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Abstract 

Radiotherapy is an important modality for the treatment of cancer, e.g., X-ray, Cs-137 γ-ray (peak energy: 662 keV). An 
important therapy pathway of radiation is to generate the double strand breaks of DNA to prohibit the proliferation of 
cancer cells. In addition, the excessive amount of reactive oxygen species (ROS) is induced to damage the organelles, 
which can cause cellular apoptosis or necrosis. Gold nanoparticles (GNPs) have been proven potential as a radio‑
sensitizer due to the high biocompatibility, the low cytotoxicity and the high-Z property (Z = 79) of gold. The latter 
property may allow GNPs to induce more secondary electrons for generating ROS in cells as irradiated by high-energy 
photons. In this paper, the radiobiological effects on A431 cells with uptake of 55-nm GNPs were studied to investi‑
gate the GNPs-enhanced production of ROS on these cells as irradiated by Cs-137 γ-ray. The fluorescence-labeling 
image of laser scanning confocal microscopy (LSCM) shows the excessive expression of ROS in these GNPs-uptake 
cells after irradiation. And then, the follow-up disruption of cytoskeletons and dysfunction of mitochondria caused 
by the induced ROS are observed. From the curves of cell survival fraction versus the radiation dose, the radiosen‑
sitization enhancement factor of GNPs is 1.29 at a survival fraction of 30%. This demonstrates that the tumoricidal 
efficacy of Cs-137 radiation can be significantly raised by GNPs. Because of facilitating the production of excessive 
ROS to damage tumor cells, GNPs are proven to be a prospective radiosensitizer for radiotherapy, particularly for the 
treatment of certain radioresistant tumor cells. Through this pathway, the tumoricidal efficacy of radiotherapy can be 
raised.
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Introduction
Radiotherapy utilizing high-energy photon (e.g., X-rays 
and Cs-137 γ-ray) beam or proton beam is a useful 
modality for cancer treatment. Two mechanisms of 
radiotherapy causing the apoptosis or even necrosis of 
tumor cells were extensively studied; the double strand 
break (DSB) of DNA in cells by  ionization, and the 
damage on cellular organelles by the produced reactive 

oxygen species (ROS), e.g., hydroxyl free radicals [1–
4]. Recently, a variety of radiosensitizers to enhance 
the efficacy of radiotherapy has been developed [5–7]. 
In particular, using gold nanoparticles (GNPs) to pro-
duce excessive ROS for raising the tumoricidal efficacy 
of radiation therapy has attracted a lot of attentions 
[8–15]. Since gold is a high Z material (Z = 79) with 
good biocompatibility and low cytotoxicity, GNP is a 
prospective candidate as radiosensitizer [12–16]. Vari-
ous GNPs with different shapes, sizes and coatings 
(surface modifications) were developed to increase 
the cellular uptake and used as radiosensitizer for 
X-rays, Gamma ray of Cs-137 and even proton therapy 
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[17–24]. A few of papers have shown that ultrasmall 
GNPs (e.g., 2–6  nm) can pass through nuclear pore 
into nucleus, whereas larger GNPs (size > 10 nm) only 
stay in cytoplasm [21]. In addition, several previous 
research works demonstrated that bare and spheri-
cal GNPs with an average diameter of 50 to 55 nm are 
more easily internalized by cells with low cytotoxic-
ity [22, 25–27]. Recently, Chithrani et  al. found that 
50-nm GNPs perform the maximum radiosensitization 
enhancement factor (REF) of 1.66 at 10% cell survival 
fraction (SF) for the radiation of X-ray of 105 kVp [22]. 
In contrast, the REFs are 1.48, 1.18, and 1.17 for the 
radiations of X-ray of 220 kVp, Cs-137 γ-ray (662 kVp), 
and X-ray of 6  MVp, respectively; i.e., the higher the 
photon energy, the lower the REF of GNPs [22]. This 
is because that the K-shell binding energy of electrons 
in gold is 80.7  keV. Additionally, Enferadi et  al. used 
ultrasmall GNP-PEG (size: 2.6  nm) as radiosensitizer 
for different radiation sources: X-rays, Gamma ray 
of Cs-137 γ-ray and proton beam. Their results show 
that GNP-PEG provides a significant enhancement on 
all these radiotherapies [20]. As we know, GNPs are 
internalized via endocytosis, and then certain number 
of GNPs are aggregated and enclosed in thousands of 
vehicles within cytoplasm via organelle fusion [22, 27]. 
A few of studies used Monte Carlo simulation to inves-
tigate the mechanism of radiosensitization of GNPs on 
enhancing radiobiological efficacy [28–35]. In princi-
ple, the ionizing radiation can induce ejected electrons 
from GNPs through Auger effect, Compton effect, and 
photoelectric effect [36, 37]. The ejected electrons 
(photoelectrons, Auger electrons) and ionized elec-
trons in water can produce excessive free radicals, par-
ticularly ROS [36]. Consequently, the excessive ROS 
cause the cellular damage, resulting in apoptosis and 
necrosis [38–46]. The relationship between the disrup-
tion of cytoskeleton and the excessive ROS induced in 
GNPs-uptake cells irradiated by a femtosecond laser 
(two-photon effect) has been verified [27]. This is to 
say that the damage on organelles by excessive ROS is 
another pathway to kill tumor cells, except the DSB of 
DNA.

In this paper, we quantitatively study the REF of non-
targeted GNPs of 55-nm size on Cs-137 γ-ray radio-
therapy from the curve of cell SF versus radiation dose 
[20, 22, 47]. We aim to provide more biological evi-
dences to elucidate the mechanism of GNPs-enhanced 
ROS inducing the damage of organelles (mitochondria 
and cytoskeletons) to cause apoptosis or necrosis. Our 
results may pave a way to using GNPs as radiosensi-
tizer to increase the production of ROS for raising the 
tumoricidal efficacy of radiotherapy, which might be 
useful to treat certain radioresistant tumor cells.

Method and Materials
We synthesized GNPs with an average size of 55  nm 
according to the previous synthesis recipe [27]. Addi-
tionally, the concentration of GNPs was measured by 
an inductively coupled plasma atomic emission spec-
troscopy (Agilent 5110) for experimental preparation. 
For our experiments, GNPs colloids of different con-
centrations were prepared. In our study, physics and 
biology experiments were conducted, individually. Two 
systems of Cs-137 γ-ray were used for radiation: MDS: 
Gammacell 40 Exactor (Canada) and Varian Medical 
Systems (UK). In fact, the radiation sources of Cs-137 
are the same for both systems; the configuration of 
the Gammacell 40 Exactor facilitates the experiments 
of samples in tubes, and the configuration of Varian 
Medical Systems is for the experiments of cells on cul-
ture plates. The former was used for the experiments of 
inducing ROS in GNP colloid and the cell viability (clo-
nogenic assay), and the latter was for the experiments 
of the damage of cellular organelles. For physics experi-
ment, GNPs suspension (aqueous solution) was irradi-
ated by Cs-137 (MDS: Gammacell 40 Exactor) for the 
measurement of ROS. An enzyme-linked immunosorb-
ent assay (ELISA) reader (SpectraMax i3x, Molecular 
Devices, USA) was used to measure ROS with a labe-
ling kit of Carboxy-H2DCFDA. In the presence of ROS, 
the DCFH of this kit can be converted to DCF, which is 
highly fluorescent as being excited by a light within the 
region of 488 nm to 495 nm.

For biology experiments, cell line of A431, human epi-
dermoid carcinoma, was used for our experiment [27]. 
These cells were co-cultivated with a medium of 80-ppm 
GNPs for 24 h in advance of our experiments. Figure 1A 
shows the transmission electron microscope (TEM) 
image of cells with GNPs uptake, where the aggregation 
of GNPs enclosed by vesicles in cytoplasm is caused by 
the endocytosis and vesicle fusion [48]. The dark-field 
microscope (100×, ZEISS) image of cells with GNPs 
uptake is shown in Fig.  1C, where the bright spots in 
cytoplasm are due to the scattered light from these vesi-
cles with certain number of GNPs. Figure 1B is the image 
of the controls without GNPs.

For the LSCM image, the nuclei of cells are stained by 
Hoechest 33,342, and the ROS labeling kit is Carboxy-
H2DCFDA. Additionally, the kits for labeling mitochon-
dria and cytoskeletons are MitoCapture™ and Alexa 
Fluor™ 488 Phalloidin, respectively. A laser scanning 
confocal microscopy (LSCM) (ZEISS LSM 780 META) 
is used to acquiring the cellular fluorescence images for 
detecting the labeling ROS or organelles. The excitation 
wavelength of laser and the emission passband of filter 
for exciting and detecting the fluorescence of different 
kits for the images of LSCM are listed in Additional file 1: 
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Table S1. Notice that the colors in the images of LSCM 
are the pseudocolors not the real ones of fluorescence.

Results and Discussion
First, the amounts of ROS produced in GNPs suspen-
sions of different concentrations irradiated by 6  Gy 
Cs-137 were measured by ELISA reader, as plotted in 
Fig. 2. The linear regressions of the intensity of ROS kit 
(y) for dose 0 Gy and 6 Gy in terms of the concentration 
(x) of GNPs are 469x-258.8 and 1076.8x-384.8, respec-
tively. The former can be regarded as the baseline. The 
slope of the line of 6 Gy is significantly larger than that 
of the control (0 Gy). These results demonstrate that the 

amount of produced ROS in aqueous solution of GNPs is 
increased as the concentration increases.

Biological Experiments
First, the cells of A431 were co-cultivated with a medium 
of 80-ppm GNPs for 24  h in advance. Subsequently, 
these GNPs-uptake cells were irradiated by Cs-137 with 
a dose of 6  Gy. Right after the irradiation, the fluores-
cence expression of kit (Carboxy-H2DCFDA) for labeling 
ROS in these cells measured by LSCM is shown in Fig. 3 
(magnitude: ×63). The conditions of LSCM are listed in 
Additional file 1: Table S1. In addition, a low-magnitude 
(×20) image is shown in Additional file  1: Fig. S1. The 

Fig. 1  A TEM image of GNPs-uptake cells. Black dots in the image are GNPs; certain number of GNPs are enclosed in vesicles through the 
endocytosis and fusion. B and C the dark-field microscope images of the controls and GNPs-uptake cells. Bright spots in C are the light scattering of 
these GNPs contained in vesicles. In contrast, there is no light scattering in controls
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results demonstrate that after the irradiation, the amount 
of ROS in these GNPs-uptake cells is significantly higher 
than that in the control group, as shown in Fig. 3B and D. 
Although the lifetime of ROS is short, the induced dam-
ages of ROS (oxidative stress) on the organelles are long 
term.

Furthermore, we investigated the ROS-induced dam-
ages on cellular organelles (e.g., mitochondria and 
cytoskeletons) by using LSCM. In Fig.  4 (magnifica-
tion: ×100), the bright spots in these cell images repre-
sent the fluorescence expression of active mitochondria 
(labeled by MitoCapture™) in cells, 48 h after the irradia-
tion of 6 Gy Cs-137 (Varian Medical Systems). Obviously, 
the numbers of active mitochondria in the controls and 
the GNPs-uptake cells exposed to the radiation are signif-
icantly reduced, in comparison with these cells without 
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Fig. 2  Fluorescence expression of ROS kit in GNPs suspension 
versus various concentrations irradiated by 6 Gy Cs-137. Kit for ROS: 
Carboxy-H2DCFDA. Excitation wavelength: 495 nm, and emission 
wavelength: 529 nm for ELISA. Dash lines: linear regression

Fig. 3  Cell fluorescence images of LSCM for ROS kit irradiated by Cs-137 with a dose of 6 Gy (magnification: × 63). A and B are the images of the 
controls without and with irradiation of Cs-137, respectively. C and D the images of the GNPs-uptake cells without and with irradiation, respectively. 
Kit for ROS: Carboxy-H2DCFDA (red). Excitation laser: 488 nm; emission filter: 509–535 nm. Kit for nuclei: Hoechest 33,342 (blue)
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irradiation. Moreover, the number of active mitochondria 
in these GNPs-uptake cells is obviously lower than that of 
the controls, as irradiated by Cs-137 (Fig. 4B and D). This 
is an evidence of the mitochondrial damage caused by 
the excessive ROS generated from GNPs in these cells, as 
irradiated by Cs-137. In addition, a low-magnitude (×20) 
image is shown in Additional file 1: Fig. S2. This phenom-
enon is due to that the excessive ROS could cause the 
dysregulation of mitochondria, including the damage of 
mitochondrial DNA [49].

We also investigated the ROS-induced damage on 
the cytoskeletons. Figure 5 (magnification: ×20) shows 
the fluorescence expression (green) of the cytoskel-
etons in cells, labeled by Alexa Fluor™ 488 Phalloidin. 
Before irradiation, the integrities of the cytoskeletons 

of the controls and the GNP-uptake cells are almost the 
same. However, the disruptions of cytoskeleton in these 
GNPs-uptake cells are more severe than those in the 
controls, 48 h after the irradiation of 6 Gy Cs-137 (Var-
ian Medical Systems), in comparison with the control. 
This could be a consequence of cytoskeleton disruption 
caused by the excessive ROS, e.g., hydroxyl free radi-
cals. The reason is that ROS can induce the depolym-
erization of actin filaments. As we know, cytoskeleton 
consists of actin filaments, intermediate filaments, and 
microtubules. The major function of cytoskeleton is to 
maintain the cell shape. Hence, once the integrity of 
cytoskeleton is broken by the excessive ROS, the cellu-
lar swelling is induced. A high-magnitude (×100) image 
is shown in Additional file 1: Fig. S3. Additionally, the 

Fig. 4  Cell fluorescence images of LSCM for labeled activate mitochondria, 48 h after irradiation of 6 Gy Cs-137 (magnification: × 100). A and B are 
the images of the controls without and with irradiation of Cs-137, respectively. C and D are the images of the GNPs-uptake cells without and with 
irradiation, respectively. Kit for mitochondria: MitoCapture™ (yellow). Kit for nuclei: Hoechest 33,342 (blue)
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morphology of a bigger nucleus could be due to the 
incomplete mitosis, which is an early indication of 
apoptosis caused by DNA damage.

Furthermore, we used the clonogenic assay  method 
to measure the  viability of A431 cells in  vitro, 8  days 
after Cs-137 (MDS: Gammacell 40 Exactor) irradiation 
of different doses (0, 2, 4, 6 Gy). Using a fitting model of 
exponential decay in terms of a function of a linear and 
quadratic forms of dose, we obtain the estimated curves 
of the SFs of the GNPs-uptake cells and the control. 
Figure 6 shows the curves of SFs for the GNPs-uptake 
cells and the control (without GNPs co-cultivation) 
versus radiation dose. From the two curves, the amplifi-
cation factor (AF) of GNP on cell SF at a specific dose is 
defined as the ratio of SF difference,

The AFs at 2, 4 and 6 Gy are 13.6%, 28.2% and 36.1%, 
respectively. In addition, REF of GNPs on Cs-137 is 
defined as the ratio of the dose without GNPs to the dose 
with GNPs at a specific SF of 30%; REF is 1.292 [20, 22]. 
Not only AFs but also REF quantitatively illustrate that 
55-nm GNPs are potential radiosensitizers for enhancing 
radiation therapy of Cs-137, as listed in Table 1.

In summary, our results show that ROS expressions 
in the 55-nm GNPs suspensions and in the GNPs-
uptake cells irradiated by Cs-137 are significantly 
higher than those in the controls. Furthermore, the cell 
images of LSCM indicate the corresponding disruption 

(1)AF =

SFcontrol − SFwith GNPs

SFcontrol
× 100%

Fig. 5  Cell fluorescence images of LSCM for labeled cytoskeletons, 48 h after the irradiation of Cs-137 with a dose of 6 Gy (magnification: × 20). A 
and B are the images of the controls without and with irradiation of Cs-137, respectively. C and D the images of the GNPs-uptake cells without and 
with irradiation, respectively. Kit for cytoskeletons: Alexa Fluor™ 488 Phalloidin (green). Kit for nuclei: Hoechest 33,342 (blue)
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of cytoskeletons in these GNPs-uptake cells is more 
severe, compared to the control. In addition, the num-
ber of active mitochondria in these cells is dramatically 
reduced. The REF of GNPs on Cs-137 therapy at a SF of 
30% is 1.29. The qualitative biological evidence and the 
quantitative REF prove the feasibility of using GNPs as 
radiosensitizer for Cs-137 radiotherapy.

Conclusion
In this paper, the efficacy of GNPs to increase the pro-
duction of ROS under the irradiation of Cs-137 and the 
radiobiological effects on cells were studied. The cell 
images of LSCM verify the excessive expression of ROS 
produced in these cells with GNP uptake as being irra-
diated by Cs-137 radiation. Consequently, the significant 
disruption or damage of cytoskeletons and mitochon-
dria, caused by the excessive ROS, in these cells were also 
observed by LSCM. Except the directional damage on 
DNA, the excessive ROS could cause the indirect damage 
on cellular organelles, e.g., mitochondria and cytoskel-
etons, to induce the apoptosis. According to the curves of 
cell SF versus radiation dose of Cs-137, the REF of GNPs 
is 1.29, which exhibits a significant enhancement on the 

tumoricidal efficacy of Cs-137 therapy. Our radiobio-
logical results may pave a way to using GNPs as radio-
sensitizer to increase the production of ROS for raising 
tumoricidal efficacy of radiotherapy. This GNP-assisted 
radiotherapy might be particularly useful to treat certain 
radioresistant tumor cells. The In the future, the tech-
nique of surface modification, e.g., PEG, folic acid or 
peptide, on GNPs may be used to enhance the cellular 
uptake of GNPs for multi-functional medical applications 
of image, drug delivery, radiotherapy and so on [20, 22, 
50–52].
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