
Fitting Parameters for Procedural Plant Generation

Albert Garifullin

Lomonosov Moscow State
University

GSP-1, Leninskie Gory

119991, Moscow, Russia

albgar-14@yandex.ru

Alexandr Shcherbakov

Lomonosov Moscow State
University

GSP-1, Leninskie Gory

119991, Moscow, Russia

alex.shcherbakov@graphics.cs.m
su.ru

Frolov Vladimir

Lomonosov Moscow State
University

Keldysh Institute of Applied
Mathematics

GSP-1, Leninskie Gory

119991, Moscow, Russia

vfrolov@graphics.cs.msu.ru

ABSTRACT
We propose a novel method to obtain a 3D model of a tree based on a single input image by fitting parameters
for some procedural plant generator. Unlike other methods, our approach can work with any plant generator,
treating it as a black-box function. It is also possible to specify the desired characteristics of the plant, such as the
geometric complexity of the model or its size. We propose a similarity function between the given image and
generated model, that better catches the significant differences between tree shapes. To find the appropriate
parameter set, we use a specific variant of a genetic algorithm designed for this purpose to maximize similarity
function. This approach can greatly simplify the artist's work. We demonstrate the results of our algorithm with
several procedural generators, from a very simple to a fairly advanced one.

Keywords
3D modeling, plants modeling, tree reconstruction, genetic algorithms

1. INTRODUCTION
Trees and other plants play a key role in shaping the
landscapes around us, and therefore a realistic
representation of vegetation is one of the important
tasks of computer graphics. The use of tree models is
necessary for many industries - from computer games
and virtual reality systems to architecture and urban
planning. Nowadays diversity and realism in the
visualization of vegetation are needed.

It is possible to solve this problem with the help of
3D reconstruction, creating a model of a tree that
exists in the real world. However, this requires a
detailed representation of the tree structure like laser
scanning data with a high level of detail, but such
data is difficult and expensive to obtain. The
reconstruction of the tree from the images probably
won't be accurate, as many branches are hidden by
the crown or strongly intertwined with each other. An
alternative to reconstructing trees can be their
creation using procedural generation. The main
problem with this approach is that the tree is created
from a set of some input parameters and their correct
selection requires a lot of time from the artist.
Various parameters significantly affect each other and
it is often not obvious to the user how changing some
value of the input parameter affects the final model.

We propose an algorithm that combines both of these
approaches and performs image-based modeling of
plants. It takes a single image and a procedural
generator and finds such a set of parameters of this
generator that results in a tree most similar to the
image. The appropriate set of parameters is found as
the maximum point of the “similarity” function of the
model and the original image. To optimize this
function, a special version of the genetic algorithm
was implemented. The main advantage of our
solution is its independence from the generator, as
the algorithm treats it like a black box, while existing
solutions rely heavily on their own generators,
inevitably limited in their capabilities. Also, our
approach allows users to specify some other desired
properties of the model, such as its geometric
complexity, which is useful for practical application.

2. RELATED WORK
Trees Modeling
The problem of vegetation modeling has been an area
of scientific interest for many years. At the moment,
all approaches to plant modeling can be divided into
3 groups - interactive, procedural, and reconstructive
[Sme14]. Interactive methods are the most widely
used in the industry. Projects like SpeedTree [St17]
or Xfrog [Xf17] provide an artist with a tool that
allows him to interactively create highly detailed tree
models, but their use requires a certain level of skill,
and creating a model takes a lot of time. Procedural

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3201 WSCG 2022 Proceedings

https://www.doi.org/10.24132/CSRN.3201.35 282

mailto:albgar-14@yandex.ru

generation methods can create a model of a plant
without human involvement, relying only on a
certain set of input parameters and, possibly, a
description of the environment. There are many
different methods of procedural modeling of plants.
Early works used sets of rules to describe the
structure of a tree [Hon71][Web95], L-systems
[Pru86][Pru12], cellular automata [Gre89], and
particle systems [Ree85]. All of them somehow come
down to the recursive construction of a plant model,
without taking into account the environment. Newer
works concentrate on simulating the growth process
and the influence of the environment on it
[Lon12][Had17][Yi15][Yi18]. There are, although
less commonly used in practice, methods for
reconstructing tree models from multiple images
[Neu07][Ch08], video [Li11], and laser-scanned 3D
point clouds [Liv10][Du19], including using neural
networks [Liu21].

Image-Based Modeling
The closest to our work are combined methods
involving the use of a procedural generator for model
creation. So in [St14], a 3D model of the tree is used,
according to which the generator parameters are
selected. The work [Tan08] focuses on modeling a
tree based on a single image, in which the user needs
to manually select the main branches and crown.
According to this image, a 3D model of the tree is
assembled from a given set of branches. The work
[Li21] also uses only one image for creating a model,
but fully automates this process by using three neural
networks: the first is used to segment the image, the
second to form an approximate representation of the
tree in the form of radial bounding volumes, and the
third to determine the type of plant. A plant species is
defined as a set of parameters for a specific
procedural generator, also described in the paper.
All these works are based on the use of their own
procedural methods of plant modeling. This imposes
serious restrictions on the application of their results
since only those trees that can be described by the
procedural model used in the work can be created. In
addition, existing works do not allow the user to
control how complex and detailed a 3D model will
turn out, although this is necessary in many cases.
Our method implements the same image-based
approach but does not have these restrictions because
it can work with different procedural generators.

Differentiable Rendering
In addition to specific reconstruction methods for
trees, there are more general approaches. Currently,
approaches based on differentiable rendering are
popular for solving problems of accurate
reconstruction [Has21][Mun21][Tak22][Hu22]. In
these approaches, differentiable rendering can be
used to propagate the error backward from the

triangular mesh to the original model. So in [Mun21]
the error spread from the mesh to the tetrahedron grid
to optimize the topology, and in [Hu22] to the
parameters of the procedural texture generator.
Although this approach looks promising, there are
several difficulties in applying it to the procedural
generation of vegetation. Firstly, the procedural
model must be differentiable, which is generally not
satisfied. Secondly, small changes in the parameters
of procedural generators do not always lead to small
changes in the resulting 3D model. This means that
gradient optimization methods will not have the
expected efficiency that can be observed in
well-known applications of differentiable rendering.

3. OVERVIEW
Our goal is to obtain a 3D model of a tree from its 2D
image or sketch using some given procedural
generator. In this case, the generator is considered as
a black box, at the input of which is a certain set of
numerical parameters, and at the output is a plant
model represented by a graph of branches. In
addition to the image, the user can specify their
requirements for some properties of the resulting
model that cannot be obtained directly from the
image. For example, limit the number of nodes in the
branch graph, i.e. the geometric complexity of the
resulting model.
To solve this problem, a function is proposed that
evaluates the degree of similarity of the model made
by the generator with the original image, taking into
account restrictions. Then the task of creating a tree
similar to the image is reduced to finding the global
maximum of this function on the entire set of
acceptable parameters. It is important to note that,
although the function has values from 0 to 1, its
maximum value is unknown, because it is not
guaranteed that the procedural generator can create a
tree exactly of the required type. Moreover, it is
obvious that this problem has not the only solution,
since there may be different 3D models that are
equally similar to the input image. To simplify
working with the function, we transform each
parameter’s value into [0, 1] interval so the function
is defined on the set , where n - is a number of[0, 1]𝑛

generator’s parameters.
To solve this optimization problem, a special version
of the genetic algorithm was developed. Like any
genetic algorithm, it does not guarantee the
achievement of a global maximum, but on average it
can find points good enough in terms of the function
value. In its work, the genetic algorithm uses
statistical information about the entire family of
functions corresponding to different input images,
but the same procedural generator.

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3201 WSCG 2022 Proceedings

https://www.doi.org/10.24132/CSRN.3201.35 283

The results of the algorithm with three different
procedural generators and several different images
are also demonstrated.

4. SIMILARITY FUNCTION
The value of similarity function is a multiplication of
image similarity value and characteristic multipliers.
Image similarity value is obtained by comparings the
source image with the impostors of the generated tree
model. Semantic masks are used for comparison,
where each pixel belongs to one of three categories:
branch, foliage, background. To obtain such a mask
from the source image, a neural network can be used
similarly to [Li21], and in simple cases, we can get it
based only on pixel color (green corresponds to
leaves, brown or gray - to branches and trunk).

The image is divided into 20-30 narrow horizontal
stripes, for each of which are determined:

● - crown borders [𝑎
𝑖
, 𝑑

𝑖
]

● - dense crown borders (>75% leaves [𝑏
𝑖
, 𝑐

𝑖
]

pixels)
● - branches pixels percentage𝐵

𝑖
● - leaves pixels percentage𝐿

𝑖
According to the ratio , each stripe refers either𝐵

𝑖
/𝐿

𝑖
to the crown or to the trunk, see Figs. 1 and 2.
Comparing the parameters and ratio𝑎

𝑖
, 𝑏

𝑖
, 𝑐

𝑖
, 𝑑

𝑖
 𝐵

𝑖
/𝐿

𝑖
for every stripe of the original image and the image
of the generated model, we calculate the value of
image similarity .𝐼𝑚𝑆𝑖𝑚
Characteristic multiplier shows the difference in the
characteristics of the model and given one. For
characteristic , the multiplier has the following𝐶
formula:

𝐶
𝑚𝑢𝑙

 = 𝑚𝑖𝑛(𝐶
𝑚𝑜𝑑𝑒𝑙
 , 𝐶

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
)/ 𝑚𝑎𝑥(𝐶

𝑚𝑜𝑑𝑒𝑙
 , 𝐶

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
)

The final function value:

𝑆𝑖𝑚 = 𝐼𝑚𝑆𝑖𝑚 *
𝑐 ∈ℂ
∏ 𝐶

𝑚𝑢𝑙

- the set of all given characteristics. Among themℂ
may be:

● Number of vertices in the branch graph
● Height and width in some scale
● Average branches and leaves density
● Average leaf size

None of these characteristics is mandatory, but it is
recommended to specify the number of vertices in the
branch graph, otherwise the search for a solution will
slow down due to the need to search for it among
models with very high geometric complexity.

5. GENETIC ALGORITHM
IMPLEMENTATION
The previously mentioned similarity function is used
as an objective function for the genetic algorithm.
A proposed genetic algorithm consists of several
elementary genetic algorithms, with a selection of the
best results of each of them. Each elementary GA
includes the initialization of a population and its
evolution over a fixed number of generations. In the
figure, each vertex of the tree is such an elementary
GA. Algorithms on the leaves of the tree start with a
randomly initialized population, and all the others
form a population of the fittest “individuals” obtained
in the child vertices.
All elementary GA work according to the same
strategy (- objective function)𝑓(𝑥)

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3201 WSCG 2022 Proceedings

https://www.doi.org/10.24132/CSRN.3201.35 284

Selection
At the beginning of each iteration, half of the
population with the worst fitness value is removed.
The remaining individuals take part in the creation of
a new generation. At each of the vacant places in the
population, a new individual is created with one-dot
crossover, its parents are selected from the remaining
species of the previous generation. The fitness
proportionate selection is used, which means that the
probability of choosing an individual as a parent is
proportional to the value of its fitness. For
representatives of the new generation, the values of
the objective function and the fitness function are
calculated.

Mutation
Mutation chance and percentage of genes to𝑀

𝑐ℎ𝑎𝑛𝑐𝑒
change are constant.𝑀

𝑔𝑒𝑛𝑒𝑠
Here is a proposed method for genome mutation:𝐺

1) values of randomly chosen𝑛 * 𝑀
𝑔𝑒𝑛𝑒𝑠

genes are changed. The probability of
mutation in the gene is proportional to the𝑘
average rate of change of this gene 𝑉(𝑘)

2) For the result genome we estimate its𝐺'
quality 𝑄(𝐺')

3) Steps 1-2 are repeated several times (500 in
the experiment) and the mutation results in a
gene with a better quality score

Functions and based on pre-collected𝑉(𝑘) 𝑄(𝐺')
information about the entire family of objective
functions F = { } (each function corresponds to𝑓(𝑥)
its own input image and set of properties)

Gene value

𝑉(𝑘) = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(
 𝑓(𝑥 + ℎ*𝑥

𝑘
) − 𝑓(𝑥)

ℎ)
Genome quality
𝑃(𝑖, 𝑗) = 𝑃(𝑓(𝑥) > 𝑒𝑝𝑠 |(𝑗 − 1)/𝑘 < 𝑥

𝑖
 < 𝑗/𝑘),

𝑖 ∈ {1, ..., 𝑛}, 𝑗 ∈ {1, ..., 𝑘}
)𝑃

0
 = 𝑃(𝑓(𝑥) > 𝑒𝑝𝑠

𝑄(𝐺') =
𝑖 = 1

𝑛

∑ 𝑄(𝑖, ⎡𝐺
𝑖
' * 𝑘⎤)

𝑄(𝑖, 𝑗) = 𝑠𝑔𝑛(𝑃(𝑖, 𝑗) − 𝑃
0
) *

𝑚𝑎𝑥(𝑃(𝑖, 𝑗), 𝑃
0
)/𝑚𝑖𝑛(𝑃(𝑖, 𝑗), 𝑃

0
)

Several hundred thousand calculations of functions
were carried out for a fairly accurate assessment of

values for several dozen different images with𝑓(𝑥)
each of the used procedural generators.

6. RESULTS
We implemented three different procedural
generators to demonstrate the results of our method:

1) WeberPennGen - implementation of the
algorithm described in [Web95]

2) GEGen - a generator simulating the process
of tree growth, taking into account the
environment, based on [Yi15][Yi18]

3) SimpleGen - a generator with a simple set of
rules for the recursive description of the tree
structure, used for testing purposes during
development

In the experiments, images of trees were used as
input data, the only additional requirement was the
geometric complexity of the model. The result of the
algorithm was a group of several best candidates, the
selection of which was performed manually. To get
the result, 40-60 thousand calls of the procedural
generator were required, 10-50 minutes for
calculation on a PC with AMD Ryzen 7 3700X, 16
GB RAM, Nvidia GeForce RTX 3070. Figures 4-8
show the ability of our algorithm to deal with
different tree species. You could notice that the
model takes from the image not only the approximate
shape of the crown but also the structure of its edge.
Images in Fig. 6 and 9 both have cone-shaped
crowns, but the thuja in Fig. 6 has smooth edges,
close to a real cone and the spruce tree in Fig. 9 has
distinct branches with visible gaps between them.
The density of the crown is also preserved, as you
can see in Fig. 5 (both reference image and model
have dense crows) and Fig. 8, where there are trees
with a lot of gaps between branches. Fig. 7 shows the
ability of our algorithm to use a very simple sketch as
an input.

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3201 WSCG 2022 Proceedings

https://www.doi.org/10.24132/CSRN.3201.35 285

7. CONCLUSION
A novel method of obtaining a 3D model of a tree
from a single image was proposed. It is mostly
autonomous: a user is needed at the very end to
choose one of the created models. Unlike previous
works, our method can work with an arbitrary
procedural plant generator, which makes it easy to
use modern solutions in this area without changing
the algorithm itself. This, as well as the ability to
specify the required complexity of the model, makes
it more applicable for computer graphics
applications.

The framework implemented in the process of
working on the paper demonstrates the abilities of the
method, but it can be improved in many different
aspects. We consider the most promising refinement
of the similarity function, as well as an additional
assessment of the realism of the model in addition to

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3201 WSCG 2022 Proceedings

https://www.doi.org/10.24132/CSRN.3201.35 286

its comparison with the sample. It is also promising
to create a specialized tool for 3D modeling of plants
using our algorithm or integrate it into existing ones.

8. ACKNOWLEDGMENTS
The work was sponsored by the non-profit
Foundation for the Development of Science and
Education "Intellect".

9. REFERENCES
[Sme14] Smelik, Ruben M., Tim Tutenel, Rafael

Bidarra, and Bedrich Benes. "A survey on
procedural modelling for virtual worlds." In
Computer Graphics Forum, vol. 33, no. 6, pp.
31-50. 2014.

[St17] SpeedTree IDV Inc, 2017. URL:
http://www.speedtree.com

[Xf17] Greenworks Organic Software. Xfrog
procedural organic 3D modeler, 2017. URL:
http://xfrog.com

[Pru86] Prusinkiewicz, Przemyslaw. "Graphical
applications of L-systems." In Proceedings of
graphics interface, vol. 86, no. 86, pp. 247-253.
1986.

[Yi15] Yi, Lei, Hongjun Li, Jianwei Guo, Oliver
Deussen, and Xiaopeng Zhang. "Light-Guided
Tree Modeling of Diverse Biomorphs." In PG
(Short Papers), pp. 53-57. 2015.

[Yi18] Yi, Lei, Hongjun Li, Jianwei Guo, Oliver
Deussen, and Xiaopeng Zhang. "Tree growth
modelling constrained by growth equations." In
Computer Graphics Forum, vol. 37, no. 1, pp.
239-253. 2018.

[St14] Stava, Ondrej, Sören Pirk, Julian Kratt,
Baoquan Chen, Radomír Měch, Oliver Deussen,
and Bedrich Benes. "Inverse procedural
modelling of trees." In Computer Graphics
Forum, vol. 33, no. 6, pp. 118-131. 2014.

[Li21] Li, Bosheng, Jacek Kałużny, Jonathan Klein,
Dominik L. Michels, Wojtek Pałubicki, Bedrich
Benes, and Sören Pirk. "Learning to reconstruct
botanical trees from single images." ACM
Transactions on Graphics (TOG) 40, no. 6 (2021):
1-15.

[Pru12] Prusinkiewicz, Przemyslaw, and Aristid
Lindenmayer. The algorithmic beauty of plants.
Springer Science & Business Media, 2012.

[Hon71] Honda, Hisao. "Description of the form of
trees by the parameters of the tree-like body:
Effects of the branching angle and the branch
length on the shape of the tree-like body." Journal
of theoretical biology 31, no. 2 (1971): 331-338.

[Web95] Weber, Jason, and Joseph Penn. "Creation
and rendering of realistic trees." In Proceedings
of the 22nd annual conference on Computer

graphics and interactive techniques, pp. 119-128.
1995.

[Gre89] Greene, Ned. "Voxel space automata:
Modeling with stochastic growth processes in
voxel space." In Proceedings of the 16th annual
conference on Computer graphics and interactive
techniques, pp. 175-184. 1989.

[Ree85] Reeves, William T., and Ricki Blau.
"Approximate and probabilistic algorithms for
shading and rendering structured particle
systems." ACM siggraph computer graphics 19,
no. 3 (1985): 313-322.

[Lon12] Longay, Steven, Adam Runions, Frédéric
Boudon, and Przemyslaw Prusinkiewicz.
"TreeSketch: Interactive Procedural Modeling of
Trees on a Tablet." In SBIM@ Expressive, pp.
107-120. 2012.

[Had17] Hädrich, Torsten, Bedrich Benes, Oliver
Deussen, and Sören Pirk. "Interactive modeling
and authoring of climbing plants." In Computer
Graphics Forum, vol. 36, no. 2, pp. 49-61. 2017.

[Neu07] Neubert, Boris, Thomas Franken, and Oliver
Deussen. "Approximate image-based
tree-modeling using particle flows." In ACM
SIGGRAPH 2007 papers, pp. 88-es. 2007.

[Li11] Li, Chuan, Oliver Deussen, Yi-Zhe Song, Phil
Willis, and Peter Hall. "Modeling and generating
moving trees from video." ACM Transactions on
Graphics (TOG) 30, no. 6 (2011): 1-12.

[Liv10] Livny, Yotam, Feilong Yan, Matt Olson,
Baoquan Chen, Hao Zhang, and Jihad El-Sana.
"Automatic reconstruction of tree skeletal
structures from point clouds." In ACM
SIGGRAPH Asia 2010 papers, pp. 1-8. 2010.

[Du19] Du, Shenglan, Roderik Lindenbergh, Hugo
Ledoux, Jantien Stoter, and Liangliang Nan.
"AdTree: accurate, detailed, and automatic
modelling of laser-scanned trees." Remote
Sensing 11, no. 18 (2019): 2074.

[Liu21] Liu, Yanchao, Jianwei Guo, Bedrich Benes,
Oliver Deussen, Xiaopeng Zhang, and Hui
Huang. "TreePartNet: neural decomposition of
point clouds for 3D tree reconstruction." ACM
Transactions on Graphics 40, no. 6 (2021).

[Tan08] Tan, Ping, Tian Fang, Jianxiong Xiao, Peng
Zhao, and Long Quan. "Single image tree
modeling." ACM Transactions on Graphics
(TOG) 27, no. 5 (2008): 1-7.

[Ch08] Chen, Xuejin, Boris Neubert, Ying-Qing Xu,
Oliver Deussen, and Sing Bing Kang.
"Sketch-based tree modeling using markov
random field." In ACM SIGGRAPH Asia 2008
papers, pp. 1-9. 2008.

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3201 WSCG 2022 Proceedings

https://www.doi.org/10.24132/CSRN.3201.35 287

[Has21] Hasselgren, Jon, Jacob Munkberg, Jaakko
Lehtinen, Miika Aittala, and Samuli Laine.
"Appearance-Driven Automatic 3D Model
Simplification." arXiv preprint arXiv:2104.03989
(2021).

[Mun21] Munkberg, Jacob, Jon Hasselgren,
Tianchang Shen, Jun Gao, Wenzheng Chen, Alex
Evans, Thomas Müller, and Sanja Fidler.
"Extracting Triangular 3D Models, Materials, and
Lighting From Images." arXiv preprint
arXiv:2111.12503 (2021).

[Tak22] Takimoto, Yusuke, Hiroyuki Sato, Hikari
Takehara, Keishiro Uragaki, Takehiro Tawara,
Xiao Liang, Kentaro Oku, Wataru Kishimoto, and
Bo Zheng. "Dressi: A Hardware-Agnostic
Differentiable Renderer with Reactive Shader
Packing and Soft Rasterization." arXiv preprint
arXiv:2204.01386 (2022).

[Hu22] Hu, Yiwei, Chengan He, Valentin
Deschaintre, Julie Dorsey, and Holly Rushmeier.
"An Inverse Procedural Modeling Pipeline for
SVBRDF Maps." ACM Transactions on Graphics
(TOG) 41, no. 2 (2022): 1-17.

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3201 WSCG 2022 Proceedings

https://www.doi.org/10.24132/CSRN.3201.35 288

