⋅⋅⋅+𝑥𝑘

,

(11)

where

(
𝑎

𝑏1, 𝑏2, . . . , 𝑏𝑐
) =

𝑎!

𝑏1!𝑏2! ⋅ ⋅ ⋅ 𝑏𝑐!
(12)

is the well-known multinomial coefficient, while the inner
summation is over all nonnegative integers 𝑥1, 𝑥2, . . . , 𝑥𝑘 such
that ∑𝑘

𝑗=1 𝑗𝑥𝑗 = 𝑛 − 𝑖 − 𝑘𝑥.

Theorem 5 (Makri and Philippou [10]). Let 𝑅𝐶
𝑚,𝑘,𝑛

(𝑝) denote
the reliability function of a circular 𝑚-consecutive-𝑘-out-of-𝑛:
𝐹 system, where 𝑝(𝑞) is the common reliability (unreliability)
of its components. Then, 𝑅𝐶

𝑚,𝑘,𝑛
(𝑝) can be expressed as follows:

(i)

𝑅
𝐶

𝑚,𝑘,𝑛
(𝑝) =

𝑚−1
∑

𝑥=0
𝑀

𝑥,𝑐
(𝑞; 𝑘, 𝑛) , (13)

where

𝑀
𝑥,𝑐
(𝑞; 𝑘, 𝑛) = 𝑝 (1−𝑝)𝑛−1

⋅

𝑘

∑

𝑖=1
𝑖∑(

𝑥1 + 𝑥2 + ⋅ ⋅ ⋅ + 𝑥𝑘 + 𝑥

𝑥1, 𝑥2, . . . , 𝑥𝑘, 𝑥
)

⋅ (
𝑝

1 − 𝑝
)

𝑥1+𝑥2+⋅⋅⋅+𝑥𝑘

+ 𝑘𝑝𝑞
𝑛−1

𝑘

∑

𝑖=1
∑

𝑥

𝑥1 + 𝑥2 + ⋅ ⋅ ⋅ + 𝑥𝑘 + 1

×(
𝑥1 + 𝑥2 + ⋅ ⋅ ⋅ + 𝑥𝑘 + 𝑥

𝑥1, 𝑥2, . . . , 𝑥𝑘, 𝑥
)(

𝑝

𝑞
)

𝑥1+𝑥2+⋅⋅⋅+𝑥𝑘

+ 𝑞
𝑛

𝛿
𝑥,[𝑛/𝑘]

(14)

is the well-known multinomial coefficient, while
the inner summation is overall nonnegative integers
𝑥1, 𝑥2, . . . , 𝑥𝑘 such that∑

𝑘

𝑗=1 𝑗𝑥𝑗 = 𝑛−𝑖−𝑘𝑥. Moreover,
in the above expression [𝑥] denotes the greatest integer
in 𝑥, while 𝛿

𝑖,𝑗
is the Kronecker delta function.

(ii) Consider

𝑅
𝐶

𝑚,𝑘,𝑛
(𝑝) =

𝑚−1
∑

𝑥=0
𝐵
𝑥,𝑐
(𝑞; 𝑘, 𝑛) , (15)

where

𝐵
𝑥,𝑐
(𝑞; 𝑘, 𝑛) = 𝑞

𝑛

𝛿
𝑥,[𝑛/𝑘]

+

𝑛−𝑘𝑥−1
∑

𝑦=[(𝑛−𝑘𝑥−1)/𝑘]
𝑞
𝑛−𝑦−1

𝑝
𝑦+1

[(𝑛−𝑘𝑥−1−𝑦)/𝑘]

∑

𝑗=0
(−1)𝑗

⋅ [(
𝑦 + 𝑥

𝑦
)(

𝑦 + 1
𝑗
)(

𝑛 − 𝑘𝑥 − 𝑗𝑘

𝑦 + 1
)

+𝑘(
𝑦 + 𝑥

𝑦 + 1
)(

𝑦

𝑗
)(

𝑛 − 𝑘𝑥 − 𝑗𝑘 − 1
𝑦

)

− 𝑘(
𝑦 + 𝑥 + 1
𝑦 + 1

)(
𝑦

𝑗
)(

𝑛 − 𝑘𝑥 − 1 − (𝑗 + 1) 𝑘
𝑦

)] .

(16)
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2.1.3. Approximations for the Reliability of 𝑚-Consecutive-
𝑘-out-of-𝑛: 𝐹 Systems. The following theorems offer some
limiting results for the evaluation of reliability of an 𝑚-
consecutive-𝑘-out-of-𝑛: 𝐹 system.

Theorem 6 (Papastavridis [8]). Let 𝑞(𝑡) = (𝜆𝑡)
𝑎

+ 𝑂(𝑡
𝑎

)

be the common failure distribution of the components of an
𝑚-consecutive-𝑘-out-of-𝑛: 𝐹 system, where 𝜆, 𝑎 are positive
constants. Then the following ensues

lim
𝑛→∞

𝑃 (𝑛
1/𝑘𝑎

𝑇
𝑛
> 𝑡) = exp [− (𝜆𝑡)𝑎𝑘]

𝑚−1
∑

𝑖=0

(𝜆𝑡)
𝑎𝑘𝑖

𝑖!
, (17)

where 𝑇
𝑛
is the time of first failure of the system.

Theorem 7 (Godbole [11]). Let 𝑞
𝑗
= 1 − 𝑝

𝑗
, 𝑗 = 1, 2, . . . , 𝑛

be the failure probability of the 𝑗th component of an 𝑚-
consecutive-𝑘-out-of-𝑛:𝐹 system.Then the reliability𝑅

𝑚,𝑘,𝑛
(𝑝

𝑗
)

of the system satisfies the following inequality:
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑅
𝑚,𝑘,𝑛

(𝑝
𝑗
) −

𝑚−1
∑

𝑥=0
exp

(−𝜆
𝑛
) 𝜆

𝑥

𝑛

𝑥!

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ (2𝑘 + 2+ 𝑛𝑞𝑘) 𝑞𝑘, (18)

where 𝑞 = max
𝑗≥1𝑞𝑗 and 𝜆𝑛 = ∑

𝑛

𝑗=𝑘+1 𝑝𝑗−𝑘𝑞𝑗−𝑘+1 ⋅ ⋅ ⋅ 𝑞𝑗.

2.1.4. SignatureVector of𝑚-Consecutive-𝑘-out-of-𝑛:𝐹 Systems.
Let p denote the common reliability of the components of an
𝑚-consecutive-𝑘-out-of-𝑛: 𝐹 system. The following theorem
offers a generating function approach of the aforementioned
system.

Theorem 8. Let (𝑠1(𝑛, 𝑘, 𝑚), 𝑠2(𝑛, 𝑘, 𝑚), . . . , 𝑠𝑛(𝑛, 𝑘, 𝑚)) and
𝑅
𝑚,𝑘,𝑛

(𝑝) be the signature and the reliability function of an 𝑚-
consecutive-𝑘-out-of-𝑛: 𝐹 system, respectively. Then

(a) the double generating function of 𝑖 ( 𝑛
𝑖
) 𝑠

𝑖
(𝑛, 𝑘, 𝑚) is

given by

∞

∑

𝑛=1

𝑛

∑

𝑖=1
𝑖 (
𝑛

𝑖
) 𝑠

𝑖
(𝑛, 𝑘, 𝑚) 𝑡

𝑖

𝑥
𝑛

=
𝑚 (𝑡𝑥)

𝑘𝑚

(𝑡𝑥 − 1)𝑚−1 {𝑘 − 𝑘𝑡𝑥 + 𝑡𝑥 [(𝑡𝑥)𝑘 − 1]}

{𝑥 [1 + 𝑡 − (𝑡𝑥)𝑘] − 1}
𝑚+1

(19)

(Eryilmaz et al. [12]),
(b) the generating function of 𝑅

𝑚,𝑘,𝑛
(𝑝) is given as follows:

𝑟 (𝑧) =

∞

∑

𝑛=0
𝑅
𝑛,𝑚,𝑘

(𝑝) 𝑧
𝑛

=
1

1 − 𝑧
−

(𝑞𝑧)
𝑚𝑘

(1 − 𝑧) (1 − 𝑝𝑧∑𝑘−1
𝑗=0 (𝑞𝑧)

𝑗

)
𝑚

(20)

(Koutras [13]).

The next theorem offers expressions for the evaluation of the
signature vector of an𝑚-consecutive-𝑘-out-of-𝑛: 𝐹 system.

Theorem 9 (Eryilmaz et al. [12]). Let (𝑠1(𝑛, 𝑘, 𝑚), 𝑠2(𝑛, 𝑘, 𝑚),
. . . , 𝑠

𝑛
(𝑛, 𝑘, 𝑚)) be the signature vector of an 𝑚-consecutive-𝑘-

out-of-𝑛: 𝐹 system. Then the following ensues

(a) the quantities 𝑠
𝑖
(𝑛, 𝑘, 𝑚) satisfy the recurrence relation:

𝑖 (
𝑛

𝑖
) 𝑠

𝑖
(𝑛, 𝑘, 𝑚)

=

𝑘

∑

𝑙=1
(𝑖 − 𝑙 + 1) (

𝑛 − 𝑙

𝑖 − 𝑙 + 1
) 𝑠

𝑖−𝑙+1 (𝑛 − 𝑙, 𝑘, 𝑚)

+
𝑚

𝑚 − 1
(𝑖 − 𝑘) (

𝑛 − 𝑘

𝑖 − 𝑘
) 𝑠

𝑖−𝑘
(𝑛 − 𝑘, 𝑘,𝑚− 1)

(21)

for 𝑖 = 1, 2, . . . , 𝑛 and 𝑛 ≥ 𝑘 + 1.
(b) the quantities 𝑠

𝑖
(𝑛, 𝑘, 𝑚) can be expressed as

𝑠
𝑖
(𝑛, 𝑘, 𝑚) = (

𝑛

𝑖
)

−1

[

[𝑖/𝑘]

∑

𝑠=𝑚

(
𝑠 + 𝑛 − 𝑖

𝑠
)

⋅ 𝐶 (𝑖 − 𝑠𝑘, 𝑘, 𝑛 − 𝑖 + 1) − 𝑛 − 𝑖 + 1
𝑖

⋅

[(𝑖−1)/𝑘]
∑

𝑠=𝑚

(
𝑠 + 𝑛 − 𝑖 + 1

𝑠
)

⋅ 𝐶 (𝑖 − 𝑠𝑘 − 1, 𝑘, 𝑛 − 𝑖 + 2)]

(22)

for𝑚𝑘 ≤ 𝑖 ≤ 𝑛 and 𝑠
𝑖
(𝑛, 𝑘, 𝑚) = 0 if 𝑖 < 𝑚𝑘, where

𝐶 (𝑖, 𝑘, 𝑗) =

𝑗

∑

𝑠=0
(−1)𝑠 (

𝑗

𝑠
)(

𝑖 + 𝑗 − 1 − 𝑠𝑘
𝑖 − 𝑠𝑘

) . (23)

2.1.5. Additional Results for 𝑚-Consecutive-𝑘-out-of-𝑛: 𝐹 Sys-
tems. Beyond the results mentioned in the previous sub-
sections, additional studies have appeared in the literature
for the 𝑚-consecutive-𝑘-out-of-𝑛: 𝐹 system. Eryilmaz [14]
derived explicit expressions for the component importance
measures for the aforementioned structure consisting of
exchangeable components. More specifically, Eryilmaz [14]
studied in detail the well-known Birnbaum and Barlow-
Proschan importance measures for a 𝑚-consecutive-𝑘-out-
of-𝑛: 𝐹 system. Furthermore, Ghoraf [15] offered recursive
formulas for calculating the reliability function of the circular
case of the aforementioned structure couching on the corre-
sponding recurrence equations for the linear one.

2.2. 𝑟-within-Consecutive-𝑘-out-of-𝑛: 𝐹 Systems. An 𝑟-
within-consecutive-𝑘-out-of-𝑛: 𝐹 system consists of 𝑛

components and fails if and only if there exist 𝑘 consecutive
components which include among them at least 𝑟 failed
components. This system was first introduced by Griffith
[7], but its mathematical modelling has been done earlier
by Greenberg [16] and Saperstein [17]. In the sequel, we
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present the main results appearing in the literature, such as
recurrence relations and closed formulas for the evaluation
of the reliability function and signature vector of 𝑟-within-
consecutive-𝑘-out-of-𝑛: 𝐹 systems. It is worth mentioning
that the aforementioned system generalizes the well-known
consecutive-𝑘-out-of-𝑛: 𝐹 system (for 𝑟 < 𝑘), while for 𝑘 = 𝑛
the 𝑟-within-consecutive-𝑘-out-of-𝑛: 𝐹 system reduces to an
ordinary 𝑟-out-of-𝑛: 𝐹 system.

2.2.1. Recursive Schemes for the Reliability of 𝑟-within-Consec-
utive-𝑘-out-of-𝑛: 𝐹 Systems. The following theorems provide
recurrence for the calculation of reliability of an 𝑟-within-
consecutive-𝑘-out-of-𝑛: 𝐹 system.

Theorem 10 (Sfakianakis et al. [18]). Let 𝑅𝐿
𝑟,𝑘,𝑛

(𝑝) denote the
reliability function of a linear 𝑟-within-consecutive-𝑘-out-of-𝑛:
𝐹 system, where 𝑝 is the common reliability of its components.
Then, for 𝑛 = 𝑟 + 𝜆, 𝜆 ≤ 𝑟, 𝑅𝐿

𝑟,𝑘,𝑛
(𝑝) satisfies the following

recurrence relation:

𝑅
𝐿

𝑟,𝑘,𝑛
(𝑝)

=

𝑘

∑

𝑥=1
𝑅
𝐿

𝑥,𝜆,2𝜆 (𝑝) (
𝑘 − 𝜆

𝑟 − 𝑥
)𝑝

𝑘−𝜆−𝑟+𝑥

(1−𝑝)𝑟−𝑥 ,
(24)

where 𝑅𝐿
𝑥,𝜆,2𝜆(𝑝) = 1, if 𝑥 > 𝜆.

Theorem11 (Eryilmaz [19]). Let𝑅𝐿
𝑟,𝑘,𝑛

(𝑝) denote the reliability
function of a linear 𝑟-within-consecutive-𝑘-out-of-𝑛: 𝐹 system,
where 𝑝 is the common reliability of its components. Then, for
𝑛 ≤ 2𝑘, 𝑅𝐿

𝑟,𝑘,𝑛
(𝑝) satisfies the following recurrence relation:

𝑅
𝐿

𝑟,𝑘,𝑛
(𝑡) =

min(𝑛−𝑘,𝑟−1)
∑

𝑠=0
𝑃 (𝑇

[𝑛−𝑘+1:𝑘]
𝑟−𝑠:2𝑘−𝑛 > 𝑡)

⋅ [𝑅
∗

𝑠+1,𝑛−𝑘:2(𝑛−𝑘) (𝑡) − 𝑅
∗

𝑠,𝑛−𝑘:2(𝑛−𝑘) (𝑡)] ,

(25)

where 𝑅∗
𝑠,𝑛−𝑘:2(𝑛−𝑘)(𝑡) is the reliability of 𝑠-within-consecutive-

(𝑛−𝑚)-out-of-2(𝑛−𝑚):𝐹 systemwith components 1, 2, . . . , 𝑛−
𝑚,𝑚 + 1, . . . , 𝑛, while 𝑇[𝑖:𝑖+𝑚−1]

𝑘:𝑚
denotes the lifetime of 𝑘-

out-of-𝑚: 𝐹 subsystem of components with the lifetimes
𝑇
𝑖
, 𝑇

𝑖+1, . . . , 𝑇𝑖+𝑚−1, 1 ≤ 𝑖 ≤ 𝑛 − 𝑚 + 1.

Theorem 12 (Koutras [13]). Let 𝑅𝐿
𝑟,𝑘,𝑛

(𝑝) denote the reliability
function of a linear r-within-consecutive-𝑘-out-of-𝑛: 𝐹 system,
where 𝑝 is the common reliability of its components. Then,
𝑅
𝐿

𝑟,𝑘,𝑛
(𝑝) satisfies the following recurrence relation:

𝑅
𝐿

𝑟,𝑘,𝑛
(𝑝)

=

{{{{

{{{{

{

1, 𝑓𝑜𝑟 𝑛 = 0,

𝑝𝑅
𝑟,𝑘,𝑛−1 (𝑝) + 𝑞𝑝

𝑛−1
, 𝑓𝑜𝑟 1 ≤ 𝑛 ≤ 𝑘 − 1,

𝑝𝑅
𝑟,𝑘,𝑛−1 (𝑝) + 𝑞𝑝

𝑘−1
𝑅
𝑟,𝑘,𝑛−𝑘

(𝑝) , 𝑓𝑜𝑟 𝑛 ≥ 𝑘.

(26)

2.2.2. Exact Formulas for the Reliability of 𝑟-within-Consecu-
tive-𝑘-out-of-𝑛: 𝐹 Systems. The following Theorem offers
closed expressions for the evaluation of reliability of an 𝑟-
within-consecutive-𝑘-out-of-𝑛: 𝐹 system.

Theorem 13 (Sfakianakis et al. [18]). Let 𝑅𝐿2,𝑘,𝑛(𝑝) (𝑅
𝐶

2,𝑘,𝑛(𝑝))
denote the reliability function of a linear (circular) 2-within-
consecutive-𝑘-out-of-𝑛: 𝐹 system, where 𝑝 is the common
reliability of its components. Then the following recurrences
ensue:

(i)

𝑅
𝐿

2,𝑘,𝑛 (𝑝) =
𝑚

∑

𝑗=0
(
𝑛 − (𝑗 − 1) (𝑘 − 1)

𝑗
) (1−𝑝)𝑗 𝑝𝑛−𝑗, (27)

where𝑚 = [(𝑛 + 𝑘 − 1)/𝑘],
(ii)

𝑅
𝐶

2,𝑘,𝑛 (𝑝)

=

𝑠

∑

𝑗=0

𝑛

𝑛 − 𝑗 (𝑘 − 1)
(
𝑛 − 𝑗 (𝑘 − 1)

𝑗
) (1−𝑝)𝑗 𝑝𝑛−𝑗,

(28)

where𝑚 = [𝑛/𝑘].

2.2.3. Approximations for the Reliability of r-within-Consecu-
tive-𝑘-out-of-𝑛: 𝐹 Systems. The following theorems offer
some limiting results for the evaluation of reliability of an r-
within-consecutive-𝑘-out-of-𝑛: 𝐹 system.

Theorem 14 (Eryilmaz et al. [20]). Let𝑅𝐿
𝑟,𝑘,𝑛

(𝑡) = 𝑃(𝑇
𝑟,𝑘,𝑛

> 𝑡)

denote the reliability function of a linear 𝑟-within-consecutive-
𝑘-out-of-𝑛: 𝐹 system. Then, for 1 ≤ 𝑟 ≤ 𝑘 ≤ 𝑛, 𝑅𝐿

𝑟,𝑘,𝑛
(𝑡) satisfies

the following inequalities:

(i)

𝑅
𝐿

𝑟,𝑘,𝑛
(𝑡) ≥ 1− (𝑛 − 𝑘 + 1) 𝑃 (𝑇(1)

𝑟:𝑘
≤ 𝑡)

+ (𝑛 − 𝑘) 𝑃 (𝑇
(1)
𝑟:𝑘
≤ 𝑡, 𝑇

(2)
𝑟:𝑘
≤ 𝑡) ,

(29)

where 𝑇(𝑗)
𝑟:𝑘

is the 𝑟th smallest lifetime among 𝑇
𝑗
, 𝑇

𝑗+1,
. . . , 𝑇

𝑗+𝑘−1, 𝑟 ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝑛 − 𝑘 + 1 and

𝑃 (𝑇
(1)
𝑟:𝑘
≤ 𝑡)

=

𝑘

∑

𝑠=𝑟

(
𝑘

𝑠
)

𝑟−𝑠

∑

𝑖=0
(−1)𝑖 (

𝑟 − 𝑠

𝑖
)𝑃 (𝑇1 ≤ 𝑡, . . . , 𝑇𝑠+𝑖 ≤ 𝑡) .

(30)

(ii) Consider

𝑅
𝐿

𝑟,𝑘,𝑛
(𝑡)

≤

𝑟−1
∑

𝑗1 ,𝑗2,...,𝑗ℎ=0
(
𝑘

𝑗1
) ⋅ ⋅ ⋅ (

𝑘

𝑗
ℎ

)𝑓(ℎ𝑘−

ℎ

∑

𝑖=1
𝑗
𝑖
,

ℎ

∑

𝑖=1
𝑗
𝑖
) ,

(31)

where ℎ = [𝑛/𝑘] and

𝑓 (𝑎, 𝑏) =

𝑎

∑

𝑖=0
(−1)𝑖 (

𝑎

𝑖
)𝑃 (𝑇1 ≤ 𝑡, . . . , 𝑇𝑏+𝑖 ≤ 𝑡) . (32)
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Let us next denote by 𝐴
𝑖
the event where there are at

least 𝑟 failed components from 𝑖 to 𝑖 + 𝑘 − 1, for 𝑖 =
1, 2, . . . , 𝑛−𝑘+1, while 𝑆1, 𝑆2, 𝑆3 are defined as follows:

𝑆1 =
𝑛−𝑘+1
∑

𝑖=1
𝑃 (𝐴

𝑖
) ,

𝑆2 = ∑

1≤𝑖<𝑗≤𝑛−𝑘+1
𝑃 (𝐴

𝑖
𝐴

𝑗
) ,

𝑆3 = ∑

𝑖<𝑗<]≤𝑛−𝑘+1
𝑃 (𝐴

𝑖
𝐴

𝑗
𝐴]) .

(33)

Theorem 15 (Sfakianakis et al. [18]). Let 𝑅𝐿
𝑟,𝑘,𝑛

(𝑝) denote the
reliability function of a linear 𝑟-within-consecutive-𝑘-out-of-𝑛:
𝐹 system, where p is the common reliability of its components.
Then 𝑅𝐿

𝑟,𝑘,𝑛
(𝑝) satisfies the following inequalities:

(i)

𝑅
𝐿

𝑟,𝑘,𝑛
(𝑝) ≥ 𝑎1𝑆1 − 𝑎2𝑆2 + 𝑎3𝑆3, (34)

where

𝑎1 =
2 (𝑛 − 𝑘 + 1) + 𝑡 − 1
(𝑛 − 𝑘 + 1) (𝑡 + 1)

,

𝑎2 =
2 (𝑛 − 𝑘 + 2𝑡 − 1)
(𝑛 − 𝑘 + 1) 𝑡 (𝑡 + 1)

,

𝑎3 =
6

(𝑛 − 𝑘 + 1) 𝑡 (𝑡 + 1)
,

𝑡 = [
2 ((𝑛 − 𝑘 − 1) 𝑆2 − 3𝑆3)

(𝑛 − 𝑘) 𝑆1 − 2𝑆2
] ,

(35)

(ii)

𝑅
𝐿

𝑟,𝑘,𝑛
(𝑝) ≤ min (1, 𝑆1 − 𝑏2𝑆2 + 𝑏3𝑆3) , (36)

where

𝑏2 =
2 (2𝑡 − 1)
𝑡 (𝑡 + 1)

,

𝑏3 =
6

𝑡 (𝑡 + 1)
,

𝑡 = [
3𝑆3
𝑆2
]+ 2.

(37)

For the next Theorem, the following definitions are necessary:

(i) 𝑍
𝑖
denotes the event that the linear 𝑟-within-consecu-

tive-𝑘-out-of-𝑖: 𝐹 system consisting of the components
1, 2, . . . , 𝑖 is good (𝑖 = 𝑘, 𝑘 + 1, . . . , 𝑛).

(ii) 𝑋
𝑖
denotes the event that the 𝑖th component fails and

there are at least 𝑟 − 1 failures among components 𝑖 −
𝑘 + 1, 𝑖 − 𝑘 + 2, . . . , 𝑖 − 1, (𝑖 = 𝑘, 𝑘 + 1, . . . , 𝑛).

(iii) 𝐵
𝑖
denotes the event that there are at most 𝑟 − 1 failures

among components 𝑖 − 𝑘 + 1, 𝑖 − 𝑘 + 2, . . . , 𝑖 − 1, (𝑖 =
𝑘, 𝑘 + 1, . . . , 𝑛).

(iv) 𝐶
𝑖
denotes the event that, for 𝑓 = min(𝑖 − 𝑘, 𝑘 − 𝑟 + 1),

there is no failure among components (𝑖−𝑘)−𝑓+1, (𝑖−
𝑘) − 𝑓 + 2, . . . , 𝑖 − 𝑘, for 𝑖 = 𝑘 + 1, 𝑘 + 2, . . . , 𝑛.

Theorem 16 (Papastavridis and Koutras [21]). Let 𝑅𝐿
𝑟,𝑘,𝑛

(𝑡)

denote the reliability function of a linear 𝑟-within-consecutive-
𝑘-out-of-𝑛: F system. Then 𝑅

𝐿

𝑟,𝑘,𝑛
(𝑡) satisfies the following

inequalities:

𝑃 (𝑍
𝑘
)

𝑛

∏

𝑖=𝑘+1
𝑃 (𝑋

󸀠

𝑖
)

≤ 𝑅
𝐿

𝑟,𝑘,𝑛
(𝑡)

≤ 𝑃 (𝑍
𝑘
)

𝑛

∏

𝑖=𝑘+1
[1− 𝛾

𝑖
𝑃 (𝑋

𝑖
) + 𝑞

𝑖
𝛾
𝑖
𝑃 (𝐵

󸀠

𝑖
)] ,

(38)

where 𝑞
𝑖
is the unreliability of the 𝑖th component, while 𝛾

𝑖
=

𝑃(𝐶
𝑖
)/𝑃(𝐵

𝑖
).

2.2.4. Signature Vector of 𝑟-within-Consecutive-𝑘-out-of-𝑛: 𝐹
Systems. Let 𝑝 denote the common reliability of the compo-
nents of an 𝑟-within-consecutive-𝑘-out-of-𝑛: 𝐹 system. The
following theorem offers a generating function approach of
the aforementioned system.

Theorem 17. Let (𝑠1(𝑛), 𝑠2(𝑛), . . . , 𝑠𝑛(𝑛)) and 𝑅2,𝑘,𝑛(𝑝) be
the signature and the reliability function of an 2-within-
consecutive-𝑘-out-of-𝑛: 𝐹 system, respectively. Then

(a) the double generating function of 𝑖 ( 𝑛
𝑖
) 𝑠

𝑖
(𝑛) is given by

∞

∑

𝑛=1

𝑛

∑

𝑖=1
𝑖 (
𝑛

𝑖
) 𝑠

𝑖
(𝑛) 𝑡

𝑖

𝑥
𝑛

=
𝑡
2
𝑥 [2𝑥 − 2𝑥2 + ((𝑘 − 1) 𝑡 − 2) 𝑥𝑘 + (2 − 𝑘𝑡) 𝑥𝑘+1 + 𝑡𝑥2𝑘]

(𝑥 − 1)2 (1 − 𝑥 − 𝑡𝑥𝑘)2

(39)

(Triantafyllou and Koutras [22]),
(b) the generating function of 𝑅2,𝑘,𝑛(𝑝) is given as follows:

𝑅 (𝑧; 𝑝) =
1 + 𝑞𝑧∑𝑘−2

𝑗=0 (𝑝𝑧)
𝑗

1 − 𝑝𝑧 − 𝑞𝑝𝑘−1𝑧𝑘
(40)

(Koutras [13]).

The next theorem offers expressions for the evaluation of
the signature vector of an 2-within-consecutive-𝑘-out-of-𝑛: 𝐹
system.

Theorem 18 (Triantafyllou and Koutras [22]). Let (𝑠1(𝑛),
𝑠2(𝑛), . . . , 𝑠𝑛(𝑛)) be the signature vector of an 2-within-
consecutive-𝑘-out-of-𝑛: 𝐹 system. Then the following ensues:
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(i) The quantities 𝑞
𝑖
(𝑛) = (𝑛)

𝑖
𝑠
𝑖
(𝑛), 𝑖 = 1, 2, . . . , 𝑛, where

(𝑛)
𝑖
= 𝑛(𝑛 − 1) ⋅ ⋅ ⋅ (𝑛 − 𝑖 + 1), satisfy the recurrence

relation:

𝑞
𝑖+1 (𝑛 + 1) = 4𝑞

𝑖+1 (𝑛) + 4𝑞𝑖+1 (𝑛 − 2) − 6𝑞𝑖+1 (𝑛 − 1)

− 𝑞
𝑖+1 (𝑛 − 3) + 𝑖 (2 (𝑞𝑖 (𝑛 − 𝑘 + 1)) − 𝑞𝑖 (𝑛 − 𝑘 − 2)

− 3𝑞
𝑖
(𝑛 − 𝑘) + 3𝑞

𝑖
(𝑛 − 𝑘 − 1) − (𝑖 − 1)

⋅ (𝑞
𝑖
(𝑛 − 2𝑘 + 1) − 𝑞

𝑖
(𝑛 − 2𝑘) − 𝑞

𝑖
(𝑛 − 2𝑘 − 1)))

(41)

for 𝑖 = 0, 1, . . . , 𝑛 − 1 and 𝑛 ≥ 2𝑘 + 2.
(ii) The quantities 𝑠

𝑖
(𝑛) can be expressed as

𝑠
𝑖
(𝑛) =

(𝑛 − 𝑖 + 1) ( 𝑛−(𝑘−1)(𝑖−2)
𝑖−1 ) − 𝑖 (

𝑛−(𝑘−1)(𝑖−1)
𝑖

)

𝑖 (
𝑛

𝑖
)

. (42)

It is worth mentioning that well-performed simulations study
of an 𝑟-within-consecutive-𝑘-out-of-𝑛: 𝐹 system has been
developed by Eryilmaz et al. [20]. Moreover, Kan et al. [23]
studied the circular case of the aforementioned structure and
offered a new approximation for its reliability.

2.3. (𝑛, 𝑓, 𝑘) Systems. An (𝑛, 𝑓, 𝑘) system involves two com-
mon failure criteria. More specifically, it consists of 𝑛 com-
ponents (ordered in a line or a circle) and fails if and only
if there exist at least 𝑓 failed components or at least 𝑘
consecutive failed components. It is worth of mentioning
that the configuration of an (𝑛, 𝑓, 𝑘) system was first intro-
duced by Tung [24] as an application to a complex infrared
detecting system and since then it has attracted considerable
research attention. In the sequel, we present the main results
for (𝑛, 𝑓, 𝑘) systems appearing in the literature, such as
recurrence relations and closed formulas for the evaluation
of the reliability function and signature vector. It is worth
mentioning that the aforementioned system generalizes the
well-known consecutive-𝑘-out-of-𝑛: 𝐹 system (for 𝑓 > 𝑘),
while for 𝑓 ≤ 𝑘 the (𝑛, 𝑓, 𝑘) system reduces to an ordinary
𝑓-out-of-𝑛: 𝐹 system.

2.3.1. Recursive Schemes for the Reliability of (𝑛, 𝑓, 𝑘) Systems.
The following theorems provide recurrence for the calcula-
tion of reliability of an (𝑛, 𝑓, 𝑘) system.

Theorem 19 (Zuo et al. [25]). Let 𝐴(𝑖, 𝑗, 𝑘) be the event
that the (𝑖, 𝑗, 𝑘) subsystem fails (the subsystem consists of
components 1, 2, . . . , 𝑖, 𝑖 ≥ 𝑗 ≥ 0, 𝑖 ≥ 𝑘), while 𝑄(𝑖, 𝑗, 𝑘)
denotes the corresponding failure probability𝑃(𝐴(𝑖, 𝑗, 𝑘)).Then
the unreliability function of the (𝑖, 𝑗, 𝑘) system satisfies the
following recurrence relation:

𝑄 (𝑖, 𝑗, 𝑘)

= 𝑝
𝑖
𝑄 (𝑖 − 1, 𝑗, 𝑘) + 𝑞

𝑖
𝑄 (𝑖 − 1, 𝑗 − 1, 𝑘)

+ [1−𝑄 (𝑖 − 𝑘 − 1, 𝑗 − 𝑘, 𝑘)] 𝑝
𝑖−𝑘

𝑖

∏

𝑙=𝑖−𝑘+1
𝑞
𝑙
,

(43)

where 𝑝
𝑎
(𝑞

𝑎
) is the reliability (unreliability) of the 𝑎th compo-

nent.

In order to launch the aforementioned recursive scheme,
the following set of initial conditions is necessary:

𝑄 (𝑖, 𝑗, 𝑘) = 0, if 𝑖 < min (𝑗, 𝑘) ,

𝑄 (𝑖, 𝑗, 𝑘) = 1 if 𝑗 = 0,

𝑝0 = 1.

(44)

The complexity for calculating 𝑄(𝑛, 𝑓, 𝑘) using the above
recurrence relation is equal to 𝑂(𝑛𝑓). The next theorem
provides an alternative recursive scheme for the evaluation
of the reliability function of the (𝑛, 𝑓, 𝑘) system.

Theorem 20 (Triantafyllou and Koutras [26]). The reliability
function𝑅

𝑛
of an (𝑛, 𝑓, 2) systemwith i.i.d. components satisfies

the following recurrence relation:

𝑅
𝑛
=

𝑓

∑

𝑚=1
(−𝑝)

𝑚−1
(
𝑓 − 1
𝑚 − 1

)𝑓
𝑚 (1 − 𝑝) + (𝑓 + 1) 𝑝

𝑚 (𝑓 − 𝑚 + 1)

⋅ 𝑅
𝑛−𝑚

+ (−𝑝)
𝑓

𝑅
𝑛−𝑓−1,

(45)

where 𝑝 denotes the common reliability of its components.

In order to launch the recursive scheme established above,
an adequate number of initial conditions is necessary. These
conditions are given as follows

𝑅
𝑛
= 1, if 𝑛 < min (𝑓, 2) ,

𝑅
𝑛
= 0, if 𝑓 = 0 or 𝑛 = 0,

𝑅
𝑛
= 𝑅

𝑓,𝑛:𝐹
, if 𝑓 ≤ 2,

(46)

where 𝑅
𝑓,𝑛:𝐹

is the reliability of a 𝑓-out-of: 𝑛: 𝐹 system; that
is, 𝑅

𝑓,𝑛:𝐹
= ∑

𝑓−1
𝑗=0 (

𝑛

𝑗 ) 𝑝
𝑛−𝑗

(1 − 𝑝)𝑗.

2.3.2. Exact Formulas for the Reliability of (𝑛, 𝑓, 𝑘) Systems.
Let us first consider an (𝑛, 𝑓, 𝑘) system, where𝑓 > 𝑘; we recall
that for the case 𝑓 ≤ 𝑘 the (𝑛, 𝑓, 𝑘) system coincides with the
well-known𝑓-out-of-𝑛:𝐹 system and its reliability properties
have been extensively studied in the past. Chang et al. [27]
established a Markov chain representation of the (𝑛, 𝑓, 𝑘)
system, which leads to the computation of the reliability
function of the aforementioned structure. More specifically,
for the (𝑛, 𝑓, 𝑘) systemwith𝑓 > 𝑘, let us define the state space
for process {𝑌(𝑡), 𝑡 = 0, 1, . . .} as

𝑆 = {(𝑖, 𝑗) : 0≤ 𝑖 ≤ 𝑘 − 1, 𝑖 ≤ 𝑗 ≤𝑓− 1} ∪ {𝑠
𝑁
} , (47)

where (𝑖, 𝑗) indicates a working state in which the system con-
sisting of components 1, 2, . . . , 𝑡 has 𝑗 failed components, its
last 𝑖−1 components have failed, and the (𝑡−𝑖)th component is
working. State 𝑠

𝑁
indicates the system (1, 2, . . . , 𝑡) fails. Then

{𝑌(𝑡)} is a Markov chain with transition matrix of the form
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Λ
𝑡
(𝑛) =

(
(
(
(

(

𝐴
(1)
𝑓×𝑓

𝐵
(1)
𝑓×(𝑓−1) 0 0 𝐶

(1)
𝑓×1

𝐴
(2)
(𝑓−1)×𝑓 0 𝐵

(2)
(𝑓−1)×(𝑓−2) 0 𝐶

(2)
(𝑓−1)×1

.

.

.

𝐴
(𝑘)

(𝑓−𝑘+1)×𝑓 0 0 𝐵
(𝑘)

(𝑓−𝑘+1)×(𝑓−𝑘) 𝐶
(𝑘)

(𝑓−𝑘+1)×1

0 0 0 0 1

)
)
)
)

)𝑁×𝑁

, (48)

where

𝐴
(𝑖)

(𝑓−𝑖+1)×𝑓 = (

0 ⋅ ⋅ ⋅ 0⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑖−1
𝑝

d

𝑝

) ,

𝐵
(𝑖)

(𝑓−𝑖+1)×(𝑓−𝑖) =(

𝑝

d

𝑝

0

),

𝑖 = 1, 2, . . . , 𝑘 − 1,

𝐶
(𝑖)

(𝑓−𝑖+1)×1 = (0 ⋅ ⋅ ⋅ 0 𝑞)
󸀠

, 𝑖 = 1, 2, . . . , 𝑘 − 1

(49)

and𝑁 = (2𝑓 − 𝑘 + 1)𝑘/2 + 1.
As proved in Koutras [13], the reliability 𝑅

𝑛
of a structure

can be expressed as

𝑅
𝑛
= 𝜋

󸀠

0Λ
𝑛u = 1−𝜋󸀠0Λ

𝑛e
𝑁
, (50)

where Λ is the transition probability matrix associated to the
structure and

𝜋0 = (1, 0, 0, . . . , 0)
󸀠

,

u = (1, 1, . . . , 1, 0)󸀠 ,

e
𝑁
= (0, 0, . . . , 0, 1)󸀠 .

(51)

Therefore, applying the above expression obtained for the
transition matrix of an (𝑛, 𝑓, 𝑘) system, one may easily calcu-
late the reliability function of the aforementioned structure.

Let us next consider the following probabilities:

𝜃
(0)
𝑚
= 𝑃 (𝑋1 = ⋅ ⋅ ⋅ =𝑋𝑚

= 0) ,

𝜃
(1)
𝑚
= 𝑃 (𝑋1 = ⋅ ⋅ ⋅ =𝑋𝑚

= 1) ,

for 𝑚 ≥ 1,

(52)

where 𝑋
𝑖
is the state of 𝑖th component (𝑋

𝑖
∈ {0, 1}), for 𝑖 =

1, 2, . . . , 𝑛. The following theorem offers a closed expression
for the evaluation of reliability of an (𝑛, 𝑓, 𝑘) system.

Theorem 21 (Eryilmaz [28]). The reliability function 𝑅
𝑛
of

an (𝑛, 𝑓, 𝑘) system with exchangeable components can be
expressed as follows:

𝑅
𝑛
=

𝑓−1

∑

𝑖=0

𝑛−𝑖

∑

𝑗=0
𝑁(𝑖, 𝑘, 𝑛) (−1)𝑗 (

𝑛 − 𝑖

𝑗
) 𝜃

(0)
𝑖+𝑗
, (53)

where
𝑁(𝑖, 𝑘, 𝑛)

=

min([𝑖/𝑘],𝑛−𝑖+1)
∑

𝑗=0
(−1)𝑗 (

𝑛 − 𝑖 + 1
𝑗

)(
𝑛 − 𝑗𝑘

𝑛 − 𝑖
) .

(54)

In the sequel, we present results for an (𝑛, 𝑓, 𝑘) system with
Markov dependent components. Let𝑋1, 𝑋2, . . . , 𝑋𝑛

denote the
states of the Markov dependent components with transition
probabilities

𝑃 (𝑋
𝑖
= 0 | 𝑋

𝑖−1 = 0) = 𝑝00,

𝑃 (𝑋
𝑖
= 1 | 𝑋

𝑖−1 = 0) = 𝑝01,

𝑃 (𝑋
𝑖
= 0 | 𝑋

𝑖−1 = 1) = 𝑝10,

𝑃 (𝑋
𝑖
= 1 | 𝑋

𝑖−1 = 1) = 𝑝11,

(55)

with 1 ≤ 𝑖 ≤ 𝑛 and initial probabilities 𝑝1 = 𝑃(𝑋1 = 1),
𝑝0 = 𝑃(𝑋1 = 0). If we define 𝑔(𝑛, 𝑟, 𝑙) as

𝑔 (𝑛, 𝑟, 𝑙) =

1
∑

𝑡=0

1
∑

𝑠=0
(
𝑛 − 𝑙 − 1
𝑟 − 𝑡 − 𝑠

) (𝑝00)
𝑙−𝑟

⋅ 𝑝
𝑟−𝑠

01 𝑝
𝑟−𝑡

10 (𝑝11)
𝑛−𝑙−𝑟+𝑡+𝑠−1

𝑝1−𝑡,

(56)

the following theorem provides an expression for the evaluation
of reliability of (𝑛, 𝑓, 𝑘) systems.

Theorem 22 (Demir [29]). The reliability function 𝑅
𝑛
of an

(𝑛, 𝑓, 𝑘) system with Markov dependent components can be
expressed as follows:

𝑅
𝑛
= 𝑝1𝑝

𝑛−1
11 +

𝑓−1

∑

𝑚=1

min(𝑚,𝑛−𝑚)
∑

𝑟=1
𝑁(𝑟, 𝑓,𝑚) 𝑔 (𝑛, 𝑟, 𝑚) . (57)

2.3.3. Signature Vector of (𝑛, 𝑓, 𝑘) Systems. Let p denote the
common reliability of the components of an (𝑛, 𝑓, 𝑘) system.
The following theorem offers a generating function approach
of the aforementioned system.
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Theorem 23 (Triantafyllou and Koutras [26]). Let (𝑠1(𝑛),
𝑠2(𝑛), . . . , 𝑠𝑛(𝑛)) be the signature of an (𝑛, 𝑓, 2) system, respec-
tively.Then the double generating function of 𝑖 ( 𝑛

𝑖
) 𝑠

𝑖
(𝑛) is given

by

∞

∑

𝑛=1

𝑛

∑

𝑖=1
𝑖 (
𝑛

𝑖
) 𝑠

𝑖
(𝑛) 𝑡

𝑖

𝑥
𝑛

=
𝑑

𝑥2 (1 − 𝑥 − 𝑡𝑥)2 (1 − 𝑥 − 𝑡𝑥2)2 (1 − 𝑥)𝑓+1
,

(58)

where

𝑑 = − 𝑡
4
(1−𝑥)𝑓+1 𝑥6 −𝑓 (1−𝑥)3 (− (𝑡𝑥2)

𝑓

+ (1

−𝑥) (𝑡𝑥
2
)
𝑓

)+ 𝑡
3
𝑥
4
(− (𝑡𝑥

2
)
𝑓

(2𝑥+𝑓− 2) + (1

−𝑥)
𝑓

𝑥 (𝑥
2
− 1)) + 𝑡 (𝑥 − 1)2 ((1−𝑥) (𝑡𝑥2)

𝑓

⋅ ((𝑓 − 1) 𝑥2 +𝑥+𝑓− 2) − (𝑡𝑥2)
𝑓

(2𝑓𝑥2 + 2𝑥

+𝑓− 2)) + (𝑡𝑥)2 (− (1−𝑥)2 (𝑡𝑥2)
𝑓

(𝑥 +𝑓− 3)

+ (𝑥 − 1) (−2 (1−𝑥)𝑓+1 𝑥2

− (𝑡𝑥
2
)
𝑓

(4 (𝑥 − 1) + 𝑓 (𝑥2 + 2)))) .

(59)

Theorem 24 offers recursive relations for the evaluation of the
signature vector of an (𝑛, 𝑓, 2) system.

Theorem 24 (Triantafyllou [30]). The coordinates 𝑠
𝑖
(𝑛) of the

signature vector of an (𝑛, 𝑓, 2) system satisfy the following
recurrence relation:

𝑓+1

∑

𝑗=0
(
𝑓 + 1
𝑗
) (−1)𝑗 (𝑖(

𝑛 − 𝑗 − 2
𝑖

) 𝑠
𝑖
(𝑛 − 𝑗 − 2)

− (𝑖 − 1) (
𝑛 − 𝑗 − 3
𝑖 − 1

) 𝑠
𝑖−1 (𝑛 − 𝑗 − 3)

− 3𝑖 (
𝑛 − 𝑗 − 3

𝑖
) 𝑠

𝑖
(𝑛 − 𝑗 − 3)

+ 3𝑖 (
𝑛 − 𝑗 − 4

𝑖
) 𝑠

𝑖
(𝑛 − 𝑗 − 4) + 2 (𝑖 − 2)

⋅ (
𝑛 − 𝑗 − 5
𝑖 − 2

) 𝑠
𝑖−2 (𝑛 − 𝑗 − 5) 𝑠𝑖−2 (𝑛 − 𝑗 − 5)

+ 3 (𝑖 − 1) (
𝑛 − 𝑗 − 5
𝑖 − 1

) 𝑠
𝑖−1 (𝑛 − 𝑗 − 5)

− 𝑖 (
𝑛 − 𝑗 − 5

𝑖
) 𝑠

𝑖
(𝑛 − 𝑗 − 5) − (𝑖 − 2)

⋅ (
𝑛 − 𝑗 − 6
𝑖 − 2

) 𝑠
𝑖−2 (𝑛 − 𝑗 − 6) − 2 (𝑖 − 1)

⋅ (
𝑛 − 𝑗 − 6
𝑖 − 1

) 𝑠
𝑖−1 (𝑛 − 𝑗 − 6) − (𝑖 − 2)

⋅ (
𝑛 − 𝑗 − 7
𝑖 − 2

) 𝑠
𝑖−2 (𝑛 − 𝑗 − 7) − (𝑖 − 3)

⋅ (
𝑛 − 𝑗 − 7
𝑖 − 3

) 𝑠
𝑖−3 (𝑛 − 𝑗 − 7)) = 0.

(60)

Let 𝑇 be the lifetime of a system whose components’ lifetimes
are 𝑇1, 𝑇2, . . . , 𝑇𝑛 and 𝑇1:𝑛 < 𝑇2:𝑛 < ⋅ ⋅ ⋅ < 𝑇

𝑛:𝑛
the order

statistics associated with them. It is easy to observe that the
lifetime of an (𝑛, 𝑓, 𝑘) system can be represented as a function
of the lifetimes of consecutive 𝑘-out-of-𝑛: 𝐹 and 𝑘-out-of-𝑛: 𝐹
systems. Generally speaking, the lifetimes of systems involving
two common failure criteria can be expressed as either

𝑇
∗
= min (𝑆, 𝑇

𝑎:𝑛
) ,

or 𝑇∗ = max (𝑆, 𝑇
𝑎:𝑛
) ,

(61)

where 𝑆 denotes the lifetime associated with the system different
from 𝑎-out-of-𝑛 structure but having the same components’ life-
times 𝑇1, 𝑇2, . . . , 𝑇𝑛. The next theorem presents an alternative
way of computing the signature of an (𝑛, 𝑓, 𝑘) system.

Theorem 25 (Eryilmaz and Zuo [31]). Let (𝑠1, 𝑠2, . . . , 𝑠𝑛) be
the signature of the system with lifetime 𝑆. Then the signatures
of the systems with lifetimes 𝑇

∗
and 𝑇∗ are given, respectively,

as

p
∗
= (𝑠1, 𝑠2, . . . , 𝑠𝑎−1,

𝑛

∑

𝑖=𝑎

𝑠
𝑖
, 0, . . . , 0) ,

p∗ = (0, . . . , 0,
𝑎

∑

𝑖=𝑎

𝑠
𝑖
, 𝑠
𝑎+1, . . . , 𝑠𝑛) .

(62)

It is noteworthy that the dual system of an (𝑛, 𝑓, 𝑘) structure
has been studied by Cui et al. [32], while a generalization
of these systems, named (𝑛, 𝑓, 𝑘) systems, with weighted com-
ponents has been introduced by Eryilmaz and Aksoy [33].
Gera [34] studied reliability systems with two working criteria
and presented some results associated with the well-known
qualification tests, while Kamalja [35] derived expressions for
the Birnbaum importance measures for both structures.

2.4. Reliability Systems with Weighted Components. The idea
that all components in a reliability structure are not created
equal is seemingly an obvious concept. In other words, it is
not quaint to assume that different components may have
different failure probabilities. Generally speaking, a reliability
system which consists of weighted components, for example,
each component carries its own positive weight, fails if and
only if the total weight of the failed components exceeds
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a specific benchmark. In the sequel, the literature onweighted
reliability structures is briefly reviewed. Consider a system
with 𝑛 components and suppose that the 𝑖th component is
associated with a weight 𝑤

𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛. Then the

system is still working if and only if the sum of weights of the
failed components is less than (or equal to) a certain threshold
𝑇 > 0.

2.4.1. Weighted 𝑘-out-of-𝑛 Systems. A weighted 𝑘-out-of-𝑛:
𝐺(𝐹) system consists of 𝑛 components, each with its own
positive weight 𝑤

𝑖
> 0 (total system weight equal to 𝑤), such

that the system works (fails) if and only if the total weight of
the working (failed) components is at least 𝑘. It is noteworthy
that the reliability of a weighted 𝑘-out-of-𝑛: 𝐺 system is the
complement of the unreliability of a weighted (𝑛 − 𝑘 + 1)-
out-of-𝑛: 𝐹 system. It goes without saying that the 𝑘-out-of-𝑛:
𝐺(𝐹) system is a special case of the correspondingweighted 𝑘-
out-of-𝑛:𝐺(𝐹) systemwherein the weight of each component
equals 1. The next theorem offers an efficient algorithm for
the evaluation of the reliability of the weighted 𝑘-out-of-𝑛: 𝐺
system.

Theorem 26 (Wu and Chen [36]). Let 𝑅(𝑖, 𝑗) be the reliability
of the weighted 𝑗-out-of-𝑖: 𝐺 system, while 𝑤

𝑖
> 0 is the

weight of the 𝑖th component. Then if we denote by 𝑝
𝑖
(𝑞

𝑖
) the

reliability (unreliability) of the 𝑖th component, the reliability of
the structure satisfies the following recurrence relation:

𝑅 (𝑖, 𝑗)

=
{

{

{

𝑝
𝑖
𝑅 (𝑖 − 1, 𝑗 − 𝑤

𝑖
) + 𝑞

𝑖
𝑅 (𝑖 − 1, 𝑗) , if 𝑗 − 𝑤

𝑖
≥ 0,

𝑝
𝑖
+ 𝑞

𝑖
𝑅 (𝑖 − 1, 𝑗) , otherwise.

(63)

The following theorem provides a similar result concerning the
dual structure.

Theorem 27 (Chen and Yang [37]). Let 𝑅(𝑖, 𝑗) be the relia-
bility of the weighted 𝑗-out-of-𝑖: 𝐹 system, while 𝑤

𝑖
> 0 is the

weight of the 𝑖th component. Then if we denote by 𝑝
𝑖
(𝑞

𝑖
) the

reliability (unreliability) of the 𝑖th component, the reliability of
the structure satisfies the following recurrence relation:
𝑅 (𝑖, 𝑗)

=

{{{{

{{{{

{

0, if 𝑖 ≤ 0, 𝑗 ≥ 0,

1, if 𝑖 > 0, 𝑗 = 0,

(1 − 𝑝
𝑖
) 𝑅 (𝑖 − 𝑤

𝑗
, 𝑗 − 1) + 𝑝

𝑗
𝑅 (𝑖, 𝑗 − 1) , otherwise.

(64)

An extension of the aforementioned one-stage weighted 𝑘-
out-of-𝑛 model has been proposed by Chen and Yang [37].
More specifically, Chen and Yang [37] considered a two-
stage weighted 𝑘-out-of-𝑛 system, which consists of 𝑚 sub-
systems. Each subsystem has a (one-stage) weighted 𝑘-out-
of-𝑛 structure, which is called the second level structure. The
interrelationship between the 𝑚 subsystems follows a certain
coherent structure, which is called the first-level structure.
Generally speaking, a two-stage weighted 𝑘-out-of-𝑛 system can
be decomposed into two hierarchical levels: the first (higher)
level can be of any coherent structure and the second (lower)
level has a weighted 𝑘-out-of-𝑛 structure.

An additional generalization of the well-known weighted
𝑘-out-of-𝑛 system has been introduced by Eryilmaz [38].
More specifically, Eryilmaz [38] assumed that the system
has a performance level above 𝑐 if there are at least 𝑘
working components and the sum of the weights of all
working components is above 𝑐. Among others, Eryilmaz
[38] deduced recursive relations for the calculation of the
system state probabilities, while a detailed simulation study
has been taken into play in order to observe the time spent
by the system in state 𝑐 or above. Finally, Li and Zuo [39]
studied the multistate weighted 𝑘-out-of-𝑛 systems, where
each component may be in more than 2 states and therefore
its contribution to the system’s weight can be differentiated
analogously.

2.4.2. Consecutive Weighted 𝑘-out-of-𝑛 Systems. A weighted
consecutive 𝑘-out-of-𝑛: 𝐹 system consists of 𝑛 components,
each with its own positive weight 𝑤

𝑖
> 0 (total system weight

equal to 𝑤), such that the system fails if and only if the total
weight of the failed components is at least 𝑘. It goes without
saying that the consecutive 𝑘-out-of-𝑛: 𝐹 system is a special
case of the corresponding weighted consecutive 𝑘-out-of-𝑛:
𝐹 system wherein the weight of each component equals 1.
Efficient algorithms for the evaluation of the reliability of
the linear weighted consecutive 𝑘-out-of-𝑛: 𝐹 system have
appeared in the literature (for more details see Kuo and Zuo
[1]), while Samaniego and Shaked [40] extended the idea of
weighted components, by giving to the components weights
that can take any positive value (not necessary integer-
valued).

2.5. ((𝑛
1
, 𝑛

2
, . . . , 𝑛

𝑁
), 𝑓, 𝑘) Systems. Cui and Xie [41]

introduced a generalized 𝑘-out-of-𝑛 system, denoted
by ((𝑛1, 𝑛2, . . . , 𝑛𝑁), 𝑓, 𝑘). Such a system consists of 𝑁
modules ordered in a line or a circle, while the 𝑖th module
is composed of 𝑛

𝑖
≥ 1 components in parallel. In other

words, the ((𝑛1, 𝑛2, . . . , 𝑛𝑁), 𝑓, 𝑘) system fails if and only
if there are at least 𝑓 failed components or at least 𝑘
consecutive failed modules. It goes without saying that, for
𝑛1 = 𝑛2 = ⋅ ⋅ ⋅ = 𝑛

𝑁
= 1, an ((𝑛1, 𝑛2, . . . , 𝑛𝑁), 𝑓, 𝑘) system

reduces to a simple (𝑁, 𝑓, 𝑘) while for 𝑓 = ∑𝑁

𝑖=1 𝑛𝑖 coincides
with the well-known consecutive 𝑘-out-of-𝑁: 𝐹 system
and for 𝑁 = 1 with the ordinary 𝑓-out-of-𝑛: 𝐹 structure.
The following theorem offers recursive relations for the
evaluation of the reliability function of a linear and circular
((𝑛1, 𝑛2, . . . , 𝑛𝑁), 𝑓, 𝑘) system, respectively.

Theorem 28 (Cui and Xie [41]). (i) For a linear ((𝑛1, 𝑛2, . . . ,
𝑛
𝑁
), 𝑓, 𝑘) system, the reliability function 𝑅

𝐿
((𝑛1, 𝑛2, . . . ,

𝑛
𝑁
), 𝑓, 𝑘) satisfies the following recurrence:

𝑅
𝐿
((𝑛1, 𝑛2, . . . , 𝑛𝑁) , 𝑓, 𝑘) =

𝑛
𝑁

∑

𝑠=0
𝐴 (𝑁, 𝑠)

⋅ 𝑅
𝐿
((𝑛1, 𝑛2, . . . , 𝑛𝑁−1) , 𝑓 − 𝑠, 𝑘)
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−(

𝑁

∏

𝑖=𝑁−𝑘+1

𝑛
𝑖

∏

𝑗=1
(1−𝑝

𝑖𝑗
))

𝑛
𝑁−𝑘

−1

∑

𝑠=0
𝐴 (𝑁−𝑘, 𝑠)

⋅ 𝑅
𝐿
((𝑛1, 𝑛2, . . . , 𝑛𝑁−𝑘−1) , 𝑓 −

𝑁

∑

𝑖=𝑁−𝑘+1
𝑛
𝑖
− 𝑠, 𝑘) ,

(65)

where 𝐴(𝑗, 𝑠) is the probability that, in module 𝑗, there are 𝑠
failed components.

(ii) For a circular ((𝑛1, 𝑛2, . . . , 𝑛𝑁), 𝑓, 𝑘) system, the relia-
bility function 𝑅

𝐶
((𝑛1, 𝑛2, . . . , 𝑛𝑁), 𝑓, 𝑘) satisfies the following

recurrence:

𝑅
𝐶
((𝑛1, 𝑛2, . . . , 𝑛𝑁) , 𝑓, 𝑘)

=

𝑠
𝑁
−1

∑

𝑛=0
𝐴 (𝑁, 𝑠) 𝑅

𝐿
((𝑛1, 𝑛2, . . . , 𝑛𝑁−1) , 𝑓 − 𝑠, 𝑘)

+

𝑛
𝑁

∏

𝑖=1
(1−𝑝

𝑁𝑖
) 𝑅

𝐶
((𝑛1, 𝑛2, . . . , 𝑛𝑁−1) , 𝑓 − 𝑛𝑁, 𝑘)

−

𝑘

∑

𝑖=1

𝑛
𝑁−𝑘+𝑙−1−1

∑

𝑠1=0

𝑛
𝑗
−1

∑

𝑠2=0
𝐴 (𝑁 − 𝑘 + 𝑖 − 1, 𝑠1) 𝐴 (𝑖, 𝑠2)

× 𝑅
𝐿
((𝑛

𝑖+1, . . . , 𝑛𝑁−𝑘+𝑖−2) , 𝑓 − 𝑠1 − 𝑠2

−

𝑁+𝑖−1
∑

𝑗=𝑁−𝑘+𝑖

𝑛
𝑗
, 𝑘)(

𝑁+𝑖−1
∏

𝑙=𝑁−𝑘+𝑖

𝑛
𝑖

∏

𝑗=1
(1−𝑝

𝑖𝑗
)) .

(66)

It is worth mentioning that the ((𝑛1, 𝑛2, . . . , 𝑛𝑁), 𝑓, 𝑘) system
can be obtained by adding more components in parallel
to the basic components of an (𝑛, 𝑓, 𝑘) structure. Since the
aforementioned system involves multiple failure criteria, Cui
and Xie [41] studied the Birnbaum importance with respect to
the 𝑘th failure criterion as an importance measure computed
only under this failure criterion. Firstly, for a reliability system
𝑆 with𝑚 ≥ 1 failure criteria, they assumed that, for any one of
𝑗 (𝑗 ≤ 𝑚), the Birnbaum importance is different, while, for any
one of 𝑚 − 𝑗 failure criteria, the Birnbaum importance is the
same. Moreover, Cui and Xie [41] denoted by 𝐴1 = {𝑆 works
under failure criteria 1, 2, . . . , 𝑗} and 𝐴2 = {𝑆 works under
failure criteria 𝑗+1, . . . , 𝑚} the specific disjoint events and they
proved that the Birnbaum importance of the reliability system 𝑆
depends upon these 𝑗 failure criteria. Finally, note that the well-
known series and parallel reliability systems are included in the
more general ((𝑛1, 𝑛2, . . . , 𝑛𝑁), 𝑓, 𝑘) systems’ family as special
cases (for 𝑓 ≥ max{𝑛

𝑖
} and 𝑘 = 1 and {𝑁 = 𝑘 𝑎𝑛𝑑 𝑓 =

∑
𝑁

𝑖=1 𝑛𝑖}, resp.).

2.6. (𝑛, 𝑓, 𝑘(𝑖, 𝑗)) and ⟨𝑛, 𝑓, 𝑘(𝑖, 𝑗)⟩ Systems. Guo et al. [42]
generalized the idea of the (𝑛, 𝑓, 𝑘) system, studied by Chang
et al. [27] and Zuo et al. [25]. More specifically, they
introduced a reliability structure, named the (𝑛, 𝑓, 𝑘(𝑖, 𝑗)):
𝐹 system, which consists of 𝑛 components ordered in a
line or circle and fails if and only if there exist at least 𝑓

failed components or at least 𝑘 consecutive failed components
among components 𝑖, 𝑖 + 1, . . . , 𝑗 − 1, 𝑗. It is noteworthy that,
for the circular case, component index should have modulo
𝑛 property, that is, components 𝑖 and 𝑛 + 𝑖 indicate the same
one, while the following requirements should be satisfied:

(i) 𝑗 − 𝑖 + 1 ≥ 𝑘, if 𝑗 > 𝑖,
(ii) 𝑛 + 𝑗 − 𝑖 + 1 ≥ 𝑘, if 𝑗 < 𝑖.

Otherwise, the consecutive 𝑘 failure criterion can be
removed. It goes without saying that when 𝑖 = 1, 𝑗 = 𝑛, or
𝑖 − 𝑗 = 1, the (𝑛, 𝑓, 𝑘(𝑖, 𝑗)): 𝐹 system becomes the well-known
(𝑛, 𝑓, 𝑘) structure. Furthermore, Guo et al. [42] mentioned
an additional justification of the aforementioned reliability
systems. More precisely, they introduced the ⟨𝑛, 𝑓, 𝑘(𝑖, 𝑗)⟩: 𝐹
system, which consists of 𝑛 components ordered in a line
or circle, and fails if and only if there exist at least 𝑓 failed
components and at least 𝑘 consecutive failed components
among components 𝑖, 𝑖 + 1, . . . , 𝑗 − 1, 𝑗. Finally, Guo et
al. [42] considered the dual structures of the (𝑛, 𝑓, 𝑘(𝑖, 𝑗)):
𝐹 and ⟨𝑛, 𝑓, 𝑘(𝑖, 𝑗)⟩: 𝐹 systems, taking into account the
argumentation applied by Cui et al. [32].

The main result of the aforementioned paper is the
employment of a two-stage Markov chain in order to give
the system reliability in the form of product of matrices.
Generally speaking, the finite Markov chain imbedding
technique is to embed a Markov chain {𝑌(𝑡)} defined on the
state space 𝑆 = {1, 2, . . . , 𝑁} and the discrete index space
𝑇 = {1, 2, . . . , 𝑛} into a given system, while the system fails
if there exists 𝑡0, 1 ≤ 𝑡0 ≤ 𝑛, such that 𝑌(𝑡) = 𝑁, for all
𝑡0 ≤ 𝑡 ≤ 𝑛.

The unique justification is to divide the discrete index
space and the nonabsorbing state space into two disjoined
parts. For example, if we consider the (𝑛, 𝑓, 𝑘(𝑖, 𝑗)): 𝐹
(⟨𝑛, 𝑓, 𝑘(𝑖, 𝑗)⟩:𝐹) systemwith component reliabilities𝑝

𝑡
(𝑞

𝑡
=

1 − 𝑝
𝑡
), 𝑡 = 1, 2, . . . , 𝑛, by rearranging their components

without changing the system reliability, we can transform it
into the linear (𝑛, 𝑓, 𝑘(𝑛 − 𝑗 + 𝑖, 𝑛)): 𝐹 (⟨𝑛, 𝑓, 𝑘(𝑛 − 𝑗 + 𝑖, 𝑛)⟩:
𝐹) system with component reliabilities 𝑢

𝑡
(𝜐

𝑡
= 1−𝑢

𝑡
), where

𝑝
𝑡
, 𝑞

𝑡
and 𝑢

𝑡
, 𝜐

𝑡
satisfy the following relations:

(𝑢
𝑡
, 𝜐

𝑡
)

=

{{{{

{{{{

{

(𝑝
𝑡
, 𝑞

𝑡
) , if 1 ≤ 𝑡 ≤ 𝑖 − 1,

(𝑝
𝑡−𝑖+𝑗+1, 𝑞𝑡−𝑖+𝑗+1) , if 𝑖 ≤ 𝑡 ≤ 𝑛 − 𝑗 + 𝑖 − 1,

(𝑝
𝑡−𝑛+𝑗

, 𝑞
𝑡−𝑛+𝑗

) , if 𝑛 − 𝑗 + 𝑖 ≤ 𝑡 ≤ 𝑛.

(67)

The rearrangement is as follows by a transform:

Old-component order (1, 2, . . . , 𝑖 − 1, 𝑖, 𝑖

+ 1, . . . , 𝑗, 𝑗 + 1, 𝑗 + 2, . . . , 𝑛) ,

New-component order (1, 2, . . . , 𝑖 − 1, 𝑗 + 1, 𝑗

+ 2, . . . , 𝑛, 𝑖, 𝑖 + 1, . . . , 𝑗) ,

(68)

where the first line (old-component order) denotes the
components order before rearrangement, the second line
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(New-component order) denotes the components order after
rearrangement, that is, we move to the end of the line that
section to which the consecutive criterion applies so that the
new system consists of components 1, 2, , . . . , 𝑖 − 1, 𝑗 + 1, 𝑗 +
2, . . . , 𝑛, 𝑖, 𝑖 +1, . . . , 𝑗 in an ordered line.Thus, the study of the
aforementioned reliability structures is covered by the linear
case (𝑛, 𝑓, 𝑘(𝑛 − 𝑗 + 𝑖, 𝑛)): 𝐹 (⟨𝑛, 𝑓, 𝑘(𝑖, 𝑗)⟩: 𝐹) system with
component reliabilities 𝑢

𝑡
.

It is worth noting that Guo et al. [42] presented a detailed
study for the evaluation of the reliability function of the
(𝑛, 𝑓, 𝑘(𝑖, 𝑗)): 𝐹 (⟨𝑛, 𝑓, 𝑘(𝑖, 𝑗)⟩: 𝐹) systems, by employing a
two-stageMarkov chain procedure and illustrating numerical
examples.

2.7. Consecutive 𝑘-out-of-𝑛: 𝐹 Systems with Cycle 𝑘. An
𝑟 consecutive 𝑘-out-of-𝑛: 𝐹 system consists of 𝑛 linearly
arranged components and the system fails if and only if at
least 𝑟 nonoverlapping runs of 𝑘 components fail. Boland and
Papastavridis [43] studied the case where there are 𝑘 distinct
components with failure probabilities 𝑞

𝑖
, 𝑖 = 1, 2, . . . , 𝑘 and

where the failure probability of the 𝑗th component is 𝑞
𝑖
(𝑗 =

𝑚𝑘+𝑖 (1 ≤ 𝑖 ≤ 𝑘)). In otherwords, they focused on the special
case of an 𝑟 consecutive 𝑘-out-of-𝑛: 𝐹 system where there is
a “cyclical” pattern in failure probabilities of the components.
More precisely, Boland and Papastavridis [43] were interested
in how the order of 𝑞1, 𝑞2, . . . , 𝑞𝑘 affects the failure probability
of this new structure, named 𝑟 consecutive 𝑘-out-of-𝑛: 𝐹
system with cycle 𝑘.

Let us next denote by 𝐹(𝑛, 𝑟) the failure probability of
an 𝑟 consecutive 𝑘-out-of-𝑛: 𝐹 system with cycle 𝑘, while
𝑝
𝑖
(𝑞

𝑖
) is the reliability (unreliability) of the 𝑖th component.

The following theorems offer recursive expressions for the
unreliability of the aforementioned structure.

Theorem 29 (Boland and Papastavridis [43]). Consider an 𝑟
consecutive 𝑘-out-of-𝑛:𝐹 systemwith cycle 𝑘, where 𝑛 = 𝑚𝑘+𝑖,
1 ≤ 𝑖 ≤ 𝑘 and𝑚 ≥ 0.Then for any integer 𝑟 (except for 𝑟 = 𝑚+1
and 𝑖 = 𝑘), the unreliability function of the system satisfies the
following recurrence:

𝐹 (𝑚𝑘+ 𝑖, 𝑟)

= 𝐹 (𝑚𝑘+ 𝑖 − 1, 𝑟)

+

1
∑

𝑡=0

𝑚

∑

𝑠=1
(−1)𝑡 𝑝

𝑖
𝑄
𝑠

𝐹 ((𝑚 − 𝑠) 𝑘 + 𝑖 − 1, 𝑟 − 𝑠 + 𝑡) ,

(69)

where 𝑄 = ∏𝑘

𝑖=1𝑞𝑖.

Theorem 30 (Boland and Papastavridis [43]). Consider an 𝑟
consecutive 𝑘-out-of-𝑛: 𝐹 system with cycle 𝑘, where 1 ≤ 𝑖 ≤ 𝑘
and 𝑚 ≥ 0. Then the unreliability function of the system
satisfies the following recurrence:

𝐹 (𝑚𝑘+ 𝑖, 𝑟) = 𝐹 (𝑚𝑘, 𝑟)

+∑

𝑗>0
∑

𝑡∈(−∞,∞)

∑

𝑠1 ,𝑠2 ,...,𝑠𝑗

(−1)𝑡 (
𝑗

𝑡
)𝜎

𝑗
(𝑖) 𝑄

𝑠1+𝑠2+⋅⋅⋅+𝑠𝑗

×𝐹 ((𝑚− 𝑠1 − 𝑠2 − ⋅ ⋅ ⋅ − 𝑠𝑗) 𝑘, 𝑟 − 𝑠1 − ⋅ ⋅ ⋅ − 𝑠𝑗

+ 𝑡) .

(70)

It is clear from the above result that the unreliability 𝐹(𝑛, 𝑟) is
independent of the order 𝑞1, 𝑞2, . . . , 𝑞𝑘 when 𝑛 is a multiple of
𝑘. For 𝑛 = 𝑚𝑘 + 1, it follows that

𝐹 (𝑚𝑘+ 1, 𝑟) = 𝐹 (𝑚𝑘, 𝑟)

+ 𝑝1

1
∑

𝑡=0
∑

𝑠

𝑄
𝑠

𝐹 ((𝑚 − 𝑠) 𝑘, 𝑟 − 𝑠 + 𝑡)

(71)

and thereforewe deduce that the quantity𝐹(𝑛, 𝑟) = 𝐹(𝑚𝑘+1, 𝑟)
is maximized by maximizing 𝑝1 or, generally speaking, the
𝐹(𝑛, 𝑟) is maximized (minimized) when 𝑞1 ≤ 𝑞2 ≤ ⋅ ⋅ ⋅ ≤ 𝑞

𝑘

(𝑞1 ≥ 𝑞2 ≥ ⋅ ⋅ ⋅ ≥ 𝑞
𝑘
). It is worth mentioning that Boland

and Papastavridis [43] provided additionally interesting appli-
cations of the 𝑟 consecutive 𝑘-out-of-𝑛: 𝐹 system with cycle
𝑘 for the arrangement of sport competitions and inspections
procedures in quality control.

2.8. 𝑚-Consecutive 𝑘-out-of-𝑛: 𝐹 Systems with Overlapping
Runs. Agarwal and Mohan [44] introduced and studied
the 𝑚-consecutive-𝑘-out-of-𝑛: 𝐹 system with overlapping
runs. This reliability structure consists of 𝑛 linearly ordered
components and fails if and only if there exist at least 𝑚
overlapping sequences of 𝑘 consecutive failed components
(𝑛 ≥ 𝑚 + 𝑘 − 1). It is straightforward that for 𝑚 =

1 the aforementioned system coincides with an ordinary
consecutive-𝑘-out-of-𝑛: 𝐹 structure. Graphical Evaluation
and Review Technique (GERT) analysis is used for reliability
evaluation of the system for both i.i.d. and (𝑘 − 1)-step
Markov dependent components, in a unified manner. More
specifically, Agarwal and Mohan [44] proved the following
results:

(i) For a 𝑚-consecutive-𝑘-out-of-𝑛: 𝐹 system with over-
lapping runs composed by i.i.d components, the
generating function of the waiting time for the occur-
rence of the system failure is given as

𝑊0,𝑚+𝑘−1 (0, 𝑧) =
𝑚−1
∑

𝑗=0
(
𝑚 − 1
𝑗

)

⋅
𝑞
𝑚+𝑘+𝑗(𝑘−1)−1

𝑝
𝑗

𝑧
𝑚+𝑘+𝑘𝑗−1

(1 − 𝑝𝑧 − 𝑞𝑝𝑧2 − 𝑞2𝑝𝑧3 − ⋅ ⋅ ⋅ − 𝑞𝑘−1𝑝𝑧𝑘)𝑗+1
.

(72)

Hence the reliability function of the above structure
can be expressed as

𝑅
𝑚0
(𝑛) = 1−

𝑛

∑

𝑢=𝑚+𝑘−1
𝜉 (𝑢) , (73)

where 𝜉(𝑢) is the coefficient of 𝑧𝑢 in the power series
expansion of the generating function𝑊0,𝑚+𝑘−1(0, 𝑧).
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(ii) For a 𝑚-consecutive-𝑘-out-of-𝑛: 𝐹 system with over-
lapping runs composed by (𝑘 − 1)-step Markov
dependent components, the generating function of
the waiting time for the occurrence of the system
failure is given as

𝑊
𝑘−1
0,𝑚+𝑘−1 (0, 𝑧) =

𝑚−1
∑

𝑗=0
(
𝑚 − 1
𝑗

)

⋅
(𝑞0𝑞1 ⋅ ⋅ ⋅ 𝑞𝑘−2𝑧

𝑘−1
)
𝑗+1
(𝑞

𝑘−1𝑧)
𝑚

𝑝
𝑗

𝑘−1𝑧
𝑗

(1 − 𝑝0𝑧 − 𝑞0𝑝1𝑧2 − ⋅ ⋅ ⋅ − 𝑞0𝑞1 ⋅ ⋅ ⋅ 𝑞𝑘−2𝑝𝑘−1𝑧𝑘)
𝑗+1 .

(74)

Hence, the reliability function of the above structure can be
expressed as

𝑅
𝑘−1
𝑚0
(𝑛) = 1−

𝑛

∑

𝑢=𝑚+𝑘−1
𝜉 (𝑢) , (75)

where 𝜉(𝑢) is the coefficient of 𝑧𝑢 in the power series
expansion of the generating function𝑊𝑘−1

0,𝑚+𝑘−1(0, 𝑧).
In addition, Eryilmaz [45] derived an explicit combina-

torial expression for the number of its path sets including a
specified number of working components. More specifically,
Eryilmaz [45] proved the following result.

Theorem 31 (Eryilmaz [45]). The number of path sets 𝑟
𝑖
(𝑛) of

an 𝑚-consecutive-𝑘-out-of-𝑛: 𝐹 system with overlapping runs
including 𝑖 working components can be expressed as follows:

𝑟
𝑖
(𝑛) = 𝑁 (𝑖 + 1, 𝑘 + 1, 𝑛 + 1)

+

𝑚−1
∑

𝑥=1

min(𝑖+1,𝑥)
∑

𝑎=1
(
𝑖 + 1
𝑎
)(

𝑥 − 1
𝑎 − 1

)

⋅𝑁 (𝑖 − 𝑎 + 1, 𝑘 + 1, 𝑛 − 𝑥 − 𝑎𝑘 + 1) ,

(76)

where 𝑛−𝑧
𝜙
≤ 𝑖 < 𝑛, 𝑟

𝑛
(𝑛) = 1 (𝑧

𝜙
= 𝑛−1−[(𝑛−𝑚−𝑘+1)/𝑘])

and
𝑁(𝑎, 𝑏, 𝑐)

=

min(𝑎,[(𝑐−𝑎)/(𝑏−1)])
∑

𝑗=0
(−1)𝑗 (

𝑎

𝑗
)(

𝑐 − 𝑗 (𝑏 − 1) − 1
𝑎 − 1

) .

(77)

Having at hand the above expression for the determination
of 𝑟

𝑖
(𝑛), one may easily compute important characteristics

of the 𝑚-consecutive-𝑘-out-of-𝑛: 𝐹 system with overlapping
runs, such as its reliability function or its signature vector.
Indeed, let us first denote by 𝑧

𝜙
the maximum number of failed

components such that the system with structure function 𝜙 can
still work successfully and by 𝑝 the common reliability of its
components. Since the reliability and the signature of a coherent
structure can be expressed as

𝑅 =

𝑛

∑

𝑖=𝑛−𝑧
𝜙

𝑟
𝑖
(𝑛) 𝑝

𝑖

(1−𝑝)𝑛−𝑖 ,

𝑠
𝑖
(𝑛) =

𝑟
𝑛−𝑖+1 (𝑛)

(
𝑛

𝑛−𝑖+1 )
−
𝑟
𝑛−𝑖
(𝑛)

(
𝑛

𝑛−𝑖
)
,

(78)

respectively (for more details, see Boland [46] and Samaniego
[3]), it is goes without saying that Theorem 31 leads immedi-
ately to the desired results.

2.9. Combined 𝑚-Consecutive 𝑘-out-of-𝑛: 𝐹 and Consecutive-
𝑘
𝑐
-out-of-𝑛: 𝐹 Systems. Mohan et al. [47] proposed and

studied a new model, named the combined 𝑚-consecutive-
𝑘-out-of-𝑛: 𝐹 and consecutive-𝑘

𝑐
-out-of-𝑛: 𝐹 systems. This

reliability structure consists of 𝑛 linearly ordered components
and fails if and only if there exist at least 𝑘

𝑐
consecutive

failed components or at least 𝑚 nonoverlapping runs of
𝑘 consecutive failed components, where 𝑘

𝑐
< 𝑚𝑘. By

assuming that the components are i.i.d., Mohan et al. [47]
employed the well-known GERT analysis to evaluate the
reliability function and presented interesting applications
of the aforementioned structure in several areas, such as
signal processing or bank automatic payment systems. More
specifically, the failure probability of the aforementioned
system is explained as a tree structure, while the direction of
the calculating procedure is from the root node to a leaf node
via intermediate ones.Themain steps of the algorithm can be
briefly described as follows:

(i) At step 1, the failure probability at root node 𝑥0 is
determined as

𝐹 (𝑥0)0 =
𝑛

∑

𝑢=𝑘
𝑐

𝜉 (𝑢) , (79)

where 𝜉(𝑢) is the coefficient of 𝑧𝑢 in the power series
expansion of the generating function of the waiting
time for the occurrence of the system failure at root
node 𝑥0.

(ii) At step 2, the failure probability at node 𝑗

(𝑥0)𝑡 is
deduced as follows:

𝐹
𝑗

(𝑥0)𝑡 =
𝑛

∑

𝑢=𝑘
𝑐
+𝑘∑
𝑖

𝑠=1 𝑖𝑠𝑗+𝑡

𝜉 (𝑢) , (80)

where 𝜉(𝑢) is the coefficient of 𝑧𝑢 in the power series
expansion of the generating function of the waiting
time for the occurrence of the system failure at root
node 𝑗

(𝑥0)𝑡.
(iii) At step 3, the total failure probability of the system is

calculated as

𝐹 (𝑛, 𝑘
𝑐
, 𝑚𝑘) = 𝐹 (𝑥0)0 + ∑

all nodes generated
𝐹
𝑗

(𝑥
𝑖
)
𝑡
. (81)

It is noteworthy that the complexity of the proposed algo-
rithm for the calculation of the reliability of a combined
𝑚-consecutive-𝑘-out-of-𝑛: 𝐹 and consecutive-𝑘

𝑐
-out-of-𝑛: 𝐹

systems has been determined to be equal to 𝑂([(𝑛 − 𝑘
𝑐
)/(𝑘 +

1)]3). For an up-to-date overview of GERT analysis results of
consecutive-𝑘 systems, the interested reader is referred to Sen
et al. [48].

Moreover, Eryilmaz [49] derived an explicit expression
for the number of its path sets including a specified number
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of working components. More specifically, Eryilmaz [49]
proved the following result.

Theorem 32 (Eryilmaz [49]). The number of path sets 𝑟
𝑖
(𝑛) of

a combined 𝑚-consecutive-𝑘-out-of-𝑛: 𝐹 and consecutive-𝑘
𝑐
-

out-of-𝑛: F systems with i.i.d. components including 𝑖 working
ones can be expressed as follows:

𝑟
𝑖
(𝑛)

=

𝑚−1
∑

𝑥=0

min(𝑖+1,[(𝑛+1)/2])
∑

𝑠=1
(
𝑖 + 1
𝑠
)𝐶 (𝑠, 𝑘, 𝑘

𝑐
, 𝑛 − 𝑖, 𝑥) ,

(82)

where 𝑧min ≤ 𝑖 < 𝑛, 𝑟𝑛(𝑛) = 1 (𝑧min indicates the minimum
number of failed components at the moment of system failure)
and the quantities 𝐶(𝑠, 𝑘, 𝑘

𝑐
, 𝑙, 𝑥) can be calculated via the

following recurrence:

𝐶 (𝑠, 𝑘, 𝑘
𝑐
, 𝑙, 𝑥)

=

𝑘−1
∑

𝑎=1
𝐶 (𝑠 − 1, 𝑘, 𝑘

𝑐
, 𝑙 − 𝑎, 𝑥)

+

𝑘
𝑐
−1

∑

𝑎=𝑘

𝐶(𝑠 − 1, 𝑘, 𝑘
𝑐
, 𝑙 − 𝑎, 𝑥 − [

𝑎

𝑘
]) ,

(83)

with

𝐶 (1, 𝑘, 𝑘
𝑐
, 𝑙, 𝑥)

=

{{{{

{{{{

{

1, if 0 < 𝑙 < 𝑘, 𝑥 = 0,

1, if 𝑘𝑥 ≤ 𝑙 < min (𝑘
𝑐
, 𝑘𝑥 + 𝑘) , 𝑥 > 0,

0, otherwise.

(84)

Having at hand the above expression for 𝑟
𝑖
(𝑛) and applying the

well-known equalities for the evaluation of reliability function
and signature of a coherent system in terms of 𝑟

𝑖
(𝑛) (these

equations have been already mentioned in previous section),
one may easily compute these important characteristics of
the combined𝑚-consecutive-𝑘-out-of-𝑛: 𝐹 and consecutive-𝑘

𝑐
-

out-of-𝑛: 𝐹 systems with i.i.d. components. Finally, note that
Eryilmaz [49] studied also the aforementioned structure under
the assumption of Markovian type dependence between its
components and derived an expression for its reliability.

2.10. Constrained (𝑘, 𝑑)-out-of-𝑛 Systems. Eryilmaz and Zuo
[50] proposed and studied two newmodels, which generalize
the well-known 𝑘-out-of-𝑛: 𝐹 and consecutive 𝑘-out-of-𝑛: 𝐺
systems. These extensions consider an additional constraint
on the number of working components between successive
failures.More precisely, in addition to theworking conditions
of 𝑘-out-of-𝑛: 𝐹 and consecutive 𝑘-out-of-𝑛: 𝐺 systems there
must be at least 𝑑 consecutive working components between
any of two successive failures.

The first reliability structure introduced by Eryilmaz and
Zuo [50] is called a constrained (𝑘, 𝑑)-out-of-𝑛: 𝐹 system
consisting of 𝑛 linearly ordered components.This system fails
if and only if there at least 𝑘 failed components or there are

less than 𝑑 consecutive working components between any of
two failed ones. It goes without saying that, for 𝑑 = 0, the
constrained (𝑘, 𝑑)-out-of-𝑛: 𝐹 system reduces to the ordinary
𝑘-out-of-𝑛: 𝐹 system.

LetΩ[𝑑,∞)

𝑛
denote the set of all binary sequences of length

𝑛 where the runs of successes between two consecutive fail-
ures have length at least 𝑑. Then the reliability of constrained
(𝑘, 𝑑)-out-of-𝑛: 𝐹 system is given as follows:

𝑅
𝐹

𝑘,𝑑,𝑛
= 𝑃 {X ∈Ω[𝑑,∞)

𝑛
, 𝑆

(0)
𝑛
< 𝑘} , (85)

whereX = (𝑋1, 𝑋2, . . . , 𝑋𝑛
) denotes the states of components

(𝑋
𝑖
= 1 if the 𝑖th component is operating, and 𝑋

𝑖
= 0,

otherwise), while 𝑆(0)
𝑛

represents the total number of failed
components. The following theorem offers expressions for
the evaluation of the reliability function of the constrained
(𝑘, 𝑑)-out-of-𝑛: 𝐹 system with i.i.d. and Markov dependent
components, respectively.

Theorem 33 (Eryilmaz and Zuo [50]). (i) For a constrained
(𝑘, 𝑑)-out-of-𝑛: 𝐹 system consisting of 𝑛 independent and
identical components with common reliability 𝑝, the reliability
function is given as follows:

𝑅
𝐹

𝑘,𝑑,𝑛

=

min(𝑘−1,[(𝑛+𝑑)/(𝑑+1)])
∑

𝑙=0
(
𝑛 − 𝑑 (𝑙 − 1)

𝑙
) 𝑝

𝑛−𝑙

(1−𝑝)𝑙 .
(86)

(ii) For a constrained (𝑘, 𝑑)-out-of-𝑛: 𝐹 system consisting of
𝑛 Markov dependent components with transition probabilities
𝑝
𝑟𝑠
= 𝑃(𝑋

𝑖
= 𝑠 | 𝑋

𝑖−1 = 𝑟), 𝑟, 𝑠 ∈ {0, 1}, 𝑖 = 2, 3, . . . , 𝑛, and
initial probabilities 𝑝0 = 𝑃(𝑋1 = 0), 𝑝1 = 𝑃(𝑋1 = 1), the
reliability function is given as follows:

𝑅
𝐹

𝑘,𝑑,𝑛
=

1
∑

𝑖=0

1
∑

𝑗=0

𝑘−1
∑

𝑙=𝑖+𝑗

(
𝑛 − 𝑑 (𝑙 − 1) − 2

𝑙 − 𝑖 − 𝑗
)

⋅ 𝑝
𝑛−2𝑙+𝑖+𝑗−1
11 𝑝

𝑙−𝑖

10 𝑝
𝑙−𝑗

01 (1−𝑝𝑖) .

(87)

Moreover, an alternative reliability structure introduced
by Eryilmaz and Zuo [50] is called a constrained consecutive
(𝑘, 𝑑)-out-of-𝑛: 𝐺 system consisting of 𝑛 linearly ordered
components. This system works if and only if there at least
𝑘 consecutive working components and there are a least 𝑑
consecutive working components between any of two failed
ones. It goes without saying that, for 𝑑 = 0, the constrained
consecutive (𝑘, 𝑑)-out-of-𝑛:𝐺 system reduces to the ordinary
consecutive 𝑘-out-of-𝑛: 𝐺 system.

Let 𝐿1
(𝑛)

denote the longest run of successes. Then the
reliability of a constrained consecutive (𝑘, 𝑑)-out-of-𝑛: 𝐺
system is given as follows:

𝑅
𝐺

𝑘,𝑑,𝑛
= 𝑃 {X ∈Ω[𝑑,∞)

𝑛
, 𝐿

(1)
𝑛
≥ 𝑘} , (88)

where X = (𝑋1, 𝑋2, . . . , 𝑋𝑛
) denotes the states of compo-

nents.Theorem 34 offers expressions for the evaluation of the
reliability function of the constrained consecutive (𝑘, 𝑑)-out-
of-𝑛:𝐺 systemwith i.i.d. andMarkov dependent components,
respectively.
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Theorem 34 (Eryilmaz and Zuo [50]). (i) For a constrained
consecutive (𝑘, 𝑑)-out-of-𝑛: 𝐺 system consisting of 𝑛 indepen-
dent and identical components with common reliability 𝑝, the
reliability function is given as follows:

𝑅
𝐺

𝑘,𝑑,𝑛
=

[(𝑛+𝑑)/(𝑑+1)]
∑

𝑙=0
(
𝑛 − 𝑑 (𝑙 − 1)

𝑙
) 𝑝

𝑛−𝑙

(1−𝑝)𝑙

−

𝑛

∑

𝑙=0
𝐴

𝑙+1,𝑛−𝑙 (𝑘 − 1, 𝑘 − 𝑑 − 1, . . . , 𝑘 − 𝑑 − 1, 𝑘

− 1) 𝑝𝑛−𝑙 (1−𝑝)𝑙 ,

(89)

where

𝐴
𝑛,𝑘
(𝑢1, 𝑢2, . . . , 𝑢𝑛)

= (
𝑛 + 𝑘 − 𝑠 − 1

𝑛 − 1
)

+

𝑛

∑

𝑟=1
(−1)𝑟∑(

𝑛 + 𝑘 − 𝑠 − 𝑢
𝑖1 − 𝑢𝑖2 − 𝑟 − 1
𝑛 − 1

) .

(90)

(ii) For a constrained consecutive (𝑘, 𝑑)-out-of-𝑛: 𝐺 system
consisting of 𝑛Markov dependent components with transition
probabilities

𝑝
𝑟𝑠
= 𝑃 (𝑋

𝑖
= 𝑠 | 𝑋

𝑖−1 = 𝑟) ,

𝑟, 𝑠 ∈ {0, 1} , 𝑖 = 2, 3, . . . , 𝑛
(91)

and initial probabilities 𝑝0 = 𝑃(𝑋1 = 0), 𝑝1 = 𝑃(𝑋1 = 1), the
reliability is given as

𝑅
𝐺

𝑘,𝑑,𝑛
= 𝑅

𝐹

𝑛+1,𝑑,𝑛 −∑
𝑙

𝐴
𝑙+1,𝑛−𝑙 (𝑘 − 2, 𝑘 − 𝑑 − 1, . . . , 𝑘

− 𝑑 − 1, 𝑘 − 2) 𝑝1𝑝
𝑛−2𝑙−1
11 𝑝

𝑙

10𝑝
𝑙

01 −∑
𝑙

𝐴
𝑙,𝑛−𝑙

(𝑘 − 2, 𝑘

− 𝑑 − 1, . . . , 𝑘 − 𝑑 − 1) 𝑝1𝑝
𝑛−2𝑙
11 𝑝

𝑙

10𝑝
𝑙−1
01

−∑

𝑙

𝐴
𝑙,𝑛−𝑙

(𝑘 − 𝑑− 1, . . . , 𝑘 − 𝑑 − 1, 𝑘 − 2) 𝑝0

⋅ 𝑝
𝑛−2𝑙
11 𝑝

𝑙−1
10 𝑝

𝑙

01 −∑
𝑙

𝐴
𝑙−1,𝑛−𝑙 (𝑘 − 𝑑− 1, . . . , 𝑘 − 𝑑

− 1) 𝑝0𝑝
𝑛−2𝑙+1
11 𝑝

𝑙−1
10 𝑝

𝑙−1
01 .
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It is noteworthy that Eryilmaz and Zuo [50] proved explicit
formulas for the calculation of the signature of both constrained
(k, d)-out-of-𝑛 systems they considered.

2.11. Combined 𝑚
𝑓1
-Consecutive 𝑘

𝑐𝑓1
-out-of-𝑛 and 𝑚

𝑓2
-Con-

secutive-𝑘
𝑐𝑓2
-out-of-𝑛 Systems. The common 𝑚-consecutive

𝑘
𝑐
-out-of-𝑛: 𝐹 system consists of 𝑛 linearly ordered com-

ponents and fails if and only if there exist at least 𝑚
nonoverlapping runs of 𝑘

𝑐
consecutive failed components.

Gera [51] considered a more general reliability model,
named the combined𝑚

𝑓1
-consecutive 𝑘

𝑐𝑓1
-out-of-𝑛 and𝑚

𝑓2
-

consecutive-𝑘
𝑐𝑓2
-out-of-𝑛 systems. The new structure con-

sists of 𝑛 components and fails if and only if there exist
at least 𝑚

𝑓1
nonoverlapping runs of 𝑘

𝑐𝑓1
consecutive failed

components or at least 𝑚
𝑓2

nonoverlapping runs of 𝑘
𝑐𝑓2

consecutive failed ones. Gera [51] shed light on the cases
where 𝑚

𝑓1
≥ 𝑚

𝑓2
, 𝑘

𝑐𝑓1
≤ 𝑘

𝑐𝑓2
, and additionally 𝑘

𝑐𝑓1
is not an

integer divisor of 𝑘
𝑐𝑓2
; that is, 𝑘

𝑐𝑓2
/𝑘

𝑐𝑓1
is not integer-valued.

It goes without saying that otherwise the aforementioned
system reduces to an ordinary 𝑚-consecutive 𝑘

𝑐
-out-of-𝑛

structure.
Let 𝑍 denote the total number of components such that

the system fails due to the specific requirements as men-
tioned, while 𝑋

𝑧
represents the state of the 𝑧th component

(𝑋
𝑧
= 1 (0) for success (failure)). In order to determine the

reliability function of combined𝑚
𝑓1
-consecutive 𝑘

𝑐𝑓1
-out-of-

𝑛 and 𝑚
𝑓2
-consecutive-𝑘

𝑐𝑓2
-out-of-𝑛 systems, it is necessary

to evaluate the following probabilities:

𝑃0 (𝑚𝑓1
, 𝑚

𝑓2
, 𝑧)

= 𝑃 (exactly 𝑚
𝑓1

times strings of length 𝑘
𝑐𝑓1
,

exactly 𝑚
𝑓2

times strings of length 𝑘
𝑐𝑓2
, 𝑋

𝑧
= 0) ,

𝑃1 (𝑚𝑓1
, 𝑚

𝑓2
, 𝑧)

= 𝑃 (exactly 𝑚
𝑓1

times strings of length 𝑘
𝑐𝑓1
,

exactly 𝑚
𝑓2

times strings of length 𝑘
𝑐𝑓2
, 𝑋

𝑧
= 1) .
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Gera [51] managed to express the above quantities as follows:

𝑃0 (𝑚𝑓1
, 𝑚

𝑓2
, 𝑧) =

𝑎max

∑

𝑎=1

𝑚
𝑓1

∑

𝑟=0

𝑚
𝑓2

∑

𝑡=0
{𝑞

𝑎

𝛿 [[
𝑎

𝑘
𝑐𝑓1

] − 𝑟] ⋅ 𝛿 [[
𝑎

𝑘
𝑐𝑓2

] − 𝑡]𝑃1 (𝑚𝑓1
− 𝑟,𝑚

𝑓2
− 𝑡, 𝑧 − 𝑎)}

+ 𝑞
𝑧

{𝑢 [𝑧 −𝑚
𝑥
] − 𝑢 [𝑧 −𝑚

𝑛
]} ,

𝑃1 (𝑚𝑓1
, 𝑚

𝑓2
, 𝑧) =

𝑠−1
∑

𝑏=1
𝑝
𝑏

𝑃0 (𝑚𝑓1
, 𝑚

𝑓2
, 𝑧 − 𝑏) ,

(94)
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where 𝑢[⋅], 𝛿[⋅] are the unit step and delta function, respec-
tively, and 𝑝(𝑞) is the common reliability (unreliability) of the
components, while

𝑎max =
{

{

{

𝑧 − 1, 𝑚
𝑥
≤ 𝑧 < 𝑚

𝑛
,

𝑚
𝑛
− 1, 𝑚

𝑛
≤ 𝑧.

(95)

The following theorem gives the reliability of any subsystem
including 𝑧 elements of a combined𝑚

𝑓1
-consecutive 𝑘

𝑐𝑓1
-out-

of-𝑛 and𝑚
𝑓2
-consecutive-𝑘

𝑐𝑓2
-out-of-𝑛 systems.

Theorem 35 (Gera [51]). For combined 𝑚
𝑓1
-consecutive 𝑘

𝑐𝑓1
-

out-of-𝑛 and 𝑚
𝑓2
-consecutive-𝑘

𝑐𝑓2
-out-of-𝑛 systems consisting

of 𝑛 independent and identical components with common
reliability 𝑝, the reliability function of any subsystem including
𝑧 elements is given as follows:

𝑃 (𝑍> 𝑧) =

𝑚
𝑓1−1

∑

𝑖=0

𝑚
𝑓2−1

∑

𝑗=0
(𝑃0 (𝑖, 𝑗, 𝑧) + 𝑃1 (𝑖, 𝑗, 𝑧)) . (96)

2.12. Linear 𝑚-Consecutive 𝑘-out-of-𝑟-from-𝑛: 𝐹 Systems.
Levitin and Dai [52] proposed a new reliability model
that generalizes the linear 𝑟-within-consecutive-𝑘-out-of-𝑛:
𝐹 system (or consecutive-𝑘-out-of-𝑟-from-𝑛: 𝐹 system) to
the case of 𝑚 consecutive overlapping runs of 𝑟 elements.
More specifically, the linear 𝑚-consecutive 𝑘-out-of-𝑟-from-
𝑛: 𝐹 system consists of 𝑛 linearly ordered 𝑠-independent
components and fails if and only if in each one of at least 𝑚
consecutive overlapping groups of 𝑟 consecutive elements at
least 𝑘 of them fail.

For the evaluation of the reliability function 𝑅 of the
aforementioned structure, Levitin and Dai [52] noticed that
the following equality ensues

𝑅 = 𝑃
{

{

{

𝑛−𝑟−𝑚+2
∑

ℎ=1

[

[

ℎ+𝑚−1
∏

𝑠=ℎ

1(
𝑠+𝑟−1
∑

𝑗=𝑠

(1 − 𝑋
𝑗
) ≥ 𝑘)]

]

= 0
}

}

}

(97)

and developed an efficient algorithm for calculating the func-
tion 𝑅, by employing a procedure based on the universal 𝑧-
transform (for more details about the universal moment gen-
erating function approach, the interested reader is referred to
Ushakov [53]). It is noticeable that the linear 𝑚-consecutive
𝑘-out-of-𝑟-from-𝑛:𝐹 systemmeets interesting applications in
different areas, such as heating systems’ modeling.

2.13. Linear 𝑚-Gap-Consecutive 𝑘-out-of-𝑟-from-𝑛: 𝐹 Sys-
tems. Levitin [54] introduced a new reliability model that
generalizes the linear 𝑟-within-consecutive-𝑘-out-of-𝑛: 𝐹
system (or consecutive-𝑘-out-of-𝑟-from-𝑛: 𝐹 system). More
specifically, the linear 𝑚-gap-consecutive 𝑘-out-of-𝑟-from-
𝑛: 𝐹 system consists of 𝑛 linearly ordered, identical, and
statistically independent components and fails if and only
if the gap between any pair of groups of 𝑟 consecutive

elements containing at least 𝑘 failed components is less than
𝑚 components. For the evaluation of the reliability function
of the aforementioned structure, Levitin [54] employed
the universal moment generating function technique and
deduced a recursive algorithm that leads to the exact value
of system’s reliability.

2.14. Linear𝑚-Consecutive-𝑘, 𝑙-out-of-𝑛: 𝐹 Systems. Eryilmaz
and Mahmoud [55] proposed a new reliability model that
generalizes the linear𝑚-consecutive-𝑘-out-of-𝑛: 𝐹 system to
the case of 𝑙-overlapping runs. More specifically, the linear
𝑚-consecutive 𝑘, 𝑙-out-of-𝑛: 𝐹 system consists of 𝑛 linearly
ordered components and fails if and only if there are at least
𝑚𝑙-overlapping runs of 𝑘 consecutive failed components (𝑛 ≥
𝑚(𝑘 − 𝑙) + 𝑙, 𝑙 < 𝑘). The number of 𝑙-overlapping runs of
length 𝑘, each of which may have a part of length at most 𝑙
overlapping with the previous run of length 𝑘. The inclusion
of the new system parameter 𝑙 provides flexibility for wider
application of the model.

Moreover, Eryilmaz and Mahmoud [55] derived an
explicit expression for the number of its path sets including a
specified number of working components. More specifically,
they proved the following result.

Theorem 36 (Eryilmaz and Mahmoud [55]). The number of
path sets 𝑟

𝑖
(𝑛) of a linear𝑚-consecutive 𝑘, 𝑙-out-of-𝑛: 𝐹 system

including 𝑖 working components can be expressed as follows:

𝑟
𝑖
(𝑛) = 𝐶 (𝑛 − 𝑖; 𝑖 + 1, 0; 𝑘 − 1; 𝑘 − 1)

+

𝑚−1
∑

𝑠=1

min(𝑖+1)
∑

𝑎=1
(

𝑖 + 1

𝑎

)(
𝑛 − 1
𝑎 − 1

)×𝐶 (𝑛 − 𝑖 − 𝑎𝑙

− (𝑘 − 𝑙) 𝑠; 𝑎, 𝑖 − 𝑎 + 1; 𝑘 − 𝑙 − 1; 𝑘 − 1) ,

(98)

for 𝑛 − 𝑧
𝜙
≤ 𝑖 ≤ 𝑛, where 𝑧

𝜙
denotes the maximum

number of failed components such that the system can still work
successfully, and the quantities𝐶(𝛽; 𝑎, 𝑟−𝑎;𝑚1−1, 𝑚2−1) can
be calculated via the following formula (see, e.g., Makri et al.
[56]):

𝐶 (𝛽; 𝑎, 𝑟 − 𝑎;𝑚1 − 1, 𝑚2 − 1)

=

[𝑎/𝑚1]

∑

𝑗1=0

[(𝛽−𝑚1𝑗1)/𝑚2]

∑

𝑗2=0
(−1)𝑗1+𝑗2 (

𝑎

𝑗1
)(

𝑟 − 𝑎

𝑗2
)

⋅(

𝛽 − 𝑚1𝑗1 − 𝑚2𝑗2 + 𝑟 − 1

𝑟 − 1
) .

(99)

Having at hand the above expression for 𝑟
𝑖
(𝑛) and applying

the well-known equalities for the evaluation of reliability and
signature of a coherent system in terms of 𝑟

𝑖
(𝑛) (see, e.g.,

Triantafyllou and Koutras [57]), one may easily compute these
important characteristics of the linear m-consecutive k,l-out-
of-n: F system.
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2.15. Sparsely Connected Consecutive-𝑘 Systems. Zhao et al.
[58] introduced generalized consecutive-𝑘 systems with
sparse 𝑑.The consecutive failures with sparse 𝑑 are defined as
follows.When components are ordered in a line, two adjacent
failed components have no failed components between them
and the number of working components between the two
failed components is equal to 𝑑; then the two failed compo-
nents are called consecutive failures with sparse 𝑑. Zhao et al.
[58] proposed the following reliability models:

(i) the linear consecutive 𝑘-out-of-𝑛: 𝐹 system with
sparse 𝑑, which consists of 𝑛 linearly ordered com-
ponents and fails if and only if there exist at least 𝑘
consecutive failures with sparse 𝑑. For the aforemen-
tioned structure, Zhao et al. [58] employed the well-
known Markov Chain Imbedding technique in order
to achieve expressions for the reliability function of
such systems.Moreover,Mohan et al. [59] proved that
the generating function of the waiting time for the
occurrence of the system failure is given as

𝑊0,𝑚+𝑘−1 (0, 𝑧) =
(𝑞𝑧)

𝑘

(1 − (𝑝𝑧)𝑑+1)
𝑘−1
(1 − 𝑧 + 𝑞𝑧 (𝑝𝑧)𝑑+1)

(1 − 𝑝𝑧) ((1 − 𝑧) (1 − 𝑝𝑧)𝑘−1 + (𝑞𝑧)𝑘 (𝑝𝑧)𝑑+1 (1 − (𝑝𝑧)𝑑+1)
𝑘−1
)

. (100)

Hence, the reliability function of the above structure
can be expressed as

𝑅 (𝑛, 𝑘)
𝑑
= 1−

𝑛

∑

𝑢=𝑘

𝜉 (𝑢) , (101)

where 𝜉(𝑢) is the coefficient of 𝑧𝑢 in the power series
expansion of the generating function𝑊𝑑

0,𝑘(0, 𝑧).
(ii) The 𝑚-consecutive 𝑘-out-of-𝑛: 𝐹 system with sparse

𝑑 consists of 𝑛 linearly ordered components and fails
if and only if there exist at least 𝑚 nonoverlapping
runs of 𝑘 consecutive failures with sparse 𝑑. For the
aforementioned structure, Zhao et al. [58] employed
the well-known Markov Chain Imbedding technique
in order to achieve expressions for the reliability
function of such systems. Moreover, Mohan et al. [59]
proved that the generating function of the waiting
time for the occurrence of the system failure is given
as

𝑊
𝑑

0,𝑘𝑚 (0, 𝑧) = (𝑊
𝑑

0,𝑘 (0, 𝑧))
𝑚

. (102)

(iii) The linear (𝑛, 𝑓, 𝑘): 𝐹 system with sparse 𝑑 consists
of 𝑛 linearly ordered components and fails if and
only if there exist at least 𝑓 total failures or at
least 𝑘 consecutive failures with sparse 𝑑. For the
aforementioned structure, Zhao et al. [58] employed
the well-known Markov Chain Imbedding technique
in order to achieve expressions for the reliability
function of such systems. Moreover, Mohan et al.
[59] proposed an algorithm for the evaluation of the
corresponding reliability function.

It is worth mentioning that, in case of 𝑑 = 0, the consecutive-
𝑘 systems with sparse 𝑑 reduce to the ordinary consecutive
𝑘-out-of-𝑛: 𝐹 structures.

3. Applications

Applications of reliability models can range from electrical
or engineering and mechanical field up to several contexts

referring to humans’ activity. For example, an emergency
backup power supply in a hospital or a power production at
a specific voltage at the microscale may be viewed as direct
implementations of reliability modeling. Moreover, double-
loop computer networks, such as the daisy chain or the
brained ring, can be studied through the lines of a reliability
structure.

Let us consider a television screen characterized by a
certain number of pixels and assume that the visual quality
is not acceptable if and only if one of the following ensues:

(i) there exist at least 𝑓 failed pixels,
(ii) there exist at least 𝑘 consecutive failed pixels.

It is clear that the aforementioned device can be studied as an
(𝑛, 𝑓, 𝑘) system.

In addition, it is of some interest that vacuum systems in
accelerators or belt conveyors in open-cast mining operate
within the framework of the well-known consecutive 𝑘-
out-of-𝑛 system. Among applications of 𝑘-out-of-𝑛 systems,
the design of electronic circuits such as very large scale
integrated (VLSI) and the automatic repairs of faults in an
online system would be the most conspicuous. This type
of structure consists of several parallel outputs channeled
through a decision-making device that provides the required
system function as long as at least a predetermined number 𝑘
of 𝑛 parallel outputs are in agreement.

It is worth mentioning that Kalyan and Kumar [60]
studied in detail the redundancy optimization in consecutive
𝑘-out-of-𝑛: 𝐹 systems. More specifically, for a consecutive
𝑘-out-of-𝑛 structure that has a fluctuation of demand on
the system performance, Kalyan and Kumar [60] considered
extra resources in order to improve the system performance
and developed alternative methods for the maximization
of the structures’ reliability. It goes without saying that the
reliability systems studied in the article of Kalyan and Kumar
[60] can be classed under the so-called Protean systems.

Zhang et al. [61] presented an application of the well-
known consecutive 𝑘-out-of-𝑛: 𝐺 system to a railroad opera-
tion.More specifically, they studied a railroad system consist-
ing of 17 lines (numbered from 1 to 17), which was formulated
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k = n = f

f ≤ k

i = 1, j = n

or i − j = 1

ni = 1, n = N

with sparse d

with sparse d

with sparse d

N = 1

d = 0

d = 0

d = 0

f ≥ n

r = 1

f =

N

∑
i=1

ni, n = N

F with cycle k

m = 1

m = 1

m = 1

m = 1, kc < mk

kc = mk

r = k

k = 1, m = f

wi = 1

d = 0, f = k

Consecutive k-out-of-n: F

f-out-of-n: F

m-consecutive k-out-of-n:

m-consecutive k-out-of-n: F
and consecutive-kc-out-of-n: F

m-consecutive k-out-of-n: F

r-within-consecutive k-out-of-n : F

k = n, r = f

Weighted f-out-of-
n: F with weights wi

m-consecutive k-out-of-n: F with
overlapping runs

m-consecutive k-out-of-r-from-n

Consecutive k-out-of-n: F

m-consecutive k-out-of-n: F

(n, f, k): F

(n, f, k(i, j)): F

Constrained (k, d)-out-of-n

mf1
< mf2

, kcf1 > kcf2

Combined mf1
-consecutive kcf1 -

out-of-n: F and mf2
-consecutive-

kcf2
-out-of-n: F

or kcf2 /kcf1 integer − valued

(n1, n2, . . . , nN, f, k): F

(n, f, k): F

Figure 1: Connection between members of the consecutive-type systems’ family.

as a reliability study of a linear consecutive 𝑘-out-of-𝑛: 𝐺
structure.

Zuo et al. [62] reported an application of 𝑘-out-of-𝑛: 𝐹
and consecutive-𝑘-out-of-𝑛: 𝐹 systems in evaluation of the
lifetime distribution of furnaces used in a petrochemical
company. More precisely, different scenarios were investi-
gated in modeling the reliability behaviors of the furnaces as
a function of the reliabilities of the tubes used in the furnaces.

Lu and Liu [63] used the well-known 𝑘-out-of-𝑛:𝐺 struc-
ture to quantify the reliability benefit of redundancy units
in main circuit of prevailing static generators, called Static
Synchronous Compensators (STATCOMs). The fundamental
aim of applying a reliability study in the aforementioned
operation is to maintain specific parameters of the electric
power system by using the variation of the outputs of the
so-called STATCOM and describe the effect of the redun-
dancy technique to the total device reliability performance.
More specifically, Lu and Liu [63] provided the probabilis-
tic model of the 50MVA STATCOM devices which were
brought into operation at a certain substation in Shanghai,
China.

Many safety-critical applications including nuclear power
plants are equipped with 𝑘-out-of-𝑛 or specific-voting-logic
redundant safety signal generation systems for ensuring both
safety and economy. Kang and Kim [64] developed a quan-
tification method for the evaluation of the unreliability of a
reactor protection system (RPS), while several configurations
of 𝑘-out-of-𝑛models are investigated.

4. How Members of the Consecutive-Type
Systems’ Family Are Connected

In the literature, there exist a lot of references that mark
down the connection between two well-known reliability
systems. It is really often for a newly introduced reliability
structure to coincide with an older one under some spe-
cific restrictions concerning their design parameters. In this
section, we attempt to harvest all information that refers to
relations among all members of the generalized consecutive-
type systems’ family.

Figure 1 displays for each system that is included in the
consecutive-type systems’ family the way that is connected
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to one or more of its members. It goes without saying that
both the 𝑘-out-of-𝑛 system and the consecutive 𝑘-out-of-𝑛
system play a crucial role in the aforementioned group of
reliability structures. For example, based on Figure 1, onemay
easily observe that the constrained (𝑘, 𝑑)-out-of-𝑛 system
reduces to the well-known 𝑘-out-of-𝑛 structure if its design
parameters are adjusted properly (e.g., 𝑑 = 0, 𝑓 = 𝑘).
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