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+e traditional A∗ algorithm is time-consuming due to a large number of iteration operations to calculate the evaluation function
and sort the OPEN list. To achieve real-time path-planning performance, a hardware accelerator’s architecture called A∗ ac-
celerator has been designed and implemented in field programmable gate array (FPGA). +e specially designed 8-port cache and
OPEN list array are introduced to tackle the calculation bottleneck. +e system-on-a-chip (SOC) design is implemented in Xilinx
Kintex-7 FPGA to evaluate A∗ accelerator. Experiments show that the hardware accelerator achieves 37–75 times performance
enhancement relative to software implementation. It is suitable for real-time path-planning applications.

1. Introduction

Path planning on grid maps is still an important problem in
many modern domains, such as robotics [1], vessel navi-
gation [2], and commercial computer games [3]. In some
applications, the path-planning algorithm needs to run in
real-time performance. For example, mobile robotics and
real-time strategy (RTS) games operate in a highly dynamic
map where obstacles and roads can change suddenly. In such
cases, the maps cannot be loaded in advance to generate
initial paths. What is more, the paths generally must be
solved in milliseconds due to a large amount of path
planning or replanning requests. +erefore, real-time path
planning is needed.

A-star (or A∗) search algorithm [4] is one of the most
widely used heuristic path-planning algorithms on grid
maps. It generates the global optimal paths dynamically and
can theoretically guarantee the convergence of the global
optimal solution [5]. Such characteristic makes it suitable for
dynamically changed maps such as real-time path planning
in robotics or RTS games.

However, the software A∗ algorithm’s performance is
not real-time due to a large number of iteration opera-
tions. Lots of previous works attempted to overcome this
by lowering the number of cells to be expanded [6]. But

the performance still cannot reach real-time performance.
For example, Yao et al. [7] made the searching steps re-
duced from 200 to 80 (reduced to 40%) but the searching
time only reduced from 4.359 s to 2.823 s (reduced to
65%).

This paper introduces a hardware framework to ac-
celerate the performance of the A∗ algorithm by paral-
lelizing the iteration operations. +e scientific code could
benefit from executing on accelerators like field pro-
grammable gate arrays (FPGAs) [8]. +e calculation
bottleneck mainly focuses on two parts, calculating and
sorting the evaluation value of each node. +e evaluation
value is used to determine the next searching steps. To
make them parallel, a scalable array-based architecture
that contains eight parallel processing lines was designed.
Each processing line is responsible for one searching
direction. +e architecture was implemented in Xilinx
Kintex-7 FPGA and compared to the software algorithm.
FPGAs offer high flexibility to Application-Specific In-
tegrated Circuit (ASIC) when implementing the algo-
rithm with a high degree of parallelism [9, 10]. Results
show that 37–75 times performance enhancement could
be achieved with the accelerator’s clock frequency at
100MHz.

+is research makes the following contributions:
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(1) +e exploration of the way to accelerate the per-
formance of the A∗ algorithm by parallelizing the
iteration operations.

(2) +e architecture design of the hardware accelerator
for the A∗ algorithm. Efficient 8-port cache design is
achieved to load the nodes data of 8 directions in
parallel. +e most suitable parameters were decided
by the design space exploration. An array-based
OPEN list architecture was proposed to achieve
sorting while data is flowing in the array.

(3) Evaluation of the system-on-a-chip (SOC) design
in the FPGA circuit board. Experimental results
show that parallelizing the iteration operations of
A∗ algorithm can achieve massive performance
enhancement, and the hardware design is suitable
for applications with real-time performance
requirements.

+e rest of this paper is organized as follows. Related
work is discussed in Section 2. +e A∗ algorithm is analyzed
in Section 3 to show the performance bottleneck. +en the
hardware accelerator is introduced in Section 4 to tackle the
bottleneck. Section 5 introduces the system design, and
experiments to analyze this work are devised in Section 6. In
the end, concluding remarks are drawn in Section 7.

2. Related work

2.1. Heuristic Path-Planning Algorithm. +e goal of path
planning is to find the most direct and shortest path from the
starting point to the target point according to the terrain and
obstacles in the map. Global path-planning algorithms have
been applied frequently and widely because of their ad-
vantages in computation time and avoidance of local op-
timum [11]. +e most well-known algorithm of this type is
Dijkstra’s algorithm [12]. It finds the shortest path by
traveling from the start cell to the neighboring cells and
calculates the path’s cost. +en it chooses the lowest cost cell
to travel again until the target cell is reached. +e defect of
Dijkstra’s algorithm is that nearly all the cells are expanded
before the shortest path is found. +e A∗ algorithm [4]
improved this by adding a heuristic value to evaluate the
path’s cost function during the iteration of choosing the next
cell. +e heuristic value can lead the search path towards the
goal.+en Focused Dynamic A∗ (D∗) algorithm [13] and D∗
lite algorithm [14] were proposed to extend the ability to
cope with dynamic changes in the graph used for planning.
+ey have been used for path planning on a large assortment
of robotic systems [15–17]. Anytime Dynamic A∗ (AD∗) [18]
uses an inflation factor to get to a suboptimal solution
quickly, meeting real-time requirements. Liu et al. [2] fur-
ther improved the A∗ algorithm for more complicated
environments.

To make A∗ algorithm converge more efficiently,
Szczerba et al. [19] proposed a sparse A∗ search (SAS). +is
algorithm accurately and efficiently “prunes” the search
space according to the constraint, which lowers the number
of cells to be expanded. Block A∗ [20] is a database-driven
search algorithm. +ey load the map in advance and

calculate the Local Distance Database (LDDB) that contains
distances between boundary points of a local neighborhood.
+en the search process is based on blocks. +is method
effectively lowers the number of iteration operations and
achieves about 4x performance enhancement compared to
A∗ algorithm, but it needs the map to be loaded in advance.
Yao et al. [7] proposed a way of weight processing of
evaluation function to reduce the number of cells to be
expanded. +ey made the searching steps reduced from 200
to 80 (reduced to 40%) but the searching time only reduced
from 4.359 s to 2.823 s (reduced to 65%).

+ose previous works can be summarized as improving
the performance of A∗ by lowering the number of iteration
operations or expanding nodes. But the performance en-
hancement is not so obvious. In this paper, we tried another
way of parallelizing the iteration processing of expanding the
cells by hardware accelerator in FPGA.

2.2. FPGA Implementation of Path-Planning Algorithms.
One of the most popular path-planning algorithms imple-
mented in FPGA is the genetic algorithm (GA) [21]. +e GA
method is based on Darwin’s theory of evolution, where
crossovers and mutations can generate better populations.
However, the evolution process needs numerous iteration
operations. A continuous research activity during the past 20
years proves the effectiveness of hardware acceleration by
parallelism. For example, Allaire et al. [22] accelerate the
genetic operators on FPGA and achieve up to 50,000x
performance enhancement in the population update oper-
ation. Hachour [23] shows the FPGA implementation
for the GA path planning of autonomous mobile robots.
dos Santos et al. [24] achieve the parallelism by array-
based architecture and achieve obvious performance
enhancement.

Lots of researchers have also investigated into the FPGA
implementation of heuristic path-planning algorithm. Fer-
nandez et al. [25] proposed a parallel architecture for
implementation of Dijkstra’s algorithm. +e node processor
architecture was introduced to achieve parallelism for it-
eration process. For a 256 graph, the computation takes only
42microseconds, which shows that FPGA implementation
can achieve real-time performance. Jagadeesh et al. [26] also
implemented Dijkstra’s algorithm on FPGA and achieved
2.2 times performance enhancement compared with CPU.
Idris [27] proposed the hardware architecture of accelerator
for A∗ algorithm but did not provide simulation result. Nery
et al. [28] provided the coprocessor design based on Xilinx
High-Level Synthesis (HLS) compiler and achieved 2.16x
speedup for A∗ algorithm. However, they did not tackle the
bottleneck problem of sorting OPEN list.

3. Algorithm

In order to achieve parallelism, the performance bottleneck
of A∗ algorithm needs to be analyzed. +e traditional
A∗ algorithm will first be introduced and then the per-
formance bottleneck problems will be analyzed for hard-
ware implementation.
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3.1. A∗ Algorithm on Grid Maps. +e traditional A∗ algo-
rithm was first proposed in [4] and targeted for determining
the minimum cost path through a graph. It is also suitable
for finding the minimum cost path from the start node to the
destination node on grid maps. Grid maps are a standard
simplified model of real maps, commonly used in mobile
robotics [20]. Grid maps are made up of square nodes, and
each node stands for a step when moving in the map. An
example is shown in Figure 1.

In this paper, we assume that a specific node on the grid
map is only allowed to reach one of its eight neighbors. +at
is, the angle of the path is confined to a 45- or 90-degree turn.
Previous works also researched about paths with any-angle
turn [29, 30]. But it is not the critical point of this paper. +e
flowchart of the traditional A-star algorithm is shown in
Algorithm 1.

+e open_list (which is defined as OPEN list in the
manuscript) in the algorithm is an array that contains the
nodes to be calculated. +e goal is to choose the next step
which has the minimum cost value from current node to the
destination. +is process is called expanding nodes. +e
evaluation value f is the heuristic value to estimate the
distance. It is calculated as

f(n) � g(n) + h(n). (1)

where g(n) is the actual cost from start node N(xs,ys) to
current node n and h(n) is the heuristic function that es-
timates the cost from current node n to destinationN(xg, yg).
+e heuristic function chooses Euclidean distances.

h(n) �

�������������������

xi − xg􏼐 􏼑
2

+ yi − yg􏼐 􏼑
2

􏽲

. (2)

3.2. AlgorithmAnalysis. On a grid map, an individual cell is
able to move to one of its eight closest neighboring nodes
(successors). From Algorithm 1, it can be seen that the it-
eration operations focus on calculating the successor’s
evaluation function, the process of which is called expanding
nodes.

In order to analyze the bottleneck problem in the process
of expanding nodes, we performed experiments to monitor
the execution time. +e software algorithm was written in C
language and executed in a single thread. After that, the
software algorithm was optimized to run in parallel 8
threads. +e compiler is MSVC on the windows platform
and more detailed description will be listed in Section 6.3.
+e 256 × 256 grid map with 10% randomly placed obstacles
is used for the experiments. +e results of software were
obtained on Inter(R) Core(M) i5-3337U @ 1.80GHz with
4GB memory. We ran the software code 10,000 times and
averaged the execution time. +e experiments’ results are
shown in Figure 2. +e process was divided into two parts.
+e “OPEN list” process included the process of inserting,
sorting, and deleting the OPEN list and the “calculation”
process included the other calculations of expanding nodes.

When running in the single thread, the averaged exe-
cution time is 330ms. +e operations of OPEN list consume
95% of total time. After distributing the software process

into 8 threads, the total execution time is 136ms, with 2.4x
speedup. However, the OPEN list operations are still the
most time-consuming part.

To tackle the bottleneck problems of the OPEN list
operations (inserting, sorting, and deleting nodes), the
hardware architecture is designed to have 8 parallel pro-
cessing lines. Each line is responsible for one direction. +e
OPEN list is an array-based architecture that contains 8
parallel sequence queues, which are called OPEN list array.
+e OPEN list array will sort the data in parallel.

4. Design of the A∗ Accelerator

+e hardware architecture is designed to tackle the bottle-
neck problems of the A∗ algorithm discussed in Section 3.2.
Although it is targeted for FPGA implementation in this
manuscript, it is also suitable for ASIC chip implementation.

4.1. Data Structure of the Nodes. +e information of a node
includes parents’ coordinates, actual cost value g, evaluation
value f, and information about whether this node is an
obstacle or in the OPEN list. Since the heuristic function
value h is calculated for each node, it is not necessary to be
stored along with the nodes.+e grid map in this manuscript
is confined to smaller than 256 × 256. +e extension to
bigger maps will be discussed in the future work.

Under such situation, the data type of cost value and
evaluation value are designed as signed integer. +e data
structures are concluded in Table 1. +e 1-bit information is
combined with cost value to form a 32-bit integer value.
+en, the total size of a node’s data structure is 10 bytes.
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Obstacle
Start node

Goal node
Generated path

Figure 1: An example of the grid map and optimization path
generated by traditional A∗ algorithm.
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4.2. Hardware Framework Design. An overall hardware
framework is shown in Figure 3. +e grid map is initialized
and stored in the memory. After the start node is loaded, the
nodes management module calculates the successors’ co-
ordinate and read data information into 8 parallel evaluation
engines. +e cells’ information is transferred to the accelerator
through the nodes cache. +e evaluation engine computes the
value f of the nodes according to the evaluation function and

sends it to the OPEN list array. OPEN list array is a sequence
queue where the node with the lowest f is on the top of the
array. +e comparison engine will compare the 8 values in the
evaluation engine with the 8 top values in the OPEN list array
and pop out one node with the least value f to the nodes’
management module. +e path is found when the nodes’
management module reads the coordinate of the goal node.
+e path cannot be found if all 8 OPEN list arrays are empty.

Calculations
5%

Open list
95%

(a)

Calculations
12%

Open list
88%

(b)

Figure 2: Execution time of software code. (a) +e software runs in a single thread. (b) +e software runs in 8 threads.

Initialize grid maps with obstacle matrix
Mark N(xs, ys) as open_list
while open_list≠ empty set do
find the node in open_list with least value f marked as N(xs, ys)
mark N(xi, yi) as open_list
if N(xi, yi)�N(xg, yg) do
Construct the path
return “path is found”

else
Mark N(xi, yi) as close_list
generate N(xi, yi)’s 8 successors
for each successor do
if successor does not belong to close_list or obstacle_node do
calculate successor’s value f and marked as f_new� f (successor)
If f_new is lower than successor’s original value f or successor is not in open_list
mark successor as open_list
successor.f� f_new
set successor’s parent to N(xi, yi)

end if
end if

end for
end if

end while

ALGORITHM 1: Traditional A∗ algorithm (Start N(xs,ys) to N(xg,yg)).
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+e two most critical modules are nodes cache and the
OPEN list array. Since the nodes’ management module
handles 8 nodes in parallel, the nodes cache must transfer 8
nodes’ information in one cycle if not missed. So, it is
designed as an 8-port cache. In addition, the efficiency of
sorting nodes in the OPEN list array determines the
throughput of the accelerator.

4.3.Design of theCell Cache. To load successors’ information
in parallel, an 8-port cache is needed. On a grid map, the
successors of a certain node are all in a 3× 3 square.
According to this characteristic, one cache line is designed to
store a square block of N × N nodes. +e size of the cache
line is determined by design space exploration (DSE). +e
block-based arrangement is shown in Figure 4.

+e worst situation is when the nodes are in the corner of
the block, and the successors are divided into 4 neighbor
blocks. +erefore, the 8-port cell cache consists of 4 banks to
achieve reading blocks in parallel. +e bank selection is
determined by the lower bits of block coordinate.

bank Selector � blockj[1], blocki[1], blockj[0], blocki[0]􏽮 􏽯.

(3)

+is bank selection strategy will ensure that the four
parallel requirements will request different cache lines in the
same cache. An example of the worst case is shown in
Figure 5.

+e detailed architecture is shown in Figure 6. +e 8
addresses will be transferred to cache in parallel and dis-
tributed to different banks by interconnect crossbar. +e
reading address of the same block will fall on the same cache
line, so the reading requests will be merged. When the data
of one bank is missed, it will write data back if it is “dirty”
and read data from memory. +e cache miss penalty time is
the clock cycles of writing back and reading. If the data in the
bank is available, it will be distributed to the port according
to the requests.+e cache is connected to memory controller
by AXI bus and the buses data size is 64 bits.

+emapping algorithm of the cache is designed as 2-way
set associative. Direct mapping is the easiest mapping al-
gorithm, but it is not suitable for A∗ algorithm imple-
mentation. A∗ algorithm is a heuristic path-planning
algorithm. +erefore, the process of reading nodes is ran-
dom. Two different nodes in the same cache line will seri-
ously affect the performance. Fully associative mapping
algorithmwill increase the design complexity of the cache. In
order to balance between cache size and performance, we
choose 2-way set associative.

+e trade-off between the cache size and performance is
determined by design space exploration.
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Figure 3: Accelerator’s framework for A∗ algorithm.
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4.4. Design of the OPEN List Array. +e OPEN list array is
composed of 8 parallel sequence queues calledOPEN list queues.
Each queue contains input buffer (IB) structure to store the
input data and output buffer (OB) for nodes ready for output.
+e overall architecture is shown in Figure 7. +e nodes in OB

are sequenced by evaluation function’s value f.+e input node is
sent to IB when a new node is inserted into the OPEN list.

+e sorting process is similar to the bubble sort algo-
rithm. When the input node is flowing in IB and reaches the
position IBi, it will compare with the next OB buffer’s po-
sition OBi+1. If the value f of the node in IBi is lower than that
in OBi+1, these two nodes will be swapped and the node of
OBi+1 will be sent to the next buffer IBi+1. In this way, the
larger OB’s value will be swapped into IB.

Another situation is when the head of OB pops from the
queue, it leaves a “bubble” in position OB0. +en the corre-
sponding IB cell IB0 needs to compare with the next OB cell
OB1. If the value f of IB0 is lower thanOB1, the node in IB0 will
be put in the position of IB0. Otherwise, the node inOB1 will be
put in that position and the bubble shifts right in OB buffer.

Figure 8 shows an example of the above two processes.
At cycle 1, node 3 is inserted into IB and needs to swap with
node 5 in OB. At cycle 2, node 3 takes the position of OB_1
and node 5 goes to IB_1. Assume that the next node inserted
is node 4 and node 2 pops out. +en node 3 will take the
position of OB_1. At cycle 3, node 4 reaches the position of
IB_1 and will take the bubble position. At cycle 4, the
inserted node finds the correct position.

4.5. Design of the Other Modules. +e node with the lowest
value f must be the one of the nodes produced by the
evaluation engine or on the head of the OPEN list queue.
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Figure 7: Detailed architecture of the OPEN list queue.
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+erefore, the comparison engine module will compare the
above 16 nodes and choose the node for the nodes’ man-
agement module to expand.

+e nodes’ management module gets the node’s coor-
dinate from the comparison module and transfers the nodes’
information from the node cache to 8 parallel evaluation
engines.

+e evaluation engine computes the value f of each node
and inserts it into the OPEN list array. +e computation of
evaluation value contains the root operations, which is done
by the lookup table.

5. System Design

As described in the above section, the performance bot-
tleneck lies in the data fetching and sorting efficiency. In this
section, we perform the overall optimization problem as
maximizing the system throughput under resource con-
straints. We demonstrate the design’s implementation to
maps with 256 × 256 resolution, and it is scalable to bigger
maps. +en the hardware system-on-a-chip (SOC) will be
introduced briefly to show the implementation process in
field programmable gate array (FPGA).

5.1. Analytical Model of Cache. +e system throughput is
determined by cache performance. We built a high-level
model (C++) to perform the design space exploration (DSE)
to identify hardware parameters with maximum system
throughput. +e design space includes two dimensions.

(1) +e cache line size (marked as N). Higher cache line
size will lower the miss rate of the cache. But it
increases the possibility of loading useless nodes and
cache misses rate, which affects the cache miss
penalty.

(2) +e number of cache lines in a bank (marked as M).
Higher number of blocks is better, but it increases the
size of the cache. +erefore, some design option
needs to be “pruned” due to the limitations of
memory size on FPGA. +e memory size should be
less than 1MB.

(3) Mapping algorithm. Direct mapping algorithm is not
suitable for the situation of reading different nodes
into the same cache line. Fully associative algorithm
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Figure 8: An example of inserting and popping out nodes in the OPEN list.
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makes the structure too complex to implement.
+erefore, we choose 2-way set associative to balance
between cost and performance.

+e total number of nodes in the cache is calculated to
beN × M. +e size of cache is N × M × sizeof(node). +e
number of cache misses is marked as m. +e cache miss
penalty is marked as T. +e cache’s performance is modeled
by memory time MT.

MT �number_of_cache_miss∗ (block_size

+ penalty_cycle_from_MEM) � m ×(N∗N + T).

(4)

Although it is not the actual cache miss penalty time, it
can be used to evaluate the trend of design options. +e
software model runs on 256× 256 resolution maps with
obstacles randomly generated. +e experimental results will
be introduced in Section 6.1.

5.2. System Architecture. A brief diagram of the experi-
mental platform is shown in Figure 9.+eA∗ accelerator was
developed by Verilog RTL language and implemented into
Xilinx Kintex-7 FPGA. +e reason we chose this FPGA is
that another project of our team was developed on this
FPGA. Other components of the SOC (such as CPU and
buses) were also developed in that project. +e CPU is based
on ARM cortex-M0 ISA which is used to transfer maps’ data
to DDR and transfer A∗ accelerators’ data to PC. +e DDR
controller and the A∗ accelerator are connected by 64-bit
wide AXI buses.

+e experimental maps were loaded into DDR3 memory
in advance.+e CPU controls the A∗ accelerator through 16-
bit APB buses. +e calculating time (counted in clock cycles)
will be read back from REGs and transferred to PC for
evaluation. +e implementation results will be discussed in
Section 6.2.

6. Experiments Results and Discussions

6.1. Design Space Exploration of the Cache. +e software
model for the design space exploration runs on a 256 × 256
resolution map with obstacles randomly placed. +e start
point is fixed to (0, 0) and the goal is fixed to (255, 255). +e
experiment results of different design options are shown in
Figure 10.

From the chart, three options perform relatively better
results. +e results with cache size are shown in detail (see
Table 2). +e cache size is calculated by

Cache_size�cache_line_size∗ block_number

∗bank_number∗size_of_cell� M∗N∗4∗10.

(5)

Although design option 2 gives the best performance, its
size makes it unfeasible for the implementation of most
FPGAs. What is more, the performance of design option 1
has already tackled the performance bottleneck of fetching
nodes’ data. +erefore, the block size is designed to be 8 × 8
and the block number of each bank is 15.

6.2. FPGA Implementation Results. +e A∗ accelerator was
developed by Verilog RTL language and synthesized by
Xilinx EDA tool Vivado 2019.2. +e FPGA used to imple-
ment the whole design is Xilinx Kintex-7 XC7K410T. +e
synthesis results of the accelerator are illustrated (see
Table 3).

+e maximum frequency of the A∗ accelerator is
255MHz. In order to achieve better timing results, the core’s

Table 1: Design of the data structure.

Name Data type Explanation
g Signed integer +e cost value from the start node to current node
h Signed integer +e estimated cost value from current node to the goal node
parent_i Unsigned short Horizontal coordinate of parent’s node
parten_j Unsigned short Vertical coordinate of parent’s node
in_open_list Bool Whether current node is in the OPEN list
is_obstacle Bool Whether current node is obstacle

Table 2: Design option of three best choices.

Design
option

Block size
M

Block
number N

Penalty/
cycles

Cache size/
KB

1 8 15 196026 38.4
2 16 12 37506 122.88
3 32 5 72380 204.8

Table 3: Summarization of synthesis results.

Cells Used Available Utilization (%)
Slice registers 50930 508400 10
Slice LUTs 134578 254200 52
Block RAMs 14 795 1.8
Maximum frequency 255.188MHz

Table 4: Software experimental environment.
OS version Windows 10 enterprise 1067
Compiler Microsoft MSVC 16.6
Optimization
options /Od (disable optimization)

Code generation /Gm (enables minimal rebuild)

Linking /MDd (compiles to create a multithreaded
DLL)

OpenMP /openmp (enables OpenMP 2.0 language
support)
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clock frequency is designed as 100MHz. +e timing con-
straints come from the combination logic in OPEN list array
module. In order to achieve sorting in parallel, the com-
parison chain is deep.+e timing can be further optimized in
the further work.

We further analyzed the utilization results. +e resource
utilization bottleneck falls on Slice LUTs. Moreover, almost
all the LUTs are consumed by OPEN list array module to
achieve sorting in parallel.

6.3. Performance Enhancement. We compared the software
and hardware implementation of A∗ algorithm using a 256 ×

256 grid map filled with randomly placed obstacles, with the
probability of a cell being an obstacle ranging from 0% to
50% like [15].+e software algorithm first runs on PC to find
whether the shortest path is available. +en the available
map will be transferred to the memory on the FPGA circuit
board and controls the hardware accelerator for calculation.
+e results of time and path will be transferred back to the
PC for evaluation after FPGA’s calculation.

+e results of software implementation were obtained on
Inter(R) Core(M) i5-3337U @ 1.80GHz with 4GB memory.
+e CPU contains 4 cores and 8 threads. +e software code

was written in C language and implemented in 8 parallel
threads by OpenMP library. +e compiler is Microsoft
MSVC on Windows platform. More detailed description
about the software experimental environment is listed in
Table 4. +e IDE platform is Visual Studio 2019. +e
hardware results were obtained on Xilinx Kintex-7
XC7K410T FPGA, synthesized by Xilinx EDA tool Vivado
2019.2.

For each dataset, a total number of 10,000 maps were
averaged to form the results (see Table 5). In every map, two
situations are tested. In the worst cases, the start point is
fixed to (0, 0) and goal point is fixed to (255, 255). In another
situation, they are randomly placed on the map.

+e results show that 37–75 times performance en-
hancement was achieved by hardware accelerators. +is
achievement is mainly because each node calculates the 8
neighboring evaluation values and inserts the OPEN list in
parallel. Moreover, the specially designed cache reduces the
time of fetching data from memory. +erefore, it is suitable
for real-time path-planning applications.

An interesting phenomenon is that performance en-
hancement decreases when the number of expanding nodes
decreases. We further investigated this phenomenon
through analyzing the simulation waves and found that most

Table 5: Experimental results of randomly generated maps.

Data set Cases Implementation Distance Expanded nodes Time (ms) Speedup

Random 0%
Worst Software 357 65527 85 75Hardware 1.1367

Random Software 136.5 29720 38.2 74Hardware 0.516

Random 10%
Worst Software 361.8 45284 76.4 72Hardware 1.059

Random Software 140.9 26278 31.2 69Hardware 0.467

Random 20%
Worst Software 370.2 41202 66.4 61Hardware 1.087

Random Software 131.8 7986 21.7 44Hardware 0.493

Random 30%
Worst Software 374.4 35597 58.4 50Hardware 1.160

Random Software 152.0 7543 20 47Hardware 0.429

Random 40%
Worst Software 392.2 24236 52 45Hardware 1.144

Random Software 155.0 6962 19.8 48Hardware 0.412

Random 50%
Worst Software 433.9 23352 40.4 37Hardware 1.088

Random Software 168.1 5882 14.2 42Hardware 0.340

Table 6: Comparison results with related works.

Work Optimization methods Time before optimization Time after optimization Speedup
Yao et al. [7] Software 7.879 s 3.061 s 2.58
Yap et al. [20] Software 4.81ms 1.03ms 4.7
Nery et al. [28] FPGA implementation — — 2.16
+is paper FPGA implementation 85ms 1.1367ms 75
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of the time is during the memory-fetching process. For
example, in the random 50% data set, over half of the
running time is spent on fetching nodes’ data. +erefore,
most of the cache’s data is wasted because the number of
expanding nodes is low.

6.4. Comparison. To compare the performance enhance-
ment, the works of software and hardware implementation
of A∗ algorithm are chosen. Yao et al. [7] proposed the
software optimization methods to lower the nodes to be
expanded. +eir work improved the processing time from
7.879 s to 3.061 s, with 2.58x speedup. Yap et al. [20] pro-
posed block A∗ algorithm and achieved up to 4.7x speedup.
Nery et al. [28] provided the hardware implementation
based on Xilinx High-Level Synthesis (HLS) compiler and
achieved 2.16x speedup. +e comparison results are sum-
marized in Table 6.

+e different experimental results are conducted under
different situations. +erefore, it is not easy to scale the
results for comparison. However, the results of the speedup
are a good standard for comparing the effectiveness of the
optimization methods.

+e proposed architecture achieves great performance
enhancement compared to the previous work due to the
carefully designed OPEN list array and nodes cache. Nery
et al.’s work [28] is also implemented in FPGA, but the
execution process is still in serial. +erefore, their work’s
enhancement is not so obvious.

By the way, from the execution time, it seems that Yap
et al.’s work [20] outperforms ours. But their methods need
to calculate data related to the grid maps (called LDDB) in
advance (costing 1.2 s). It s not suitable for real-time path
planning.

7. Conclusions

+is article proposed a hardware framework to accelerate the
A∗ path searching algorithm by parallelizing the iteration
operations. +e 8-port cache is designed to tackle the
memory bandwidth bottleneck and OPEN list array to tackle
the calculation bottleneck. +e proposed architecture shows
37–75 times speedup even at a low clock frequency of
100MHz. +erefore, it is of research value to implement A∗
family algorithm for more complicated path-planning ap-
plications. +e proposed SOC design shows its capability for
further implementation as a coprocessor in Application-
Specific Integrated Circuits (ASICs).

In the future, the proposed architecture will be inves-
tigated to lower the resource consumption of LUTs by
optimization of the OPEN list array. +e cache will be
optimized to adapt to more situations. What is more, the
extensible and configurable architecture for general graph
applications will be considered in the future work.
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