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OPTIMAL COMPROMISE BETWEEN INCOMPATIBLE

CONDITIONAL PROBABILITY DISTRIBUTIONS, WITH

APPLICATION TO OBJECTIVE BAYESIAN KRIGING

Joseph Muré1,2,*

Abstract. Models are often defined through conditional rather than joint distributions, but it can
be difficult to check whether the conditional distributions are compatible, i.e. whether there exists a
joint probability distribution which generates them. When they are compatible, a Gibbs sampler can
be used to sample from this joint distribution. When they are not, the Gibbs sampling algorithm may
still be applied, resulting in a “pseudo-Gibbs sampler”. We show its stationary probability distribution
to be the optimal compromise between the conditional distributions, in the sense that it minimizes a
mean squared misfit between them and its own conditional distributions. This allows us to perform
Objective Bayesian analysis of correlation parameters in Kriging models by using univariate conditional
Jeffreys-rule posterior distributions instead of the widely used multivariate Jeffreys-rule posterior. This
strategy makes the full-Bayesian procedure tractable. Numerical examples show it has near-optimal
frequentist performance in terms of prediction interval coverage.
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1. Introduction

Generally speaking, there are two ways to create statistical models for multiple random variables. One can
either consider them simultaneously and directly define their joint distribution, or one can define a system of
conditional distributions. The first approach is conceptually easier and often (but not always) leads to models
with well understood properties because a closed-form expression is available. The second one allows for more
flexibility in modeling but makes theoretical analysis more difficult.

The main problem with the second approach is that conditional distributions may not be compatible. In
this context, it means that there exists no joint distribution from which the conditional distributions can all
be derived. Other definitions of compatibility exist in the literature. For example, in the context of a model
with a given prior distribution, Dawid and Lauritzen [11] examine the problem of eliciting a compatible prior
distribution for a submodel. In the domain of Bayesian Networks, a probability distribution can be compatible
or not with a given Directed Acyclic Graph (DAG) [30]. Moreover, an abstraction (simplification) of a DAG
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can be compatible or not [34]. A concept of compatibility of two prior distributions also exists in the field
of Bayesian model selection. It is based on the Kullback–Leibler divergence of the corresponding marginal
(predictive) distributions [9]. In this paper however, the notion of compatibility concerns families of conditional
distributions. A family of conditional distributions is called compatible if there exists a joint distribution that
agrees with them all [16]. Uniqueness of this joint distribution is desirable but not included in the requirements
of compatibility.

To illustrate this definition of compatibility, consider the following random-effect model ([16], cited by Robert
[29] page 41), which shows that “in general, reasonable-seeming conditional models will not be compatible with
any single joint distribution” [12]. Define yij = β + ui + εij , i ∈ [[1, I]] and j ∈ [[1, J ]] where ui ∼ N (0, σ2)
and εij ∼ N (0, τ2). The parameters of the model being (β, σ2, τ2), let us consider the prior distribution
π(β, σ2, τ2) ∝ (σ2τ2)−1: the corresponding posterior is improper. The conditional posterior distributions can-
not therefore be compatible. Nevertheless, they are all proper. With ȳ and ū being the empirical means of
y = (yij)i∈[[1,I]],j∈[[1,J]] and u = (ui)i∈[[1,I]], β|u,y, σ2, τ2 ∼ N (ȳ − ū, τ2/IJ), σ2|u,y, β, τ2 ∼ IG

(
I/2,

∑
i u

2
i /2
)
,

τ2|u, β,y, σ2 ∼ IG
(
IJ/2,

∑
ij(yij − ui − β)2/2

)
. If the posterior distribution was presented only through these

conditionals, one might miss the fact that Gibbs sampling is impossible in this case due to the corresponding
Markov chain being null recurrent.

For finite state spaces, null recurrent Markov chains are impossible, but attempting to define a joint probabil-
ity distribution through its conditional distributions may still lead to incompatibility. Accordingly, the problem
of efficiently determining whether a given system of conditionals is compatible has received considerable atten-
tion over the years. Kuo et al. [22], after listing previous attempts, provide probably the best solution to date.
Their idea relies on the Structural Ratio Matrix which contains ratios between conditional distributions.

However, even if a system contains incompatible conditional probability distributions, it does not follow
that it is useless. Since Heckerman et al. [15], practitioners have been using systems of conditional probability
distributions without reference to compatibility. Indeed, providing the Markov chain is positive recurrent, it is
always possible to fire up Gibbs samplers to deal with a system of conditional distributions. Some authors use
the colorful acronym PIGS for “Potentially Incompatible Gibbs Sampler” to describe such a procedure. When
the conditionals are definitely known to be incompatible, the most widely used term seems to be “pseudo-Gibbs
sampler” (PGS).

Behind the practice of PIGS is the intuition that the Gibbs sampler should converge to the joint distribution
that best represents the system of conditionals. Kuo and Wang [21] provide a detailed analysis and geometrical
interpretation of the behavior of PGSs for discrete conditional distributions. In particular, they show how the
scanning order determines its stationary distribution. In Section 2 of the present paper, we provide some theo-
retical foundation for the intuition that the stationary distribution of a PGS with random scanning order is, in
case of uniqueness, the best “compromise” between incompatible conditionals. Section 3 provides further dis-
cussion of this theory by considering alterations to the main definitions and showing them to lead to undesirable
results.

In Section 4, we use the theory of optimal compromise to derive Objective Bayesian inference on correlation
parameters of Kriging models. Kriging models are widely used in spatial statistics, but they are more complex
than standard models. Their parameters are numerous, and their interactions complex, which makes eliciting a
joint objective prior difficult. This makes an approach resting on conditional priors attractive despite the risk
of incompatibility of the associated conditional posteriors. It is to deal with such situations that the theory of
optimal compromise was developed.

The Objective Bayesian paradigm as explained by Berger [4] consists in eliciting for every model a “default”,
reasonable prior distribution that could be used when no explicit prior information is available. In particular, the
Berger–Bernardo reference prior [8], hereafter simply named “reference prior”, can be algorithmically computed
with minimal user intervention.

For models with a single scalar parameter, the reference prior rewards parameter values that are easily
discriminated by the likelihood function. Its definition is related to the Kullback–Leibler divergence between
posterior and prior [8]. For usual continuous models – essentially models where the Fisher information matrix
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is equal to the opposite of the expectancy of the second derivative of the log-likelihood, see Clarke and Barron
[10] for an exhaustive list of conditions – it coincides with the Jeffreys-rule prior.

For models with multiple parameters, the reference prior algorithm requires the user to specify an ordering
on the parameters and then iteratively compute the reference prior on each parameter conditionally to all subse-
quent parameters. The only user input is therefore this ordering, and common sense arguments often make one
more sensible than others. Yang and Berger [33] list different reference priors obtained with different parameter
orderings for a large number of statistical models. Of course, one could also group several parameters and treat
them as one single multi-dimensional parameter, but doing so tends to produce less satisfactory inference [5].
In particular, for usual continuous models Berger et al. [7] state “We actually know of no multivariable example
in which we would recommend the Jeffreys-rule prior. In higher dimensions, the prior always seems to be either
‘too diffuse’ [...] or ‘too concentrated’ ”.

Berger et al. [6] were the first to derive a reference prior for the parameters of a Gaussian process regression
model. This model contained only one correlation parameter, however. When several correlation parameters
are involved, there is no reasonable way to order them. Even if one were arbitrarily picked, computation of the
prior would be analytically intractable. Several authors [13, 19, 25, 27, 28] have therefore resolved to treat all
correlation parameters as a single multi-dimensional parameter. It is in order to avoid having to do this that
we make use of PIGS.

The idea is simple: for every correlation parameter, it is possible to analytically derive the reference prior for
this parameter conditionally to all others. Each of the corresponding posterior distributions can be seen as a
conditional probability distribution on one correlation parameter when all others are known. These conditional
distributions then serve as input to a PIGS.

Theorem 4.2 is the main result with respect to the application.
First, under reasonable assumptions, the PIGS admits one single stationary probability distribution. Second,

the Markov kernel defined by the PIGS is uniformly ergodic. Since this Markov kernel is defined over an
uncountable state space, the latter fact is significant. The stationary distribution, which we call the Gibbs
reference posterior distribution, can be used to improve prediction of the value taken by the Gaussian process
at unobserved points. Sections 5 and 6 illustrate the inferential and predictive performance of the stationary
distribution, respectively.

2. Optimal compromise: a general theory

2.1. Definitions and notations

In this section, we introduce the concepts necessary to define the optimal compromise between potentially
incompatible conditional distributions. For the sake of readability, all proofs are provided in Appendix A.

First, note that in this context, “conditional distribution” is really an informal way of referring to a Markov
kernel.

Definition 2.1. Let (A,A) and (B,B) be measurable sets. A mapping π : A × B → [0, 1] is called a Markov
kernel if:

(1) for all x ∈ A, π(x, ·) : B → [0, 1] is a probability distribution and
(2) for all S ∈ B, π(·, S) : A→ [0, 1] is A-measurable.

We use the following notation: for every (x, S) ∈ A× B, π(S|x) := π(x, S).

Let r be a positive integer and let (Ω1,A1),...,(Ωr,Ar) be measurable sets. Define Ω = ×ri=1Ωi = Ω1× ...×Ωr
and A :=

⊗r
i=1Ar = A1 ⊗ ...⊗Ar.

For every i ∈ [|1, r]], let πi be a Markov kernel (×j 6=iΩj)×Ai → [0, 1].
Intuitively (we formalize this below), every πi should be assembled with a distribution m6=i on

⊗
j 6=iAj to

create a “joint” distribution, that is a probability distribution on A. We refer to every m6=i (i ∈ [[1, r]]) as an
(r− 1)-dimensional distribution. If the m 6=i can be chosen in such a way as to make all joint distributions equal,
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then the Markov kernels in the sequence (πi)i∈[[1,r]] are called compatible. And if no choice of (m6=i)i∈[[1,r]] can
make all joint distributions equal, we have to look for a “compromise” between the Markov kernels.

Consider the following example [3] with r = 2 and Ω1 = Ω2 = (0,+∞) are endowed with their Borel σ-
algebra: let π1 and π2 be Markov kernels such that for all x, y > 0 π1(·|y) and π2(·|x) are absolutely continuous
with respect to the Lebesgue measure on (0,+∞). Let λ be this measure and let the densities of π1 and π2

respectively be

p1(x|y) :=
dπ1(·|y)

dλ
(x) = (y + 2) exp(−(y + 2)x); (2.1)

p2(y|x) :=
dπ2(·|x)

dλ
(y) = (x+ 3) exp(−(x+ 3)y). (2.2)

Let us define m 6=1 and m6=2 as the probability distributions with the following densities with respect to the
Lebesgue measure on (0,+∞):

dm6=1

dλ
(y) =

(y + 2)−1 exp(−3y)∫ +∞
0

(t+ 6)−1 exp(−t)dt
; (2.3)

dm6=2

dλ
(x) =

(x+ 3)−1 exp(−2x)∫ +∞
0

(t+ 6)−1 exp(−t)dt
. (2.4)

Then the joint probability distributions π1m6=1 and π2m6=2 are equal. Now denoting by λ the Lebesgue
measure on (0,+∞)× (0,+∞), the density of π1m6=1 = π2m 6=2 is

dπ1m6=1

dλ
(x, y) =

dπ2m6=2

dλ
(x, y) =

exp(−xy − 2x− 3y)∫ +∞
0

(t+ 6)−1 exp(−t)dt
. (2.5)

Remark 2.2 (Producing incompatibility is easy). Take r = 2 and let Ω1 = Ω2 be a Borel subset of R. Assume
that for all x, y ∈ Ω1, π1(·|y) and π2(·|x) are absolutely continuous with respect to λ, which denotes here the
Lebesgue measure on Ω1. Let p1(·|y) and p2(·|x) be their respective density functions and further assume that for
λ-almost all real numbers x and y, p1(x|y) > 0 and p2(y|x) > 0. A necessary condition [3] for the compatibility
of π1 and π2 can be derived from Bayes’ rule: there must exist two mappings u and v defined on Ω1 such that
for λ-almost all real numbers x and y

dπ1(·|y)

dλ
(x)

/
dπ2(·|x)

dλ
(y) = u(x)v(y). (2.6)

In the previous example, Ω1 = Ω2 = (0,+∞) and this necessary condition is fulfilled: for all x, y > 0,

p1(x|y)

p2(y|x)
=

(x+ 3)−1 exp(−2x)

(y + 2)−1 exp(−3y)
. (2.7)

Taking p1(x|y) = (y+ 2) exp(−(y+ 2)x) and p2(y|x) = exp(−y) makes π1 and π2 fail the necessary condition
for compatibility.

Definition 2.3. Let φ be a probability distribution on A. For every i ∈ [[1, r]], denote by φ−i the probability
distribution on

⊗
j 6=iAj defined as follows. For every set S−i that can be decomposed as S−i = ×j 6=iSj (with
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Sj ∈ Aj for every j 6= i),

φ−i(S−i) = φ(×j<iSj × Ωi ××k>iSk). (2.8)

φ−i is called the ith (r − 1)-marginal distribution of φ.

Remark 2.4. The above definition is valid because any probability distribution on A can be characterized by
its values on “rectangles” ×ri=1Si (where for every i ∈ [[1, r]], Si ∈ Ai).

For every i ∈ [[1, r]] and every probability distribution m6=i on
⊗

j 6=iAj , denote by πim 6=i the distribution on
A defined as follows. For every i ∈ [[1, r]], for every set S<i ∈

⊗
j<iAj , every set S>i ∈

⊗
k>iAk and every set

Si ∈ Ai,

πim6=i(S<i × Si × S>i) =

∫
S<i×S>i

πi(Si|ω−i)dm6=i(ω−i). (2.9)

Naturally, for i = 1 (resp. i = r), remove S<i (resp. S>i) from the formula above. In the following, do this
kind of operation when i = 1 or i = r.

Notice that for every i ∈ [[1, r]], m 6=i is the ith (r − 1)-marginal distribution of πim6=i:

(πim6=i)−i = m6=i. (2.10)

If there exists a sequence of (r − 1)-dimensional distributions (m6=i)i∈[[1,r]] such that all distributions πim 6=i
are equal, then the Markov kernels (πi)i∈[[1,r]] are compatible. If no such sequence (m 6=i)i∈[[1,r]] exists, then
we wish to find a sequence (m 6=i)i∈[[1,r]] that makes the πim6=i share some “common ground”. The following
definition expresses this constraint formally.

Definition 2.5. A sequence of (r − 1)-dimensional distributions (m6=i)i∈[[1,r]] (each m6=i being a probability
distribution on

⊗
j 6=iAj) is said to be compatible with the sequence of Markov kernels (πi)i∈[[1,r]] if for every

i ∈ [[1, r]]

m6=i =
1

r

r∑
j=1

(πjm6=j)−i. (2.11)

So the “common ground” we require for the sequence of distributions (πim6=i)i∈[[1,r]!] is that their (r − 1)-
marginal distributions should be the same on average. Other constraints would have been possible, and we
discuss some of them in Section 3.1 below.

Consider the case where r = 2, Ω1 = Ω2 = R and for all x, y ∈ R, π1(·|y) = N (y/4, 1/8) and π2(·|x) = N (x, 1),
the second argument of N (·, ·) being the variance. Now define m6=1 = N (0, 2) and m 6=2 = N (0, 1). We have

π1m 6=1 = N
((

0
0

)
,

(
1 1/2

1/2 2

))
and π2m 6=2 = N

((
0
0

)
,

(
1 1
1 2

))
(2.12)

Since (π1m6=1)−2 = N (0, 1) = m 6=2 and (π2m6=2)−1 = N (0, 2) = m 6=1, we have a fortiori m 6=1 =
1/2(π1m6=1)−1 + 1/2(π2m 6=2)−1 and m6=2 = 1/2 (π1m 6=1)−2 + 1/2 (π2m6=2)−2, so (m6=1,m6=2) is compatible
with (π1, π2) in the sense of Definition 2.5.

The definition of a compromise follows from this new definition of compatibility.

Definition 2.6. A probability distribution P onA is called a compromise between the Markov kernels (πi)i∈[[1,r]]

if these two conditions are verified:



276 J. MURÈ

(1) for every i ∈ [[1, r]], πiP−i is absolutely continuous with respect to P ;
(2) the sequence (P−i)i∈[[1,r]] of P ’s (r − 1)-marginal distributions is compatible with (πi)i∈[[1,r]].

In the definition of a compromise, the first condition exists to give meaning to the definition of an optimal
compromise below. It is reasonable on its own though: a compromise should not deem events impossible if they
are considered possible by the Markov kernels.

Returning to the previous example, both π1m 6=1 and π2m 6=2 are compromises, and any convex combination
of these two distributions is one as well. The following definition introduces a cost function for compromises in
order to determine which compromises are optimal.

Definition 2.7. Let λ be a positive measure on A. Let P be a compromise between the sequence of Markov
kernels (πi)i∈[[1,r]] that is absolutely continuous with respect to λ. P is called an optimal compromise with respect
to λ between the sequence of Markov kernels (πi)i∈[[1,r]] if it minimizes the functional Eλ over all compromises
between (πi)i∈[[1,r]] that are absolutely continuous with respect to λ. Eλ is defined by:

Eλ(P ) =

r∑
i=1

∫
A

[
d(πiP−i)

dλ
(ω)− dP

dλ
(ω)

]2

dλ(ω). (2.13)

In the previous example, the optimal compromise with respect to the Lebesgue measure on R × R can be
shown (cf. Sect. 2.2) to be 1/2 π1m−1 + 1/2 π2m−2.

Proposition 2.8. The set of all compromises between (πi)i∈[[1,r]] is convex, as is the subset of all compromises
absolutely continuous with respect to λ.

If the Markov kernels (πi)i∈[[1,r]] are compatible and there exists a joint distribution π on A that agrees
with them all, then for every positive measure λ on A such that π is absolutely continuous with respect to λ,
Eλ(π) = 0 and π is an optimal compromise with respect to λ.

Even though Definition 2.7 makes it seem like the notion of optimal compromise is tied to a reference measure
λ, it turns out that in many situations there exists a compromise that is optimal with respect to all possible
reference measures – cf. Theorem 2.13 below. In the previous example, it is given by 1/2π1m−1 + 1/2π2m−2.

2.2. Deriving the optimal compromise

The concepts of compromise and optimal compromise defined in Section 2.1 are intimately linked to Gibbs
sampling, or (because the Markov kernels are incompatible) pseudo-Gibbs sampling (PGS). Let us therefore
recall the Gibbs sampling algorithm.

Algorithm 1: Gibbs sampling

input: Variable xi for i ∈ [[1, r]] and Markov kernels πi for i ∈ [[1, r]]
1 Initialize x1,...,xr ;
2 while additional samples are desired do
3 Select index i from [[1, r]];
4 Sample xi from πi(·|x1, ..., xi−1, xi+1, ..., xr) ;

5 end

The method used to sample the index i is called scanning order. A systematic scan moves through each index
in turn using a deterministic pattern while an equiprobable random scan selects for each step an index within
[[1, r]] with probability 1/r.

If the Markov kernels (πi)i∈[[1,r]] are compatible, then the scanning order influences only the rate of convergence
of the algorithm. He et al. [14] provide theoretical results on the subject and Mitliagkas and Mackey [24] propose
a measure for the quality of any scan order for Gibbs sampling on finite state spaces.
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If the Markov kernels are not compatible, then every scan order may produce a different target distribution.
Kuo and Wang [21] thoroughly study the links between all possible systematic scan orders for Markov kernels
on finite state spaces. The equiprobable random scan order has yet another target distribution.

The notion of Gibbs compromise is central to this theory of compromises between incompatible Markov
kernels.

Definition 2.9. A probability distribution PG on A is called a Gibbs compromise between the sequence of
Markov kernels (πi)i∈[[1,r]] if it satisfies:

PG =
1

r

r∑
i=1

πi(PG)−i. (2.14)

If it exists, a Gibbs compromise is a stationary distribution for the Gibbs sampler with equiprobable random
scan order. This fact makes it practical from a sampling standpoint. In the following, we show how it relates to
the concepts of compromise and optimal compromise in the sense of Definitions 2.6 and 2.7.

Proposition 2.10. A Gibbs compromise between the sequence of Markov kernels (πi)i∈[[1,r]] is also a compromise
between this sequence of Markov kernels in the sense of Definition 2.6.

The denomination “Gibbs compromise” is justified because it is a stationary distribution for the Gibbs
sampler with random equiprobable scanning order.

The proposition below shows that all compromises are tied to Gibbs compromises.

Proposition 2.11. If a sequence of (r − 1)-dimensional probability distributions (m 6=i)i∈[[1,r]] (each m6=i being
a probability distribution on

⊗
j 6=iAj) is compatible with the sequence of Markov kernels (πi)i∈[[1,r]], then it is

the sequence of (r− 1)-dimensional distributions of a Gibbs compromise between the Markov kernels (πi)i∈[[1,r]].

Remark 2.12 (Equivalence relation and convexity). Let us say that two compromises are equivalent if they
share the same sequence of (r − 1)-marginal distributions. This is obviously an equivalence relation and every
class of equivalence can be represented by a single Gibbs compromise. Moreover, each class of equivalence is a
convex subset of the set of all compromises. And for any positive measure λ on A, its intersection with the set
of all compromises absolutely continuous with respect to λ is also convex. Finally, the functional Eλ is convex
over this intersection.

2.3. A theoretical justification of pseudo-Gibbs sampling

At this stage, all necessary tools are available to derive the two most important results of this theory of
compromise between incompatible Markov kernels.

Theorem 2.13. If there exists a unique Gibbs compromise PG between the sequence of Markov kernels
(πi)i∈[[1,r]], then the following statements holds:

(1) PG is absolutely continuous with respect to any compromise between the sequence of Markov kernels
(πi)i∈[[1,r]];

(2) for any positive measure λ on A such that PG is absolutely continuous with respect to λ, PG is the unique
optimal compromise with respect to λ.

Because of these two properties, we call PG the optimal compromise.

Remark 2.14 (Equivalence class and convexity – continued). The arguments used in the proof of Theorem 2.13
(cf. Appendix A) can also be used to deal with the case where there exist several different Gibbs compromises.
First, one can show that each Gibbs compromise is absolutely continuous with respect to any equivalent compro-
mise. Now let C be an equivalence class and let πC be the unique Gibbs compromise in this class of equivalence.
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Let λ be a positive measure on A such that πC is absolutely continuous with respect to λ. πC (uniquely) mini-
mizes Eλ over the intersection of C and the set of all compromises absolutely continuous with respect to λ. This
implies that for any positive measure λ on A, any optimal compromise with respect to λ is a Gibbs compromise.
Finally, note that the set of all Gibbs compromises is convex (however there is no reason Eλ should be convex
over this set!).

Theorem 2.13 has important practical implications. It opens the possibility of using Gibbs sampling to find
the optimal compromise between incompatible Markov kernels and justifies using PIGS.

The next result shows that, under the conditions of Theorem 2.13, the optimal compromise remains the
same for a fairly large class of reparametrizations. This result is key to the application of PIGS in an Objective
Bayesian framework, where some degree of invariance by reparametrization of priors and posteriors is usually
expected.

For every i ∈ [[1, r]], let (Ω̃i, Ãi) be a measurable space and let fi be bijective measurable mapping Ωi → Ω̃i
whose inverse f−1

i is also measurable. Define f = (f1, ..., fr) : ×i∈[[1,r]]Ωi → ×i∈[[1,r]]Ω̃i and for every i ∈ [[1, r]]

f−i = (f1, .., fi−1, fi+1, ..., fr) : ×j 6=iΩj → ×j 6=iΩ̃j .
Also let π̃i be the Markov kernel

(
×j 6=iΩ̃j

)
×Ãi → [0, 1] such that for every ω−i ∈ ×j 6=iΩj and every Si ∈ Ai,

π̃i(fi(Si)|f−i(ω−i)) = πi(Si|ω−i).

Proposition 2.15. Assume there exists a unique Gibbs compromise PG between the sequence of Markov kernels
(πi)i∈[[1,r]]. Then the push-forward measure of PG by f P̃G := PG ∗ f is the unique Gibbs compromise between
the sequence of Markov kernels (π̃i)i∈[[1,r]].

3. Testing the definitions of compatibility

While the previous section presented the theory of compromise, this section aims to test its foundations,
namely Definitions 2.5 and 2.6. Section 3.1 shows that strengthening their requirements is not possible since it
would in many cases threaten the very existence of a compromise. Section 3.2 on the other hand shows that
these requirements cannot be weakened at a small price.

3.1. Stronger definitions of compromises are not possible

While the definition of the optimal compromise is straightforward, as it involves minimizing some mea-
sure of distance between the “targeted” conditionals and the conditionals of the compromise, the definition of
a compromise may seem arbitrary. To motivate this definition, let us focus on the two-dimensional case.

Suppose that r = 2 and that π1 and π2 are incompatible. This means there exists no joint distribution π which
agrees with both Markov kernels. This being the case, it seems sensible to weaken the definition of compatibility
by applying it to the “marginals” instead of the “joint” distribution. The following definition makes this idea
precise.

Definition 3.1. A pair of probability distributions m 6=1 (resp. m6=2) on A2 (resp. A1) is compatible with the
pair of Markov kernels π1 and π2 if the distributions π1m6=1 and π2m6=2 verify

(π1m6=1)−2 = m 6=2 and (π2m6=2)−1 = m 6=1. (3.1)

While this definition may seem more restrictive at first glance than Definition 2.5, both definitions are in
fact equivalent when applied to a pair of Markov kernels, because (r − 1)-dimensional distributions are simply
one-dimensional distributions in this case. Indeed, following directly from Definition 2.5, we have this result
which holds for any r:

Proposition 3.2. If a sequence of (r − 1)-dimensional probability distributions (m6=i)i∈[[1,r]] (each m6=i being a
probability distribution on

⊗
j 6=iAj) is compatible (in the sense of Def. 2.5) with the sequence of Markov kernels
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(πi)i∈[[1,r]], then all joint distributions in the sequence (πim6=i)i∈[[1,r]] share the same marginals, that is

∀i, j, k ∈ [[1, r]], ∀Sk ∈ Ak, πim 6=i (×k′<kΩk′ × Sk ××k′′>kΩk′′) = πjm6=j (×k′<kΩk′ × Sk ××k′′>kΩk′′) .
(3.2)

Now let us consider the three-dimensional case (r = 3). Because the aim of this section is merely to motivate
the definitions of compromises and optimal compromises, there is no need for the discussion to be fully general.
Let us therefore restrict the discussion to an important particular case. Assume that Ω1, Ω2 and Ω3 are finite
sets and that A1, A2 and A3 are respectively the sets of all their subsets. This has an important consequence:
any mapping from a subset of Ω to a subset of Ω is measurable.

Also assume that the Markov kernels π1, π2 and π3 are positive mappings. For π1, this means that for every
(ω1, ω2, ω3) ∈ Ω1 × Ω2 × Ω3, π1({ω1}|ω2, ω3) > 0.

If we consider ω3 known, then the situation is reduced to the two-dimensional case. Because π1 and π2 are
positive mappings and both Ω1 and Ω2 are finite sets, Markov chain theory ensures there exists a unique Gibbs
compromise P (·|ω3). For every (ω1, ω2) ∈ Ω1 × Ω2,

P ({ω1} × {ω2}|ω3) =
1

2
π1({ω1}|ω2, ω3)P (Ω1 × {ω2}|ω3) +

1

2
π1(ω2|ω1, ω3)P ({ω1} × Ω2|ω3). (3.3)

Thanks to Theorem 2.13, P (·|ω3) is the optimal compromise. Moreover, notice that equation (3.3) defines a
Markov kernel on Ω3 × (A1 ⊗A2).

We may similarly derive Markov kernels Q : Ω1 × (A2 ⊗A3) and R : Ω2 × (A1 ⊗A3).
Once again, because π1, π2 and π3 are positive mappings, it follows from Markov chain theory that P , Q

and R are also positive mappings. We now show it using only elementary arguments, because these arguments
will be useful again later.

Assume P is not a positive mapping. Then there exists (ω
(0)
1 , ω

(0)
2 , ω

(0)
3 ) ∈ Ω1×Ω2×Ω2 such that P ({ω(0)

1 }×
{ω(0)

2 }|ω
(0)
3 ) = 0. Equation (3.3) then implies that P (Ω1 × {ω(0)

2 }|ω
(0)
3 ) = 0. So for every ω1 ∈ Ω1, P ({ω1} ×

{ω(0)
2 }|ω

(0)
3 ) = 0. But then equation (3.3) implies that P ({ω1}×Ω2|ω(0)

3 ) = 0. Since this holds for every ω1 ∈ Ω1,

P (Ω1 × Ω2|ω(0)
3 ) = 0, which is absurd since P (·|ω(0)

3 ) is supposed to be a probability distribution. So P is a
positive mapping.

Ideally, we would wish to define the optimal compromise between π1, π2 and π3 as the joint distribution φ
such that for every (ω1, ω2, ω3) ∈ Ω1 × Ω2 × Ω3

φ({ω1} × {ω2} × {ω3}) = P ({ω1} × {ω2}|ω3)φ(Ω1 × Ω2 × {ω3}) (3.4)

= Q({ω2} × {ω3}|ω1)φ({ω1} × Ω2 × Ω3) (3.5)

= R({ω1} × {ω3}|ω2)φ(Ω2 × {ω2} × Ω3). (3.6)

Unfortunately, the existence of such an “optimal compromise” φ implies that π1, π2 and π3 are compatible.
First, one can show that for every (ω1, ω2, ω3) ∈ Ω1 × Ω2 × Ω3, φ({ω1} × {ω2} × {ω3}) > 0. The arguments
are similar to those used above to show that P is a positive mapping. Rewriting equations (3.4) and (3.6)
yields

φ({ω1} × {ω2} × {ω3})
φ(Ω1 × {ω2} × {ω3})

=
P ({ω1} × {ω2}|ω3)

P (Ω1 × {ω2}|ω3)
=

1

2
π1({ω1}|ω2, ω3) +

1

2
π2({ω2}|ω1, ω3)

P ({ω1} × Ω2|ω3)

P (Ω1 × {ω2}|ω3)
(3.7)

=
R({ω1} × {ω3}|ω2)

R(Ω1 × {ω2}|ω3)
=

1

2
π1({ω1}|ω2, ω3) +

1

2
π3({ω3}|ω1, ω2)

R({ω1} × Ω3|ω2)

R(Ω1 × {ω3}|ω2)
.

(3.8)
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Now combine equations (3.7) and (3.8):

1

2
π2({ω2}|ω1, ω3)

φ({ω1} × Ω2 × {ω3})
φ(Ω1 × {ω2} × {ω3})

=
1

2
π3({ω3}|ω1, ω2)

φ({ω1} × {ω2} × Ω3)

φ(Ω1 × {ω2} × {ω3})
. (3.9)

As this holds for every (ω1, ω2, ω3) ∈ Ω1×Ω2×Ω3, it implies that π2φ−2 = π3φ−3. A similar proof then shows
that π3φ−3 = π1φ−1. This means that if an “optimal compromise” φ exists, then π1, π2 and π3 are compatible
and no compromise was needed.

Similarly to what was done in the two-dimensional case, we avoid this difficulty by weakening the compatibility
requirements: we no longer require P (·|ω3) to be the optimal compromise between π1 and π2 for every ω3 ∈ Ω3

(as expressed by Eq. (3.3)), but only on average over ω3 ∈ Ω3. So a compromise φ should still verify equation
(3.4), but it would only need to verify this weakened version of equation (3.3) for every (ω1, ω2) ∈ Ω1 × Ω2:∑
ω3∈Ω3

P ({ω1} × {ω2}|ω3)φ(Ω1 × Ω2 × {ω3})

=
∑
ω3∈Ω3

[
1

2
π1({ω1}|ω2, ω3)P (Ω1 × {ω2}|ω3) +

1

2
π2({ω2}|ω1, ω3)P ({ω1} × Ω2|ω3)

]
φ(Ω1 × Ω2 × {ω3}).

(3.10)

Because equation (3.4) is still expected to hold, equation (3.10) is equivalent to

φ−3({ω1} × {ω2}) =
1

2

∑
ω3∈Ω3

π1({ω1}|ω2, ω3)φ−1({ω2} × {ω3}) +
1

2

∑
ω3∈Ω3

π2({ω2}|ω1, ω3)φ−2({ω1} × {ω3}).

(3.11)

So the requirement boils down to 2φ−3 = (π1φ−1)−3 + (π2φ−2)−3. Of course, we symmetrically require
2φ−1 = (π2φ−2)−1 + (π3φ−3)−3 and 2φ−2 = (π1φ−1)−2 + (π3φ−3)−2 as well.

To sum this part of the discussion up, the necessity of weakening our “ideal” requirements for “optimal
compatibility” made us downgrade from a requirement about a “joint” three-dimensional distribution φ to
requirements about its (3−1)-marginal distributions φ−1, φ−2 and φ−3. Definition 2.5 is just another formulation
of these requirements, which are taken to define a compatible sequence of (r − 1)-dimensional distributions.

Proposition 2.11 shows that in cases where there exists a unique Gibbs compromise, even with this weakened
set of requirements for compatibility, there exists only one compatible sequence of (r− 1)-dimensional distribu-
tions, so we may not strenghten it if there is to be any solution. Indeed, in cases where no Gibbs compromise
exists, no compatible set of (r − 1)-dimensional distributions exists either!

3.2. Weaker definitions of compromises are inconvenient

As was shown in the previous subsection, the requirements given by Definition 2.5 for the compatibility of a
sequence of (r − 1)-dimensional distributions with a given sequence of Markov kernels cannot be strengthened.
The following shows they cannot be weakened either.

3.2.1. Why we need some notion of compatibility: example in 2 dimensions

Why bother with the compatibility of (r−1)-dimensional distributions and not simply minimize the functional
Eλ of Definition 2.7 over all distributions absolutely continuous with respect to λ ? The following two-dimensional
example shows that doing so yields unsatisfactory results.

Consider the following situation: Ω1 = Ω2 = {0, 1} and A1 = A2 = {∅, {0}, {1}, {0, 1}}. Let X1 (resp. X2) be
the identity function on Ω1 (resp. Ω2). Both X1 and X2 are measurable functions (and thus random variables
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when A1 ⊗A2 is endowed with a probability measure). Define the following Markov kernels:

π1(X1 = 1|ω2) = 1{ω2=0} + 1/2 1{ω2=1}; (3.12)

π2(X2 = 1|ω1) = 1/2 1{ω1=0} + 1{ω1=1}. (3.13)

Let λ be the counting measure. Denote by πC the optimal compromise with respect to λ (minimizing Eλ
over all compromises) and πE the distribution on A1⊗A2 that minimizes Eλ over all distributions on A1⊗A2.
We have Eλ(πC) = 2/25 > Eλ(πE) = 1/15 and

πC({ω1} × {ω2}) = 1/10
(
1{(ω1,ω2)=(0,0)} + 1{(ω1,ω2)=(1,0)} + 3 1{(ω1,ω2)=(0,1)} + 5 1{(ω1,ω2)=(1,1)}

)
; (3.14)

πE({ω1} × {ω2}) = 1/30
(
3 1{(ω1,ω2)=(0,0)} + 1{(ω1,ω2)=(1,0)} + 11 1{(ω1,ω2)=(0,1)} + 15 1{(ω1,ω2)=(1,1)}

)
. (3.15)

As πC is the unique Gibbs compromise between π1 and π2, its marginals are the only compatible marginals:
(πC)−1(X2 = 1) = 4/5 and (πC)−2(X1 = 1) = 3/5. The marginals of πE are noticeably different: (πE)−1(X2 =
1) = 13/15 and (πE)−2(X1 = 1) = 8/15.

Observe that according to π1, X2 = 0 implies X1 = 1 but that according to π2, X1 = 1 implies that X2 =
1 6= 0. This discrepancy is a major source of incompatibility between the two Markov kernels. So, as πE makes
both X1 = 1 and X2 = 0 less likely than πC , it “ignores the inconsistent parts” of π1 and π2 to some extent.
Therefore, if the marginals are not set in advance (say, by imposing compatibility with the conditionals in
the sense of Def. 2.5), one may “cheat” by having the marginals disadvantage inconvenient values for the
parameters.

3.2.2. Why the compatibility requirements can hardly be weakened: example in 3 dimensions

In the two-dimensional case, because of Proposition 3.2, Definitions 3.1 and 2.5 give the same meaning to the
concept of compatibility of marginals, so Definition 2.5 may be thought of as a generalization of Definition 3.1
to cases with more than two dimensions. However, another generalization of the latter definition is possible.
To avoid confusion, this other generalization will be called weak compatibility. In the following, the sequence of
Markov kernels (πi)i∈[[1,r]] is defined as in Section 2.1.

Definition 3.3. A sequence of (r − 1)-dimensional distributions (m6=i)i∈[[1,r]] is weakly compatible with a
sequence of Markov kernels (πi)i∈[[1,r]] if equation (3.2) holds.

Proposition 3.2 means that compatibility in the sense of Definition 2.5 implies weak compatibility in the
sense of Definition 3.3, hence its denomination as “weak”.

Using the concept of weak compatibility of a sequence of (r − 1)-marginal distributions, we define weak
compromises and the optimal weak compromise as analogues to compromises and optimal compromises,
respectively.

Definition 3.4. A probability distribution P on
⊗

i∈[[1,r]]Ai is called a weak compromise between the Markov

kernels (πi)i∈[[1,r]] if these two conditions are verified:

(1) for every i ∈ [[1, r]], πiP−i is absolutely continuous with respect to P ;
(2) the sequence (P−i)i∈[[1,r]] of P ’s (r − 1)-marginal distributions is weakly compatible with (πi)i∈[[1,r]].

Definition 3.5. Let λ be a positive measure on A. Let P be a weak compromise between the sequence
of Markov kernels (πi)i∈[[1,r]] that is absolutely continuous with respect to λ. P is called an optimal weak
compromise with respect to λ between the sequence of Markov kernels (πi)i∈[[1,r]] if it minimizes the functional
Eλ over all compromises between (πi)i∈[[1,r]] that are absolutely continuous with respect to λ. Eλ is defined by
equation (2.13).

Because, for any positive measure λ on A, the set of all weak compromises absolutely continuous with respect
to λ includes the set of all compromises absolutely continuous with respect to λ, an optimal weak compromise
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with respect to λ makes the functional Eλ no greater than an optimal compromise with respect to λ. However,
as shown in the following example with r = 3, optimal weak compromises may have undesirable behavior.

Assume Ω1 = Ω2 = Ω3 = {0, 1} and A1 = A2 = A3 = {∅, {0}, {1}, {0, 1}}. Let X1 (resp. X2, X3) be the
identity function on Ω1 (resp. Ω2, Ω3).

Consider the following Markov kernels. For every (ω1, ω2, ω3) ∈ Ω1 × Ω2 × Ω3

π1(X1 = 1|ω2, ω3) = 1/2; (3.16)

π2(X2 = 1|ω1, ω3) = 1/2; (3.17)

π3(X3 = 1|ω1, ω2) = 1{ω1=ω2} + 1/2 1{ω1 6=ω2}. (3.18)

Notice that, provided ω3 is known, π1 and π2 are compatible Markov kernels. The unique probability
distribution on A1 ⊗A2 that fits both π1 and π2 (conditional to ω3) verifies for every (ω1, ω2) ∈ Ω1 × Ω2

P ({ω1} × {ω2}|ω3) = 1/4. (3.19)

Thus, any joint distribution fitting the Markov kernel P would make X1, X2 and X3 mutually independent.
Unfortunately, no such joint distribution could fit π3, but we may expect compromises between π1, π2 and π3

to retain the independence of X1 and X2.
Let λ be the counting measure on A.
Denote by πC the (unique) optimal compromise between π1, π2 and π3 with respect to λ: we have Eλ(πC) =

1/48 ≈ 0.021. For every (ω1, ω2, ω3) ∈ Ω1 × Ω2 × Ω3

πC({ω1} × {ω2} × {ω3}) =
1

24
1{ω1=ω2,ω3=0} +

1

12
1{ω1 6=ω2,ω3=0} +

5

24
1{ω1=ω2,ω3=1} +

1

6
1{ω1 6=ω2,ω3=1}. (3.20)

Notably, its third 2-marginal distribution (πC)−3 verifies for every (ω1, ω2) ∈ Ω1 × Ω2

(πC)−3({ω1} × {ω2}) = 1/4. (3.21)

So, as expected, πC retains the independence of X1 and X2. Because πC is the unique Gibbs compromise
between π1, π2 and π3, Proposition 2.11 implies any other compromise between π1, π2 and π3 also retains this
property.

Let us now consider an optimal weak compromise πW between π1, π2 and π3 with respect to λ. Numerical
computation gives us the following approximation, with Eλ(πW ) ≈ 0.019. For every (ω1, ω2, ω3) ∈ Ω1×Ω2×Ω3,

πW ({ω1} × {ω2} × {ω3}) ≈ 0.04 1{ω1=ω2,ω3=0} + 0.10 1{ω1 6=ω2,ω3=0} + 0.19 1{ω1=ω2,ω3=1} + 0.17 1{ω1 6=ω2,ω3=1}.
(3.22)

Its third 2-marginal distribution (πW )−3 is approximately

(πW )−3({ω1} × {ω2}) ≈ 0.23 1{ω1=ω2} + 0.27 1{ω1 6=ω2}. (3.23)

Thus the independence of X1 and X2 is lost. Therefore, weak compatibility is no adequate notion of
compatibility. As a matter of fact, although (πW )−3 and (πC)−3 share the same marginals, that is

(πW )−3({ω1} × Ω2) = 1/2, (3.24)

(πW )−3(Ω1 × {ω2}) = 1/2, (3.25)

(πW )−3 slightly disadvantages the event X1 = X2, which is where the incompatibility between π3 and the
pair (π1, π2) is most obvious: according to π3, X1 = X2 implies X3 = 1, so conversely, X3 = 0 should imply
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X1 6= X2, when in fact π1 and π2 state that even given ω3 = 0, {X1 6= X2} only happens with probability 1/2.
On the other hand, according to π3, if X1 6= X2, then X3 can with equal probability be 0 or 1, which matches
π1 and π2 better.

4. Optimal compromise between objective posterior conditional
distributions in Gaussian process regression

Kriging is a surrogate model used to emulate a real-valued function on a spatial domain D when said function
can only be evaluated on a finite subset of D called “design set”. The “Kriging prediction” is the mean function
of the process taken conditionally to all known values of the emulated function, i.e. the values at the points in
the design set. The main advantage of the framework is its natural way of representing uncertainty about the
value of the function at unobserved points [31]. Prediction does not consist of a single value but of a complete
Normal distribution. “Kriging” is the name given to the framework in the geostatistical literature [18], but is
also frequently used in the context of computer experiments and machine learning under the label “Gaussian
process regression” [26]. In this work, we focus on Simple Kriging, where the Gaussian process is assumed to be
stationary with known mean, as opposed to Universal Kriging, which incorporates an unknown mean function.

The probability distribution of a stationary Gaussian process is characterized by a variance parameter and
a correlation function (also known as “correlation kernel”) which itself depends on parameters. So one should
deal with uncertainty about model parameters.

The problem is “notoriously difficult”, as highlighted by Kennedy and O’Hagan [20], because the likelihood
function may often be quite flat [23]. In a Bayesian framework, this uncertainty is represented by a prior
distribution on the parameters.

4.1. Issues raised by objective prior elicitation for Gaussian processes

Let Y (x), x ∈ D be a real-valued random field on a bounded subset D of Rr. We assume Y is Gaussian with
zero mean (or known mean) and with covariance of the form Cov(Y (x), Y (x′)) = σ2Kθ(x−x′). σ2 thus denotes
the variance of the Gaussian process and θ ∈ (0,+∞)r, hereafter named the “vector of correlation lengths”, is
the vector of scaling parameters used by the chosen class of correlation kernels Kθ.

Consider a set of n ∈ N points (x(i))i∈[[1,n]] belonging to the domain D. This set is called the design set and Y

is observed at all points of this set. Let Y be the Gaussian vector (Y (x(i)))i∈[[1,n]] and let Σθ be its correlation
matrix: the distribution of Y is therefore N (0n, σ

2Σθ).
Let y be the vector of observations. When applied to a matrix, | · | refers to its determinant.
With these notations, the likelihood of the parameters σ2 and θ is

L(y | σ2,θ) =

(
1

2πσ2

)n
2

|Σθ|−
1
2 exp

{
− 1

2σ2
y>Σ−1

θ y

}
. (4.1)

The reference prior with parameter ordering σ2 ≺ θ is given by Berger et al. [6]:

π(σ2,θ) = π(σ2|θ)π(θ) with π(σ2|θ) ∝ 1/σ2. (4.2)

The distribution π(σ2|θ) has infinite mass: it is an improper prior.
Let us integrate σ2 out of the likelihood (4.1):

L1(y | θ) ∝
∫ ∞

0

L(y | σ2,θ)π(σ2| θ) d(σ2) =

(
2π

n
2

Γ
(
n
2

))−1

|Σθ|−
1
2

(
y>Σ−1

θ y
)−n2 . (4.3)
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Ren et al. [27] provide the reference prior π(θ), where θ is regarded as a single multi-dimensional parameter.
It is proportional to the square root of the determinant of the r × r matrix with (i, j)th entry

Tr

[(
∂

∂θi
(Σθ) Σ−1

θ

)(
∂

∂θj
(Σθ) Σ−1

θ

)]
− 1

n
Tr

[
∂

∂θi
(Σθ) Σ−1

θ

]
Tr

[
∂

∂θj
(Σθ) Σ−1

θ

]
. (4.4)

However, this method has the disadvantage of requiring the use of a multi-dimensional Jeffreys-rule prior
distribution, which may show the sort of undesirable behavior mentioned in the introduction.

Alternatively, we could draw inspiration from the one-dimensional case in the following way. Suppose that
we know every entry of θ except one, θi. Then, according to equation (4.4), the prior density on θi knowing all
entries θj (j 6= i) would be

πi(θi | θj ∀j 6= i) ∝

√√√√Tr

[(
∂

∂θi
(Σθ)Σ−1

θ

)2
]
− 1

n
Tr

[
∂

∂θi
(Σθ)Σ−1

θ

]2

. (4.5)

The density functions πi(θi | θj ∀j 6= i) (i ∈ [[1, r]]) define Markov kernels. Indeed, they are continuous
with respect to the θj (j 6= i) and are probability densities with respect to the Lebesgue measure. They are
unfortunately likely to violate the necessary condition for compatibility given by equation (2.6).

Let us now consider the corresponding posterior conditional densities πi(θi | y, θj ∀j 6= i) (i ∈ [[1, r]]). Just
like their prior counterparts, they are likely to violate the necessary condition for compatibility. However, each of
them represents our opinion about one parameter if all others were known. This is a setting where the results of
Section 2 can be applied in order to find the optimal compromise between the Markov kernels Rr−1×B(R) they
define. This optimal compromise will then be taken as posterior probability of the vector θ. In the following, we
describe settings in which there exists a single Gibbs compromise between these Markov kernels. Theorem 2.13
then asserts it is the optimal compromise. We call this compromise the Gibbs reference posterior distribution
because of its link to the reference posterior distribution in settings with a one-dimensional parameter θ.

However, even though we call it a “posterior” distribution, it is unclear whether there exists a prior distribu-
tion from which it could be derived using Bayes’ rule. Denote by πG(θ|y) the probability density with respect to
the Lebesgue measure of the Gibbs reference posterior distribution. Bayes’ rule requires that in case a (proper
or improper) prior density πG(θ) exists, there should also exist a function L̃(y) such that, for almost every
θ ∈ Rr in the sense of the Lebesgue measure,

πG(θ|y)

L1(y|θ)
=
πG(θ)

L̃(y)
. (4.6)

As we have no explicit expression of πG(θ|y), we have no way to check whether equation (4.6) holds or not.
In this section, we establish that, whenever Matérn anisotropic geometric or tensorized kernels with known

smoothness parameter ν are used, under certain conditions to be detailed later, there exists a unique Gibbs
compromise between the reference posterior conditionals, which thanks to Theorem 2.13 is the optimal com-
promise. Henceforth, it will be called “Gibbs reference posterior distribution”, even though this “posterior” has
not been derived from a prior distribution using the Bayes rule.

All proofs for this section can be found in Appendix B.

4.2. Definitions

In this work, we use the following convention for the Fourier transform: the Fourier transform ĝ of a smooth
function g : Rr → R verifies g(x) =

∫
Rr ĝ(ω)ei〈ω|x〉dω and ĝ(ω) = (2π)−r

∫
Rr g(x)e−i〈ω|x〉dx.

Let us set up a few notations.

(a) Kν is the modified Bessel function of second kind with parameter ν;
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(b) Kr,ν is the r-dimensional Matérn isotropic covariance kernel with variance 1, correlation length 1 and

smoothness ν ∈ (0,+∞) and K̂r,ν is its Fourier transform:
(i) ∀x ∈ Rr,

Kr,ν(x) =
1

Γ(ν)2ν−1

(
2
√
ν‖x‖

)ν Kν (2√ν‖x‖) ; (4.7)

(ii) ∀ω ∈ Rr,

K̂r,ν(ω) =
Mr(ν)

(‖ω‖2 + 4ν)ν+ r
2

with Mr(ν) =
Γ(ν + r

2 )(2
√
ν)2ν

π
r
2 Γ(ν)

. (4.8)

(c) Ktens
r,ν is the r-dimensional Matérn tensorized covariance kernel with variance 1, correlation length 1 and

smoothness ν ∈ R+ and K̂tens
r,ν is its Fourier transform:

(i) ∀x ∈ Rr,

Ktens
r,ν (x) =

r∏
j=1

K1,ν(xj); (4.9)

(ii) ∀ω ∈ Rr,

K̂tens
r,ν (ω) =

r∏
j=1

K̂1,ν(ωj). (4.10)

(d) if t ∈ Rr, tθ =
(
t1
θ1
, ..., trθr

)
and tµ = (t1µ1, ..., trµr).

We define the Matérn geometric anisotropic covariance kernel with variance parameter σ2, correlation
lengths θ (resp. inverse correlation lengths µ) and smoothness ν as the function x 7→ σ2Kr,ν

(
x
θ

)
(resp.

x 7→ σ2Kr,ν (xµ)).
Similarly, we define the Matérn tensorized covariance kernel with variance parameter σ2, correlation

lengths θ (resp. inverse correlation lengths µ) and smoothness ν as the function x 7→ σ2Ktens
r,ν

(
x
θ

)
(resp.

x 7→ σ2Ktens
r,ν (xµ)).

Thanks to Proposition 2.15, we may choose any parametrization we wish for the Matérn correlation kernels.
We have found that the parametrization involving inverse correlation lengths makes proofs easier.

Several key passages in the proofs (to be found in Appendix B) involve a technical assumption on the design
set:

Definition 4.1. A design set is said to have coordinate-distinct points, or simply to be coordinate-distinct, if
for any distinct points in the set x and x′, every component of the vector x− x′ differs from 0.

Most randomly sampled design sets almost surely have coordinate-distinct points – for instance Latin
Hypercube Sampling (LHS). Cartesian product design sets, however, do not.

4.3. Main result

The result is valid for Simple Kriging models with the following characteristics:

(a) the design set contains n coordinate-distinct points in Rr (n and r are positive integers);



286 J. MURÈ

(b) the covariance function is Matérn anisotropic geometric or tensorized with variance parameter σ2 > 0,
smoothness parameter ν and vector of correlation lengths (resp. inverse correlation lengths) θ ∈ (0,+∞)r

(resp. µ ∈ (0,+∞)r);
(c) one of the following conditions is verified:

(i) ν ∈ (0, 1) and n > 1 and the Matérn kernel is tensorized;
(ii) ν ∈ (1, 2) and n > r + 2;

(iii) ν ∈ (2, 3) and n > r(r + 1)/2 + 2r + 3.

Theorem 4.2. In a Simple Kriging model with the characteristics described above, there exists a hyperplane H
of Rn such that, for any y ∈ Rn \ H, there exists a unique Gibbs compromise πG(θ|y) (resp. πG(µ|y)) between
the reference posterior conditionals πi(θi|y,θ−i) (resp. πi(µi|y,µ−i)). It is the unique stationary distribution of
the Markov kernel Py : (0,+∞)r × B ((0,+∞)r)→ [0, 1] defined by

Py(θ(0),dθ) =
1

r

r∑
i=1

πi(θi|y,θ(0)
−i )dθi δθ(0)

−i
(dθ−i)

(resp. Py(µ(0),dµ) =
1

r

r∑
i=1

πi(µi|y,µ(0)
−i )dµi δµ(0)

−i
(dµ−i)).

The Markov kernel Py is uniformly ergodic: limn→∞ supθ(0)∈(0,+∞)r ‖Pny (θ(0), ·) − πG(·|y)‖TV = 0 (resp.

limn→∞ supµ(0)∈(0,+∞)r ‖Pny (µ(0), ·)− πG(·|y)‖TV = 0), where ‖ · ‖TV is the total variation norm.

Remark 4.3. The reference posterior conditionals are invariant by reparametrization, so the Markov kernel
Py does not depend on whether the chosen parametrization uses correlation lengths θ or inverse correlation
lengths µ. Due to Proposition 2.15, the Gibbs compromise does not either. The parametrization using inverse
correlation lengths µ is more convenient for proving this theorem, however.

Notice that in such a Kriging model, the vector of observations y almost surely belongs to Rn \ H, so
this assumption is of no practical consequence. Theorem 4.2 therefore asserts that the Gibbs compromise
between the incompatible conditionals πi(µi|y,µ−i) exists, is unique, and can be sampled from using Potentially
Incompatible Gibbs Sampling (PIGS). In the following, it is called “Gibbs reference posterior distribution”.

4.4. Using the Gibbs reference posterior distribution

Let x0 be a point in the domain D that does not belong to the design set. Denote by Σθ,0,· the correlation
matrix between Y (x0) and Y , and by Σθ,·,0 its transpose the correlation matrix between Y and Y (x0).

Theorem 4.1.2. (case 4) of Santner et al. [31] provides this useful result for prediction:

Proposition 4.4. Conditionally to Y = y and assuming θ is known, the random variable Z0 defined below
follows the Student t-distribution with n degrees of freedom.

Z0 :=

√
n

y>Σ−1
θ y

Y (x0)−Σθ,0,·Σ
−1
θ y√

1−Σθ,0,·Σ
−1
θ Σθ,·,0

.

Remark 4.5. If n exceeds 30, it is usually accepted that the Student t-distribution with n degrees of freedom
can be approximated by the standard Normal distribution. As this threshold should be exceeded in practical
cases, we would recommend performing all computations as though the Student t-distribution were Normal.

This proposition implicitly gives the distribution of y0 := Y (x0) conditionally to Y = y and θ. For later
reference, denote it by L1(y0|y,θ). In practice, when θ is unknown, the distribution of y0 = Y (x0) conditionally
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to Y = y can be obtained once θ has been sampled from the Gibbs reference posterior distribution:

P (y0|y) :=

∫
L1(y0|y,θ)πG(θ|y)dθ.

Its cdf can be approximated by averaging the cdfs of the Student t-distributions (or their Normal
approximations) corresponding to every point in the sample.

5. Comparisons between the MLE and MAP estimators

To illustrate the inferential performance of the Gibbs reference posterior distribution, let us introduce the
Maximum A Posteriori estimator (MAP). It takes the value θ̂MAP of θ where the density with respect to the
Lebesgue measure of the Gibbs reference posterior distribution is largest. We contrast it with the Maximum
Likelihood Estimator (MLE) θ̂MLE which does the same with the likelihood function.

5.1. Methodology

In this section, we compare the MLE and MAP estimators for accuracy and robustness.
Our test cases are three-dimensional Gaussian processes with Matérn anisotropic geometric correlation kernels

with smoothness 5/2. Their mean is the null function, which only leaves us with the matter of estimating their
correlation length for each dimension.

We use uniform designs: our observation points are randomly generated according to the uniform distribution
on a cube with side length 1.

In order to measure the performance of our estimators, we define a suitable distance between two vectors of
correlation lengths. Then the error of an estimator is defined as its distance to the “true” vector of correlation
lengths.

Let g be the function such that for any t in (−1, 1), g(t) = argtanh(t) and g(−1) = g(1) = 0. We use the
convention that, for any matrix M with elements in [0, 1], g(M) is the matrix resulting from applying g to
every element of M .

Definition 5.1. For a given design set, the distance between two vectors of correlation lengths θ1 and θ2 is
‖g(Σθ1)− g(Σθ2)‖, where ‖ · ‖ denotes the Frobenius norm.

This distance involves applying the Fisher transformation [17] (that is, the inverse hyperbolic tangent
function) to every (non-unitary) correlation coefficient in both associated correlation matrices. This is a variance-
stabilizing transformation. For any random variables U and V following the normal distribution with mean 0
and variance 1, let ρ denote the correlation coefficient between U and V (−1 < ρ < 1). If (Ui, Vi) (1 6 i 6 N)

are independent copies of (U, V ), then ρ̂ =
∑N
i=1 UiVi/n is a random variable and argtanh(ρ̂) follows the normal

distribution with mean argtanh(ρ) and variance 1/(N − 3). So the variance of argtanh(ρ̂) does not depend on ρ,
whereas the variance of ρ̂ does and goes to zero for |ρ| → 1. Involving the Fisher transformation in the definition
of the distance between two vectors of correlation lengths is therefore a way to assert that vectors of correlation
lengths can be far apart even if they both lead to highly correlated observations.

This allows us to make sure errors made when estimating near-1 correlation coefficients are no less taken into
account than errors made when estimating near-0 correlation coefficients.

Let us choose a “true” vector of correlation lengths (and also a variance parameter, but this parameter has
no effect on either the MLE or the MAP). Then we need to:

(1) Sample n points randomly according to the uniform distribution on the unit cube (in the following,
n = 30).

(2) Generate the observations of the Gaussian process at the sampled points according to the selected “true”
variance and correlation lengths.
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Table 1. RMSE (where the error is measured in terms of the distance in Def. 5.1) of the MLE
and MAP estimators for several “true” vectors of correlation lengths. The last column displays
in percents the decrease of the RMSE of the MAP estimator with respect to the MLE.

Corr. lengths MLE MAP –(%)

0.4 – 0.8 – 0.2 3.49 2.97 15
0.5 – 0.5 – 0.5 4.00 3.46 13
0.7 – 1.3 – 0.4 4.02 3.64 9
0.8 – 0.3 – 0.6 3.75 3.26 13
0.8 – 1.0 – 0.9 4.65 4.18 10

(3) Sample the vector of correlation lengths according to the Gibbs reference posterior distribution πG(θ|y)
through PIGS.

(4) Compute the MLE and the MAP of the vector of correlation lengths and their errors.
(5) Repeat steps 1 to 4 m− 1 times (in the following, m = 500).

This method allows us to derive an approximate distribution of the errors of both estimators when both
the realization of the Gaussian process and the design set vary. Thus, we get to test the robustness of both
estimators versus the variability of both the Gaussian process and the choice of design set.

5.2. Results

This subsection provides results obtained on three-dimensional Gaussian processes with null mean function
and Matérn anisotropic geometric correlation kernels with smoothness 5/2. The results are divided by “true”
vectors of correlation lengths. In each case, we give in Table 1 the empirical Root Mean Square Errors (RMSEs)
of both MLE and MAP estimators as functions of varying instances of the Gaussian process and uniform design
sets on the unit cube.

Most of the “true” vectors of correlation lengths featured in Table 1 were selected in a way to showcase the
behavior of both estimators in strongly anisotropic cases, but one (0.5− 0.5− 0.5) also showcases their behavior
if the true kernel is actually isotropic. And the final one (0.8− 1− 0.9) is used to illustrate the performance in
the case of a strongly correlated Gaussian process: this case is fundamentally different from all others, because
the Matérn anisotropic geometric family of correlation kernels is designed in such a way that the correlation
length with greatest influence is the lowest. Informally speaking, it is enough for one correlation length to be
near zero to make the whole process very uncorrelated, even should all other correlation lengths be very high.

In all studied cases, the MAP estimator was more robust than the MLE estimator: its RMSE was between
9% and 15% lower, as showcased in Table 1.

To get a better sense of the distribution of the error when the design set and the realization of the Gaussian
process vary, we give in Figure 1 violin plots of the errors in the two most extreme case: very low correlation
(0.4 – 0.8 – 0.2) and very high correlation (0.8 – 1.0 – 0.9).

6. Comparison of the MLE and MAP plug-in distributions and
the full posterior predictive distribution

6.1. Methodology

We use the same test cases as before. In this section, our goal is to assess the accuracy of prediction
intervals associated with both estimators and with the full posterior distribution (FPD). We consider 95%
intervals: the lower bound is the 2.5% quantile and the upper bound the 97.5% quantile of plug-in distribu-
tions P̂MLE(y0|y) = L1(y0|y, θ̂MLE), P̂MAP(y0|y) = L1(y0|y, θ̂MAP) and P (y0|y) =

∫
L1(y0|y,θ) πG(θ|y) dθ.

For the sake of comprehensiveness, we also consider predictive intervals associated with the “true” predictive
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Figure 1. Violin plots of the error of the MLE and MAP estimators with respect to a design
set following the uniform distribution and a Gaussian process with correlation lengths 0.4 – 0.8
– 0.2 (left) and 0.8 – 1.0 – 0.9 (right).

distribution L(y0 | y, σ2,θ), which is the predictive distribution we would use if we knew the correct values of
the parameters σ2 and θ.

Let us choose a “true” vector of correlation lengths θ (and also a variance parameter σ2, but this parameter
has no effect on predictive accuracy). Then we do the following:

(1) Sample n observation points randomly according to the uniform distribution on the unit cube (in the
following, n = 30).

(2) Generate the observations of the Gaussian process at the sampled points according to the selected “true”
variance and correlation lengths.

(3) Sample the vector of correlation lengths according to the Gibbs reference posterior distribution πG(θ|y)
through PIGS.

(4) Compute the MLE and the MAP of the vector of correlation lengths.
(5) Sample n0 test points randomly according to the uniform distribution on the unit cube (in the following,

n0 = 100).
(6) At each point, determine the 95% prediction intervals derived from L(y0 | y, σ2,θ) (σ2 and θ being the

“true” parameters), P̂MLE(y0 | y), P̂MAP(y0 | y) and P (y0 | y).
(7) Generate the values of the Gaussian process at the newly sampled points (naturally, do this conditionally

to the previously generated observations).
(8) Count the number of points within the prediction intervals derived from each of the four distributions.

Divide the counts by n0: this yields four coverages corresponding to each type of predictive intervals. Also
compute the mean length of every type of prediction interval.

(9) Repeat steps 1 to 8 m− 1 times (in the following, m = 500).

6.2. Results

There is no reason for individual coverages of 95% predictive intervals given by the predictive distribution to
be equal to 95%. Recall that any coverage is given for a unique realization of the Gaussian process, and that
the values of this process at different points are correlated. If the predictive interval at some point fails to cover
the true value at this point, it is likely that predictive intervals at neighboring points will also fail to cover the
true values at those points, even though the nominal value is 95% everywhere. Conversely, if it actually covers
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Table 2. Average with respect to randomly sampled design sets and realizations of the
Gaussian process (with variance parameter 1 and smoothness parameter 5/2) of the cover-
age of 95% Prediction Intervals across the sample space. “True” stands for the prediction based
on the knowledge of the true variance parameter and the true vector of correlation lengths.

Corr. lengths True MLE MAP FPD

0.4 – 0.8 – 0.2 0.95 0.88 0.91 0.95
0.5 – 0.5 – 0.5 0.95 0.89 0.90 0.94
0.7 – 1.3 – 0.4 0.95 0.90 0.92 0.95
0.8 – 0.3 – 0.6 0.95 0.89 0.91 0.95
0.8 – 1.0 – 0.9 0.95 0.90 0.92 0.94

Table 3. Average with respect to randomly sampled design sets and realizations of the
Gaussian process (with variance parameter 1 and smoothness parameter 5/2) of the mean
length of 95% Prediction Intervals across the sample space. The numbers in parentheses repre-
sent in percents the increase when using the MLE/MAP/FPD instead of the “true” vector of
correlation lengths and variance parameter.

Corr. lengths True MLE MAP FPD

0.4 – 0.8 – 0.2 2.23 2.05 (−8) 2.13 (−4) 2.59 (+16)
0.5 – 0.5 – 0.5 1.69 1.55 (−8) 1.58 (−6) 1.84 (+9)
0.7 – 1.3 – 0.4 1.09 1.02 (−6) 1.07 (−2) 1.21 (+11)
0.8 – 0.3 – 0.6 1.63 1.51 (−7) 1.56 (−4) 1.82 (+12)
0.8 – 1.0 – 0.9 0.71 0.66 (−7) 0.69 (−3) 0.76 (+8)

the true value, then prediction intervals at neighboring points are more than 95% likely to cover their true
values.

In short, prediction intervals give information that is only valid if understood to refer to what can be guessed
on the sole basis of the observations made at the design points, which is why coverages for individual realizations
of the Gaussian process are not necessarily 95% even if the predictive distribution is perfectly accurate (i.e. based
on the true values of σ2 and θ).

However, if the predictive distribution is perfectly accurate, then the average of the coverages is the nominal
value: 95%. It is thus interesting to compute the average of the coverages for all distributions, whether they
are plug-in distributions based on the MLE or MAP estimator, or the predictive distribution based on the full
posterior distribution (hereafter noted FPD). In the above described methodology, the average was taken over
the realizations of the Gaussian process with the chosen true parameters and over all design sets with n design
points. The results below are obtained in this way.

The results given in Table 2 show that using the FPD to derive the predictive distribution is the best possible
choice from a frequentist point of view as the nominal value is nearly matched by the average coverage. Predictive
intervals derived from the MAP estimator do not perform as well, and predictive intervals derived from the
MLE perform even worse.

Let us now focus on the average (with respect to the uniform design sets and realizations of the Gaussian
process) of the mean (over the test set for a given realization of the Gaussian process and a given uniform design
set) length of prediction intervals. The results are given in Table 3, where the figures between parentheses give
the increase or decrease (in percents) of the average mean length when compared to the average mean length
of prediction intervals obtained using the true values of the parameters.

Predictive intervals derived from the FPD are on average the largest, but not much larger than predictive
intervals derived using the true parameters. In the tests we conducted, they seemed on average to be larger by
about one fifth at worst. Predictive intervals derived from the MLE and MAP estimators are on average shorter
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Figure 2. Violin plots of the coverage (left) and mean length (right) of Prediction Intervals
with respect to a design set following the uniform distribution and a Gaussian process with
correlation lengths 0.4 – 0.8 – 0.2 (top) and 0.8 – 1.0 – 0.9 (bottom).

than those derived from the true parameters. This can be interpreted as an under-estimation of the uncertainty
of the prediction when fixing the vector of correlation lengths to the most likely value given the observations,
and this can explain the low observed coverage in Table 2.

In Figure 2, we give violin plots of coverage and mean length of Prediction Intervals in the two most extreme
cases: correlation lengths 0.4 – 0.8 – 0.2 (very low correlation) and 0.8 – 1.0 – 0.9 (very high correlation).
The results are similar and illustrate the fact that the FPD gives larger intervals in order to reach the derived
coverage value.
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Table 4. Coverage of 95% prediction intervals when emulating the Ackley function on the
unit hypercube using a Gaussian process with null mean function and a Matérn anisotropic
geometric covariance kernel with smoothness 5/2, unknown variance parameter and unknown
vector of correlation lengths. The design sets contain 100 points.

Design set type MLE MAP FPD

Unoptimized LHS 0.89 0.92 0.93
Optimized LHS 0.74 0.76 0.80
Random design 0.87 0.88 0.91

Table 5. Mean length of 95% prediction intervals when emulating the Ackley function on the
unit hypercube using a Gaussian process with null mean function and a Matérn anisotropic
geometric covariance kernel with smoothness 5/2, unknown variance parameter and unknown
vector of correlation lengths. The design sets contain 100 points.

Design set type MLE MAP FPD

Unoptimized LHS 0.31 0.33 0.35
Optimized LHS 0.24 0.24 0.28
Random design 0.28 0.29 0.32

6.3. A higher-dimensional case

In this subsection, we emulate using Simple Kriging the 10-dimensional Ackley function:

A(x) = 20 + exp(1)− 20 exp

−0.2

√√√√ 1

10

10∑
i=1

x2
i

− exp

(
1

10

10∑
i=1

cos(2πxi)

)
. (6.1)

The goal in this section is to emulate the Ackley function on the unit hypercube [0, 1]10 using design sets with
100 observation points. Although the impact of the design set type is not the focus of this study, we present
the results with a randomly chosen design according to the Uniform distribution on the domain [0, 1]10, a
design obtained through LHS, and a design obtained through LHS and subsequently optimized to maximize the
minimum distance between two points. The Simple Kriging model uses the null function as mean function and
the Matérn anisotropic geometric covariance kernel family with smoothness parameter 5/2. The Gibbs reference
posterior distribution is accessed through a sample of 1000 points. The conditional densities are sampled using
the Metropolis algorithm with normal instrumental density with standard deviation 0.4 and a 100-step burn-in
period.

To evaluate the performance of prediction intervals, we follow steps 3, 4, 5, 6 and 8 of the method presented
in this section (step 7 is skipped as the “values of the Gaussian process” are naturally the values of the Ackley
function) with n0 = 1000. The results are presented in Tables 4 and 5.

As is shown in Table 4, prediction intervals derived using the Full Posterior Distribution perform better than
those derived from the MAP, which themselves perform better than those derived from the MLE. This order
of performance is the same regardless of the type of design set, although the optimized design set leads to
much worse performances on average for prediction intervals than unoptimized designs. The latter fact is not
surprising since space-filling designs ensure than no two points can be very close to each other, which makes it
harder to determine the correlation lengths.

As expected, prediction intervals derived from the FPD are on average longer than those derived from the
MAP and a fortiori the MLE. Notice that prediction intervals are on average shorter with the optimized design
set, which explains the poorer performances in terms of coverage.
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7. Conclusion and perspectives

We provided theoretical foundation to the claim that the stationary distribution of the Markov chain under-
lying PIGS with random scanning order is the optimal compromise between the potentially incompatible
conditional distributions.

This theory is mainly derived from intuitive conceptions of what a compromise should be. In places where
such conceptions were inconclusive, we relied on concrete examples to precisely determine what was acceptable
and what was not in a compromise and used it to complete the definition. One strength of this theory is that it
can be applied to continuous as well as discrete probability distributions, whereas previous studies focused on
the discrete, or even finite, case.

A question that remains open outside the finite-state case is how compatibility of conditional distributions
is to be checked in practice. Although compromises are useful, not needing them is better.

Further investigation is needed to fully understand the properties of the optimal compromise. Nevertheless,
its invariance by reparametrization and its respect of pairwise independence show that it preserves important
features of the conditional distributions.

The theory of optimal compromise suggests a framework for deriving a new objective posterior distribution
based on the conditionals yielded by the reference prior theory on Simple Kriging parameters. Applying this
framework to Matérn anisotropic kernels, we showed prediction to have good frequentist properties.

Future work should investigate whether this posterior distribution formally corresponds to some joint prior
distribution. And if it does, how the joint prior distribution could be accessed, and how it relates to the
conditional prior distributions.

Regarding the specific Kriging application presented in this paper, the next step is to extend the framework to
Universal Kriging, where instead of being known, the mean function is only assumed to be a linear combination
of known functions f1, ..., fp. The linear coefficients β1, ..., βp are then considered parameters of the model. This
extension is of practical relevance, because the mean function can rarely be considered known. It can probably
be done in the same way Berger et al. [6] extended the reference prior from the Simple Kriging to the Universal
Kriging framework: they used the flat improper prior as joint prior on β1, ..., βp conditional to σ2 and θ and
used it to integrate β1, ..., βp out of the likelihood function, and then proceeded to derive the reference prior on
σ2 and θ with respect to the integrated likelihood.

A further extension would involve deriving an objective prior on the smoothness parameter ν. In this endeavor,
one should take into account the relation between correlation length θ and smoothness ν. Unfortunately, asymp-
totic theory is not of much help in this regard, as Anderes [2] shows that provided the spatial domain D is of
dimension at least 5, then all parameters of the Matérn anisotropic geometric kernel are microergodic (Zhang
[35] shows this to be untrue for spatial domains of dimension 1, 2 or 3, but the non-microergodic parameters are
σ2 and θ, not ν). This means that the Gaussian measures on D corresponding to Gaussian processes with two
different smoothness parameters are orthogonal, which suggests that there exists a consistent estimator (the
MLE possibly). Stein [32] (Sect. 6.6) considers the Fisher information on θ and ν, and gives examples (with a
one-dimensional sample space D) showing that the Fisher information on these parameters depends a lot on the
design set. Fisher information relative to the smoothness parameter ν increases when design points are chosen
to be close to one another (relative to the “true” correlation length θ), whereas Fisher information relative to
correlation length θ is maximized for design points that are farther apart. This, according to him, is coherent
with the fact that θ has greater influence on the low frequency behavior of the Matérn kernel while ν has
greater influence on its high frequency behavior. This also suggests to us that the smoothness parameter ν, like
the variance parameter σ2, can only be meaningfully estimated if the vector of correlation lengths θ is known.
Otherwise, the estimator could hardly tell which design points are close to each other, which intuitively seems
a prerequisite to evaluating the smoothness of the process. If we wish to apply the reference prior algorithm to
the case where ν is unknown, we should thus probably derive the reference prior on ν conditional to θ.
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Appendix A. Proofs of Section 2

Proof of Proposition 2.8. Let P (0) and P (1) be two compromises between (πi)i∈[[1,r]] and let t ∈ (0, 1). Let us

check that (1− t)P (0) + tP (1) verifies conditions (1) and (2) from Definition 2.6.

For every i ∈ [[1, r]], πi
(
(1− t)P (0) + tP (1)

)
−i = (1− t)πiP (0)

−i + tπiP
(1)
−i .

Let A be a measurable set such that
(
(1− t)P (0) + tP (1)

)
(A) = 0. Then P (0)(A) = 0 and P (1)(A) = 0.

Because both P (0) and P (1)) are compromises, for every i ∈ [[1, r]], πiP
(0)
−i (A) = 0 and πiP

(1)
−i (A) = 0. So(

πi
(
(1− t)P (0) + tP (1)

)
−i

)
(A) = 0 and condition (1) is verified.

Now, for every i ∈ [[1, r]],

1

r

r∑
j=1

(
πj

(
(1− t)P (0) + tP (1)

)
−j

)
−i

=
1− t
r

r∑
j=1

(
πjP

(0)
−j

)
−i

+
t

r

r∑
j=1

(
πjP

(1)
−j

)
−i

= (1− t)P (0)
−i + tP

(1)
−i =

(
(1− t)P (0) + tP (1)

)
−i
. (A.1)

So condition (2) is also verified.

Proof of Proposition 2.10. Let PG be a Gibbs compromise between the sequence of Markov kernels (πi)i∈[[1,r]].
Then, for any measurable set A such that PG(A) = 0,

PG(A) =
1

r

r∑
i=1

πi(PG)−i(A) = 0. (A.2)

So for every integer i ∈ [[1, r]], πi(PG)−i(A) = 0. This fulfills the first condition of Definition 2.6.
Its second condition is also fulfilled because for every integer i ∈ [[1, r]],

(PG)−i =

1

r

r∑
j=1

πj(PG)−j


−i

=
1

r

r∑
j=1

(πj(PG)−j)−i . (A.3)

Proof of Proposition 2.11. Define the probability distribution P on A as follows:

P =
1

r

r∑
i=1

πim6=i. (A.4)

Then for every i ∈ [[1, r]] the ith (r − 1)-marginal distribution P−i of P is given by

P−i =
1

r

r∑
j=1

(πjm6=j)−i = m 6=i, (A.5)

where the last equality is due to (m6=i)i∈[[1,r]] being compatible with (πi)i∈[[1,r]]. Plugging this into equation
(A.4), we obtain that P is a Gibbs compromise. Equation (A.5) then yields the result.
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Proof of Theorem 2.13. If PG is the unique Gibbs compromise between the sequence of Markov kernels
(πi)i∈[[1,r]], then Proposition 2.11 asserts that ((PG)−i)i∈[[1,r]] is the only compatible sequence of (r − 1)-

dimensional distributions. So any compromise has the same sequence of (r − 1)-marginal distributions. Let
P be such a compromise.

For every i ∈ [[1, r]], πi(PG)−i = πiP−i is absolutely continuous with respect to P . So, the average PG is also
absolutely continuous with respect to P .

Let λ be a positive measure on A such that P is absolutely continuous with respect to λ. Because PG and P
share the same sequence of (r − 1)-marginal distributions, for λ-almost any ω ∈ Ω,

d(πiP−i)

dλ
(ω) =

d(πi(PG)−i)

dλ
(ω). (A.6)

Moreover, equation (A.4) implies that for λ-almost any ω ∈ Ω, dPG
dλ (ω) is the arithmetic average between the

d(πi(PG)−i)
dλ (ω) (i ∈ [[1, r]]), so it minimizes the mean squared error. Together with equation (A.6), this implies

that for λ-almost any ω ∈ Ω,

r∑
i=1

[
d(πi(PG)−i)

dλ
(ω)− dPG

dλ
(ω)

]2

6
r∑
i=1

[
d(πiP−i)

dλ
(ω)− dP

dλ
(ω)

]2

. (A.7)

Consequently, Eλ(PG) 6 Eλ(P ). Moreover, if P 6= PG, then there exists S ∈ A such that λ(S) > 0 and for
every ω ∈ S,

∀i ∈ [[1, r]]
d(πiP−i)

dλ
(ω) =

d(πi(PG)−i)

dλ
(ω) and

dP

dλ
(ω) 6= d(PG)

dλ
(ω). (A.8)

So for every ω ∈ S, equation (A.7) is a strict inequality and thus Eλ(PG) < Eλ(P ). PG is therefore the unique
optimal compromise with respect to λ.

Proof of Proposition 2.15. For every i ∈ [[1, r]], for every S̃i ∈ Ãi,

P̃G

(
×

i∈[[1,r]]
S̃i

)
= PG

(
f−1

(
×

i∈[[1,r]]
S̃i

))
= PG

(
×

i∈[[1,r]]
f−1
i (S̃i)

)
=

1

r

r∑
i=1

∫
×
j 6=i

f−1
j (S̃j)

πi(f
−1
i (S̃i)|ω−i)d {(PG)−i} (ω−i)

=
1

r

r∑
i=1

∫
×
j 6=i

f−1
j (S̃j)

π̃i(S̃i|f−i(ω−i))d {(PG)−i} (ω−i)

=
1

r

r∑
i=1

∫
×
j 6=i

S̃j
π̃i(S̃i|ω̃−i)d {(PG)−i ∗ f−i} (ω̃−i). (A.9)

Now, for every i ∈ [[1, r]], for every T̃i ∈ Ãi,

(PG)−i ∗ f−i
(
×
j 6=i

T̃j

)
= (PG)−i

(
×
j 6=i

f−1
j (T̃j)

)
= PG

(
×
j<i

f−1
j (T̃j)× f−1

i (Ω̃i)× ×
k>i

f−1
k (T̃k)

)
= PG ∗ f

(
×
j<i

T̃j × Ω̃i ×
k>i

T̃k

)
= (PG ∗ f)−i

(
×
j 6=i

T̃j

)
. (A.10)
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So (PG)−i ∗ f−i = (PG ∗ f)−i = (P̃G)−i. Then, returning to equation (A.9),

P̃G

(
×

i∈[[1,r]]
S̃i

)
=

1

r

r∑
i=1

∫
×
j 6=i

S̃j
π̃i(S̃i|ω̃−i)d

{
(P̃G)−i

}
(ω̃−i). (A.11)

Finally, we obtain

P̃G =
1

r

r∑
i=1

π̃i(P̃G)−i. (A.12)

P̃G is therefore a Gibbs compromise between the sequence of Markov kernels (π̃i)i∈[[1,r]]. We now prove its

uniqueness. For every i ∈ [[1, r]], fi is bijective and f−1
i is measurable. So for any Gibbs compromise Q̃G between

the sequence of Markov kernels (π̃i)i∈[[1,r]], Q̃G ∗ f−1 is a Gibbs compromise between the sequence of Markov
kernels (πi)i∈[[1,r]]. Given PG is the unique Gibbs compromise between the Markov kernels in this sequence,

Q̃G ∗ f−1 = PG, so Q̃G = Q̃G ∗ f−1 ∗ f = PG ∗ f = P̃G.

Appendix B. Proofs of Section 4

The following holds where there is no mention of the contrary. When applied to a vector, ‖ · ‖ denotes the
Euclidean norm and when applied to a matrix, it denotes the Frobenius norm. The choice of norm does not
matter much because in finite-dimensional vector spaces, all norms are equivalent.

B.1 Differentiating the Matérn correlation kernel

Lemma B.1. The partial derivative with respect to µi of the Matérn tensorized kernel of variance σ2,
smoothness ν and inverse correlation length vector µ is:

∂

∂µi

(
σ2Ktens

r,ν (xµ)
)

= −σ
2(2
√
ν)2

Γ(ν)2ν−1
|xi|2µi

(
2
√
ν|xi|µi

)ν−1Kν−1

(
2
√
ν|xi|µi

)∏
j 6=i

K1,ν (|xj |µj) . (B.1)

This can be rewritten as:

∂

∂µi

(
σ2Ktens

r,ν (xµ)
)

=


σ2 2ν

ν−1 |xi|
2µiK1,ν−1 (|xi|µi)

∏
j 6=iK1,ν (|xj |µj) if ν > 1

σ24|xi|2µiK0 (2|xi|µi)
∏
j 6=iK1,ν (|xj |µj) if ν = 1

σ22νν Γ(1−ν)
Γ(ν) |xi|

2νµ2ν−1
i K1,1−ν (|xi|µi)

∏
j 6=iK1,ν (|xj |µj) if ν < 1.

(B.2)

Proof. The first assertion is a simple matter of differentiating equation (4.9). In the following calculation, the
fourth line is given by formula 9.6.28 (p. 376) in Abramowitz and Stegun [1].
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∂

∂µi

(
σ2Ktens

r,ν (xµ)
)

= σ2 ∂

∂µi
(K1,ν (xiµi))

∏
j 6=i

K1,ν (|xj |µj) = σ2xi
(
K ′1,ν (xiµi)

)∏
j 6=i

K1,ν (|xj |µj)

= σ2xi

(
2
√
ν

Γ(ν)2ν−1

d

dy

∣∣∣∣
y=2
√
νxiµi

[yνKν(y)]

)∏
j 6=i

K1,ν (|xj |µj)

= σ2xi

(
2
√
ν

Γ(ν)2ν−1
[−y · yν−1Kν−1(y)]y=2

√
νxiµi

)∏
j 6=i

K1,ν (|xj |µj) .

(B.3)

From there, equation (B.1) follows immediately. Rewriting it in the form given in (B.2) only requires us to
recall Γ(ν) = (ν − 1)Γ(ν − 1) (case ν > 1), Γ(1) = 1 (case ν = 1) and Kν−1 = K1−ν (case ν < 1).

Lemma B.2. The partial derivative with respect to µi of the Matérn geometric anisotropic kernel of variance
σ2, smoothness ν and inverse correlation length vector µ is:

∂

∂µi

(
σ2Kr,ν (xµ)

)
=
σ2(2
√
ν)2

Γ(ν)2ν−1
|xi|2µi

(
2
√
ν ‖xµ‖

)ν−1Kν−1

(
2
√
ν ‖xµ‖

)
. (B.4)

This can be rewritten as:

∂

∂µi

(
σ2Kr,ν (xµ)

)
=


σ2 2ν

ν−1 |xi|
2µiK1,ν−1 (‖xµ‖) if ν > 1

σ24|xi|2µiK0 (2 ‖xµ‖) if ν = 1

σ22νν Γ(1−ν)
Γ(ν)

1
µi

(
|xi|µi
‖xµ‖1−ν

)2

K1,1−ν (‖xµ‖) if ν < 1.

(B.5)

Proof. The first assertion is a simple matter of differentiating equation (4.7). In the following calculation, the
fourth line is given by formula 9.6.28 (page 376) in Abramowitz and Stegun [1].

∂

∂µi

(
σ2Kr,ν (xµ)

)
= σ2 ∂

∂µi
(K1,ν (‖xµ‖)) = σ2x2

iµi ‖xµ‖
−1
K ′1,ν (‖xµ‖)

= σ2x2
iµi ‖xµ‖

−1

(
2
√
ν

Γ(ν)2ν−1

d

dy

∣∣∣∣
y=2
√
ν‖xµ‖

[yνKν(y)]

)

= σ2x2
iµi ‖xµ‖

−1

(
2
√
ν

Γ(ν)2ν−1
[−y · yν−1Kν−1(y)]y=2

√
ν‖xµ‖

)
.

(B.6)

From there, equation (B.4) follows immediately. Rewriting it in the form given in (B.5) only requires us to
recall Γ(ν) = (ν − 1)Γ(ν − 1) (case ν > 1), Γ(1) = 1 (case ν = 1) and Kν−1 = K1−ν (case ν < 1).

B.2 Accounting for low correlation: ‖µ‖ → ∞
In this subsection, we consider a fixed design set of n coordinate-distinct points x(k) (k ∈ [[1, n]]) in Rr.

Lemma B.3. For any Matérn anisotropic geometric or tensorized correlation kernel with smoothness ν > 0,
for all b < 2 min(1, ν)− 1 and c > 1 (and if ν 6= 1, for all b 6 2 min(1, ν)− 1),

(a) ∀µ ∈ (R+)r, ‖ ∂
∂µi

Σµ‖ 6Mi,1 µ
−c
i .

(b) ∀µ ∈ (R+)r, ‖ ∂
∂µi

Σµ‖ 6Mi,2 µ
b
i .
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Proof. This can be gathered from Lemma B.1 or B.2 after recalling that 1) a Matérn kernel is a bounded
function, 2) ∀ν > 0, as z → +∞, Kν(z) ∼

√
π exp(−z)/

√
2z ([1] 9.7.2) and 3) as z → 0, K0(z) ∼ − log(z) ([1]

9.6.8).

Let us define

fi(µi | µ−i) :=
√

[I(µ)]ii ; (B.7)

πi(µi | µ−i) := fi(µi | µ−i)/
∫ ∞

0

fi(µi = t | µ−i)dt. (B.8)

Proposition B.4. For any Matérn anisotropic geometric or tensorized correlation kernel with smoothness
ν > 0, for all µi ∈ (0,+∞), π(µi|µ−i), seen as a function of µ, is well defined and continuous over {µ ∈
[0,+∞)r : µi 6= 0, µ−i 6= 0r−1}.

Proof. For any given µ̃ ∈ [0,+∞)r such that µ̃i 6= 0 and µ̃−i 6= 0r−1, we prove that π(µi|µ−i), seen as a function
of µ, is well defined and continuous at µ = µ̃.

For a start, notice that if µ is confined to a sufficiently small neighborhood of µ̃, then ‖Σ−1
µ ‖ remains bounded.

Therefore, Lemma B.3 implies that
∫∞

0
fi(µi = t | µ−i)dt is finite and, thanks to the dominated convergence

theorem, that it is continuous at µ−i = µ̃−i.

Definition B.5. An anisotropic geometric or tensorized correlation kernel is said to be “well-behaved” if its
one-dimensional version is, for any set of parameters, a positive decreasing function on [0,+∞) that vanishes
in the neighborhood of +∞.

Lemma B.6. Provided a coordinate-distinct design set is used, a well-behaved anisotropic geometric or
tensorized correlation kernel parametrized by µ has the following properties:

(a) for any fixed µ−i ∈ [0,+∞)
r−1

, it is a decreasing function of µi;
(b) as ‖µ‖ → ∞, ‖Σµ − In‖ → 0.

Lemma B.7. For any well-behaved correlation kernel, as ‖µ‖ → ∞, Tr
[
∂
∂µi

ΣµΣ−1
µ

]
= o

(∥∥∥ ∂
∂µi

Σµ

∥∥∥).

Proof. This result is due to the fact that all ∂
∂µi

Σµ’s diagonal coefficients are null and Σµ goes to the identity

matrix as ‖µ‖ → ∞.

Let us now define

hi(µi | µ−i) :=

√√√√Tr

[(
∂

∂µi
Σµ

)2
]

=

∥∥∥∥ ∂

∂µi
Σµ

∥∥∥∥ . (B.9)

Lemma B.8. For any well-behaved correlation kernel, as ‖µ‖ → ∞, fi(µi | µ−i) ∼ hi(µi | µ−i).

Proof. Because Σµ goes to the identity matrix, this is a direct consequence of Lemma B.7.

Corollary B.9. For any well-behaved correlation kernel, there exist S > 0, and 0 < a < b such that, whenever
‖µ‖ > S,

a hi(µi | µ−i) 6 fi(µi | µ−i) 6 b hi(µi | µ−i). (B.10)

In the following, Σµ−i is the correlation matrix that would be obtained if µi were replaced by 0. Moreover,

if M is a matrix, M (kl) is its element in the kth row and lth column.
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Lemma B.10. If a well-behaved correlation kernel is used, there exist real constants S > 0 and c > 0 such that,
for all µi ∈ (0,+∞) and whenever ‖µ−i‖ > S,

πi(µi|µ−i) > c
‖ ∂
∂µi

Σµ‖∑
k 6=l Σ

(kl)
µ−i

. (B.11)

Proof. If a well-behaved correlation kernel is used, then for any for any ε > 0, Corollary B.9 implies that∫ +∞

0

fi(µi = t|µ−i)dt 6 b

∫ +∞

0

hi(µi = t|µ−i)dt 6 −b
∑
k 6=l

∫ +∞

0

∂

∂µi
Σ(kl)
µ dt. (B.12)

The last inequality holds because the Frobenius norm of any matrix is smaller than or equal to the sum of
the absolute values of its elements and the correlation kernel is a decreasing function of µi. Now, for all k 6= l,
when µi → +∞, Σ(kl)

µ → 0 and when µi = 0, Σ(kl)
µ = Σ(kl)

µ−i
. From this, we gather that

∫ +∞

0

fi(µi = t|µ−i)dt 6 b
∑
k 6=l

Σ(kl)
µ−i

. (B.13)

From this, we deduce that

πi(µi|µ−i) =
fi(µi|µ−i)∫ +∞

0
fi(µi = t|µ−i)dt

>
a

b

‖ ∂
∂µi

Σµ‖∑
k 6=l Σ

(kl)
µ−i

. (B.14)

This lemma has the following immediate consequence:

Proposition B.11. If a well-behaved tensorized kernel is used, there exists S > 0 and for every i ∈ [[1, r]], there
exists a function Mi : (0,+∞)→ (0,+∞) such that for all ‖µ−i‖ > S, πi(µi|µ−i) >Mi(µi).

Proof. If a tensorized correlation kernel is used, for every pair of integers (k, l) ∈ [[1, r]]2 such that k 6= l, define

the function M
(kl)
i : (0,+∞)→ (0,+∞) ; t 7→

∣∣∣ d
dtΣ

(kl)
µi=t,µ−i=0r−1

∣∣∣.
∥∥∥∥ ∂

∂µi
Σµ

∥∥∥∥ >
1

n

∑
k 6=l

∣∣∣∣ ∂∂µiΣ(kl)
µ

∣∣∣∣ =
1

n

∑
k 6=l

M
(kl)
i (µi)Σ

(kl)
µ−i

>
1

n
min
k 6=l

M
(kl)
i (µi)

∑
k 6=l

Σ(kl)
µ−i

. (B.15)

This fact, joined with Lemma B.10, yields the result.

Proposition B.12. Assume a well-behaved anisotropic geometric correlation kernel is used. If the correspond-
ing one-dimensional kernel K has the properties (P1) and (P2), then for every i ∈ [[1, r]], there exist positive
functions si and mi defined on (0,+∞) such that, for all ‖µ−i‖ > si(µi), πi(µi|µ−i) > mi(µi).

(P1): There exist S1 > 0 and M1 > 0 such that, for all t > S1, |K ′(t)| >M1tK(t).
(P2): For any a > 0, there exist S2(a) > 0 and M2(a) > 0 such that, whenever t > S2(a), K(t + a) >

M2(a)K(t).

Proof. From (P1), we gather that for all a > 0 and t > S1, |K ′(
√
t2 + a2)| > M1

√
t2 + a2K(

√
t2 + a2). Now,

because the correlation kernel is well-behaved, K is a decreasing function. As
√
t2 + a2 6 t+ a, K(

√
t2 + a2) >

K(t+ a).
Plugging this into the previous inequality, we get |K ′(

√
t2 + a2)| >M1

√
t2 + a2K(t+ a).
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If t > max(S1, S2(a)), we can then use (P2) to obtain

|K ′(
√
t2 + a2)| >M1M2(a)

√
t2 + a2K(t). (B.16)

Independently from this, we have the following algebraic fact:∥∥∥∥ ∂

∂µi
Σµ

∥∥∥∥ >
1

n

∑
k 6=l

∣∣∣∣ ∂∂µiΣ(kl)
µ

∣∣∣∣ . (B.17)

Because we use a well-behaved anisotropic geometric kernel, defining the function M
(kl)
i : (0,+∞)→ (0,+∞);

t 7→
(
x

(k)
j − x

(l)
j

)2

, we can write:

∣∣∣∣ ∂∂µiΣ(kl)
µ

∣∣∣∣ = − ∂

∂µi
Σ(kl)
µ =

(
x

(k)
i − x

(l)
i

)2

µi
K ′
(
‖(x(k) − x(l))µ‖

)
‖(x(k) − x(l))µ‖

. (B.18)

Setting akl := |x(k)
i − x

(l)
i |µi and tkl := ‖(x(k)

−i − x
(l)
−i)µ−i‖ (and thus, naturally,

√
t2kl + a2

kl = ‖(x(k) −
x(l))µ‖), and provided ‖µ−i‖ is sufficiently large to make all tkls meet the conditions necessary to apply (P1)
and (P2) (that depend in the case of (P2) on the akls), equation (B.16) yields the existence of some number

m
(kl)
i (µi) > 0 such that

K ′
(
‖(x(k) − x(l))µ‖

)
‖(x(k) − x(l))µ‖

> m
(kl)
i (µi)K(‖(x(k)

−i − x
(l)
−i)µ−i‖) = m

(kl)
i (µi)Σ

(kl)
µ−i

. (B.19)

Finally, setting mi(µi) := µi mink 6=l

[(
x

(k)
i − x

(l)
i

)2

m
(kl)
i (µi)

]
, we get

∥∥∥∥ ∂

∂µi
Σµ

∥∥∥∥ >
mi(µi)

n

∑
k 6=l

Σ(kl)
µ−i

. (B.20)

Then, applying Lemma B.10 yields the result.

Proposition B.13. Matérn one-dimensional kernels with smoothness parameter ν > 1 have the properties (P1)
and (P2) of Proposition B.12.

Proof. (P1) is given by Lemma B.2, after noticing that, denoting by Kν the Matérn one-dimensional kernel of
smoothness ν > 1, provided t is sufficiently large, Kν(t) 6 Kν−1(t).

This inequality ensues from the fact that ∀ν > 0, as t→ +∞, Kν(t) ∼
√
π exp(−t)/

√
2t ([1] 9.7.2) and thus

Kν(t) ∼ 2/Γ(ν)(
√
νt)ν

√
π/(4
√
νt) exp(−2

√
νt). Moreover, this last equivalence relation also implies (P2).

Proposition B.14. For Matérn anisotropic geometric kernels with smoothness ν > 1 and Matérn tensorized
correlation kernels with smoothness ν > 0,

for any δ > 0, i ∈ [[1, r]] and µi ∈ (0,+∞), there exists bi,δ(µi) > 0 such that, if ‖µ−i‖ > δ, then πi(µi|µ−i) >
bi,δ(µi).

Proof. Matérn correlation kernels with such smoothness parameters make Proposition B.11 or B.12 applicable.
Therefore, there exist si(µi) > 0 and mi(µi) > 0 such that, if ‖µ−i‖ > si(µi), πi(µi|µ−i) > mi(µi). Besides,
we know from Proposition B.4 that πi(µi|µ−i), seen as a function of µ−i, is continuous and positive over the
compact set {µ−i : δ 6 ‖µ−i‖ 6 si(µi)}. Thus its minimum m̃i,δ(µi) on this set is positive and we obtain the
result by setting bi,δ(µi) := min(mi(µi), m̃i,δ(µi)).
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Proposition B.15. For Matérn anisotropic geometric correlation kernels with smoothness ν > 1 and for Matérn
tensorized correlation kernels with smoothness ν > 0, for any y ∈ Rn \ {0}n, any δ > 0 and any µi ∈ (0,+∞),
there exists bi,δ,y(µi) > 0 such that, if ‖µ−i‖ > δ, then πi(µi|y,µ−i) > bi,δ,y(µi).

Proof. Set δ > 0 and y ∈ Rn \ {0}n. There exist mδ > 0 and Mδ > 0 s.t. ∀µ ∈ (0,+∞)r, ‖µ−i‖ > δ ⇒ mδ 6
‖Σ−1

µ ‖ 6 Mδ, so there also exist mδ,y > 0 and Mδ,y > 0 s.t. mδ,y 6 L(y|µ) 6 Mδ,y. This, combined with
Proposition B.14, yields the result.

B.3 Accounting for high correlation: ‖µ‖ → 0

This part of the proof relies on the combination of some spectral study of the Matérn kernels and on the
study of the matrices that are part of the series expansion of the correlation matrix Σµ when ‖µ‖ → 0 for three
types of Matérn kernels: isotropic, tensorized and anisotropic geometric.

Lemma B.16. There exists a covariance kernel K̃r,ν such that for any design set x(1), ...,x(n), for all µ ∈ (R+)r

and ξ = (ξ1, ..., ξn) ∈ Rn,

n∑
j,k=1

ξjξkKr,ν

((
x(j) − x(k)

)
µ
)
> 2−

r
2−νMr(ν)fr,ν(‖µ‖∞)

n∑
j,k=1

ξjξkK̃r,ν

(
µ

‖µ‖∞

(
x(j) − x(k)

))
(B.21)

where fr,ν(t) = (2
√
ν)−r−2νt−r if t > (2

√
ν)
−1

and fr,ν(t) = t2ν if t 6 (2
√
ν)
−1

.

Proof. For all x,y ∈ Rr, Kr,ν(x− y) =
∫
Rr K̂r,ν(ω)ei〈ω|x−y〉dω.

n∑
j,k=1

ξjξkKr,ν

((
x(j) − x(k)

)
µ
)

=

∫
Rr
K̂r,ν(ω)

∣∣∣∣∣∣
n∑
j=1

ξje
i〈ω|x(j)µ 〉

∣∣∣∣∣∣
2

dω

= Mr(ν)‖µ‖−r∞
∫
Rr

(
4ν + ‖µ‖−2

∞ ‖s‖2
)− r2−ν ∣∣∣∣∣∣

n∑
j=1

ξje
i〈 µ
‖µ‖∞

s|x(j)〉

∣∣∣∣∣∣
2

ds

> 2−
r
2−νMr(ν)fr,ν(‖µ‖∞)

∫
Rr\B(0,1)

‖s‖−r−2ν

∣∣∣∣∣∣
n∑
j=1

ξje
i〈s| µ

‖µ‖∞
x(j) 〉

∣∣∣∣∣∣
2

ds.

(B.22)

Now, let K̃r,ν be the function with Fourier transform
̂̃
Kr,ν(ω) = 1{‖ω‖>1}‖ω‖−r−2ν . According to Bochner’s

theorem, K̃r,ν is a correlation kernel, which leads to the conclusion.

Lemma B.17. For every design set with coordinate-distinct points x(1), ...,x(n), there exists a constant cx > 0
such that for all µ ∈ (R+)r,

∀ξ = (ξ1, ..., ξn) ∈ Rn,
n∑

j,k=1

ξjξkKr,ν

((
x(j) − x(k)

)
µ
)
> cx‖ξ‖22−

r
2−νMr(ν)fr,ν(‖µ‖∞) (B.23)

where fr,ν(t) = (2
√
ν)−r−2νt−r if t > (2

√
ν)
−1

and fr,ν(t) = t2ν if t 6 (2
√
ν)
−1

.

Proof. For every design set x(1), ...,x(n), the set of all design sets that can be written µ
‖µ‖∞x

(1), ..., µ
‖µ‖∞x

(n)

(µ ∈ (R+)r) is compact. If the design set x(1), ...,x(n) has coordinate-distinct points, then every design set in
the aforementioned compact set has no overlapping points. Thus the conclusion follows from Lemma B.16.
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Proposition B.18. With Matérn anisotropic geometric or tensorized kernels, for every design set with
coordinate-distinct points x(1), ...,x(n), as ‖µ‖ → 0,

∥∥Σ−1
µ

∥∥ = O(‖µ‖−2ν).

Proof. For Matérn anisotropic geometric kernels, we need only apply Lemma B.17. In the case of tensorized
Matérn kernels, analogous results to Lemma B.16 and then Lemma B.17 may be used.

Abramowitz and Stegun [1] give the following results on the modified Bessel function of second kind (usually
noted Kν and which we note Kν in order to avoid confusion with the Matérn correlation kernel). If Iν is
the modified Bessel function of first kind and ψ is the function defined in (6.3.2) by ψ : N \ {0} → R ; k 7→
−γ +

∑k−1
i=1 i

−1 :

Iν(z) =

(
1

2
z

)ν ∞∑
k=0

(
1
4z

2
)k

k!Γ(ν + k + 1)
(9.6.10 in [1])

Kν(z) =
1

2
π
I−ν(z)− Iν(z)

sin(νz)
if ν /∈ Z. (9.6.2 in [1])

This gives us the series expansion of K1,ν(z) (ν ∈ [0,+∞) \ N) when z → 0:

K1,ν(z) =
π

Γ(ν) sin(νπ)

 ∑
06k<ν

νkz2k

k!Γ(−ν + k + 1)
− ννz2ν

Γ(ν + 1)
+ o

(
z2ν
)

=
π

Γ(ν) sin(νπ)Γ(−ν + 1)

 ∑
06k<ν

Γ(−ν + 1)

k!Γ(−ν + k + 1)
νkz2k − Γ(−ν + 1)

Γ(ν + 1)
ννz2ν + o

(
z2ν
)

=
∑

06k<ν

Γ(−ν + 1)

k!Γ(−ν + k + 1)
νkz2k +

Γ(−ν)

Γ(ν)
ννz2ν + o

(
z2ν
)

=
∑

06k<ν

(−1)k
Γ(ν − k)

k!Γ(ν)
νkz2k +

Γ(−ν)

Γ(ν)
ννz2ν + o

(
z2ν
)
.

(B.24)

In the remainder of this subsection, we consider a fixed design set with n coordinate-distinct points x(k)

(k ∈ [[1, n]]) in Rr. Moreover, all Matérn kernels we consider are assumed to have non-integer smoothness
parameter ν.

Let us now define, for every nonnegative integer k < ν the matrix Dk whose (i, j) element is

Dk(i, j) := (−1)k
Γ(ν − k)

k!Γ(ν)
νk
∥∥∥x(j) − x(k)

∥∥∥2k

. (B.25)

Let us also define the matrix Dν whose (i, j) element is

Dν(i, j) :=
Γ(−ν)

Γ(ν)
νν
∥∥∥x(j) − x(k)

∥∥∥2ν

if ν ∈ [0,+∞) \ N. (B.26)

If the correlation kernel is Matérn isotropic, Σµ has the following series expansion if ν is not an integer when
µ→ 0+:

Σµ =
∑

06k<ν

µ2kDk + µ2νDν +Rµ. (B.27)
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In this expansion, µ−2ν‖Rµ‖ → 0.

For any integer i ∈ [[1, r]] and any nonnegative integer k < ν define the matrix Dk
i whose (m, p) element is

Dk
i (m, p) := (−1)k

Γ(ν − k)

k!Γ(ν)
νk
∣∣∣x(m)
i − x(p)

i

∣∣∣2k (B.28)

and also the matrix Dν
i whose (m, p) element is

Dν
i (m, p) :=

Γ(−ν)

Γ(ν)
νν
∣∣∣x(m)
i − x(p)

i

∣∣∣2ν . (B.29)

For every i ∈ [[1, r]], if the points in the design set differed only through their ith coordinate, the series
expansion of the correlation matrix (using a Matérn anisotropic geometric or tensorized kernel) when ‖µ‖ → 0
(and thus when µi → 0) would be

Σµi =
∑

06k<ν

µ2k
i D

k
i + µ2ν

i D
ν
i +Rµi (B.30)

where µ−2ν
i ‖Rµi‖ → 0 as µi → 0.

Note the following identities:

D0
i = 11>; (B.31)

D1
i = −Γ(ν − 1)

Γ(ν)
ν
{

1
(
X◦2i

)>
+
(
X◦2i

)
1> − 2XiX

>
i

}
; (B.32)

D2
i =

Γ(ν − 2)

Γ(ν)
ν2
{

1
(
X◦4i

)>
+
(
X◦4i

)
1> − 4Xi

(
X◦3i

)> − 4
(
X◦3i

)
X>i + 6

(
X◦2i

) (
X◦2i

)>}
. (B.33)

If a tensorized correlation kernel is used, the correlation matrix Σtens
µ may be written

Σtens
µ =

◦∏
i∈[[1,r]]

Σµi (B.34)

where the subscript ◦ above the symbol
∏

serves to denote the Hadamard product of matrices.
In case a Matérn anisotropic geometric kernel is used, then define for any nonnegative interger k < ν the

matrix Dk(µ) whose (m, p) element is

Dk(µ)(m, p) := (−1)k
Γ(ν − k)

k!Γ(ν)
νkdm,p(µ)2k (B.35)

where dm,p(µ) =
∥∥(x(m) − x(p)

)
µ
∥∥.

And, similarly, we may define the matrix Dν(µ) whose (m, p) element is

Dν(µ)(m, p) :=
Γ(−ν)

Γ(ν)
ννdm,p(µ)2ν if ν ∈ [0,+∞) \ N. (B.36)
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We thus have (if ν ∈ [0,+∞) \ N)

Σgeom
µ =

∑
06k<ν

Dk(µ) +Dν(µ) +Rgeom
µ (B.37)

where ‖µ‖−2ν ‖Rgeom
µ ‖ → 0 as ‖µ‖ → 0.

Similar identities to those of equation (B.31) can be derived to make equation (B.37) more explicit for small
values of ν.

D0(µ) = 11>; (B.38)

D1(µ) = − ν

ν − 1

{
r∑
i=1

µ2
i

(
1
(
X◦2i

)>
+
(
X◦2i

)
1> − 2XiX

>
i

)}
; (B.39)

D2(µ) =
ν2

(ν − 1)(ν − 2)

 ∑
i,j∈[[1,r]]

µ2
iµ

2
j

(
1
(
X◦2i ◦X

◦2
j

)>
+
(
X◦2i ◦X

◦2
j

)
1>

− 2Xi

(
Xi ◦X◦2j

)> − 2
(
Xi ◦X◦2j

)
X>i − 2Xj

(
Xj ◦X◦2i

)> − 2
(
Xj ◦X◦2i

)
X>j

+
(
X◦2i

) (
X◦2j

)>
+
(
X◦2j

) (
X◦2i

)>
+ 4 (Xi ◦Xj) (Xi ◦Xj)

>
)}

. (B.40)

Fortunately, for small values of ν, Σtens
µ can also be simply written.

For ν ∈ (0, 1) : Σtens
µ = 11> +

r∑
i=1

µ2ν
i D

ν
i +Rtens

µ . (B.41)

For ν ∈ (1, 2) : Σtens
µ = 11> +D1(µ) +

r∑
i=1

µ2ν
i D

ν
i +Rtens

µ . (B.42)

For ν ∈ (2, 3) : Σtens
µ = 11> +D1(µ) +

ν − 2

ν − 1
D2(µ) +

r∑
i=1

µ4
iD

2
i +

r∑
i=1

µ2ν
i D

ν
i +Rtens

µ . (B.43)

In the three expressions above, ‖µ‖−2ν ‖Rtens
µ ‖ → 0 as ‖µ‖ → 0.

Define kν as the orthogonal complement in Rn of the vector space spanned by:

(1) if ν ∈ (0, 1): 1;
(2) if ν ∈ (1, 2): 1 and Xi (i ∈ [[1, r]]);
(3) if ν ∈ (2, 3): 1 and Xi (i ∈ [[1, r]]) and Xi ◦Xj (i, j ∈ [[1, r]]).

Clearly, for any ν ∈ (0, 1) ∪ (1, 2) ∪ (2, 3), for any vector v ∈ kν ,

v>Σgeom
µ v = v>Dν(µ)v + v>Rgeom

µ v, (B.44)

v>Σtens
µ v =

r∑
i=1

µ2ν
i vD

ν
i v + v>Rtens

µ v. (B.45)

Since when µ→ 0 ‖Dν(µ)‖ = O(‖µ‖2ν), ‖Rgeom
µ ‖ = o(‖µ‖2ν) and ‖Rtens

µ ‖ = o(‖µ‖2ν), for any µ ∈ (0,+∞)r

such that ‖µ‖ is small enough, there exists c > 0 such that for any v ∈ kν ,
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max(v>Σgeom
µ v,v>Σtens

µ v) 6 c‖µ‖2νv>v. (B.46)

Proposition B.19. For a Matérn anisotropic geometric or tensorized correlation kernel with smoothness
parameter ν ∈ (0, 1) ∪ (1, 2) ∪ (2, 3), for any vector y ∈ Rn not orthogonal to kν , when ‖µ‖ → 0, ‖µ‖−2ν =
O
(
y>Σ−1

µ y
)
.

Proof. Let dν be the dimension of kν and let Oν be an orthogonal n × n matrix whose first n − dν columns
form an orthonormal basis of k⊥ν and whose last dν columns form an orthonormal basis of kν .

Then Σµ = OνO
>
ν ΣµOνO

>
ν . Consider the following decomposition of O>ν ΣµOν :

O>ν ΣµOν =

(
Aµ Bµ
B>µ Cµ

)
(B.47)

where the blocks Aµ, Bµ and Cµ are respectively (n − dν) × (n − dµ), (n − dµ) × dµ and dµ × dµ matrices.
Note that Aµ and Cµ represent the restriction of the scalar product defined by Σµ to k⊥ν and kν respectively.
When ‖µ‖ is small enough, defining c > 0 as in equation (B.46), ‖Cµ‖ 6 c‖µ‖2ν .

O>ν Σ−1
µ Oν =

(
In−dν 0

−BµC−1
µ Idν

)((
A−BµC−1

µ B
>
µ

)−1

0

0 C−1
µ

)(
In−dν −C−1

µ B
>
µ

0 Idν

)
. (B.48)

For any vector y ∈ Rn, there exist y1 ∈ Rn−dν and y2 ∈ Rdν such that

O>ν y =

(
y1

y2

)
, (B.49)

y>Σ−1
µ y =

(
y1 −C

−1
µ Bµy2

y2

)>((
A−BµC−1

µ B
>
µ

)−1

0

0 C−1
µ

)(
y1 −C

−1
µ Bµy2

y2

)
. (B.50)

Given Σ−1
µ is positive definite, the diagonal block

(
A−BµC−1

µ B
>
µ

)−1

is positive definite too. This implies

y>Σ−1
µ y > y>2 C

−1
µ y2. When ‖µ‖ is small enough, y>2 C

−1
µ y2 > c−1‖µ‖−2ν‖y2‖2.

If y is not orthogonal to kν , then ‖y2‖ 6= 0 and thus ‖µ‖−2ν = O(y>Σ−1
µ y).

Proposition B.20. Assume ν ∈ (1, 2) ∪ (2, 3). For every y ∈ Rn that is not orthogonal to the vector subspace
kν , L(y|µ)fi(µi|µ−i) is a bounded function of µ.

Proof. Let v1(µ) > v2(µ) > ... > vn(µ) be the ordered eigenvalues of Σµ. We can now rewrite L(y|µ) as

L(y|µ)2 ∝
n∏
k=1

[
vk(µ)−1

(
y>Σ−1

µ y
)−1
]
. (B.51)

Proposition B.19 asserts that for any y ∈ Rn that is not orthogonal to kν ,
(
y>Σ−1

µ y
)−1

= O(‖µ‖2ν) for

‖µ‖ → 0. Besides, Proposition B.18 asserts that
∥∥Σ−1

µ

∥∥ = O(‖µ‖−2ν), so
(
y>Σ−1

µ y
)−1

= O
(∥∥Σ−1

µ

∥∥−1
)

. This

implies that for every integer i ∈ [[1, r]], vk(µ)−1
(
y>Σ−1

µ y
)−1

= O(1).
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Clearly, lim‖µ‖→0 |1>v1(µ)| = ‖1‖ and lim‖µ‖→0 v1(µ) = n. The latter implies lim‖µ‖→0 v1(µ)−1 = n−1 and

v1(µ)−1
(
y>Σ−1

µ y
)−1

= O
(
‖µ‖2ν

)
. Now, for every µ ∈ (0,+∞)r, we may (thanks to the axiom of choice)

choose a unit eigenvector v1(µ) corresponding to the largest eigenvalue v1(µ) and v2(µ) corresponding to
the second largest eigenvalue v2(µ). Because Σµ is symmetric, v1(µ)>v2(µ) = 0 for all µ ∈ (0,+∞)r, so
lim‖µ‖→0 1>v2(µ) = 0.

v2(µ) = (1>v2(µ))2 + 2ν(ν − 1)−1
r∑
i=1

µ2
i

(
X>i v2(µ)

)2

− 2µ2
i

(
1>v2(µ)

) (
X◦2>i v2(µ)

)
+O

(
‖µ‖4

)
> 2ν(ν − 1)−1

r∑
i=1

µ2
i (X

>
i v2(µ))2 + o

(
‖µ‖2

)
. (B.52)

For all µ ∈ (0,+∞)r, let i(µ) be the smallest integer i ∈ [[1, r]] such that µi = maxrj=1 µj . Now for every
integer i ∈ [[1, r]] let wi(µ) be the unit vector that belongs to the space spanned by v1(µ) and Xi that verifies
v1(µ)>wi(µ) = 0 and X>i wi(µ) > 0.

wi(µ)(µ)Σµwi(µ)(µ) > 2ν(ν − 1)−1r−1‖µ‖2(X>i(µ)wi(µ)(µ))2 + o
(
‖µ‖2

)
. (B.53)

Because lim‖µ‖→0 |1>v1(µ)| = ‖1‖, lim inf‖µ‖→0X
>
i(µ)wi(µ)(µ) > minri=1 lim‖µ‖→0X

>
i wi(µ) > 0, so there

exists a constant c2 > 0 such that when ‖µ‖ is small enough

wi(µ)(µ)Σµwi(µ)(µ) > c2‖µ‖2. (B.54)

Recall v2(µ) = max{ξ>Σµξ|ξ ∈ Sn−1 and ξ>v1(µ)}, so a fortiori v2(µ) > c2‖µ‖2.

This implies v2(µ)−1 = O(‖µ‖−2) and therefore v2(µ)−1
(
y>Σ−1

µ y
)−1

= O(‖µ‖2(ν−1)) .

Finally, L(y|µ) = O (‖µ‖ν)O
(
‖µ‖ν−1

)
= O

(
‖µ‖2ν−1

)
. Given that fi(µi|µ−i) = O(‖µ‖1−2ν), the product

L(y|µ)fi(µi|µ−i) is bounded when ‖µ‖ → 0.

Proposition B.21. Assume ν ∈ (0, 1). For every y ∈ Rn that is not collinear to 1, when ‖µ‖ → 0,
L(y|µ)fi(µi|µ−i) = O(µ−1+ν

i ).

Proof. This proof is similar to the previous one, so we use the same notations. v1(µ)−1 = O(1), so

v1(µ)−1
(
y>Σ−1

µ y
)−1

= O(‖µ‖2ν), which yields that L(y|µ) = O(‖µ‖ν).

This implies that L(y|µ)
∥∥Σ−1

µ

∥∥ = O(‖µ‖−ν) = O(µ−νi ).

By Lemma B.3,
∥∥∥ ∂
∂µi

Σµ

∥∥∥ = O(µ−1+2ν
i ). Putting all this together, L(y|µ)fi(µi|µ−i) = O(µ−1+ν

i ).

Proposition B.22. For Matérn anisotropic geometric or tensorized kernels with smoothness parameter ν ∈
(0, 1)∪ (1, 2)∪ (2, 3), if y ∈ Rn is not orthogonal to kν , then the conditional posterior distribution πi(µi|y,µ−i),
seen as a function of µ, is continuous over {µ ∈ [0,+∞)r : µi 6= 0}.

Moreover,

∀µi > 0, πi(µi|y,µ−i = 0r−1) =
L(y|µi,µ−i = 0r−1)fi(µi|µ−i = 0r−1)∫∞

0
L(y|µi = t,µ−i = 0r−1)fi(µi = t|µ−i = 0r−1)dt

> 0.
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Proof. Given Proposition B.4 and the fact that ∀y ∈ Rn, ∀i ∈ [[1, r]] and ∀µi ∈ (0,+∞), as ‖µ−i‖ → 0,
L(y|µ)fi(µi|µ−i) converges pointwise to L(y|µi,µ−1 = 0r−1)fi(µi|µ−i = 0r−1), we only need to show that

∫ ∞
0

L(y|µi = t,µ−i)fi(µi = t|µ−i)dt −→
‖µ−i‖→0

∫ ∞
0

L(y|µi = t,µ−i = 0r−1)fi(µi = t|µ−i = 0r−1)dt < +∞.

(B.55)
Lemma B.3 implies that there exists Mi > 0 such that

L(y|µ)fi(µi|µ−i) = L(y|µ)
∥∥Σ−1

µ

∥∥∥∥Σ−1
µ

∥∥−1
fi(µi|µ−i)

6 L(y|µ)
∥∥Σ−1

µ

∥∥Miµ
−2
i .

(B.56)

Lemma B.6 then ensures
∥∥Σ−1

µ − In
∥∥→ 0 as µi → +∞, so the right member of the inequality is integrable

in the neighborhood of +∞. Let us now focus on the neighborhood of 0.
If ν > 1, Proposition B.20 asserts that L(y|µ)fi(µi|µ−i) is bounded in the neighborhood of 0.

If ν < 1, Proposition B.21 asserts that L(y|µ)fi(µi|µ−i)µ1−ν
i is bounded in the neighborhood of 0.

Therefore, there exists a function independent of µ−i that is both greater than L(y|µ)fi(µi|µ−i) and
integrable over µi ∈ (0,+∞), so the dominated convergence theorem is applicable.

B.4 Lower bound for conditional reference posterior densities

The following lemma provides the key to proving Theorem 4.2:

Lemma B.23. In a Simple Kriging model with the characteristics described above, there exists a hyperplane H of
Rn such that, for any y ∈ Rn \H and any i ∈ [[1, r]], there exists a measurable function mi,y : (0,+∞)→ (0,+∞)
such that, for all µ−i ∈ (0,+∞)r−1, the conditional reference posterior density verifies:

πi(µi|y,µ−i) > mi,y(µi) > 0. (B.57)

Proof. This proof consists in combining Propositions B.15 and B.22, which respectively deal with large and
small values of ‖µ−i‖.

Proposition B.15 implies that for any y ∈ Rn \ {0}n, for any i ∈ [[1, r]] and any µi ∈ (0,+∞), there exists a
compact neighborhood Ni(µi) of 0r−1 within [0,+∞)r such that

inf{π(µi|y,µ−i) : µ−i ∈ [0,+∞)r−1 \Ni(µi)} > 0. (B.58)

The vector space kν ⊂ Rn has dimension greater or equal to

(a) n− 1 if ν ∈ (0, 1);
(b) n− (r + 1) if ν ∈ (1, 2);
(c) n− (r + 1)(r + 2)/2 if ν ∈ (2, 3).

For all Simple Kriging models tackled by this lemma, the dimension of kν is therefore greater or equal to 1. Its
orthogonal complement k⊥ν is then included within a hyperplaneH of Rn. Assuming y ∈ Rn \H, Proposition B.22
ensures that π(µi|y,µ−i) is a continuous and positive function of µ on {µ ∈ [0,+∞)r : µi 6= 0}. In particular,
this implies that for any µi ∈ (0,+∞) and any compact neighborhood Ni(µi) of 0r−1 within [0,+∞)r,

inf{π(µi|y,µ−i) : µ−i ∈ Ni(µi)} > 0. (B.59)
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Putting this together, if y ∈ Rn \ H, for any i ∈ [[1, r]] and any µi ∈ (0,+∞),

inf{π(µi|y,µ−i) : µ−i ∈ [0,+∞)r−1} > 0. (B.60)

The mapping mi,y : µi 7→ inf{π(µi|y,µ−i) : µ−i ∈ [0,+∞)r−1}, which is measurable on (0,+∞) is therefore
also positive on (0,+∞).

Proof of Theorem 4.2. Lemma B.23 implies that ∀µ(0) ∈ (0,+∞)r,

Py(µ(0),dµ) >
1

r

r∑
i=1

mi,y(µi)dµi δµ(0)
−i

(dµ−i),

and thus ∀µ(0) ∈ (0,+∞)r, ∀n > r,

Pny (µ(0),dµ) >
1

rr

r∏
i=1

mi,y(µi)dµi.

Defining fy(µ) := r−r
∏r
i=1mi,y(µi), fy is a measurable positive function. Therefore, fy is the density with

respect to the Lebesgue measure of a positive measure with mass εy > 0. So ε−1
y fy is a probability density with

respect to the Lebesgue measure and the Markov kernel Py thus satisfies the uniform (n, εy) Doeblin condition:

∀µ(0) ∈ (0,+∞)r Pny (µ(0),dµ) > εy

(
1

εy
fy(µ)

)
dµ. (B.61)

This implies that Py is uniformly ergodic: it has a unique invariant probability distribution πG(·|y) and
limn→∞ supµ(0)∈(0,+∞)r ‖Pny (µ(0), ·)− πG(·|y)‖TV = 0, where ‖ · ‖TV is the total variation norm. By definition,
πG(·|y) is the Gibbs compromise between the incompatible posterior conditionals πi(µi|y,µ−i).
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