
Tutorials in Quantitative Methods for Psychology

2013, Vol. 9(2), p. 43-60.

 43

Conducting Simulation Studies in the

R Programming Environment

Kevin A. Hallgren

University of New Mexico

Simulation studies allow researchers to answer specific questions about data analysis,

statistical power, and best-practices for obtaining accurate results in empirical

research. Despite the benefits that simulation research can provide, many researchers

are unfamiliar with available tools for conducting their own simulation studies. The

use of simulation studies need not be restricted to researchers with advanced skills in

statistics and computer programming, and such methods can be implemented by

researchers with a variety of abilities and interests. The present paper provides an

introduction to methods used for running simulation studies using the R statistical

programming environment and is written for individuals with minimal experience

running simulation studies or using R. The paper describes the rationale and benefits

of using simulations and introduces R functions relevant for many simulation studies.

Three examples illustrate different applications for simulation studies, including (a)

the use of simulations to answer a novel question about statistical analysis, (b) the use

of simulations to estimate statistical power, and (c) the use of simulations to obtain

confidence intervals of parameter estimates through bootstrapping. Results and fully

annotated syntax from these examples are provided.

*
Simulations provide a powerful technique for

answering a broad set of methodological and theoretical

questions and provide a flexible framework to answer

specific questions relevant to one’s own research. For

example, simulations can evaluate the robustness of a

statistical procedure under ideal and non-ideal conditions,

and can identify strengths (e.g., accuracy of parameter

estimates) and weaknesses (e.g., type-I and type-II error

rates) of competing approaches for hypothesis testing.

 * Correspondence concerning this article should be

addressed to Kevin Hallgren, Department of Psychology, 1

University of New Mexico, MSC03 2220, Albuquerque, NM

87106. E-mail: khallg@unm.edu. This research was funded

by NIAAA grant F31AA021031.

The author would like to thank Mandy Owens, Chris

McLouth, and Nick Gaspelin for their feedback on previous

versions of this manuscript.

Simulations can be used to estimate the statistical power of

many models that cannot be estimated directly through

power tables and other classical methods (e.g., mediation

analyses, hierarchical linear models, structural equation

models, etc.). The procedures used for simulation studies are

also at the heart of bootstrapping methods, which use

resampling procedures to obtain empirical estimates of

sampling distributions, confidence intervals, and p-values

when a parameter sampling distribution is non-normal or

unknown.

The current paper will provide an overview of the

procedures involved in designing and implementing basic

simulation studies in the R statistical programming

environment (R Development Core Team, 2011). The paper

will first outline the logic and steps that are included in

simulation studies. Then, it will briefly introduce R syntax

that helps facilitate the use of simulations. Three examples

will be introduced to show the logic and procedures

involved in implementing simulation studies, with fully

Tous
Stamp

http://dx.doi.org/10.20982/tqmp.09.2.p043

 44

annotated R syntax and brief discussions of the results

provided. The examples will target three different uses of

simulation studies, including

1. Using simulations to answer a novel statistical

question

2. Using simulations to estimate the statistical power of

a model

3. Using bootstrapping to obtain a 95% confidence

interval of a model parameter estimate

For demonstrative purposes, these examples will achieve

their respective goals within the context of mediation

models. Specifically, Example 1 will answer a novel

statistical question about mediation model specification,

Example 2 will estimate the statistical power of a mediation

model, and Example 3 will bootstrap confidence intervals

for testing the significance of an indirect effect in a

mediation model. Despite the specificity of these example

applications, the goal of the present paper is to provide the

reader with an entry-level understanding of methods for

conducting simulation studies in R that can be applied to a

variety of statistical models unrelated to mediation analysis.

Rationale for Simulation Studies

Although many statistical questions can be answered

directly through mathematical analysis rather than

simulations, the complexity of some statistical questions

makes them more easily answered through simulation

methods. In these cases, simulations may be used to

generate datasets that conform to a set of known properties

(e.g., mean, standard deviation, degree of zero-inflation,

ceiling effects, etc. are specified by the researcher) and the

accuracy of the model-computed parameter estimates may

be compared to their specified values to determine how

adequately the model performs under the specified

conditions. Because several methods may be available for

analyzing datasets with these characteristics, the suitability

of these different methods could also be tested using

simulations to determine if some methods offer greater

accuracy than others (e.g., Estabrook, Grimm, & Bowles,

2012; Luh & Guo, 1999).

Simulation studies typically are designed according to

the following steps to ensure that the simulation study can

be informative to the researcher’s question:

1. A set of assumptions about the nature and

parameters of a dataset are specified.

2. A dataset is generated according to these

assumptions.

3. Statistical analyses of interest are performed on this

dataset, and the parameter estimates of interest from

these analyses (e.g., model coefficient estimates, fit

indices, p-values, etc.) are retained.

4. Steps 2 and 3 are repeated many times with many

newly generated datasets (e.g., 1000 datatsets) in

order to obtain an empirical distribution of

parameter estimates.

5. Often, the assumptions specified in step 1 are

modified and steps 2-4 are repeated for datasets

generated according to new parameters or

assumptions.

6. The obtained distributions of parameter estimates

from these simulated datasets are analyzed to

evaluate the question of interest.

The R Statistical Programming Environment

The R statistical programming environment (R

Development Core Team, 2011) provides an ideal platform

to conduct simulation studies. R includes the ability to fit a

variety of statistical models natively, includes sophisticated

procedures for data plotting, and has over 3000 add-on

packages that allow for additional modeling and plotting

techniques. R also allows researchers to incorporate features

common in most programming languages such as loops,

random number generators, conditional (if-then) logic,

branching, and reading and writing of data, all of which

facilitate the generation and analysis of data over many

repetitions that is required for many simulation studies. R

also is free, open source, and may be run across a variety of

operating systems.

Several existing add-on packages already allow R users

to conduct simulation studies, but typically these are

designed for running simulations for a specific type of

model or application. For example, the simsem package

provides functions for simulating structural equation

models (Pornprasertmanit, Miller, & Schoemann, 2012), ergm

includes functions for simulating social network exponential

random graphs (Handcock et al., 2012), mirt allows users to

simulate multivariate-normal data for item response theory

(Chalmers, 2012), and the simulate function in the native

stats package allows users to simulate fitted general linear

models and generalized linear models. It should be noted

that many simulation studies can be conducted efficiently

using these pre-existing functions, and that using the

alternative, more general method for running simulation

studies described here may not always be necessary.

However, the current paper will describe a set of general

methods and functions that can be used in a variety of

simulation studies, rather than describing the methods for

simulating specific types of models already developed in

other packages.

R Syntax

R is syntax-driven, which can create an initial hurdle that

 45

prevents many researchers from using it. While the learning

curve for syntax-driven statistical languages may be steep

initially, many people with little or no prior programming

experience have become comfortable using R. Also, such a

syntax-driven platform allows for much of the program’s

flexibility described above.

The simulations used in the following tutorials utilize

several basic R functions, with a rationale for their use

provided below and a brief description with examples given

in Table 1. A full tutorial on these basic functions and on

using R in general is not given here; instead, the reader is

referred to several open-source tutorials introducing R

(Kabacoff, 2012; Owen, 2010; Spector, 2004; Venables, Smith,

& R Development Core Team, 2012). Some commands that

serve a secondary function that are not directly related to

generating or analyzing simulation data (e.g., the

write.table command for saving a dataset) are not

discussed here but descriptions of such functions are

included in the annotated syntax examples in the

appendices. More information about each of the functions

used in this tutorial can be obtained from the help files

included in R or by entering ?<command> in the R

command line (e.g., enter ?c to get more information about

the c command).

R is an object-oriented program that works with data

structures such as vectors and data frames. Vectors are one

of the simplest data structures and contain an ordered list of

values. Vectors will be used throughout the examples

described in this tutorial to store values for variables in

simulated datasets and to store parameter estimates that are

retained from statistical analyses (e.g., p-values, parameter

point estimates, etc.). The examples here will make extensive

Table 1 (part A). Common R commands for simulation studies.

Commands for working with vectors

 Command Description Examples

 c Combines arguments to make

vectors

#create vector called a which contains the values 3, 5, 4

a = c(3,5,4)

#identical to above, uses <- instead of =

a <- c(3,4,5)

#return the second element in vector a, which is 5

a[2]

#remove the contents previously stored in vector a

a = NULL

 length Returns the length of a vector #return length of vector a, which is 3

a = c(3,5,4)

length(a)

 rbind and

cbind

Combine arguments by rows

or columns

#create matrix d that has vector a as row 1 and vector b as row 2.

a = c(3,5,4)

b = c(9,8,7)

d = rbind(a,b)

#create matrix e that has two copies of matrix d joined

by column

e = cbind(d,d)

Commands for generating random values

 Command Description Examples

 rnorm Randomly samples values

from normal distribution with

a given population M and SD

#randomly sample 100 values from a normal distribution with a

population M = 50 and SD = 10

x = rnorm(100, 50, 10)

 sample Randomly sample values from

another vector

#randomly sample 8 values from vector a, with replacement

a = c(1,2,3,4,5,6,7,8)

sample(a, size=8, replace=TRUE)

#e.g., returns 3 1 3 6 5 4 2 2

 set.seed Allows exact replication of

randomly-generated numbers

between simulations

#The same 5 random numbers returned each time the following

lines are run

set.seed(12345)

rnorm(5, 50, 10)

Note: Text appearing after the # symbol is not processed by R and is typically reserved for comments and

annotation. List of commands is not exhaustive.

 46

use of commands for generating, indexing, and combining

vectors, including the c command for generating and

combining vectors, the length command for obtaining the

number of items in a vector, and the rbind and cbind

commands for combining vectors by row or column,

respectively.

Two functions for creating random numbers, rnorm and

sample, will be used in the simulation examples in this

paper in order to generate values for random variables or to

sample subsets of observations from an existing dataset,

respectively. An additional function for setting the

randomization seed, set.seed, is useful for generating the

same sets of random numbers each time a simulation study

is run, allowing exact replications of results.

Statistical models in these tutorials will be fit using the

lm command, which models linear regression, analysis of

variance, and analysis of covariance (however, note that

there are many additional native and add-on R packages

that can fit a variety of models outside of the general linear

model framework). The lm command returns an object with

information about the fitted linear model, which may be

accessed through additional commands. For example, fixed

effect coefficients for the lm object called mymodel shown in

Table 1 (under the lm command) can be extracted by calling

for the coefficients values of mymodel, such that the

syntax

> f = mymodel$coefficients

returns the regression coefficients for the intercept and

effects of x1 and x2 in predicting y from the data in Table 1

and saves it to vector f, which has the following values:

(Intercept) x1 x2

3.07692308 0.07692308 2.36923077

Specific fixed effects could be further extracted by

indexing values from vector f; for example, the command

f[2] would extract the second value in vector f, which is

the fixed effect coefficient for x1.

The function command allows users to generate their

own customized functions, which provides a useful way of

reducing syntax when a procedure is repeated many times.

For example, the first tutorial below computes several Sobel

Table 1 (part B). Common R commands for simulation studies.

Command for statistical modeling

 Command Description Examples

 lm fits linear ordinary least

squares models

#Regress y onto x1 and x2

y = c(2,2,5,4,3,6,4,6,5,7)

x1 = c(1,2,3,1,1,2,3,1,2,2)

x2 = c(0,0,0,0,0,1,1,1,1,1)

mymodel = lm(y ~ x1 + x2)

summary(mymodel)

#retrieve fixed effect coefficients from a lm object

mymodel$coefficients

Commands for programming

 Command Description Examples

 function generate customized function # function that returns the sum of x1 and x2

myfunction = function(x1, x2){

 mysum = x1 + x2

 return(mysum)

}

 for create a loop, allowing

sequences of commands to be

executed a specified number

of times

#Create vector of empirical sample means (stored as mean_vector)

from 100 random samples of size N = 20, sampled from a

population M = 50 and SD = 10.

mean_vector = NULL

for (i in 1:100){

 x = rnorm(20, 50, 10)

 m = mean(x)

 mean_vector = c(mean_vector, m)

}

Note: Text appearing after the # symbol is not processed by R and is typically reserved for comments and

annotation. List of commands is not exhaustive.

 47

statistics each time a dataset is generated, and declaring a

function that computes the Sobel statistic allows the

program to call on one function each time the statistic must

be computed, rather than repeating several lines of the same

syntax within the simulation. The for command is used to

create loops, which allow sequences of commands that are

specified once to be executed several times. This is useful in

simulation studies because datasets often must be generated

and analyzed hundreds or thousands of times.

Tutorials

This section will outline examples of questions that may

be answered using simulation studies and describes the

methods used to answer those questions. In each example,

the underlying assumptions and procedures for generating

and analyzing data will be discussed, and fully annotated

syntax for the simulations will be provided as appendices.

Example 1: Answering a Novel Question about Mediation

Analysis

Mediation analysis is a statistical technique for analyzing

whether the effect of an independent variable (X) on an

outcome variable (Y) can be accounted for by an

intermediate variable (M; see Figure 1 for graphical

depiction; see Hayes 2009 for pedagogical review). When

mediation is present, the degree to which X predicts Y is

changed when M is added to the model in the manner

shown in Figure 1 (i.e., c – c’ ≠ 0 in Figure 1). The degree to

which the relationship between X and Y changes (c – c’) is

called the indirect effect, which is mathematically equivalent

to the product of the path coefficients ab shown in Figure 1.

The product of path coefficients ab (or equivalently, c – c’)

represents the amount of change in outcome variable Y that

can be attributed to being caused by changes in the

independent variable X operating through the mediating

variable M. In situations where a mediator variable cannot

be directly manipulated through experimentation,

mediation analysis has often been championed as a method

of choice for identifying variables that may cause an

observed outcome (Y) as part of a causal sequence where X

affects M, and M in turn affects Y.

For example, in psychotherapy research, the number of

times participants receive drink-refusal training (X) may

impact their self-efficacy to refuse drinks (M), and enhanced

self-efficacy may in turn cause improved abstinence from

alcohol (Y; e.g., Witkiewitz, Donovan, & Hartzler, 2012).

Self-efficacy cannot be directly manipulated by experiment,

so researchers may use mediation analysis to test whether a

particular psychotherapy increases self-efficacy, and

whether this in turn increases abstinence outcomes.

Figure 1. Direct effect model (top) and mediation model (bottom).

X Y

M

c’

a b

eM

eY

X Y
c

eY

 48

However, little research has identified the consequences of

wrongly specifying which variables are mediator variables

(M) versus outcome variables (Y). For example, it could also

be possible that drink-refusal training (X) enhances

abstinence from alcohol (Y), which in turn enhances self-

efficacy (M; e.g., X causes Y, Y causes M). Support for this

alternative model would guide treatment providers and

subsequent research efforts toward different goals than the

original model, and therefore it is important to know

whether mediation models are likely to produce significant

results even when the true causal order of effects is

incorrectly specified by investigators.

The present example uses simulations to test whether

mediation models produce significant results when the

implied causal ordering of effects is switched within the

tested model. Data is generated for three variables, X, M,

and Y, such that M mediates the relationship between X and

Y (“X-M-Y” model) using ordinary least-squares (OLS)

regression. Path coefficients for a (X predicting M; see Figure

1) and b (M predicting Y, controlling for X) will each be

manipulated at three levels (-0.3, 0.0, 0.3), c’ (X predicting Y,

controlling for M) will be manipulated at three levels (-0.2,

0.0, 0.2), and sample size (N) will be manipulated at two

levels (100, 300). This results in a 3 (X) × 3 (M) × 3 (Y) × 2 (N)

design. One thousand simulated datasets will be generated

in each condition. Data will be generated for an X-M-Y

model, and mediation tests will be conducted on the original

X-M-Y models and with models that switch the order of M

and Y variables (i.e., X-Y-M models). The Sobel test

(MacKinnon, Warsi, & Dwyer, 1995; Sobel, 1982) will be

computed and retained for each type of mediation model,

with p < 0.05 indicating significant mediation for that

particular model.

Assumptions about the nature and properties of a dataset.

Data in this example are generated in accordance with OLS

regression assumptions, including the assumptions that

random variables are sampled from populations with

normal distributions, that residual errors are normally

distributed with a mean of zero, and that residual errors are

homoscedastic and serially uncorrelated. Assumptions

about the relationships among X, M, and Y variables from

Figure 1 are guided by the equations provided by Jo (2008),

 �� = �� + ��� + 	�� (1)

and

� = �� + ��� +

��� + 	�� (2)

where ��, ��, and
� represent values for the independent

variable, mediator, and outcome for individual �,

respectively; �� and �� represent the intercepts for � and

after the other effects are accounted for, and �, �, and
�

correspond with the mediation regression paths shown in

Figure 1.

Generating data. Data for X, M, and Y with sample size N

can be generated using the rnorm command. If N, a, b, and

c’ (c’ is named cp in the syntax below) are each specified as

single numeric values, then the following syntax will

generate data for the X, M, and Y variables.

> X = rnorm(N, 0, 1)

> M = a*X + rnorm(N, 0, 1)

> Y = cp*X + b*M + rnorm(N, 0, 1)

The first line of the syntax above creates a random variable X

with a mean of zero and a standard deviation of one for N

observations. The second line creates a random variable M

that regresses onto X with regression coefficient a and a

random error with a mean of zero and standard deviation of

one (error variances need not be fixed with a mean of zero

and standard deviation of one, and can be specified at any

value based on previous research or theoretically-expected

values). The third line of syntax creates a random variable Y

that regresses onto X and M with regression coefficients cp

and b, respectively, with a random error that has a mean of

zero and standard deviation of one. It will be shown below

that the intercept parameters do not affect the significance of

a mediation test, and thus the intercepts were left at zero in

the three lines of code above; however, the intercept

parameter could be manipulated in a similar manner to a, b,

and c’ if desired.

Statistical analyses are performed and parameters are

retained. Once the random variables X, M, and Y have been

generated, the next step is to perform a statistical analysis on

the simulated data. In mediation analysis, the Sobel test

(MacKinnon et al., 1995; Sobel, 1982) is commonly employed

(although, see section below on bootstrapping), which tests

the significance of a mediation effect by computing the

magnitude of the indirect effect as the product of coefficients

a and b (ab) and compares this value to the standard error of

ab to obtain a z-like test statistic. Specifically, the Sobel test

uses the formula

 (3)

where sa and sb are the standard errors of the estimates for

regression coefficients a and b, respectively. The product of

coefficients ab reflects the degree to which the effect of X on

Y is mediated through variable M, and is contained in the

numerator of Equation 3. The standard error of the

distribution of ab is in the denominator of Equation 3, and

the Sobel statistic obtained in the full equation provides a z-

like statistic that tests whether the ab effect is significantly

 49

different from zero. Because the Sobel test will be computed

many times, making a function to compute the Sobel test

provides an efficient way to compute the test repeatedly.

Such a function is defined below and called sobel_test.

The function takes three arguments, vectors X, M, and Y as

the first, second, and third arguments, respectively, and

computes regression models for M regressed onto X and Y

regressed onto X and M. The coefficients representing a, b, sa,

and sb in Equation 3 are extracted by calling

coefficients, then a Sobel test is computed and returned.

> sobel_test <- function(X, M, Y){

> M_X = lm(M ~ X)

> Y_XM = lm(Y ~ X + M)

> a = coefficients(M_X)[2]

> b = coefficients(Y_XM)[3]

> stdera =

 summary(M_X)$coefficients[2,2]

> stderb =

 summary(Y_XM)$coefficients[3,2]

> sobelz = a*b / sqrt(b^2*stdera^2 +

 a^2*stderb^2)

> return(sobelz)

> }

Data are generated and analyzed many times under the

same conditions. So far syntax has been provided to

generate one set of X, M, and Y variables and to compute a

Sobel z-statistic from these variables. These procedures can

now be repeated several hundred or thousand times to

observe how this model behaves across many samples,

which may be accomplished with for loops, as shown

below. In the syntax below, the procedure for generating

data and computing a Sobel test is repeated reps number

of times, where reps is a single integer value. For each

iteration of the for loop, data are saved to a matrix called d

to retain information about the iteration number (i), a, b,

and c’ parameters (a, b, and cp), the sample size (N), an

indexing variable that tells whether the test statistic

corresponds with an X-M-Y or X-Y-M mediation model (1

vs. 2), and the computed Sobel test statistic which calls on

the sobel_test function above.

> for (i in 1:reps){

> X = rnorm(N, 0, 1)

> M = a*X + rnorm(N, 0, 1)

> Y = cp*X + b*M + rnorm(N, 0, 1)

> d = rbind(d, c(i, a, b, cp, N, 1,

 sobel_test(X, M, Y)))

> d = rbind(d, c(i, a, b, cp, N, 2,

 sobel_test(X, Y, M)))

> }

The above steps can then be repeated for datasets

generated according to different parameters. In the present

example, we wish to test three different values of a, b, c’, and

N. Syntax for manipulating these parameters is included

below. The values selected for a, b, c’, and N are specified as

vectors called a_list, b_list, cp_list, and N_list,

respectively. Four nested for loops index through each of

the values in a_list, b_list, cp_list, and N_list and

extract single values for these parameters that are used for

data generation. For each combination of a, b, c’, and N,

reps number of datasets are generated and subjected to the

Sobel test using the same syntax presented above (some

syntax is omitted below for brevity, and full syntax with

more detailed annotation for this example is provided in

Appendix A), and the data are then saved to a matrix called

d:

> N_list = c(100, 300)

> a_list = c(-.3, 0, .3)

> b_list = c(-.3, 0, .3)

> cp_list = c(-.2, 0, .2)

> reps = 1000

> for (N in N_list){

> for (a in a_list){

> for (b in b_list){

> for (cp in cp_list){

> for (i in 1:reps){

> X = rnorm(N, 0, 1)

> M = a*X + rnorm(N, 0, 1)

 #... syntax omitted

> d = rbind(d, c(i, a, b,

 cp, N, 2,

 sobel_test(X, Y, M)))

> }

> }

> }

> }

> }

Retained parameter estimates are analyzed to evaluate the

question of interest. Executing the syntax above generates a

matrix d that contains Sobel test statistics for X-M-Y

(omitted for brevity) and X-Y-M mediation models (shown

above) generated from a variety of a, b, c’, and N parameters.

The next step is to evaluate the results of these models.

Before this is done, it will be helpful to add labels to the

variables in matrix d to allow for easy extraction of subsets

of the results and to facilitate their interpretation:

 50

> colnames(d) = c("iteration", "a", "b",

 "cp", "N", "model", "Sobel_z")

It is also desirable to save a backup copy of the results using

the command

> write.table(d,

 "C:\\...\\mediation_output.csv",

 sep=",", row.names=FALSE)

In the syntax above, “...” must be replaced with the

directory where results should be saved, and each folder

must be separated by double backslashes (“\\”) if the R

program is running on a Windows computer (on Macintosh,

a colon “:” should be used, and in Linux/Unix, a single

forward slash “/” should be used).

Researchers can choose any number of ways to analyze

the results of simulation studies, and the method chosen

should be based on the nature of the question under

examination. One way to compare the distributions of Sobel

z-statistics obtained for the X-M-Y and X-Y-M mediation

models in the current example is to use boxplots, which can

be created in R (see ?boxplot for details) or other statistical

software by importing the mediation_output.csv file

into other data analytic software. As seen in Figure 2, in the

first two conditions where the population parameters a = 0.3,

b = 0.3, and c’ = 0.2, Sobel tests for X-M-Y and X-Y-M

mediation models produce test statistics with nearly

identical distributions and Sobel test-values are almost

always significant (|z| > 1.96, which corresponds with p <

.05, two-tailed) when N = 300 and other assumptions

described above are held. In the latter two conditions where

the population parameters a = 0.3, b = 0.3, and c’ = 0, Sobel

tests for X-M-Y models remain high, while test statistics for

X-Y-M models are lower even though approximately 25% of

these models still had Sobel z-test statistics with magnitudes

greater than 1.96 (and thus, p-values less than 0.05).

The similarity of results between X-M-Y and X-Y-M

models suggests limitations of using mediation analysis to

identify causal relationships. Specifically, the same datasets

may produce significant results under a variety of models

that support different theories of the causal ordering of

relations. For example, a variable that is truly a mediator

may instead be specified as an outcome and still produce

“significant” results in a mediation analysis. This could

imply misleading support for a causal chain due to the way

researchers specify the ordering of variables in the analysis.

Figure 2. Boxplot of partial results from Example 1 with N = 300.

-1
0

1
2

3
4

5

S
o
b
e
l
z
-s
ta
ti
s
ti
c

X-M-Y model

(a=0.3, b=0.3, c'=0.2)

X-Y-M model

(a=0.3, b=0.3, c'=0.2)

X-M-Y model

(a=0.3, b=0.3, c'=0)

X-Y-M model

(a=0.3, b=0.3, c'=0)

 51

This finding suggests that mediation analysis may produce

misleading results in some situations, particularly when

data are cross-sectional because of the lack of temporal-

ordering for observations of X, M, and Y that could provide

stronger testing of a proposed causal sequence (Maxwell &

Cole, 2007; Maxwell, Cole, & Mitchell, 2011). One

implication of these findings is that researchers who

perform mediation analysis should test alternative models.

For example, researchers could test alternative models with

assumed mediators modeled as outcomes and assumed

outcomes modeled as mediators to test whether other

plausible models are also “significant” (e.g., Witkiewitz et

al., 2012).

Example 2: Estimating the Statistical Power of a Model

Simulations can be used to estimate the statistical power

of a model -- i.e., the likelihood of rejecting the null

hypothesis for a particular effect under a given set of

conditions. Although statistical power can be estimated

directly for many analyses with power tables (e.g., Maxwell

& Delaney, 2004) and free software such as G*Power

(Erdfelder, Faul, & Buchner, 2006; see Mayr, Erdfelder,

Buchner, & Faul, 2007 for a tutorial on using G*Power),

many types of analyses currently have no well-established

method to directly estimate statistical power, as is the case

with mediation analysis.

The steps in Example 1 provide the necessary data to

estimate the power of a mediation analysis if the

assumptions and parameters specified in Example 1 remain

the same. Thus, using the simulation results saved in dataset

d generated in Example 1, the power of a mediation model

under a given set of conditions can be estimated by

identifying the relative frequency in which a mediation test

was significant.

For example, the syntax below extracts the Sobel test

statistic from dataset d under the condition where a = 0.3, b =

0.3, c’ = 0.2, N = 300, and “model” = 1 (i.e., an X-M-Y

mediation model is tested). The vector of Sobel test statistics

across 1000 repetitions is saved in a variable called z_dist.

The absolute value each of the numbers in z_dist is

compared against 1.96 (i.e., the z-value that corresponds

with p < 0.05, two-tailed), creating a vector of values that are

either TRUE (if the absolute value is greater than 1.96) or

FALSE (if the absolute value is less than or equal to 1.96).

The number of TRUE and FALSE values can be summarized

using the table command (see ?table for details), which

if divided by the length of the number of values in the

vector will provide the proportion of Sobel tests with

absolute value greater than 1.96:

> z_dist = d$Sobel_z[d$a==0.3 & d$b==0.3 &

 d$cp==0.2 & d$N==300 & d$model==1]

> significant = abs(z_dist) > 1.96

> table(significant)/length(significant)

When the above syntax is run, the following result is printed

significant

FALSE TRUE

0.003 0.997

which indicates that 99.7% of the datasets randomly

sampled under the conditions specified above produced

significant Sobel tests, and that the analysis has an estimated

power of 0.997.

One could also test the power of mediation models with

different parameters specified. For example, the power of a

model with all the same parameters as above except with a

smaller sample size of N = 100 could be examined using the

syntax

> z_dist = d$Sobel_z[d$a==0.3 & d$b==0.3 &

 d$cp==0.2 & d$N==100 & d$model==1]

> significant = abs(z_dist) > 1.96

> table(significant)/length(significant)

which produces the following output

significant

FALSE TRUE

0.485 0.515

The output above indicates that only 51.5% of the mediation

models in this example were significant, which reflects the

reduced power rate due to the smaller sample size. Full

syntax for this example is provided in Appendix B.

Example 3: Bootstrapping to Obtain Confidence Intervals

In the above examples, the Sobel test was used to

determine whether a mediation effect was significant.

Although the Sobel test is more robust than other methods

such as Baron and Kenny’s (1984) causal steps approach

(Hayes, 2009; McKinnon et al., 1995), a limitation of the

Sobel test is that it assumes that the sampling distribution of

indirect effects (ab) is normally distributed in order for the p-

value obtained from the z-like statistic to be valid. This

assumption typically is not met because the sampling

distributions for a and b are each independently normal, and

multiplying a and b introduces skew into the sampling

distribution of ab. Bootstrapping can be used as an

alternative to the Sobel test to obtain an empirically derived

sampling distribution with confidence intervals that are

 52

more accurate than the Sobel test.

To obtain an empirical sampling distribution of indirect

effects ab, N randomly selected participants from an

observed dataset are sampled with replacement, where N is

equal to the original sample size. A dataset containing the

observed X, M, and Y values for these randomly resampled

participants is created and subject to a mediation analysis

using Equations 1 and 2. The a and b coefficients are

obtained from these regression models, and the product of

these coefficients, ab, is computed and retained. This

procedure is repeated many times, perhaps 1000 or 10,000

times, with a new set of subjects from the original sample

randomly selected with replacement each time (Hélie, 2006).

This provides an empirical sampling distribution of the

product of coefficients ab that no longer requires the

standard error of the estimate for ab to be computed.

The syntax below provides the steps for bootstrapping a

95% confidence interval of an indirect effect for variables X,

M, and Y. A variable called ab_vector holds the

bootstrapped distribution of ab values, and is initialized

using the NULL argument to remove any data previously

stored in this variable. A for loop is specified to repeat

reps number of times, where reps is a single integer

representing the number of repetitions that should be used

for bootstrapping. Variable s is a vector containing row

numbers of participants that are randomly sampled with

replacement from the original observed sample (raw data

for X, M, and Y in this example is provided in the

supplemental file mediation_raw_data.csv; see

Appendix C for syntax to import this dataset into R). The

vectors Xs, Ys, and Ms store the values for X, Y, and M,

respectively, that correspond with the subjects resampled

based on the vector s. Finally, M_Xs and Y_XMs are lm

objects containing linear regression models for Ms regressed

onto Xs and for Ys regressed onto Xs and Ms, respectively,

and the a and b coefficients in these two models are

extracted. The product of coefficients ab is computed and

saved to ab_vector, then the resampling process and

computation of the ab effect are repeated. Once the

repetitions are completed, 95% confidence interval limits are

obtained using the quantile command to identify the

values in ab_vector at the 2.5th and 97.5 percentiles (these

values could be adjusted to obtain different confidence

intervals; enter ?quantile in the R console for more

details), and the result is saved in a vector called bootlim.

Finally, a histogram of the ab effects in ab_vector is

printed and displayed in Figure 3.

> ab_vector = NULL

> for (i in 1:reps){

> s = sample(1:length(X), replace=TRUE)

> Xs = X[s]

> Ys = Y[s]

> Ms = M[s]

> M_Xs = lm(Ms ~ Xs)

> Y_XMs = lm(Ys ~ Xs + Ms)

> a = M_Xs$coefficients[2]

> b = Y_XMs$coefficients[3]

> ab = a*b

> ab_vector = c(ab_vector, ab)

> }

> bootlim = c(quantile(ab_vector, 0.025),

 quantile(ab_vector, 0.975))

> hist(ab_vector)

Full syntax with annotation for the bootstrapping

procedure above is provided in Appendix C. Calling the

bootlim vector returns the indirect effects that correspond

with the 2.5th and 97.5th percentile of the empirical

sampling distribution of ab, giving the following output:

 2.5% 97.5%

0.06635642 0.17234665

Because the 95% confidence interval does not contain zero,

the results indicate that the product of coefficients ab is

significantly different than zero at p < 0.05.

Discussion

The preceding sections provided demonstrations of

methods to implement simulation studies for different

purposes, including answering novel questions related to

statistical modeling, estimating power, and bootstrapping

confidence intervals. The demonstrations presented here

used mediation analysis as the content area to demonstrate

the underlying processes used in simulation studies, but

simulation studies are not limited only to questions related

to mediation. Virtually any type of analysis or model could

be explored using simulation studies. While the way that

researchers construct simulations depends largely on the

research question of interest, the basic procedures outlined

here can be applied to a large array of simulation studies.

While it is possible to run simulation studies in other

programming environments (e.g., the latent variable

modeling software MPlus, see Muthén & Muthén, 2002), R

may provide unique advantages to other programs when

running simulation studies because it is free, open source,

and cross-platform. R also allows researchers to generate

and manipulate their data with much more flexibility than

many other programs, and contains packages to run a

multitude of statistical analyses of interest to social science

 53

researchers in a variety of domains.

There are several limitations of simulation studies that

should be noted. First, real-world data often do not adhere

to the assumptions and parameters by which data are

generated in simulation studies. For example, unlike the

linear regression models for the examples above, it is often

the case in real world studies that residual errors are not

homoscedastic and serially uncorrelated. That is, real-world

datasets are likely to be more “dirty” than the “clean”

datasets that are generated in simulation studies, which are

often generated under idealistic conditions. While these

“dirty” aspects of data can be incorporated into simulation

studies, the degree to which these aspects should be

modeled into the data may be unknown and thus at times

difficult to incorporate in a realistic manner.

Second, it is practically impossible to know the values of

true population parameters that are incorporated into

simulation studies. For example, in the mediation examples

above, the regression coefficients a, b, and c’ often may be

unknown for a question of interest. Even if previous

research provides empirically-estimated parameter

estimates, the exact value for these population parameters is

still unknown due to sampling error. To deal with this,

researchers can run simulations across a variety of

parameter values, as was done in Examples 1 and 2, to

understand how their models may perform under different

conditions, but pinpointing the exact parameter values that

apply to their question of interest is unrealistic and typically

impossible.

Third, simulation studies often require considerable

computation time because hundreds or thousands of

datasets often must be generated and analyzed. Simulations

that are large or use iterative estimation routines (e.g.,

maximum likelihood) may take hours, days, or even weeks

to run, depending on the size of the study.

Fourth, not all statistical questions require simulations to

obtain meaningful answers. Many statistical questions can

be answered through mathematical derivations, and in these

cases simulation studies can demonstrate only what was

shown already to be true through mathematical proofs

(Maxwell & Cole, 1995). Thus, simulation studies are

utilized best when they derive answers to problems that do

Figure 3. Empirical distribution of indirect effects (ab) used for bootstrapping a confidence interval.

 54

not contain simple mathematical solutions.

Simulation methods are relatively straightforward once

the assumptions of a model and the parameters to be used

for data generation are specified. Researchers who use

simulation methods can have tight experimental control

over these assumptions and their data, and can test how a

model performs under a known set of parameters (whereas

with real-world data, the parameters are unknown).

Simulation methods are flexible and can be applied to a

number of problems to obtain quantitative answers to

questions that may not be possible to derive through other

approaches. Results from simulation studies can be used to

test obtained results with their theoretically-expected values

to compare competing approaches for handling data, and

the flexibility of simulation studies allows them to be used

for a variety of purposes.

References

Baron, R. M., & Kenny, D. A. (1986). The moderator-

mediator distinction in social psychological research:

Conceptual, strategic, and statistical considerations.

Journal of Personality and Social Psychology, 51(6), 1173–

1182.

Chalmers, P. (2012). Multidimensional Item Response

Theory [computer software]. Available from

http://cran.r-project.org/web/packages/mirt/index.html.

Erdfelder, E., Faul, F., & Buchner, A. (1996). GPOWER: A

general power analysis program. Behavior Research

Methods, Instruments & Computers, 28(1), 1–11.

Estabrook, R., Grimm, K. J. & Bowles, R. P. (2012, January

23). A Monte Carlo simulation study assessment of the

reliability of within–person variability. Psychology and

Aging. Advance online publication. doi:

10.1037/a0026669

Handcock, M. S., Hunder, D. R., Butts, C. T., Goodreau, S.

M., Krivitsky, P. N., & Morris, M. (2012). Fit, Simulate,

and Diagnose Exponential-Family Models for Networks

[computer software]. Available from http://cran.r-

project.org/web/packages/ergm/index.html.

Hayes, A. F. (2009). Beyond Baron and Kenny: Statistical

mediation analysis in the new millennium.

Communication Monographs, 76(4), 408-420.

Hélie, S. (2006). An introduction to model selection: Tools

and algorithms. Tutorials in Quantitative Methods for

Psychology, 2(1), 1-10.

Jo, B. (2008). Causal inference in randomized experiments

with mediational processes. Psychological Methods, 13(4),

314–336.

Kabacoff, R. (2012). Quick-R: Accessing the power of R.

Retrieved from http://www.statmethods.net/

Luh, W., Guo, J. (1999). A powerful transformation trimmed

mean method for one-way fixed effects ANOVA model

under non-normality and inequality of variances. British

Journal of Mathematical and Statistical Psychology, 52(2),

303-320.

MacKinnon, D. P., Warsi, G., & Dwyer, J. H. (1995). A

simulation study of mediated effect measures.

Multivariate Behavioral Research, 30, 41-62.

Maxwell, S. E., & Cole, D. A. (1995). Tips for writing (and

reading) methodological articles. Psychological Bulletin

118(2), 193-198.

Maxwell, S. E., Cole, D. A., & Mitchell, M. A. (2011). Bias in

cross-sectional analyses of longitudinal mediation:

Partial and complete mediation under an autoregressive

model. Multivariate Behavioral Research 45, 816-841.

Maxwell, S. E., & Delaney, H. D. (2004). Designing

experiments and analyzing data: A model comparison

perspective (2nd ed.). Mahwah, NJ: Lawrence Erlbaum.

Mayr, S., Erdfelder, E., Buchner, A., & Faul, F. (2007). A

short tutorial of GPower. Tutorials in Quantitative Methods

for Psychology, 3(2), 51–59.

Muthén, L. K., & Muthén, B. O. (2002). Teacherʼs corner:

How to use a Monte Carlo study to decide on sample

size and determine power. Structural Equation Modeling:

A Multidisciplinary Journal, 9(4), 599–620.

Owen, W. J. (2010). The R guide. Retrieved from http://cran.r-

project.org/doc/contrib/Owen-TheRGuide.pdf

Pornprasertmanit, S., Miller, P., & Schoemann, A. (2012).

SIMulated Structural Equation Modeling [computer

software]. Available from http://cran.r-

project.org/web/packages/simsem/index.html.

R Development Core Team (2011). R: A Language and

Environment for Statistical Computing [computer

software]. Available from http://www.R-project.org

Spector, P. (2004). An introduction to R. Retrieved from

http://www.stat.berkeley.edu/~spector/R.pdf

Sobel, M. E. (1982). Asymptotic intervals for indirect effects

in structural equations models. In S. Leinhart (Ed.),

Sociological methodology 1982 (pp.290-312). San Francisco:

Jossey-Bass.

Venables, W. N., Smith, D. M., and the R Development Core

Team (2012). An introduction to R. Retrieved from

http://cran.r-project.org/doc/manuals/R-intro.pdf

 55

Witkiewitz, K., Donovan, D. M., & Hartzler, B. (2012). Drink

refusal training as part of a combined behavioral

intervention: Effectiveness and mechanisms of change.

Journal of Consulting and Clinical Psychology 80(3), 440-449.

Manuscript received 12 September 2012

Manuscript accepted 26 November 2012

Appendices follow.

 56

Appendix A: Syntax for Example 1

#Answering a novel question about mediation analysis

#This simulation will generate mediational datasets with three variables,
#X, M, and Y, and will calculate Sobel z-tests for two competing mediation
#models in each dataset: the first mediation model proposing that M mediates
#the relationship between X and Y (X-M-Y mediation model), the second
#mediation model poposes that Y mediates the relationship between X and M
#(X-Y-M mediation model).

#Note this simulation may take 10-45 minutes to complete, depending on
#computer speed

#Data characteristics specified by researcher -- edit these as needed
N_list = c(100, 300) #Values for N (number of participants in sample)
a_list = c(-.3, 0, .3) #values for the "a" effect (regression coefficient

#for X->M path)
b_list = c(-.3, 0, .3) #values for the "b" effect (regression coefficient

#for M->Y path after X is controlled)
cp_list = c(-.2, 0, .2) #values for the "c-prime" effect (regression

#coefficient for X->Y after M is controlled)
reps = 1000 #number of datasets to be generated in each condition

#Set starting seed for random number generator, this is not necessary but
#allows results to be replicated exactly each time the simulation is run.
set.seed(192)

#Create a function for estimating Sobel z-test of mediation effects
sobel_test <- function(X, M, Y){
 M_X = lm(M ~ X)
 #regression model for M predicted by X
 Y_XM = lm(Y ~ X + M)
 #regression model for Y predicted by X and M
 a = coefficients(M_X)[2]
 #extracts the estimated "a" effect
 b = coefficients(Y_XM)[3]
 #extracts the estimated "b" effect
 stdera = summary(M_X)$coefficients[2,2] #extracts the standard error

#of the "a" effect
 stderb = summary(Y_XM)$coefficients[3,2] #extracts the standard error

#of the "b" effect
 sobelz = a*b / sqrt(b^2 * stdera^2 + a^2 * stderb^2) #computes the

#Sobel z-test statistic
 return(sobelz)
 #return the Sobel z-test statistic when this function is called
}

#run simulation
d = NULL #start with an empty dataset
#loop through all of the "N" sizes specified above
for (N in N_list){

#loop through all of the "a" effects specified above
 for (a in 1:a_list){

#pick one "a" effect with which data will be simulated. This

 57

#will start with #the value a = -0.3.
 #loop through all of the "b" effects specified above
 #pick one "b" effect with which data will be simulated
 for (b in b_list){
 #loop through all of the "c-prime" effects specified above
 for (cp in cp_list){
 #loop to replicate simulated datasets within each

#condition
 for (i in 1:reps){
 #Generate mediation based on MacKinnon,

#Fairchild, & Fritz (2007) equations for
#mediation. This data is set-up so that X, M,
#and Y are conformed to be the idealized
#mediators
#generate random variable X that has N
#observations, mean = 0, sd = 1
X = rnorm(N, 0, 1)

 #generate random varible M that inclues the "a"
#effect due to X and random error with mean =
#0, sd = 1

 M = a*X + rnorm(N, 0, 1)
#generate random variable Y that includes "b"
#and "c-prime" effects and random error with
#mean = 0, sd = 1
Y = cp*X + b*M + rnorm(N, 0, 1)
#Compute Sobel z-test statistic for X-M-Y
#mediation and save parameter information to
#dtemp

 d = rbind(d, c(i, a, b, cp, N, 1,
sobel_test(X, M, Y)))

#Compute Sobel z-test statistic for M-Y-X
#mediation and save parameter information to
#dtemp
d = rbind(d, c(i, a, b, cp, N, 2,

sobel_test(X, Y, M)))
 }
 }
 }
 }
}
#add column names to matrix "d" and convert to data.frame
colnames(d) = c("iteration", "a", "b", "cp", "N", "model", "Sobel_z")
d = data.frame(d)

#save data frame "d" as a CSV file (need to change save path as needed)
write.table(d, "C:\\Users\\...\\novel_question_output.csv", sep=",",
row.names=FALSE)

#save raw data from last iteration to data.set to illustrate bootstrapping
#example (change file path as needed)
d_raw = cbind(X, M, Y)
write.table(d_raw, "C:\\Users\\...\\mediation_raw_data.csv", sep=",",
row.names=FALSE)

#Make a boxplot of X-M-Y and X-Y-M models when a=0.3, b=0.3, c' = 0.2, N =
#300, and when a=0.3, b=0.3, c'=0, N = 300.
boxplot(d$Sobel_z[d$a == 0.3 & d$b == 0.3 & d$cp == 0.2 & d$model == 1 & d$N

 58

== 300],
 d$Sobel_z[d$a == 0.3 & d$b == 0.3 & d$cp == 0.2 & d$model == 2 & d$N ==
300],
 d$Sobel_z[d$a == 0.3 & d$b == 0.3 & d$cp == 0 & d$model == 1 & d$N ==
300],
 d$Sobel_z[d$a == 0.3 & d$b == 0.3 & d$cp == 0 & d$model == 2 & d$N ==
300],
 ylab="Sobel z-statistic",
 xaxt = 'n',
 tick=FALSE) #suppress x-axis labels to remove tick marks
#Add labels to x-axis manually
axis(1,at=c(1:4),labels=c("X-M-Y model\n(a=0.3, b=0.3, c'=0.2)", "X-Y-M
model\n(a=0.3, b=0.3, c'=0.2)", "X-M-Y model\n(a=0.3, b=0.3, c'=0)", "X-Y-M
model\n(a=0.3, b=0.3, c'=0)"),tick=FALSE)

 59

Appendix B: Syntax for Example 2

#Estimating power of a mediation test

#read simulated dataset (change file path as needed)
d = read.csv("C:\\Users\\...\\novel_question_output.csv", header=TRUE,
sep=",")

#Example where a = 0.3, b=0.3, c'=0.2, N = 300
#extract Sobel z-statistic from the condition of interest
z_dist = d$Sobel_z[d$a==0.3 & d$b==0.3 & d$cp==0.2 & d$N==300 & d$model==1]

#identify which z-values are large enough to give p-value < 0.05
significant = abs(z_dist) > 1.96

#identify the proportion of z-values with p-value < 0.05. The proportion of
#values that are TRUE is equal to the proportion of times the null hypothesis
#of no indirect effect is rejected and is equivalent to power.
table(significant)/length(significant)

#Example where a = 0.3, b=0.3, c'=0.2, N = 100
#extract Sobel z-statistic from the condition of interest
z_dist = d$Sobel_z[d$a==0.3 & d$b==0.3 & d$cp==0.2 & d$N==100 & d$model==1]

#identify which z-values are large enough to give p-value < 0.05
significant = abs(z_dist) > 1.96

#identify the proportion of z-values with p-value < 0.05. The proportion of
#values that are TRUE is equal to the proportion of times the null hypothesis
#of no indirect effect is rejected and is equivalent to power.
table(significant)/length(significant)

#Other example where a = 0.3, b=0, c'=0.2, N = 300
#extract Sobel z-statistic from the condition of interest
z_dist = d$Sobel_z[d$a==0.3 & d$b==0 & d$cp==0.2 & d$N==300 & d$model==1]

#identify which z-values are large enough to give p-value < 0.05
significant = abs(z_dist) > 1.96

#identify the proportion of z-values with p-value < 0.05. The proportion of
#values that are TRUE is equal to the proportion of times the null hypothesis
#of no indirect effect is rejected and is equivalent to power.
table(significant)/length(significant)

 60

Appendix C: Syntax for Example 3

#Bootstrapping a 95% CI for mediation test

#Create a function for bootstrapping
mediation_bootstrap <- function(X, M, Y, reps){
 ab_vector = NULL #remove any data that is stored under the variable

#ab_vector
 for (i in 1:reps){ #loop the number of times specified by the reps

#parameter
 s = sample(1:length(X), replace=TRUE) #sample cases N cases

#WITH replacement
 Xs = X[s] #extract X variable for the sampled cases indexed by s
 Ys = Y[s] #extract Y variable for the sampled cases indexed by s
 Ms = M[s] #extract M variable for the sampled cases indexed by s
 M_Xs = lm(Ms ~ Xs) #perform a regression model of M

#predicted by X
 Y_XMs = lm(Ys ~ Xs + Ms)#perform a regression model of Y

#predicted by X and M
 a = M_Xs$coefficients[2]#extract beta coefficient for magnitude

#of X->M relationship
b = Y_XMs$coefficients[3] #extract beta coefficient for

#magnitude of M->Y relationship
#(with X covaried)

 ab = a*b #compute product of coefficients
 ab_vector = c(ab_vector, ab) #save each computed product of

#coefficients to vector called
#ab_vector

 }
 bootlim = c(quantile(ab_vector, 0.025), quantile(ab_vector, 0.975))

#identify ab values at 2.5 and 97.5 percentile, representing 95%
#CI

 hist(ab_vector)
 segments(bootlim, y0=0, y1=1000, lty=2)
 text(bootlim, y=1100, labels=c("2.5 %ile", "97.5 %ile"))
 return(bootlim) #return the 95% CI
}

#Set starting seed for random number generator, this is not necessary but
#allows results to be replicated exactly each time the simulation is run.
set.seed(192)

#import raw data for bootstrapping (change file path as needed)
d_raw = read.csv("C:\\Users\\...\\mediation_raw_data.csv", header=TRUE,
sep=",")

#identify 95% confidence interval for indirect effect in X-M-Y mediation
#model
mediation_bootstrap(d_rawX, d_rawM, d_raw$Y, 1000)

