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Simulation studies allow researchers to answer specific questions about data analysis, 

statistical power, and best-practices for obtaining accurate results in empirical 

research. Despite the benefits that simulation research can provide, many researchers 

are unfamiliar with available tools for conducting their own simulation studies. The 

use of simulation studies need not be restricted to researchers with advanced skills in 

statistics and computer programming, and such methods can be implemented by 

researchers with a variety of abilities and interests. The present paper provides an 

introduction to methods used for running simulation studies using the R statistical 

programming environment and is written for individuals with minimal experience 

running simulation studies or using R. The paper describes the rationale and benefits 

of using simulations and introduces R functions relevant for many simulation studies. 

Three examples illustrate different applications for simulation studies, including (a) 

the use of simulations to answer a novel question about statistical analysis, (b) the use 

of simulations to estimate statistical power, and (c) the use of simulations to obtain 

confidence intervals of parameter estimates through bootstrapping. Results and fully 

annotated syntax from these examples are provided. 

 

 
*
Simulations provide a powerful technique for 

answering a broad set of methodological and theoretical 

questions and provide a flexible framework to answer 

specific questions relevant to one’s own research. For 

example, simulations can evaluate the robustness of a 

statistical procedure under ideal and non-ideal conditions, 

and can identify strengths (e.g., accuracy of parameter 

estimates) and weaknesses (e.g., type-I and type-II error 

rates) of competing approaches for hypothesis testing. 
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Simulations can be used to estimate the statistical power of 

many models that cannot be estimated directly through 

power tables and other classical methods (e.g., mediation 

analyses, hierarchical linear models, structural equation 

models, etc.). The procedures used for simulation studies are 

also at the heart of bootstrapping methods, which use 

resampling procedures to obtain empirical estimates of 

sampling distributions, confidence intervals, and p-values 

when a parameter sampling distribution is non-normal or 

unknown.  

The current paper will provide an overview of the 

procedures involved in designing and implementing basic 

simulation studies in the R statistical programming 

environment (R Development Core Team, 2011). The paper 

will first outline the logic and steps that are included in 

simulation studies. Then, it will briefly introduce R syntax 

that helps facilitate the use of simulations. Three examples 

will be introduced to show the logic and procedures 

involved in implementing simulation studies, with fully 
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annotated R syntax and brief discussions of the results 

provided. The examples will target three different uses of 

simulation studies, including 

1. Using simulations to answer a novel statistical 

question 

2. Using simulations to estimate the statistical power of 

a model 

3. Using bootstrapping to obtain a 95% confidence 

interval of a model parameter estimate 

For demonstrative purposes, these examples will achieve 

their respective goals within the context of mediation 

models. Specifically, Example 1 will answer a novel 

statistical question about mediation model specification, 

Example 2 will estimate the statistical power of a mediation 

model, and Example 3 will bootstrap confidence intervals 

for testing the significance of an indirect effect in a 

mediation model. Despite the specificity of these example 

applications, the goal of the present paper is to provide the 

reader with an entry-level understanding of methods for 

conducting simulation studies in R that can be applied to a 

variety of statistical models unrelated to mediation analysis. 

Rationale for Simulation Studies 

Although many statistical questions can be answered 

directly through mathematical analysis rather than 

simulations, the complexity of some statistical questions 

makes them more easily answered through simulation 

methods. In these cases, simulations may be used to 

generate datasets that conform to a set of known properties 

(e.g., mean, standard deviation, degree of zero-inflation, 

ceiling effects, etc. are specified by the researcher) and the 

accuracy of the model-computed parameter estimates may 

be compared to their specified values to determine how 

adequately the model performs under the specified 

conditions. Because several methods may be available for 

analyzing datasets with these characteristics, the suitability 

of these different methods could also be tested using 

simulations to determine if some methods offer greater 

accuracy than others (e.g., Estabrook, Grimm, & Bowles, 

2012; Luh & Guo, 1999).  

Simulation studies typically are designed according to 

the following steps to ensure that the simulation study can 

be informative to the researcher’s question:  

1. A set of assumptions about the nature and 

parameters of a dataset are specified. 

2. A dataset is generated according to these 

assumptions. 

3. Statistical analyses of interest are performed on this 

dataset, and the parameter estimates of interest from 

these analyses (e.g., model coefficient estimates, fit 

indices, p-values, etc.) are retained. 

4. Steps 2 and 3 are repeated many times with many 

newly generated datasets (e.g., 1000 datatsets) in 

order to obtain an empirical distribution of 

parameter estimates. 

5. Often, the assumptions specified in step 1 are 

modified and steps 2-4 are repeated for datasets 

generated according to new parameters or 

assumptions. 

6. The obtained distributions of parameter estimates 

from these simulated datasets are analyzed to 

evaluate the question of interest. 

The R Statistical Programming Environment 

The R statistical programming environment (R 

Development Core Team, 2011) provides an ideal platform 

to conduct simulation studies. R includes the ability to fit a 

variety of statistical models natively, includes sophisticated 

procedures for data plotting, and has over 3000 add-on 

packages that allow for additional modeling and plotting 

techniques. R also allows researchers to incorporate features 

common in most programming languages such as loops, 

random number generators, conditional (if-then) logic, 

branching, and reading and writing of data, all of which 

facilitate the generation and analysis of data over many 

repetitions that is required for many simulation studies. R 

also is free, open source, and may be run across a variety of 

operating systems.  

Several existing add-on packages already allow R users 

to conduct simulation studies, but typically these are 

designed for running simulations for a specific type of 

model or application. For example, the simsem package 

provides functions for simulating structural equation 

models (Pornprasertmanit, Miller, & Schoemann, 2012), ergm 

includes functions for simulating social network exponential 

random graphs (Handcock et al., 2012), mirt allows users to 

simulate multivariate-normal data for item response theory 

(Chalmers, 2012), and the simulate function in the native 

stats package allows users to simulate fitted general linear 

models and generalized linear models. It should be noted 

that many simulation studies can be conducted efficiently 

using these pre-existing functions, and that using the 

alternative, more general method for running simulation 

studies described here may not always be necessary. 

However, the current paper will describe a set of general 

methods and functions that can be used in a variety of 

simulation studies, rather than describing the methods for 

simulating specific types of models already developed in 

other packages. 

R Syntax 

R is syntax-driven, which can create an initial hurdle that 
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prevents many researchers from using it. While the learning 

curve for syntax-driven statistical languages may be steep 

initially, many people with little or no prior programming 

experience have become comfortable using R. Also, such a 

syntax-driven platform allows for much of the program’s 

flexibility described above. 

The simulations used in the following tutorials utilize 

several basic R functions, with a rationale for their use 

provided below and a brief description with examples given 

in Table 1. A full tutorial on these basic functions and on 

using R in general is not given here; instead, the reader is 

referred to several open-source tutorials introducing R 

(Kabacoff, 2012; Owen, 2010; Spector, 2004; Venables, Smith, 

& R Development Core Team, 2012). Some commands that 

serve a secondary function that are not directly related to 

generating or analyzing simulation data (e.g., the 

write.table command for saving a dataset) are not 

discussed here but descriptions of such functions are 

included in the annotated syntax examples in the 

appendices. More information about each of the functions 

used in this tutorial can be obtained from the help files 

included in R or by entering ?<command> in the R 

command line (e.g., enter ?c to get more information about 

the c command). 

R is an object-oriented program that works with data 

structures such as vectors and data frames. Vectors are one 

of the simplest data structures and contain an ordered list of 

values. Vectors will be used throughout the examples 

described in this tutorial to store values for variables in 

simulated datasets and to store parameter estimates that are 

retained from statistical analyses (e.g., p-values, parameter 

point estimates, etc.). The examples here will make extensive 

Table 1 (part A).  Common R commands for simulation studies. 

Commands for working with vectors 

 Command Description Examples 

 c Combines arguments to make 

vectors 

#create vector called a which contains the values 3, 5, 4 

a = c(3,5,4) 

#identical to above, uses <- instead of = 

a <- c(3,4,5) 

#return the second element in vector a, which is 5 

a[2]  

#remove the contents previously stored in vector a 

a = NULL 

 length Returns the length of a vector #return length of vector a, which is 3 

a = c(3,5,4) 

length(a) 

 rbind and 

cbind 

Combine arguments by rows 

or columns 

#create matrix d that has vector a as row 1 and vector b as row 2. 

a = c(3,5,4) 

b = c(9,8,7)  

d = rbind(a,b) 

#create matrix e that has two copies of matrix d joined  

by column 

e = cbind(d,d)  

Commands for generating random values 

 Command Description Examples 

 rnorm Randomly samples values 

from normal distribution with 

a given population M and SD 

#randomly sample 100 values from a normal distribution with a 

# population M = 50 and SD = 10 

x = rnorm(100, 50, 10) 

 sample Randomly sample values from 

another vector 

#randomly sample 8 values from vector a, with replacement 

a = c(1,2,3,4,5,6,7,8) 

sample(a, size=8, replace=TRUE) 

#e.g., returns  3 1 3 6 5 4 2 2 

 set.seed Allows exact replication of 

randomly-generated numbers 

between simulations 

#The same 5 random numbers returned each time the following  

# lines are run 

set.seed(12345) 

rnorm(5, 50, 10) 

Note: Text appearing after the # symbol is not processed by R and is typically reserved for comments and 

annotation.  List of commands is not exhaustive. 
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use of commands for generating, indexing, and combining 

vectors, including the c command for generating and 

combining vectors, the length command for obtaining the 

number of items in a vector, and the rbind and cbind 

commands for combining vectors by row or column, 

respectively.  

Two functions for creating random numbers, rnorm and 

sample, will be used in the simulation examples in this 

paper in order to generate values for random variables or to 

sample subsets of observations from an existing dataset, 

respectively. An additional function for setting the 

randomization seed, set.seed, is useful for generating the 

same sets of random numbers each time a simulation study 

is run, allowing exact replications of results.  

Statistical models in these tutorials will be fit using the 

lm command, which models linear regression, analysis of 

variance, and analysis of covariance (however, note that 

there are many additional native and add-on R packages 

that can fit a variety of models outside of the general linear 

model framework). The lm command returns an object with 

information about the fitted linear model, which may be 

accessed through additional commands. For example, fixed 

effect coefficients for the lm object called mymodel shown in 

Table 1 (under the lm command) can be extracted by calling 

for the coefficients values of mymodel, such that the 

syntax 

> f = mymodel$coefficients 

returns the regression coefficients for the intercept and 

effects of x1 and x2 in predicting y from the data in Table 1 

and saves it to vector f, which has the following values: 

(Intercept) x1   x2  

3.07692308  0.07692308 2.36923077 

Specific fixed effects could be further extracted by 

indexing values from vector f; for example, the command 

f[2] would extract the second value in vector f, which is 

the fixed effect coefficient for x1. 

The function command allows users to generate their 

own customized functions, which provides a useful way of 

reducing syntax when a procedure is repeated many times. 

For example, the first tutorial below computes several Sobel 

Table 1 (part B).  Common R commands for simulation studies. 

Command for statistical modeling 

 Command Description Examples 

 lm fits linear ordinary least 

squares models 

#Regress y onto x1 and x2 

y = c(2,2,5,4,3,6,4,6,5,7) 

x1 = c(1,2,3,1,1,2,3,1,2,2) 

x2 = c(0,0,0,0,0,1,1,1,1,1) 

mymodel = lm(y ~ x1 + x2) 

summary(mymodel) 

#retrieve fixed effect coefficients from a lm object 

mymodel$coefficients 

Commands for programming 

 Command Description Examples 

 function generate customized function # function that returns the sum of x1 and x2 

myfunction = function(x1, x2){ 

 mysum = x1 + x2 

 return(mysum) 

} 

 for create a loop, allowing 

sequences of commands to be 

executed a specified number 

of times 

#Create vector of empirical sample means (stored as mean_vector) 

# from 100 random samples of size N = 20, sampled from a 

# population M = 50 and SD = 10. 

mean_vector = NULL 

for (i in 1:100){ 

 x = rnorm(20, 50, 10) 

 m = mean(x) 

 mean_vector = c(mean_vector, m) 

}  

Note: Text appearing after the # symbol is not processed by R and is typically reserved for comments and 

annotation.  List of commands is not exhaustive. 
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statistics each time a dataset is generated, and declaring a 

function that computes the Sobel statistic allows the 

program to call on one function each time the statistic must 

be computed, rather than repeating several lines of the same 

syntax within the simulation. The for command is used to 

create loops, which allow sequences of commands that are 

specified once to be executed several times. This is useful in 

simulation studies because datasets often must be generated 

and analyzed hundreds or thousands of times.  

Tutorials 

This section will outline examples of questions that may 

be answered using simulation studies and describes the 

methods used to answer those questions. In each example, 

the underlying assumptions and procedures for generating 

and analyzing data will be discussed, and fully annotated 

syntax for the simulations will be provided as appendices. 

Example 1: Answering a Novel Question about Mediation 

Analysis 

Mediation analysis is a statistical technique for analyzing 

whether the effect of an independent variable (X) on an 

outcome variable (Y) can be accounted for by an 

intermediate variable (M; see Figure 1 for graphical 

depiction; see Hayes 2009 for pedagogical review). When 

mediation is present, the degree to which X predicts Y is 

changed when M is added to the model in the manner 

shown in Figure 1 (i.e., c – c’ ≠ 0 in Figure 1). The degree to 

which the relationship between X and Y changes (c – c’) is 

called the indirect effect, which is mathematically equivalent 

to the product of the path coefficients ab shown in Figure 1. 

The product of path coefficients ab (or equivalently, c – c’) 

represents the amount of change in outcome variable Y that 

can be attributed to being caused by changes in the 

independent variable X operating through the mediating 

variable M. In situations where a mediator variable cannot 

be directly manipulated through experimentation, 

mediation analysis has often been championed as a method 

of choice for identifying variables that may cause an 

observed outcome (Y) as part of a causal sequence where X 

affects M, and M in turn affects Y.  

For example, in psychotherapy research, the number of 

times participants receive drink-refusal training (X) may 

impact their self-efficacy to refuse drinks (M), and enhanced 

self-efficacy may in turn cause improved abstinence from 

alcohol (Y; e.g., Witkiewitz, Donovan, & Hartzler, 2012). 

Self-efficacy cannot be directly manipulated by experiment, 

so researchers may use mediation analysis to test whether a 

particular psychotherapy increases self-efficacy, and 

whether this in turn increases abstinence outcomes. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Direct effect model (top) and mediation model (bottom).  
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However, little research has identified the consequences of 

wrongly specifying which variables are mediator variables 

(M) versus outcome variables (Y). For example, it could also 

be possible that drink-refusal training (X) enhances 

abstinence from alcohol (Y), which in turn enhances self-

efficacy (M; e.g., X causes Y, Y causes M). Support for this 

alternative model would guide treatment providers and 

subsequent research efforts toward different goals than the 

original model, and therefore it is important to know 

whether mediation models are likely to produce significant 

results even when the true causal order of effects is 

incorrectly specified by investigators.  

The present example uses simulations to test whether 

mediation models produce significant results when the 

implied causal ordering of effects is switched within the 

tested model. Data is generated for three variables, X, M, 

and Y, such that M mediates the relationship between X and 

Y (“X-M-Y” model) using ordinary least-squares (OLS) 

regression. Path coefficients for a (X predicting M; see Figure 

1) and b (M predicting Y, controlling for X) will each be 

manipulated at three levels (-0.3, 0.0, 0.3), c’ (X predicting Y, 

controlling for M) will be manipulated at three levels (-0.2, 

0.0, 0.2), and sample size (N) will be manipulated at two 

levels (100, 300). This results in a 3 (X) × 3 (M) × 3 (Y) × 2 (N) 

design. One thousand simulated datasets will be generated 

in each condition. Data will be generated for an X-M-Y 

model, and mediation tests will be conducted on the original 

X-M-Y models and with models that switch the order of M 

and Y variables (i.e., X-Y-M models). The Sobel test 

(MacKinnon, Warsi, & Dwyer, 1995; Sobel, 1982) will be 

computed and retained for each type of mediation model, 

with p < 0.05 indicating significant mediation for that 

particular model.  

Assumptions about the nature and properties of a dataset. 

Data in this example are generated in accordance with OLS 

regression assumptions, including the assumptions that 

random variables are sampled from populations with 

normal distributions, that residual errors are normally 

distributed with a mean of zero, and that residual errors are 

homoscedastic and serially uncorrelated. Assumptions 

about the relationships among X, M, and Y variables from 

Figure 1 are guided by the equations provided by Jo (2008), 

 �� = �� + ��� + 	�� (1) 

and 

 
� = �� + ��� + 

��� + 	�� (2) 

where ��, ��, and 
� represent values for the independent 

variable, mediator, and outcome for individual �, 

respectively; �� and �� represent the intercepts for � and 
 

after the other effects are accounted for, and �, �, and 
� 

correspond with the mediation regression paths shown in 

Figure 1. 

Generating data. Data for X, M, and Y with sample size N 

can be generated using the rnorm command. If N, a, b, and 

c’ (c’ is named cp in the syntax below) are each specified as 

single numeric values, then the following syntax will 

generate data for the X, M, and Y variables.  

> X = rnorm(N, 0, 1)  

> M = a*X + rnorm(N, 0, 1) 

> Y = cp*X + b*M + rnorm(N, 0, 1)  

The first line of the syntax above creates a random variable X 

with a mean of zero and a standard deviation of one for N 

observations. The second line creates a random variable M 

that regresses onto X with regression coefficient a and a 

random error with a mean of zero and standard deviation of 

one (error variances need not be fixed with a mean of zero 

and standard deviation of one, and can be specified at any 

value based on previous research or theoretically-expected 

values). The third line of syntax creates a random variable Y 

that regresses onto X and M with regression coefficients cp 

and b, respectively, with a random error that has a mean of 

zero and standard deviation of one. It will be shown below 

that the intercept parameters do not affect the significance of 

a mediation test, and thus the intercepts were left at zero in 

the three lines of code above; however, the intercept 

parameter could be manipulated in a similar manner to a, b, 

and c’ if desired. 

Statistical analyses are performed and parameters are 

retained. Once the random variables X, M, and Y have been 

generated, the next step is to perform a statistical analysis on 

the simulated data. In mediation analysis, the Sobel test 

(MacKinnon et al., 1995; Sobel, 1982) is commonly employed 

(although, see section below on bootstrapping), which tests 

the significance of a mediation effect by computing the 

magnitude of the indirect effect as the product of coefficients 

a and b (ab) and compares this value to the standard error of 

ab to obtain a z-like test statistic. Specifically, the Sobel test 

uses the formula 

  (3) 

where sa and sb are the standard errors of the estimates for 

regression coefficients a and b, respectively. The product of 

coefficients ab reflects the degree to which the effect of X on 

Y is mediated through variable M, and is contained in the 

numerator of Equation 3. The standard error of the 

distribution of ab is in the denominator of Equation 3, and 

the Sobel statistic obtained in the full equation provides a z-

like statistic that tests whether the ab effect is significantly 
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different from zero. Because the Sobel test will be computed 

many times, making a function to compute the Sobel test 

provides an efficient way to compute the test repeatedly. 

Such a function is defined below and called sobel_test. 

The function takes three arguments, vectors X, M, and Y as 

the first, second, and third arguments, respectively, and 

computes regression models for M regressed onto X and Y 

regressed onto X and M. The coefficients representing a, b, sa, 

and sb in Equation 3 are extracted by calling 

coefficients, then a Sobel test is computed and returned. 

> sobel_test <- function(X, M, Y){ 

>  M_X = lm(M ~ X)  

> Y_XM = lm(Y ~ X + M)  

> a = coefficients(M_X)[2] 

> b = coefficients(Y_XM)[3]  

> stdera =       

 summary(M_X)$coefficients[2,2]  

> stderb =       

 summary(Y_XM)$coefficients[3,2] 

> sobelz = a*b / sqrt(b^2*stdera^2 +  

  a^2*stderb^2)  

> return(sobelz)  

> } 

Data are generated and analyzed many times under the 

same conditions. So far syntax has been provided to 

generate one set of X, M, and Y variables and to compute a 

Sobel z-statistic from these variables. These procedures can 

now be repeated several hundred or thousand times to 

observe how this model behaves across many samples, 

which may be accomplished with for loops, as shown 

below. In the syntax below, the procedure for generating 

data and computing a Sobel test is repeated reps number 

of times, where reps is a single integer value. For each 

iteration of the for loop, data are saved to a matrix called d 

to retain information about the iteration number (i), a, b, 

and c’ parameters (a, b, and cp), the sample size (N), an 

indexing variable that tells whether the test statistic 

corresponds with an X-M-Y or X-Y-M mediation model (1 

vs. 2), and the computed Sobel test statistic which calls on 

the sobel_test function above. 

> for (i in 1:reps){ 

> X = rnorm(N, 0, 1)  

> M = a*X + rnorm(N, 0, 1)  

> Y = cp*X + b*M + rnorm(N, 0, 1) 

> d = rbind(d, c(i, a, b, cp, N, 1,  

  sobel_test(X, M, Y))) 

> d = rbind(d, c(i, a, b, cp, N, 2,  

  sobel_test(X, Y, M)))  

> } 

The above steps can then be repeated for datasets 

generated according to different parameters. In the present 

example, we wish to test three different values of a, b, c’, and 

N. Syntax for manipulating these parameters is included 

below. The values selected for a, b, c’, and N are specified as 

vectors called a_list, b_list, cp_list, and N_list, 

respectively. Four nested for loops index through each of 

the values in a_list, b_list, cp_list, and N_list and 

extract single values for these parameters that are used for 

data generation. For each combination of a, b, c’, and N, 

reps number of datasets are generated and subjected to the 

Sobel test using the same syntax presented above (some 

syntax is omitted below for brevity, and full syntax with 

more detailed annotation for this example is provided in 

Appendix A), and the data are then saved to a matrix called 

d: 

> N_list = c(100, 300)  

> a_list = c(-.3, 0, .3)  

> b_list = c(-.3, 0, .3)  

> cp_list = c(-.2, 0, .2) 

> reps = 1000 

> for (N in N_list){ 

>  for (a in a_list){  

>  for (b in b_list){  

>   for (cp in cp_list){   

>    for (i in 1:reps){ 

>     X = rnorm(N, 0, 1)  

>     M = a*X + rnorm(N, 0, 1) 

     #... syntax omitted 

>     d = rbind(d, c(i, a, b, 

      cp, N, 2, 

      sobel_test(X, Y, M)))  

>    } 

>   } 

>  } 

>  } 

> } 

Retained parameter estimates are analyzed to evaluate the 

question of interest. Executing the syntax above generates a 

matrix d that contains Sobel test statistics for X-M-Y 

(omitted for brevity) and X-Y-M mediation models (shown 

above) generated from a variety of a, b, c’, and N parameters. 

The next step is to evaluate the results of these models. 

Before this is done, it will be helpful to add labels to the 

variables in matrix d to allow for easy extraction of subsets 

of the results and to facilitate their interpretation:  
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> colnames(d) = c("iteration", "a", "b", 

 "cp", "N", "model", "Sobel_z")  

It is also desirable to save a backup copy of the results using 

the command 

> write.table(d, 

 "C:\\...\\mediation_output.csv",  

 sep=",", row.names=FALSE) 

In the syntax above, “...” must be replaced with the 

directory where results should be saved, and each folder 

must be separated by double backslashes (“\\”) if the R 

program is running on a Windows computer (on Macintosh, 

a colon “:” should be used, and in Linux/Unix, a single 

forward slash “/” should be used). 

Researchers can choose any number of ways to analyze 

the results of simulation studies, and the method chosen 

should be based on the nature of the question under 

examination. One way to compare the distributions of Sobel 

z-statistics obtained for the X-M-Y and X-Y-M mediation 

models in the current example is to use boxplots, which can 

be created in R (see ?boxplot for details) or other statistical 

software by importing the mediation_output.csv file 

into other data analytic software. As seen in Figure 2, in the 

first two conditions where the population parameters a = 0.3, 

b = 0.3, and c’ = 0.2, Sobel tests for X-M-Y and X-Y-M 

mediation models produce test statistics with nearly 

identical distributions and Sobel test-values are almost 

always significant (|z| > 1.96, which corresponds with p < 

.05, two-tailed) when N = 300 and other assumptions 

described above are held. In the latter two conditions where 

the population parameters a = 0.3, b = 0.3, and c’ = 0, Sobel 

tests for X-M-Y models remain high, while test statistics for 

X-Y-M models are lower even though approximately 25% of 

these models still had Sobel z-test statistics with magnitudes 

greater than 1.96 (and thus, p-values less than 0.05).  

The similarity of results between X-M-Y and X-Y-M 

models suggests limitations of using mediation analysis to 

identify causal relationships. Specifically, the same datasets 

may produce significant results under a variety of models 

that support different theories of the causal ordering of 

relations. For example, a variable that is truly a mediator 

may instead be specified as an outcome and still produce 

“significant” results in a mediation analysis. This could 

imply misleading support for a causal chain due to the way 

researchers specify the ordering of variables in the analysis. 

Figure 2.  Boxplot of partial results from Example 1 with N = 300. 
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This finding suggests that mediation analysis may produce 

misleading results in some situations, particularly when 

data are cross-sectional because of the lack of temporal-

ordering for observations of X, M, and Y that could provide 

stronger testing of a proposed causal sequence (Maxwell & 

Cole, 2007; Maxwell, Cole, & Mitchell, 2011). One 

implication of these findings is that researchers who 

perform mediation analysis should test alternative models. 

For example, researchers could test alternative models with 

assumed mediators modeled as outcomes and assumed 

outcomes modeled as mediators to test whether other 

plausible models are also “significant” (e.g., Witkiewitz et 

al., 2012).  

Example 2: Estimating the Statistical Power of a Model 

Simulations can be used to estimate the statistical power 

of a model -- i.e., the likelihood of rejecting the null 

hypothesis for a particular effect under a given set of 

conditions. Although statistical power can be estimated 

directly for many analyses with power tables (e.g., Maxwell 

& Delaney, 2004) and free software such as G*Power 

(Erdfelder, Faul, & Buchner, 2006; see Mayr, Erdfelder, 

Buchner, & Faul, 2007 for a tutorial on using G*Power), 

many types of analyses currently have no well-established 

method to directly estimate statistical power, as is the case 

with mediation analysis.  

The steps in Example 1 provide the necessary data to 

estimate the power of a mediation analysis if the 

assumptions and parameters specified in Example 1 remain 

the same. Thus, using the simulation results saved in dataset 

d generated in Example 1, the power of a mediation model 

under a given set of conditions can be estimated by 

identifying the relative frequency in which a mediation test 

was significant. 

For example, the syntax below extracts the Sobel test 

statistic from dataset d under the condition where a = 0.3, b = 

0.3, c’ = 0.2, N = 300, and “model” = 1 (i.e., an X-M-Y 

mediation model is tested). The vector of Sobel test statistics 

across 1000 repetitions is saved in a variable called z_dist. 

The absolute value each of the numbers in z_dist is 

compared against 1.96 (i.e., the z-value that corresponds 

with p < 0.05, two-tailed), creating a vector of values that are 

either TRUE (if the absolute value is greater than 1.96) or 

FALSE (if the absolute value is less than or equal to 1.96). 

The number of TRUE and FALSE values can be summarized 

using the table command (see ?table for details), which 

if divided by the length of the number of values in the 

vector will provide the proportion of Sobel tests with 

absolute value greater than 1.96: 

> z_dist = d$Sobel_z[d$a==0.3 & d$b==0.3 & 

 d$cp==0.2 & d$N==300 & d$model==1] 

> significant = abs(z_dist) > 1.96 

> table(significant)/length(significant) 

When the above syntax is run, the following result is printed 

significant 

FALSE  TRUE  

0.003  0.997 

which indicates that 99.7% of the datasets randomly 

sampled under the conditions specified above produced 

significant Sobel tests, and that the analysis has an estimated 

power of 0.997. 

One could also test the power of mediation models with 

different parameters specified. For example, the power of a 

model with all the same parameters as above except with a 

smaller sample size of N = 100 could be examined using the 

syntax  

> z_dist = d$Sobel_z[d$a==0.3 & d$b==0.3 & 

 d$cp==0.2 & d$N==100 & d$model==1] 

> significant = abs(z_dist) > 1.96 

> table(significant)/length(significant)  

which produces the following output 

significant 

FALSE  TRUE  

0.485  0.515 

The output above indicates that only 51.5% of the mediation 

models in this example were significant, which reflects the 

reduced power rate due to the smaller sample size. Full 

syntax for this example is provided in Appendix B. 

Example 3: Bootstrapping to Obtain Confidence Intervals 

In the above examples, the Sobel test was used to 

determine whether a mediation effect was significant. 

Although the Sobel test is more robust than other methods 

such as Baron and Kenny’s (1984) causal steps approach 

(Hayes, 2009; McKinnon et al., 1995), a limitation of the 

Sobel test is that it assumes that the sampling distribution of 

indirect effects (ab) is normally distributed in order for the p-

value obtained from the z-like statistic to be valid. This 

assumption typically is not met because the sampling 

distributions for a and b are each independently normal, and 

multiplying a and b introduces skew into the sampling 

distribution of ab. Bootstrapping can be used as an 

alternative to the Sobel test to obtain an empirically derived 

sampling distribution with confidence intervals that are 
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more accurate than the Sobel test. 

To obtain an empirical sampling distribution of indirect 

effects ab, N randomly selected participants from an 

observed dataset are sampled with replacement, where N is 

equal to the original sample size. A dataset containing the 

observed X, M, and Y values for these randomly resampled 

participants is created and subject to a mediation analysis 

using Equations 1 and 2. The a and b coefficients are 

obtained from these regression models, and the product of 

these coefficients, ab, is computed and retained. This 

procedure is repeated many times, perhaps 1000 or 10,000 

times, with a new set of subjects from the original sample 

randomly selected with replacement each time (Hélie, 2006). 

This provides an empirical sampling distribution of the 

product of coefficients ab that no longer requires the 

standard error of the estimate for ab to be computed. 

The syntax below provides the steps for bootstrapping a 

95% confidence interval of an indirect effect for variables X, 

M, and Y. A variable called ab_vector holds the 

bootstrapped distribution of ab values, and is initialized 

using the NULL argument to remove any data previously 

stored in this variable. A for loop is specified to repeat 

reps number of times, where reps is a single integer 

representing the number of repetitions that should be used 

for bootstrapping. Variable s is a vector containing row 

numbers of participants that are randomly sampled with 

replacement from the original observed sample (raw data 

for X, M, and Y in this example is provided in the 

supplemental file mediation_raw_data.csv; see 

Appendix C for syntax to import this dataset into R). The 

vectors Xs, Ys, and Ms store the values for X, Y, and M, 

respectively, that correspond with the subjects resampled 

based on the vector s. Finally, M_Xs and Y_XMs are lm 

objects containing linear regression models for Ms regressed 

onto Xs and for Ys regressed onto Xs and Ms, respectively, 

and the a and b coefficients in these two models are 

extracted. The product of coefficients ab is computed and 

saved to ab_vector, then the resampling process and 

computation of the ab effect are repeated. Once the 

repetitions are completed, 95% confidence interval limits are 

obtained using the quantile command to identify the 

values in ab_vector at the 2.5th and 97.5 percentiles (these 

values could be adjusted to obtain different confidence 

intervals; enter ?quantile in the R console for more 

details), and the result is saved in a vector called bootlim. 

Finally, a histogram of the ab effects in ab_vector is 

printed and displayed in Figure 3. 

> ab_vector = NULL  

> for (i in 1:reps){  

> s = sample(1:length(X), replace=TRUE)  

> Xs = X[s]  

> Ys = Y[s]  

> Ms = M[s]  

> M_Xs = lm(Ms ~ Xs)   

> Y_XMs = lm(Ys ~ Xs + Ms)   

> a = M_Xs$coefficients[2]  

> b = Y_XMs$coefficients[3] 

> ab = a*b  

> ab_vector = c(ab_vector, ab)   

> } 

> bootlim = c(quantile(ab_vector, 0.025),  

 quantile(ab_vector, 0.975))  

> hist(ab_vector) 

Full syntax with annotation for the bootstrapping 

procedure above is provided in Appendix C. Calling the 

bootlim vector returns the indirect effects that correspond 

with the 2.5th and 97.5th percentile of the empirical 

sampling distribution of ab, giving the following output: 

    2.5%       97.5%  

0.06635642   0.17234665 

Because the 95% confidence interval does not contain zero, 

the results indicate that the product of coefficients ab is 

significantly different than zero at p < 0.05. 

Discussion 

The preceding sections provided demonstrations of 

methods to implement simulation studies for different 

purposes, including answering novel questions related to 

statistical modeling, estimating power, and bootstrapping 

confidence intervals. The demonstrations presented here 

used mediation analysis as the content area to demonstrate 

the underlying processes used in simulation studies, but 

simulation studies are not limited only to questions related 

to mediation. Virtually any type of analysis or model could 

be explored using simulation studies. While the way that 

researchers construct simulations depends largely on the 

research question of interest, the basic procedures outlined 

here can be applied to a large array of simulation studies. 

While it is possible to run simulation studies in other 

programming environments (e.g., the latent variable 

modeling software MPlus, see Muthén & Muthén, 2002), R 

may provide unique advantages to other programs when 

running simulation studies because it is free, open source, 

and cross-platform. R also allows researchers to generate 

and manipulate their data with much more flexibility than 

many other programs, and contains packages to run a 

multitude of statistical analyses of interest to social science 
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researchers in a variety of domains.  

There are several limitations of simulation studies that 

should be noted. First, real-world data often do not adhere 

to the assumptions and parameters by which data are 

generated in simulation studies. For example, unlike the 

linear regression models for the examples above, it is often 

the case in real world studies that residual errors are not 

homoscedastic and serially uncorrelated. That is, real-world 

datasets are likely to be more “dirty” than the “clean” 

datasets that are generated in simulation studies, which are 

often generated under idealistic conditions. While these 

“dirty” aspects of data can be incorporated into simulation 

studies, the degree to which these aspects should be 

modeled into the data may be unknown and thus at times 

difficult to incorporate in a realistic manner. 

Second, it is practically impossible to know the values of 

true population parameters that are incorporated into 

simulation studies. For example, in the mediation examples 

above, the regression coefficients a, b, and c’ often may be 

unknown for a question of interest. Even if previous 

research provides empirically-estimated parameter 

estimates, the exact value for these population parameters is 

still unknown due to sampling error. To deal with this, 

researchers can run simulations across a variety of 

parameter values, as was done in Examples 1 and 2, to 

understand how their models may perform under different 

conditions, but pinpointing the exact parameter values that 

apply to their question of interest is unrealistic and typically 

impossible. 

Third, simulation studies often require considerable 

computation time because hundreds or thousands of 

datasets often must be generated and analyzed. Simulations 

that are large or use iterative estimation routines (e.g., 

maximum likelihood) may take hours, days, or even weeks 

to run, depending on the size of the study. 

Fourth, not all statistical questions require simulations to 

obtain meaningful answers. Many statistical questions can 

be answered through mathematical derivations, and in these 

cases simulation studies can demonstrate only what was 

shown already to be true through mathematical proofs 

(Maxwell & Cole, 1995). Thus, simulation studies are 

utilized best when they derive answers to problems that do 

Figure 3.  Empirical distribution of indirect effects (ab) used for bootstrapping a confidence interval. 
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not contain simple mathematical solutions. 

Simulation methods are relatively straightforward once 

the assumptions of a model and the parameters to be used 

for data generation are specified. Researchers who use 

simulation methods can have tight experimental control 

over these assumptions and their data, and can test how a 

model performs under a known set of parameters (whereas 

with real-world data, the parameters are unknown). 

Simulation methods are flexible and can be applied to a 

number of problems to obtain quantitative answers to 

questions that may not be possible to derive through other 

approaches. Results from simulation studies can be used to 

test obtained results with their theoretically-expected values 

to compare competing approaches for handling data, and 

the flexibility of simulation studies allows them to be used 

for a variety of purposes.  
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Appendix A: Syntax for Example 1 

#Answering a novel question about mediation analysis 
 
#This simulation will generate mediational datasets with three variables,  
#X, M, and Y, and will calculate Sobel z-tests for two competing mediation 
#models in each dataset: the first mediation model proposing that M mediates  
#the relationship between X and Y (X-M-Y mediation model), the second  
#mediation model poposes that Y mediates the relationship between X and M  
#(X-Y-M mediation model). 
 
#Note this simulation may take 10-45 minutes to complete, depending on  
#computer speed 
 
#Data characteristics specified by researcher -- edit these as needed 
N_list = c(100, 300)  #Values for N (number of participants in sample) 
a_list = c(-.3, 0, .3)  #values for the "a" effect (regression coefficient  

#for X->M path) 
b_list = c(-.3, 0, .3)  #values for the "b" effect (regression coefficient  

#for M->Y path after X is controlled) 
cp_list = c(-.2, 0, .2) #values for the "c-prime" effect (regression  

#coefficient for X->Y after M is controlled) 
reps = 1000   #number of datasets to be generated in each condition 
 
#Set starting seed for random number generator, this is not necessary but  
#allows results to be replicated exactly each time the simulation is run. 
set.seed(192) 
 
#Create a function for estimating Sobel z-test of mediation effects 
sobel_test <- function(X, M, Y){ 
 M_X = lm(M ~ X)         
 #regression model for M predicted by X 
 Y_XM = lm(Y ~ X + M)        
 #regression model for Y predicted by X and M 
 a = coefficients(M_X)[2]       
 #extracts the estimated "a" effect 
 b = coefficients(Y_XM)[3]       
 #extracts the estimated "b" effect 
 stdera = summary(M_X)$coefficients[2,2]  #extracts the standard error  

#of the "a" effect 
 stderb = summary(Y_XM)$coefficients[3,2]  #extracts the standard error  

#of the "b" effect 
 sobelz = a*b / sqrt(b^2 * stdera^2 + a^2 * stderb^2) #computes the  

#Sobel z-test statistic 
 return(sobelz)          
 #return the Sobel z-test statistic when this function is called 
} 
 
#run simulation 
d = NULL #start with an empty dataset 
#loop through all of the "N" sizes specified above 
for (N in N_list){ 

#loop through all of the "a" effects specified above 
 for (a in 1:a_list){   

#pick one "a" effect with which data will be simulated. This  
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#will start with #the value a = -0.3. 
  #loop through all of the "b" effects specified above 
  #pick one "b" effect with which data will be simulated 
  for (b in b_list){    
   #loop through all of the "c-prime" effects specified above   
   for (cp in cp_list){  
    #loop to replicate simulated datasets within each  

#condition 
    for (i in 1:reps){   
     #Generate mediation based on MacKinnon,  

#Fairchild, & Fritz (2007) equations for  
#mediation. This data is set-up so that X, M,  
#and Y are conformed to be the idealized  
#mediators 
#generate random variable X that has N  
#observations, mean = 0, sd = 1 
X = rnorm(N, 0, 1)     

 #generate random varible M that inclues the "a"  
#effect due to X and random error with mean = 
#0, sd = 1 

     M = a*X + rnorm(N, 0, 1)   
#generate random variable Y that includes "b"  
#and "c-prime" effects and random error with  
#mean = 0, sd = 1 
Y = cp*X + b*M + rnorm(N, 0, 1)  
#Compute Sobel z-test statistic for X-M-Y  
#mediation and save parameter information to  
#dtemp 

     d = rbind(d, c(i, a, b, cp, N, 1,  
sobel_test(X, M, Y)))  

#Compute Sobel z-test statistic for M-Y-X  
#mediation and save parameter information to  
#dtemp 
d = rbind(d, c(i, a, b, cp, N, 2,  

sobel_test(X, Y, M)))  
    } 
   } 
  } 
 } 
} 
#add column names to matrix "d" and convert to data.frame 
colnames(d) = c("iteration", "a", "b", "cp", "N", "model", "Sobel_z")  
d = data.frame(d) 
 
#save data frame "d" as a CSV file (need to change save path as needed) 
write.table(d, "C:\\Users\\...\\novel_question_output.csv", sep=",", 
row.names=FALSE) 
 
#save raw data from last iteration to data.set to illustrate bootstrapping  
#example (change file path as needed) 
d_raw = cbind(X, M, Y) 
write.table(d_raw, "C:\\Users\\...\\mediation_raw_data.csv", sep=",", 
row.names=FALSE) 
 
#Make a boxplot of X-M-Y and X-Y-M models when a=0.3, b=0.3, c' = 0.2, N =  
#300, and when a=0.3, b=0.3, c'=0, N = 300. 
boxplot(d$Sobel_z[d$a == 0.3 & d$b == 0.3 & d$cp == 0.2 & d$model == 1 & d$N 
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== 300],  
 d$Sobel_z[d$a == 0.3 & d$b == 0.3 & d$cp == 0.2 & d$model == 2 & d$N == 
300], 
 d$Sobel_z[d$a == 0.3 & d$b == 0.3 & d$cp == 0 & d$model == 1 & d$N == 
300],  
 d$Sobel_z[d$a == 0.3 & d$b == 0.3 & d$cp == 0 & d$model == 2 & d$N == 
300], 
 ylab="Sobel z-statistic", 
 xaxt = 'n', 
 tick=FALSE) #suppress x-axis labels to remove tick marks 
#Add labels to x-axis manually 
axis(1,at=c(1:4),labels=c("X-M-Y model\n(a=0.3, b=0.3, c'=0.2)", "X-Y-M 
model\n(a=0.3, b=0.3, c'=0.2)", "X-M-Y model\n(a=0.3, b=0.3, c'=0)", "X-Y-M 
model\n(a=0.3, b=0.3, c'=0)"),tick=FALSE) 
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Appendix B: Syntax for Example 2 

#Estimating power of a mediation test 
 
#read simulated dataset (change file path as needed) 
d = read.csv("C:\\Users\\...\\novel_question_output.csv", header=TRUE, 
sep=",") 
 
#Example where a = 0.3, b=0.3, c'=0.2, N = 300 
#extract Sobel z-statistic from the condition of interest 
z_dist = d$Sobel_z[d$a==0.3 & d$b==0.3 & d$cp==0.2 & d$N==300 & d$model==1] 
 
#identify which z-values are large enough to give p-value < 0.05 
significant = abs(z_dist) > 1.96 
 
#identify the proportion of z-values with p-value < 0.05. The proportion of 
#values that are TRUE is equal to the proportion of times the null hypothesis 
#of no indirect effect is rejected and is equivalent to power. 
table(significant)/length(significant) 
 
 
#Example where a = 0.3, b=0.3, c'=0.2, N = 100 
#extract Sobel z-statistic from the condition of interest 
z_dist = d$Sobel_z[d$a==0.3 & d$b==0.3 & d$cp==0.2 & d$N==100 & d$model==1] 
 
#identify which z-values are large enough to give p-value < 0.05 
significant = abs(z_dist) > 1.96 
 
#identify the proportion of z-values with p-value < 0.05. The proportion of 
#values that are TRUE is equal to the proportion of times the null hypothesis 
#of no indirect effect is rejected and is equivalent to power. 
table(significant)/length(significant) 
 
 
#Other example where a = 0.3, b=0, c'=0.2, N = 300 
#extract Sobel z-statistic from the condition of interest 
z_dist = d$Sobel_z[d$a==0.3 & d$b==0 & d$cp==0.2 & d$N==300 & d$model==1] 
 
#identify which z-values are large enough to give p-value < 0.05 
significant = abs(z_dist) > 1.96 
 
#identify the proportion of z-values with p-value < 0.05. The proportion of 
#values that are TRUE is equal to the proportion of times the null hypothesis 
#of no indirect effect is rejected and is equivalent to power. 
table(significant)/length(significant) 
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Appendix C: Syntax for Example 3 

#Bootstrapping a 95% CI for mediation test 
 
#Create a function for bootstrapping 
mediation_bootstrap <- function(X, M, Y, reps){ 
 ab_vector = NULL  #remove any data that is stored under the variable  

#ab_vector 
 for (i in 1:reps){ #loop the number of times specified by the reps  

#parameter 
  s = sample(1:length(X), replace=TRUE)  #sample cases N cases  

#WITH replacement 
  Xs = X[s] #extract X variable for the sampled cases indexed by s 
  Ys = Y[s] #extract Y variable for the sampled cases indexed by s 
  Ms = M[s] #extract M variable for the sampled cases indexed by s 
  M_Xs = lm(Ms ~ Xs)  #perform a regression model of M  

#predicted by X 
  Y_XMs = lm(Ys ~ Xs + Ms)#perform a regression model of Y  

#predicted by X and M 
  a = M_Xs$coefficients[2]#extract beta coefficient for magnitude  

#of X->M relationship 
b = Y_XMs$coefficients[3] #extract beta coefficient for 

#magnitude of M->Y relationship  
#(with X covaried) 

  ab = a*b #compute product of coefficients 
  ab_vector = c(ab_vector, ab)  #save each computed product of  

#coefficients to vector called 
#ab_vector 

 } 
 bootlim = c(quantile(ab_vector, 0.025), quantile(ab_vector, 0.975))  

#identify ab values at 2.5 and 97.5 percentile, representing 95%  
#CI 

 hist(ab_vector) 
 segments(bootlim, y0=0, y1=1000, lty=2) 
 text(bootlim, y=1100, labels=c("2.5 %ile", "97.5 %ile")) 
 return(bootlim) #return the 95% CI 
} 
 
#Set starting seed for random number generator, this is not necessary but  
#allows results to be replicated exactly each time the simulation is run. 
set.seed(192) 
 
#import raw data for bootstrapping (change file path as needed) 
d_raw = read.csv("C:\\Users\\...\\mediation_raw_data.csv", header=TRUE, 
sep=",") 
 
#identify 95% confidence interval for indirect effect in X-M-Y mediation  
#model 
mediation_bootstrap(d_raw$X, d_raw$M, d_raw$Y, 1000) 
 

 
 


