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Control of system parameters 
by estimating screw withdrawal strength 
values of particleboards using artificial neural 
network‑based statistical control charts
Rıfat Kurt*    

Abstract 

In this study, with data obtained from a particleboard factory, screw withdrawal strength (SWS) values of particle-
boards were estimated using artificial neural networks (ANNs). Predictive control charts were also created. A total of 
seven independent variables were used for the ANN model: modulus of elasticity (MoE), surface soundness (SS), inter-
nal bond strength (IBS), density, press time, press temperature, and press pressure. The results showed that the ANN-
based individual moving range (I-MR) and cumulative sum (CUSUM) control charts created for SWS values detected 
out-of-control signal points close to those of the real-time control charts. Among the selected independent variables, 
IBS was the most important parameter affecting SWS. The most suitable press temperatures and times for high SWS 
values were determined as 198–201 °C and 165–175 s, respectively. Moreover, the boards with 2500–2800 N/mm2 
MoE and 0.55 N/mm2 IBS values exhibited the best SWS.
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Introduction
In today’s markets, strong competition is forcing 
businesses to seek more productive and economically 
effective undertakings. Meeting the ever-changing 
expectations and demands of customers is the main 
condition for the survival and development of a business. 
In this situation, because of the desire to obtain long-
term market success, quality has become the main 
element in business strategy [1].

Businesses have increasingly begun to recognize that 
quality is a crucial factor in the success of their enter-
prises. The “total quality management” concept involves 
quality cost and its measurement [2]. Quality cost is the 
key factor necessary to put the total quality manage-
ment philosophy into practice. Adopting quality cost 

management can enable businesses to lower their costs 
without compromising the quality of their product or 
customer satisfaction [3, 4]. Strategic decision making 
based on quality cost will facilitate profit generation. 
Business status can be boosted by analyzing achieve-
ments and committing to improvements through the 
application of the quality cost account as part of efficient 
management [1].

Having full control of product efficiency and producing 
fewer faulty products are among the ways to reduce qual-
ity costs. Consequently, during the production process, 
industries use monitoring procedures that apply vari-
ous technologies and methods to record the quality and 
properties of the product and to identify defective prod-
ucts. Quality control researchers often employ engineer-
ing process control (EPC) and statistical process control 
(SPC) techniques. These are useful applications for moni-
toring engineering processes and controlling them [5–8].
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The SPC is used to analyze information about sample 
products and to make decisions about processes. Such 
statistical approaches are crucial for quality assurance. 
This statistical method provides the main means of sam-
pling, testing, and evaluating a product, and information 
from these data is utilized to control the manufacturing 
process and improve it [8, 9]. Thus, significant progress 
has been achieved in terms of revealing the deviations 
that may occur in quality characteristics and accordingly, 
in reducing production costs, increasing labor productiv-
ity, and protecting the consumer.

In the production process, the most important tools 
for understanding and interpreting the variability and 
chance of implementation are the control charts [10]. 
The main function of the SPC is to monitor the process 
for any early signs of external problems in the process via 
the use of control charts. Moreover, the SPC can propose 
possible joint measures to avoid the manufacture of any 
abnormal or defective products. A standard chart can 
also identify unstable conditions or aberrant variations 
that need to be investigated [5].

Under good quality management, warning signs would 
be provided in the early stages of a manufacturing project 
to facilitate timely interventions and to avoid limited 
options late in the process. Consequently, it is important 
to predict certain parameter values throughout various 
stages of the project with the aim of controlling these 
parameters during its implementation and thus ensuring 
that the desired quality is achieved in the final product 
[11].

Particleboards are produced from particles or chips 
of wood (or other lignocellulosic fibrous sources) held 
together by a binder and subjected to elevated pressure 
at a high temperature [12]. Particleboards have a smooth 
surface, can be produced in the desired thickness, have 
a relatively homogeneous structure, can be joined using 
nails, screws, and glues, can be produced in large sizes, 
and allow the application of top surface treatments 
[13]. These properties and important features of this 
composite product enable its extensive application in 
many usage areas.

Wood-based products (furniture, cabinets, tables, 
desks, etc.) made of particleboard are often subjected 
tosignificant loads, and thus threaded steel fasteners 
(screws) are used to join these products. The strength 
of these fasteners is at least 10 times higher than the 
strength of the wood-based materials. Because of 
overload on joinings made with steel screws, ruptures 
can occur in the wood-based board. Therefore, the 
bonding force is determined by the strength of the wood-
based panel boards rather than by the screws [14, 15].

During the manufacturing process, the quality control 
measures applied are crucial for ensuring the production 

of a quality final product that satisfies customer 
expectations. However, certain costs and expenditures of 
time are required for such processes [16].

The main purpose of this study was to predict different 
variables and screw withdrawal strength (SWR) values 
obtained from the particleboard production process 
without measuring, but rather by modeling via artificial 
neural networks (ANNs), and to create predictive control 
charts. Thus, the aim was to keep the production process 
under control with less measuring and to contribute to 
the reduction of the quality cost of businesses.

Previous studies have used different methods for 
estimating particleboard SWR [17–19] and for estimating 
different mechanical properties of particleboard [16, 
20–24]. In addition, studies have also been carried out 
in different sectors on the estimation of different control 
charts [7, 25–28]. In this study, unlike other studies, 
in addition to estimating SWS values using ANNs, 
predictive control charts were also created. Thus, a 
model was developed that enables a business to receive 
early warning of errors. Moreover, to date, no studies 
on the particleboard industry have been conducted 
using ANNs to predict individual moving range (I-MR) 
and cumulative sum (CUSUM) control charts. The 
factors effective on SWS were also determined and the 
relationships between them were revealed in detail in this 
study.

Preliminaries
Artificial neural networks
ANNs are mechanisms for processing information that are 
based on the biological processes of the nervous system. Like 
the nervous system, ANNs are composed of a great number 
of interconnected, and in this case artificial, neurons acting 
as processing elements working together to solve specific 
problems [29]. Thus, the ANN is a mathematical model 
attempting to simulate biological neuron behavior [30]. A 
neuron can generate an output signal on the basis of a spe-
cific number of input signals. The activation function pro-
cesses input signals generated by other neurons. To generate 
an output signal, the activation function value is transmit-
ted to the transfer function. A neural network is composed 
of three layers: the input layer, the output layer, and the hid-
den layer. Data from outside the ANN are received by the 
neurons of its input layer, whereas data processing results 
are presented by the neurons of the output layer [31]. Equa-
tion (1) describes the function of the network [16, 32]:

where Yj represents the node j output, f represents the 
transfer function, Wij represents the weight connecting 

(1)Yj = f (
∑

i

wijxij)
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node j and node i in the lower layer, and Xij represents the 
input signal from node i in the lower layer node j.

The three main phases necessary to set up an ANN 
include: (1) establishment of the ANN architecture, 
(2) definition of the appropriate training algorithm 
necessary for the ANN learning phase, and (3) 
determination of the mathematical functions describing 
the mathematical model [30]. The ANN is used in many 
areas such as classification, modelling, data association—
interpretation, control, clustering, and optimization 
[33, 34]. When applied to a network, the learning 
algorithm and its structure will determine the learning 
performance. The classification ability and prediction 
quality of the network depend on application of a 
learning algorithm based on synaptic weights between 
the neurons.

I‑MR control chart
I-MR charts can monitor individual values and detect 
any variations in the process over time by taking process 
samples over hours, shifts, days, weeks, months, etc. 
[35]. These I-MR control charts were chosen for the 
study, because the values estimated by the ANN were 
the averages of the SWS values, and therefore, it was not 
possible to create a range of variation (R) graph for the 
estimated control charts. A moving range (MR) graph 
was constructed by plotting the Upper Control Limit 
(UCL), Lower Control Limit (LCL), and Center Line (CL) 
as given in Eq. (2) [8, 36]:

where MR is the average of the moving range computed 
from a preliminary set of data.

The MR was calculated using the following equation:

Finally, the individual (I) chart was set up by plotting 
the individual observations, xi, on a chart with limits, as 
in Eq. (4):

UCL = D4MR

(2)CL = MR

LCL = D3MR

(3)MRi = |xi − xi−1|, i = 2, 3, . . .

UCL = x + 3
MR

d2

(4)CL = x

LCL = x − 3
MR

d2

where D3, D4, and d2 are functions of the sample size. 
According to the sample size, tables were created for 
these values.

CUSUM control chart
In 1954, Page [37] the CUSUM control chart, which 
consists of a series of consecutive operations used to 
detect any deviations in a process. The CUSUM control 
scheme is based on probability ratios and its principal 
feature is its ability to calculate the difference between 
an observed value and a predetermined target value [38]. 
The cumulative sum is determined using xj as the average 
of the jth sample and µ0 as the target for the process 
mean; Ci denotes the cumulative sum up to and including 
the ith sample:

The tabular CUSUM statistic is used to detect an 
increase (Ci

+) or decrease (Ci
−) in the process mean shift:

where µ0 is the acceptable process mean.
The K value (i.e., the reference/allowance/slack value) is 

often set to half the distance between the target µ0 and 
the out-of-control value of the mean µ1 , for which a rapid 
detection is sought in Eq. (7):

The process is said to be out of control if

where H is the decision interval. It is also customary to 
take K = 0.5 and H = 4 or 5 as decision parameters for the 
optimum average run length (ARL) [8, 39, 40].

Minor changes in the process average can be quite 
effectively detected by the CUSUM control charts [41, 
42]. These charts have the advantage of being able to 
detect unstable processes for data subgroups and single 
notations [43].

Materials and methods
The data used in the study were obtained between Feb-
ruary and July 2016 from a large-scale furniture enter 
prise operating in Turkey. The boards from which the 

(5)Ci =

i
∑

j=1

(xj − µ0)

(6)C+
i = max

[

0, xi − (µ0 + K )+ C+
i−1

]

C−
i = min

[

0, xi − (µ0 − K )+ C−
i−1

]

(7)K =
δ

2
σ =

|µ1 − µ0|

2

(8)Ci ≥ H
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samples were taken were 18 mm thick, with a density of 
630 kg/m3 and were 2100 × 2800 mm in size. They were 
produced for interior hardware applications in dry con-
ditions determined according to TS EN 310, TS EN 311, 
TS EN 319, and TS EN 320 standards [44–47]. In the said 
period, each particleboard from the production process 
was evaluated in terms of the screw withdrawal strength 
(SWS, N), modulus of elasticity (MoE, N/mm2), surface 
soundness (SS, N/mm2), internal bond strength (IBS, N/
mm2), and density (Kg/m3) values and values related to 
press conditions, including press time (s), press tempera-
ture (°C), press pressure (Pa), were measured. The sample 
size (n) was 3 and the number of samples (m) was 110, 
i.e., 110 × 3 = 330 measurements taken for each variable. 
From these data, 80 were used in the creation of the ANN 
model (training, testing, and validation), and the remain-
ing 30 were used in the verification of the established 
model and in the creation of control charts to measure 
its success.

Our ANN model consisted of the input layer that 
receives the data from the outside, the output layer that 
yields the outputs of the network, and the multilayer 
perceptron, which consists of at least one hidden layer 
between the other two. Multilayer perceptrons are com-
monly used in the literature. These are feed-forward 
supervised networks with full connectivity between the 
layers [48–50]. The ANN model used in the study was 
designed as a feedforward back propagation model and is 
presented in Fig. 1.

In the figure, the input layer consists of the MoE, SS, 
tensile strength, density, press time, press temperature, 
and press pressure values as the independent variables 
to be used for estimation. These determined variables 
also form the number of neurons in the input layer of the 
ANN model. The number of hidden layers in the model 
was 1. There is no fixed rule for determining the num-
ber of neurons in the hidden layer. In general, keeping 
the number of hidden neurons low can cause learning 
problems in the network, whereas keeping it high can 
cause the network to memorize instead of learning. For 

this reason, trials were carried out for 1–10 hidden neu-
rons to determine the best number for the model and the 
result was found to be 8. The output neuron was directly 
related to the problem under study, and therefore, it was 
considered as being equal to the number of dependent 
variables estimated in the prediction problems. Thus, the 
output neuron here was the SWS. The sigmoid activation 
function is the one most commonly used in ANNs, and 
therefore, it was chosen as the activation function. Of the 
data in the model, 70% were used for training, 15% for 
validation, and 15% for testing. During the training phase 
of the network, the number of cycles was kept constant 
at 1000 and as a result of different trials, the most appro-
priate learning coefficient was determined as 0.1 and the 
momentum coefficient as 0.8. After the training and test-
ing stages of the model were carried out successfully, 30 
average SWS values were estimated using the established 
model. Separate I-MR and CUSUM control charts were 
created for these prediction and real-time measurement 
values, and the prediction performance of the model 
was evaluated. In the last part of the study, the statistical 
effect of the selected independent variables on the SWS 
values was investigated and analyzed in detail. MAT-
LAB (MathWorks Inc.) software was used to establish the 
ANN model, and MINITAB software was used for qual-
ity control charts and statistical analyses.

Results
Establishment of the ANN: training, testing, and validation
Figure  2 shows the variation in the error values of the 
training, validation, and test sets in each iteration of the 
ANN model established for the estimation of the SWS 
values. Graphs showing the status of the training and 
the regression values are also presented. The regression 
values obtained for the training, validation, and testing 
stages were more than 80% and thus within the limits 
that can be used for estimation.

The established model was assessed in terms of the 
success of its predictive ability using never-before-seen 
data to test the network, and this approach yielded 

Fig. 1  Structure of the ANN model
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positive results. A comparison of the estimated ANN 
values with the measured SWS values and their mean 
absolute percentage error (MAPE) performance values 
are given in Table  1. According to the MAPE values, 
the estimation process had been quite successful. In 

the literature, models with MAPE values below 10% 
are rated “very good”, 10–20% “good”, 20–50% “accept-
able”, and models over 50% “wrong and erroneous” 
[51–53]. The mean MAPE value of all predicted values 
was 5.79%.

Fig. 2  ANN training, validation, and test results



Page 6 of 10Kurt ﻿Journal of Wood Science           (2022) 68:64 

Creation of control charts
Figure  3 shows the I-MR charts created for the meas-
ured and estimated SWS values. When the graphs are 
compared, the points that give out-of-control signals in 
the production process are shown as almost the same in 
both graphs. Sample nos. 26, 27, and 28 on both charts 
are outside the LCL. However, one point in the measure-
ment values (sample no. 2) exceeded the UCL, and the 
I-MR graph created via estimation was unable to detect 
this. However, sample no. 2 in the estimation chart was 
very close to the UCL limit, but because a high SWS is 
desirable, this situation did not last for long.

In Fig. 4, the measured and estimated SWS values for 
the CUSUM control charts are given. The CUSUM charts 
are particularly effective at detecting minor shifts in the 

process. Both graphs were very close in clearly determin-
ing the shifts in the process. In particular, the estimated 
(predicted) CUSUM graph detected the negative shift 
after sample no. 26 in the same way as did the real (meas-
ured) CUSUM graph.

Correlation analysis
This section gives the results of the investigation into the 
effect of the selected independent variables on the SWS. 
Table 2 shows that in general, all variables except the SS 
exhibited a significant positive correlation with the SWS 
at 1% and 5% significance levels. The IBS was the most 
important parameter affecting the SWS. In the litera-
ture, correlation values with an r coefficient of 0.40–0.59 
are defined as “moderate” [54–58]. Figure  5 presents 

Table 1  SWS estimated, measured, and MAPE values

Sample no Measured Estimated MAPE Sample no Measured Estimated MAPE

1 825.0 733.7 11.1 16 634.7 644.1 1.5

2 947.3 886.4 6.4 17 673.7 721.8 7.1

3 742.0 796.0 7.3 18 833.3 787.2 5.5

4 689.3 724.8 5.1 19 742.3 732.5 1.3

5 679.3 852.1 25.4 20 672.3 641.8 4.5

6 830.0 872.3 5.1 21 666.0 669.8 0.6

7 779.3 778.3 0.1 22 621.0 619.0 0.3

8 806.7 842.7 4.5 23 713.3 680.5 4.6

9 770.0 712.5 7.5 24 657.7 698.2 6.2

10 732.7 754.1 2.9 25 645.0 690.9 7.1

11 736.7 828.6 12.5 26 530.3 498.9 5.9

12 752.3 702.0 6.7 27 524.0 504.0 3.8

13 654.3 657.4 0.5 28 507.7 480.1 5.4

14 725.3 735.4 1.4 29 611.0 573.3 6.2

15 745.3 760.0 2.0 30 640.0 737.3 15.2
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surface plots and contour plots showing the relationships 
between moderately significant parameters and SWS 
values.

The temperature–time graph of SWS values shows 
generally, the SWS of the particleboards also increased 
with the increase in press temperature and press time 
(Fig. 5). Again, in the contour plot, the highest SWS value 
was reached at press temperatures of 198–201 °C and at 
press times in the range of 165–175 s. In previous studies, 
increases in press temperature [59–62] and press time 
[60, 63, 64] have been reported to affect SWS positively. 
Examination of the MoE-IBS graphs of the SWS shows 
that the high IBS and MoE values had a positive effect 
on SWS. In the literature, similar associations have been 
found between IBS and SWS [19, 21, 65–73] and between 
SWS and MoE [65, 66, 68–70, 73, 74] In the counter 
graph, the boards with MoE values of 2500–2800 N/mm2 
and an IBS value of 0.55  N/mm2 have the highest SWS 
values.

Conclusion and recommendations
In this study, particleboard SWS values were estimated in a 
production process via modeling using an ANN. Statistical 
control charts were created with these estimated values 
and compared with the real-time production values. For 
the established ANN model, the most appropriate learning 
coefficient was determined as 0.1, the momentum coefficient 
as 0.8, and the number of neurons in the hidden layer 
as 8. A regression value of over 80% was obtained in the 
training, validation, and testing stages of the particleboard 
SWS values estimated using seven independent variables 
in the input layer. The MAPE values of the measured and 
estimated SWS values were within the limits accepted as 
“very good” in the literature, with an average of 5.79%. The 
control charts created with these estimates yielded results 
very similar to those in the control charts created with 
the real values. The predicted CUSUM and I-MR control 
charts detected the values that exceeded the LCL, which 
is very important for a business. In addition, among the 
independent variables selected in the Pearson correlation 
analysis, the most important parameter affecting the SWS 
was determined as IBS, with a correlation of 0.69. The most 
suitable press temperatures and times for high SWS values 
were determined as 198–201 °C and 165–175 s, respectively. 
In addition, the boards with 2500–2800  N/mm2 MoE and 
0.55 N/mm2 IBS values exhibited the best SWS values.

Numerous parameters affect the mechanical 
properties of particleboard. In future studies, new 
models could be developed using different parameters 
such as chip mixing ratios, glue type and amount, or 
based on wood species. Control charts could be created 
by estimating different technological and mechanical 
properties of the board, thus contributing to the 
reduction of quality costs for businesses.
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Fig. 4  CUSUM charts of measured and estimated SWS values

Table 2  Pearson correlation results

Correlations Pearson 
correlation 
(SWS)

Significance 
level

Significance 
(two-tailed)

Internal bond strength 
(IBS)

0.659 0.01 0.000

Press temperature 0.539 0.01 0.000

Press time 0.530 0.01 0.000

Modulus of elasticity 
(MoE)

0.426 0.01 0.000

Press pressure 0.360 0.01 0.001

Density 0.204 0.05 0.032

Surface soundness (SS) 0.055 – 0.569
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