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On Poisson’s Theorem of Building First Integrals
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We consider Hamiltonian systems with n degrees of freedom. Among the general methods
of integration of Hamiltonian systems, the Poisson method is of particular importance. It
allows one to find the additional (third) first integral of the Hamiltonian system by two known
first integrals of the Hamiltonian system. In this paper, the Poisson method of building first
integrals of Hamiltonian systems by integral manifolds and partial integrals is developed. Also,
the generalization of the Poisson method for general ordinary differential systems is obtained.
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1. Introduction

Consider a canonical Hamiltonian system with n degrees of freedom

dqi
dt

= ∂pi
H(q, p),

dpi
dt

= − ∂qi
H(q, p), i = 1, . . . , n, (1.1)

where q = (q1, . . . , qn) ∈ Rn and p = (p1, . . . , pn) ∈ Rn are the generalized coordinates and
momenta, respectively, t ∈ R, and the Hamiltonian H is a twice continuously differentiable
function on the domain D ⊂ R2n.

Among the general methods of integration of the Hamiltonian system (1.1), the Poisson
method is of particular importance. It makes it possible to find the additional (third) first
integral of the Hamiltonian system (1.1) by two known first integrals of the Hamiltonian sys-
tem (1.1). And thus, in certain cases, to build an integral basis of the Hamiltonian system (1.1).
Due to this property, the Poisson method is included in almost all monographs and textbooks
on analytical mechanics (see, for example, [1, pp. 298–306], [2, p. 216], and [3, pp. 85–86]) and
is formulated as the following statement (the Poisson theorem).
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Theorem 1. Suppose twice continuously differentiable functions g1 and g2 are first integrals
on the domain D of the Hamiltonian system (1.1). Then the Poisson bracket

g12(q, p) = [g1(q, p), g2(q, p)] for all (q, p) ∈ D (1.2)

of the functions g1 and g2 is also a first integral of the Hamiltonian system (1.1).

In his Lectures on Dynamics [1, p. 303], C.G. J. Jacobi referred to Poisson’s theorem as
“one of the most remarkable theorems of the whole of integral calculus. In the particular case
when H = T − U , it is the fundamental theorem of analytical mechanics.”

Of course, Poisson’s theorem does not always supply further first integrals. In some cases
the result is trivial, the Poisson bracket being a constant. In other cases the first integral
obtained is simply a function of the original integrals. If neither of these two possibilities occurs,
however, then the Poisson bracket is a further first integral of the Hamiltonian system (1.1).

Our aim in this paper is to develop the Poisson method for integral manifolds and partial
integrals (or Darboux polynomials) of the Hamiltonian system (1.1). Also, we focus our attention
on generalizations of the Poisson method for general ordinary differential systems.

To avoid ambiguity, we stipulate the following notation and definitions. At the same time,
we will mainly follow the approaches described in the monograph [4].

The Poisson bracket of functions u, v ∈ C1(D) is the function

[u(q, p), v(q, p)] =
n∑

i=1

(
∂qi

u(q, p) ∂pi
v(q, p)− ∂pi

u(q, p) ∂qi
v(q, p)

)
for all (q, p) ∈ D.

The functions u and v are in involution if [u(q, p), v(q, p)] = 0 for all (q, p) ∈ D.

A function g ∈ C1(D) is called a first integral on the domain D of the Hamiltonian sys-
tem (1.1) if Gg(q, p) = 0 for all (q, p) ∈ D, where the linear differential operator

G(q, p) =

n∑
i=1

(
∂pi

H(q, p)∂qi
− ∂qi

H(q, p)∂pi

)
for all (q, p) ∈ D.

Notice that the Hamiltonian H is a first integral on the domain D of system (1.1).
A smooth manifold g(q, p) = 0 is said to be an integral manifold of the Hamiltonian sys-

tem (1.1) if the derivative of the function g ∈ C1(D) by virtue of the Hamiltonian system (1.1)
is identically zero on the manifold g(q, p) = 0, i.e.,

Gg(q, p) = Φ(q, p), Φ(q, p)|g(q,p)=0
= 0 for all (q, p) ∈ D. (1.3)

If the Hamiltonian system (1.1) is polynomial, i.e., the Hamiltonian H is a polynomial
of degree h in the variables q and p, then we will use the notion of partial integral. A func-
tion g ∈ C1(D) is called a partial integral on the domain D of the polynomial Hamiltonian
system (1.1) if the derivative of function g by virtue of system (1.1) equals

Gg(q, p) = g(q, p)M(q, p) for all (q, p) ∈ D,

where the polynomial M in the variables p and q has the degree deg (p,q)M � h− 2. Moreover,

the polynomial M is the cofactor of the partial integral g.
The theory of partial integrals (or the Darboux theory of integrability) was established by

the French mathematician Jean-Gaston Darboux [5] in 1878, which provided a link between the
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existence of first integrals and invariant algebraic curves (partial integrals) for polynomial au-
tonomous differential systems. This theory is related to the Poincaré problem [6], which asks to
find the upper bound of invariant algebraic curves of planar polynomial differential systems. The
Darboux theory of integrability is also involved in the study of Hilbert’s 16th problem (see, for
example, [7]). For the current status of the theory of integrability see the monographs [4, 8–13]
and references therein. Note also that recently the theory of partial integrals has been success-
fully applied to the study of some physical models (see, for instance, [14–19]).

Let I(G) (M(G) and J(G)) denote the set of all first integrals (integral manifolds and
partial integrals) on the domain D of system (1.1). The phrase “the function g defines an
integral manifold of the Hamiltonian system (1.1) such that the identity (1.3) holds” is denoted
by (g,Φ) ∈ M(G). And the phrase “the function g is a partial integral with cofactor M on the
domain D of the Hamiltonian polynomial system (1.1)” is denoted by (g,M) ∈ J(G).

The paper is organized as follows. In Section 2, we provide the Poisson method of building
first integrals by known integral manifolds for the Hamiltonian differential system (1.1). In
Section 3, we work with the notion of partial integral and state our main results about integral
characteristics of the polynomial Hamiltonian differential system (1.1), which are determined
by the Poisson bracket (1.2). Finally, in Section 4, we apply the results of Sections 2 and 3 to
general ordinary differential systems.

2. Integral manifolds

Theorem 2. Suppose (gk,Φk) ∈ M(G) and gk ∈ C 2(D), k = 1, 2. Then the Poisson
bracket [g1, g2] ∈ I(G) if and only if the following identity holds:[

g1(q, p), Φ2(q, p)
]
=
[
g2(q, p), Φ1(q, p)

]
for all (q, p) ∈ D. (2.1)

Proof. Since (gk,Φk) ∈ M(G), k = 1, 2, we have (by the definition of integral manifold)[
gk(q, p),H(q, p)

]
= Φk(q, p) for all (q, p) ∈ D, k = 1, 2,

where the functions Φk are such that Φk(q, p)|gk(q,p)=0
= 0 for all (q, p) ∈ D, k = 1, 2.

Using these identities and the properties of Poisson brackets (Jacobi identity and anticom-
mutativity), we obtain the derivative of the function (1.2) by virtue of system (1.1)

G [g1(q, p), g2(q, p)] =
[
[g1(q, p), g2(q, p)],H(q, p)

]
=

=
[
[g1(q, p), g2(q, p)],H(q, p)

]
+
[
[H(q, p), g1(q, p)], g2(q, p)

]
+
[
[g2(q, p),H(q, p)], g1(q, p)

]
−

−
([

[H(q, p), g1(q, p)], g2(q, p)
]
+
[
[g2(q, p),H(q, p)], g1(q, p)

])
=
[
g1(q, p), [g2(q, p),H(q, p)]

]
−

−
[
g2(q, p), [g1(q, p),H(q, p)]

]
=
[
g1(q, p),Φ2(q, p)

]
−
[
g2(q, p),Φ1(q, p)

]
for all (q, p) ∈ D.

Therefore, the Poisson bracket (1.2) of the integral manifolds g1 and g2 of system (1.1) is
a first integral of the Hamiltonian system (1.1) if and only if the identity (2.1) is true. �

Note that, under the conditions of Theorem 2, we get the following statement. If the
function

Φ(q, p) =
[
g1(q, p),Φ2(q, p)

]
−
[
g2(q, p),Φ1(q, p)

]
for all (q, p) ∈ D
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such that the following identity holds:

Φ(q, p)|[g1(q,p),g2(q,p)]=0
= 0 for all (q, p) ∈ D,

then the Poisson bracket (1.2) is an integral manifold of the Hamiltonian system (1.1).

As a consequence of Theorem 2, we obtain

Corollary 1. Let g1 ∈ I(G), (g2,Φ2) ∈ M(G), gk ∈ C 2(D), k = 1, 2. Then the Poisson
bracket [g1, g2] ∈ I(G) if and only if the functions g1 and Φ2 are in involution, i.e.,[

g1(q, p), Φ2(q, p)
]
= 0 for all (q, p) ∈ D.

If g1, g2 ∈ I(G), then from Theorem 2 (or Corollary 1) we have the statement of the Poisson
theorem (Theorem 1).

3. Partial integrals

In this section, we assume that the Hamiltonian system (1.1) is polynomial.

Proposition 1. Suppose (gk,Mk) ∈ J(G) and gk ∈ C 2(D), k = 1, 2. Then the Poisson

bracket
(
[g1, g2],M1 +M2

)
∈ J(G) if and only if the following identity holds

g2(q, p)
[
g1(q, p),M2(q, p)

]
− g1(q, p)

[
g2(q, p),M1(q, p)

]
= 0 for all (q, p) ∈ D. (3.1)

Proof. Using a similar method as in the proof of Theorem 2, we obtain the following
identity:

G [g1(q, p), g2(q, p)] =
[
g1(q, p), g2(q, p)M2(q, p)

]
−

−
[
g2(q, p), g1(q, p)M1(q, p)

]
for all (q, p) ∈ D.

From the properties of Poisson brackets (Leibniz’s rule and anticommutativity), we have

G [g1(q, p), g2(q, p)] =
(
M1(q, p) +M2(q, p)

)
[g1(q, p), g2(q, p)] +

+ g2(q, p)
[
g1(q, p),M2(q, p)

]
− g1(q, p)

[
g2(q, p),M1(q, p)

]
for all (q, p) ∈ D.

(3.2)

Thus, the Poisson bracket (1.2) is a partial integral with cofactorM1+M2 of the Hamiltonian
system (1.1) if and only if the identity (3.1) holds. �

Taking into account the proof of Proposition 1, we get the following statement.

Theorem 3. Let (gk,Mk) ∈ J(G), gk ∈ C 2(D), k = 1, 2. Then the Poisson bracket (1.2)
is a first integral of the Hamiltonian system (1.1) if and only if this Poisson bracket on the
domain D0 ⊂ {(q, p) : M1(q, p)+M2(q, p) �=0} has the form

[g1(q, p), g2(q, p)] =
g1(q, p)

[
g2(q, p), M1(q, p)

]
− g2(q, p)

[
g1(q, p), M2(q, p)

]
M1(q, p) +M2(q, p)

.

Theorem 4. Suppose the Hamiltonian system (1.1) has partial integrals (gk,Mk) ∈ J(G),

gk ∈ C 2(D), k = 1, 2, such that the sum of cofactors

M1(q, p) +M2(q, p) = 0 for all (q, p) ∈ D, (3.3)
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and the following identity holds:

g2(q, p)
[
g1(q, p),M1(q, p)

]
+ g1(q, p)

[
g2(q, p),M1(q, p)

]
= 0 for all (q, p) ∈ D. (3.4)

Then the Poisson bracket (1.2) is a first integral of the Hamiltonian system (1.1).

Proof. From Proposition 1 it follows that if the identities (3.3) and (3.4) are true, then the
Poisson bracket (1.2) is a first integral of the Hamiltonian system (1.1). �

Proposition 2. Suppose g1 ∈ I(G), (g2,M2) ∈ J(G), and gk ∈ C 2(D), k = 1, 2. Then the

Poisson bracket
(
[g1, g2],M2)∈J(G) if and only if the functions g1 and M2 are in involution[

g1(q, p), M2(q, p)
]
= 0 for all (q, p) ∈ D. (3.5)

Proof. By the identity (3.2) under M1 = 0, it follows that the derivative of the Poisson
bracket (1.2) by virtue of the Hamiltonian system (1.1)

G[g1(q, p), g2(q, p)] = M2(q, p)
[
g1(q, p), g2(q, p)

]
+ g2(q, p)

[
g1(q, p),M2(q, p)

]
. (3.6)

Therefore, the Poisson bracket (1.2) is a partial integral with cofactor M2 of the Hamiltonian
system (1.1) if and only if the identity (3.5) holds. �

Theorem 5. Under the conditions of Proposition 2, we see that the Poisson bracket (1.2)
is a first integral of the Hamiltonian system (1.1) if and only if the following identity holds:

M2(q, p)
[
g1(q, p), g2(q, p)

]
+ g2(q, p)

[
g1(q, p),M2(q, p)

]
= 0 for all (q, p) ∈ D. (3.7)

Proof. The proof follows from the identity (3.6). �

Theorem 6. If the functions g1 ∈ I(G), (g2,M2) ∈ J(G), gk ∈ C 2(D), k=1, 2, such that
the following identity holds:[

g1(q, p), M2(q, p)
]
= αM2(q, p) for all (q, p) ∈ D, α ∈ R, (3.8)

then a first integral of the Hamiltonian system (1.1) is the function

g(q, p) = gα2 (q, p) exp

(
−
[
g1(q, p), g2(q, p)

]
g2(q, p)

)
for all (q, p) ∈ D0, (3.9)

where D0 is a domain from the set {(q, p) ∈ D : g2(q, p) �= 0}.
Proof. Using the identity (3.6) under (3.8) and (g2,M2) ∈ J(G), we obtain the derivative

of the function (3.9) by virtue of the Hamiltonian system (1.1) on the domain D0

Gg(q, p) = αgα−1
2 (q, p) exp

(
−
[
g1(q, p), g2(q, p)

]
g2(q, p)

)
Gg2(q, p)−

− g(q, p) ·
g2(q, p)G

[
g1(q, p), g2(q, p)

]
−
[
g1(q, p), g2(q, p)

]
Gg2(q, p)

g22(q, p)
= 0.

�

For example, the system (1.1) with the Hamiltonian

H(q, p) = q1p1 − q2p2 − aq21 + bq22 for all (q, p) ∈ R4, a, b ∈ R, (3.10)
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has the first integral g1(q, p) =
p1 − aq1

q2
on the domain D ⊂ {(q, p) : q2 �= 0} and the partial

integral g2(q, p) = p2 − bq2 with the cofactor M2(q, p) = 1 for all (q, p) ∈ R4. Using Theorem 6

under α = 0, we can build the additional first integral of the Hamiltonian system (3.10)

g(q, p) = −
[
g1(q, p), g2(q, p)

]
g2(q, p)

= −

[
p1 − aq1

q2
, p2 − bq2

]
p2 − bq2

=
p1 − aq1

q22(p2 − bq2)
for all (q, p) ∈ D0,

where the domain D0 ⊂ {(q, p) : q2(p2 − bq2) �= 0}.

4. Application

In this section, we extend the results obtained in Sections 2 and 3 for the Hamiltonian
system (1.1) on an nth order ordinary differential system

dqi
dt

= Xi(q), i = 1, . . . , n, (4.1)

where the functions Xi are continuously differentiable on the domain Q ⊂ Rn.

Using the Liouville method [20, pp. 429–430], we can build the following augmented Hamil-
tonian system for the differential system (4.1)

dqi
dt

= ∂pi
H(q, p), i = 1, . . . , n,

dpi
dt

= − ∂qi
H(q, p), i = 1, . . . , n, (4.2)

with Hamiltonian H(q, p) =
n∑

i=1
Xi(q)pi for all (q, p) ∈ Q× Rn.

The Hamiltonian system (4.2) is such that the first n equations are the system (4.1) and
the second n equations are the auxiliary system for defining redundant variables p1, . . . , pn.

Moreover, the auxiliary differential system has the form

dpi
dt

= −
n∑

j=1

∂qi
Xj(q)pj , i = 1, . . . , n. (4.3)

The system (4.1) and the augmented Hamiltonian system (4.2) induce, respectively, the
first-order linear differential operators

X(q) =

n∑
i=1

Xi(q)∂qi
for all q ∈ Q

and

G(q, p) =

n∑
i=1

Xi(q)∂qi
−

n∑
i=1

n∑
j=1

∂qi
Xj(q)pj ∂pi

=

= X(q)−
n∑

i=1

n∑
j=1

∂qi
Xj(q)pj ∂pi

for all (q, p) ∈ Q× Rn.
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4.1. Analytical relations between systems (4.1) and (4.2)

Lemma 1 ([21, p. 111]). Suppose g ∈ C2(Q) is a first integral on the domain Q of the
differential system (4.1). Then the functions

pi(q) = ∂qi
g(q) for all q ∈ Q, i = 1, . . . , n, (4.4)

are a partial solution to the auxiliary differential system (4.3).

Lemma 2. A continuously differentiable function

g̃(q, p) = g(q) for all (q, p) ∈ Q×Rn (4.5)

defines an n-cylindrical integral manifold of the augmented Hamiltonian differential system (4.2)
if and only if the scalar function

g(q) for all q ∈ Q (4.6)

defines an integral manifold of the ordinary differential system (4.1).

Proof. Necessity. If the function (4.5) defines an n-cylindrical integral manifold of the
augmented Hamiltonian system (4.2), then (by the definition of integral manifold) we have the
identity

G g̃(q, p) = Φ(q, p) for all (q, p) ∈ Q× Rn.

Now, taking into account G g̃(q, p) = Xg(q), we obtain the identity

Xg(q) = Φ(q, p) for all (q, p) ∈ Q× Rn, (4.7)

where the function Φ(q, p)∣∣g(q)=0
= 0 for all (q, p) ∈ Q× Rn.

Since the left-hand side of identity (4.7) does not depend on the variable p, we see that the
function Φ from identity (4.7) is n-cylindrical with respect to the variable p, i.e.,

Φ: (q, p) → Φ(q) for all (q, p) ∈ Q× Rn.

This implies that the identity (4.7) has the form

Xg(q) = Φ(q) for all q ∈ Q, (4.8)

where the function Φ(q)∣∣g(q)=0
= 0 for all q ∈ Q.

Thus, the function (4.6) defines an integral manifold of the differential system (4.1).

Sufficiency follows from (4.8) and Xg(q) = G g̃(q, p) for all (q, p) ∈ Q× Rn. �
As a consequence of Lemma 2, we obtain the following

Lemma 3 ([21, p. 112; 18]). A continuously differentiable function (4.5) is an n-cy-
lindrical first integral of the augmented Hamiltonian differential system (4.2) if and only if the
function (4.6) is a first integral of the differential system (4.1).

In the case of the polynomial differential system (4.1), from Lemma 2, we get the following

Lemma 4. A continuously differentiable function (4.5) is an n-cylindrical partial integral of
the augmented Hamiltonian differential system (4.2) if and only if the function (4.6) is a partial
integral of the polynomial differential system (4.1).
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4.2. Integral manifolds and partial integrals

Using integrals and integral manifolds of the Hamiltonian system (4.2), we can build
(by Theorems 7–11 and Corollaries 2–5) integral characteristics for system (4.1).

Theorem 7. Suppose g ∈ I(X), (g1,Φ1) ∈ M(G). Then, if the function

g̃1(q) = g1(q, p)∣∣p=∂qg(q)
for all q ∈ Q (4.9)

defines a manifold, then this manifold is an integral manifold of the differential system (4.1).

Proof. Since the function (4.4) is a partial solution (Lemma 1) of system (4.3), we see that
the differential of the function (4.9) by virtue of the system (4.1)

d g̃1(q)
∣∣(4.1) = n∑

i=1

∂qi
g1(q, p)

∣∣p=∂qg(q)
Xi(q)dt+

n∑
i=1

∂pi
g1(q, p)

∣∣p=∂qg(q)

(
−

n∑
j=1

∂qi
Xj(q)pj

)
dt =

=
( n∑
i=1

Xi(q)∂qi
g1(q, p)−

n∑
i=1

n∑
j=1

∂qi
Xj(q)pj ∂pi

g1(q, p)
)∣∣p=∂qg(q)

dt = Gg1(q, p)
∣∣p=∂qg(q)

dt.

Now from (g1,Φ1) ∈ M(G) it follows that

d g̃1(q)
∣∣(4.1) = Φ1(q, p)

∣∣p=∂qg(q)
dt = Φ̃1(q) dt,

where the function Φ̃1(q)∣∣g̃1(q)=0
=
(
Φ1(q, p)∣∣g1(q,p)=0

)∣∣p=∂qg(q)
= 0.

Thus, the function (4.9) is an integral manifold of system (4.1), i.e.,
(
g̃1, Φ̃1

)
∈ M(X). �

Corollary 2. Let g ∈ I(X), (g1,M1) ∈ J(G). Then, if the function (4.9) defines a manifold,
then this manifold is an integral manifold of the polynomial system (4.1) and

Φ̃1(q) = g1(q, p)M1(q, p)∣∣p=∂qg(q)
for all q ∈ Q.

Moreover, if M̃1(q) = M1(q, p)∣∣p=∂qg(q)
for all q ∈ Q is a polynomial in the variable q, then

the function (4.9) is a partial integral of the polynomial system (4.1), i.e.,
(
g̃1, M̃1

)
∈ J(X).

Corollary 3 ([21, p. 112]). If g ∈ I(X) and g1 ∈ I(G), then the function (4.9) is a first
integral of the differential system (4.1).

The analogue of Theorem 2 for the ordinary differential system (4.1) is the following

Theorem 8. Suppose g ∈ I(X) and (gk,Φk) ∈ M(G), gk ∈ C2(D), k = 1, 2, such that the
identity (2.1) holds on the domain D = Q× P, P ⊂ Rn. Then the Poisson bracket

g̃12(q) =
[
g1(q, p), g2(q, p)

]∣∣p=∂qg(q)
for all q ∈ Q (4.10)

is a first integral of the differential system (4.1).

Proof. Let (gk,Φk) ∈ M(G). By Theorem 2, the function (1.2) is a first integral of the
Hamiltonian system (4.2).

Using the first integrals g ∈ I(X) and g12 ∈ I(G), by Corollary 3, we can build the first

integral (4.10) of the ordinary differential system (4.1). �
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Remark 1. Suppose g1 and g2 are infinitely continuously differentiable functions with respect to
the variable q. Then, under the conditions of Theorem 8, we find that the functions

g̃12,k(q) =
[
g1(q, p), g2(q, p)

]∣∣p=∂q g̃12,k−1(q)
for all q ∈ Q, k = 1, 2, . . . , (g̃12,0 = g),

are also first integrals of the ordinary differential systems (4.1).

Remark 2. If the functions g0ξ ∈ I(X), ξ = 1, . . . ,m, are functionally independent first integrals

on the domain Q of system (4.1), then the functions (by Theorem 8)

g̃12,ξ(q) =
[
g1(q, p), g2(q, p)

]∣∣p=∂qg0ξ(q)
for all q ∈ Q, ξ = 1, . . . ,m,

are also first integrals of the ordinary differential systems (4.1).

If one of the integral manifolds is n-cylindrical with respect to the variable p, then from
Theorem 8, Lemma 2, and the definition of Poisson bracket we have

Corollary 4. Suppose g ∈ I(X), the integral manifolds (g1,Φ1)∈M(X), g1 ∈C2(Q), and
(g2,Φ2) ∈ M(G), g2 ∈ C2(D), such that the following identity holds:

n∑
i=1

∂qi
g1(q) ∂pi

Φ2(q, p) = −
n∑

i=1

∂qi
Φ1(q) ∂pi

g2(q, p) for all (q, p) ∈ D = Q×P ⊂ R2n.

Then a first integral of the differential system (4.1) is the function

g̃12(q) =
n∑

i=1

∂qi
g1(q) ∂pi

g2(q, p)
∣∣p=∂qg(q)

for all q ∈ Q.

From the Poisson theorem (Theorem 1), Lemma 3, and Corollary 3, we get the generalized
Poisson theorem [21, p. 112; 18] of building first integrals for the differential system (4.1).

Corollary 5 (the generalized Poisson theorem). If g1 ∈ I(X), g1 ∈ C 2(Q), and
g2 ∈ I(G), g2 ∈ C 2(D), then a first integral of system (4.1) is the Poisson bracket

g∗12(q) =
[
g1(q), g2(q, p)

]∣∣p=∂qg1(q)
for all q ∈ Q.

Using the main statements (Theorems 4, 5, and 6) of Section 3 and Corollary 3, we obtain
the approach (Theorems 9, 10, and 11) to building an additional first integral of the polynomial
differential system (4.1) by the known first integral of the polynomial differential system (4.1)
and the known partial integrals of the Hamiltonian system (4.2).

Theorem 9. If g ∈ I(X) and (gk,Mk) ∈ J(G), gk ∈ C 2(D), k = 1, 2, such that the
identities (3.3) and (3.4) are true, then the Poisson bracket (4.10) is a first integral of the
polynomial differential system (4.1).

Theorem 10. Suppose g1 ∈ I(X) and (g2,M2) ∈ J(G), gk ∈ C 2(D), k = 1, 2, such that
the identity (3.7) holds under g1(q, p) = g1(q) for all (q, p) ∈ D. Then the Poisson bracket (4.10)
is a first integral of the polynomial differential system (4.1).

Theorem 11. Suppose g1 ∈ I(X) and (g2,M2) ∈ J(G), gk ∈ C 2(D), k = 1, 2, such that
the identity (3.8) holds under g1(q, p) = g1(q) for all (q, p) ∈ D. Then the function

g̃12(q) = gα2 (q, p) exp

(
−
[
g1(q), g2(q, p)

]
g2(q, p)

)∣∣p=∂qg1(q)

for all q ∈ Q

is a first integral of the polynomial differential system (4.1).
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degré: 2, Rend. Circ. Mat. Palermo, 1897, vol. 11, pp. 193–239.

[7] Hilbert’s Problems, P. S.Alexandrov (Ed.), Moscow: Nauka, 1969 (Russian).

[8] Kozlov, V.V., Symmetries, Topology and Resonances in Hamiltonian Mechanics, Ergeb. Math. Gren-
zgeb. (3), vol. 31, Berlin: Springer, 1996.

[9] Goriely, A., Integrability and Nonintegrability of Dynamical Systems, Adv. Ser. Nonlinear Dynam.,
vol. 19, River Edge,N.J.: World Sci., 2001.

[10] Borisov, A.V. and Mamaev, I. S., Modern Methods of the Theory of Integrable Systems, Moscow:
R&C Dynamics, ICS, 2003 (Russian).

[11] Llibre, J., Integrability of Polynomial Differential Systems, in Handbook of Differential Equa-
tions: Ordinary differential equations: Vol. 1, A.Cañada, P.Drábek, A. Fonda (Eds.), Amsterdam:
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