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A guide to lifting aperiodic structures

Michael Baake1, David Écija2 and Uwe Grimm3

The embedding of a given point set with non-crystallographic symmetry into higher-dimensional space is reviewed,

with special emphasis on the Minkowski embedding known from number theory. This is a natural choice that does not

require an a priori construction of a lattice in relation to a given symmetry group. Instead, some elementary properties

of the point set in physical space are used, and explicit methods are described. This approach works particularly well

for the standard symmetries encountered in the practical study of quasicrystalline phases. We also demonstrate this

with a recent experimental example, taken from a sample with square-triangle tiling structure and (approximate)

twelvefold symmetry.

1 Introduction

Ever since the discovery of quasicrystals [11], one standard

approach to the investigation of direct images of aperiodic

structures consists of ‘lifting’ a set of positions in two- or

three-dimensional space into a higher-dimensional space,

sometimes referred to as ‘superspace’. For instance, this

could be a set of positions obtained from electron mis-

croscopy of a thin slice of a quasicrystal, or from an STM

image of a surface. The lift then provides important infor-

mation about the structure of the quasicrystal in terms of

a cut and project description. From a mathematical point

of view, such data sets are represented as point sets in

space (for instance as sets of atomic or cluster positions),

and we are interested in lifting such a point set into a

higher-dimensional space in a suitable way that reveals

the underlying structure.

This approach is particularly useful if the lifted positions

come to lie on a lattice in the higher-dimensional space,

so the lift produces an embedding of the point set into

a lattice. Here, a lattice Γ in d-dimensional real space

Rd is defined as the integer span of a set of d linearly

independent vectors ei, 1 ≤ 1 ≤ d, so that

Γ =

{ d
∑

i=1

niei
∣

∣ all ni ∈ Z

}

and

Rd =

{ d
∑

i=1

xiei
∣

∣ all xi ∈ R

}

.

In the literature, one will often find such lifts described for

situations where the higher-dimensional lattice is known

in advance. This may give the impression that, in order
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to apply this approach to an observed set of positions, one

has to choose a lattice at the start. However, it may not

be obvious what lattice to choose, which asks for some

canonical choice.

In fact, it is possible to employ an intrinsic approach

where the lattice is constructed from the observed set of

positions directly, for instance by recovering the ‘missing

part’ of the higher-dimensional coordinates. That this is

indeed possible follows from a non-trivial theorem in [2].

It is the goal of this paper to demonstrate that the under-

lying construction, in many relevant situations, is feasible

and actually surprisingly simple.

This approach is not new – in fact, it is pretty much

the standard way it is done in parts of mathematics, in

particular in number theory. Since the quasicrystal struc-

tures that are observed do have a close connection with

these number-theoretic structures, it seems worth-while

to explain the connection and the resulting methods in

the context of quasicrystalline point sets. In this sense,

the present article can be seen as a pedagogic attempt to

simplify the handling of point sets with certain practically

relevant symmetries [12]. As such, it is a continuation of

core material from the recent monograph [1], which also

serves as our main reference for further examples and var-

ious mathematical details.

Below, we describe how the lifting can be done, both in

theory and in practice. We start with simple model sys-

tems in one dimension, and then discuss planar examples

with eight- and twelvefold symmetry. Finally, we apply

our method to an experimental dataset.

2 One-dimensional examples

Let us start with a classic example which is based on the

symbolic substitution rule a 7→ aba, b 7→ a for the binary

alphabet {a, b}. Considering a and b as two intervals of

lengths λ = 1 +
√
2 and 1, the corresponding geometric
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inflation rule is

b a

a a b a

which maps an interval of type a to three consecutive in-

tervals aba, and the interval b to a; see [1, Def. 4.8] for a

more detailed description of substitution versus inflation

rules. We start from a pair of intervals of type a (which,

on the symbolic level, is a legal word of length two because

it appears in the second iterate of the letter a) with the

origin as its common vertex point. A repeated application

of the inflation rule produces a one-dimensional tiling of

the real axis by intervals of type a and b, according to the

symbolic sequence

a|a 7→ aba|aba 7→ abaaaba|abaaaba 7→
abaaabaabaabaaaba|abaaabaabaabaaaba 7→ . . . −→ w

which converges to a sequence w that is fixed by the sub-

stitution rule (and the corresponding tiling is fixed by the

inflation rule). Here, the vertical line denotes the position

of the origin, and the sequence (as well as the correspond-

ing geometric tiling) is clearly symmetric under reflection

in the origin. The sequence w is often referred to as the

silver-mean sequence due to the continued fraction expan-

sion [2; 2, 2, 2, 2, . . .] of λ = 1 +
√
2.

Now, collating the left endpoints of each interval of type

a and the left enpoints of intervals of type b produces two

point sets Λa and Λb. Their union Λ = Λa ∪ Λb ⊂ R

is called the silver mean point set. By construction, it

contains the origin. Because the two interval lengths are

λ and 1, the distance between neighbouring points is either

λ or 1, and all points must be positioned at integer linear

combinations of these two numbers. Hence, Λ ⊂ L where

L = Z[
√
2 ] = {m+ n

√
2 | m,n ∈ Z}.

The set L is a dense point set in R, and it is the ring

of integers in the quadratic number field Q(
√
2 ), which

is the smallest field extension of the rational numbers

that contains
√
2. This field has a unique non-trivial

automorphism which is algebraic conjugation, defined by√
2 7→ −

√
2. For a number x = m + n

√
2 ∈ L, we denote

its algebraic conjugate by x⋆ = m− n
√
2.

Using algebraic conjugation, a natural embedding of L

in R2 is given by

L =
{

(x, x⋆) | x ∈ L
}

⊂ R2,

which is called the Minkowski embedding of L; compare

[1, Ch. 3.4]. What does L look like? Its elements (written

as row vectors) are of the form

(m+ n
√
2,m− n

√
2) = m (1, 1) + n (

√
2,−

√
2)

Figure 1: The rectangular lattice L (black dots) is gen-

erated by the vectors (1, 1) and
√
2(1,−1). Points in Λa

(light grey) lift into lattice points within the upper (light

grey) strip, points in Λb (dark grey) lift into lattice points

within the lower (dark grey) strip. All lattice points within

these strips are obtained in this way.

with m,n ∈ Z, and the representation on the right-hand

side shows that L is a lattice which is spanned by the

two vectors (1, 1) and
√
2 (1,−1). These two vectors are

clearly orthogonal, so that L is a rectangular lattice in the

plane; see Figure 1 for an illustration.

We thus know that the lift x 7→ (x, x⋆) maps points in

our silver mean point set Λ into L, so
{

(x, x⋆) | x ∈ Λ
}

⊂ L.

In our example, this turns out to be a very special subset

indeed, as can be seen from Figure 1. Explicitly, all left

endpoints of intervals of type a occur at positions x ∈
L with − 2−

√
2

2
≤ x⋆ ≤

√
2

2
, while all left endpoints of

intervals of type b are located at positions x ∈ L with

−
√
2

2
≤ x⋆ ≤ − 2−

√
2

2
. Note that there are no points in L

for which x⋆ falls onto the boundaries of these intervals

(because the boundary points are not in L due to the

factor 1

2
), so there is no ambiguity here. The silver mean

point set can now be characterised as the model set (or

cut-and-project set)

Λ = {x ∈ L | x⋆ ∈ W}

with the window W being the interval W = [−
√
2

2
,
√
2

2
]

which swipes out the grey strips in Figure 1. For the

proof of these statements, we refer to [1, Ch. 7.1].

At this point, we can lift any subset S ⊂ L, which is a

set in direct (or physical) space into internal space as

S⋆ = {x⋆ | x ∈ S}.

If we do this for the set Λ, we find that Λ⋆ is a dense

subset of the window. Moreover, if we do this for the

finite subsets of the form Λr := Λ ∩ [−r, r], the sets Λ⋆
r

are finite point sets inside the window W that fill it out

2



more and more with increasing r. In fact, this is done in

a uniform way, which is an important feature known as

uniform distribution; see [1, Prop. 7.3] for more.

Let us note two important things at this point. First,

the lift is done by extracting the missing internal space

part x⋆ from the known coordinate x in direct space, so

that the lift is given by x 7→ (x, x⋆). Second, the lattice

and the required algebraic information is entirely obtained

from the set Λ, respectively from the set L that emerged

from Λ via integer linear combinations. The correct iden-

tification of L from Λ can be a little more delicate than in

our example at hand, as is well-known from examples such

as the Penrose tiling vertices; compare [1, Ex. 7.11]. Since

we will not meet such cases below, we suppress the nec-

essary identification of the limit translation module and

refer the reader to [1, Sec. 5.1.2] for further details.

Note that, in the construction above, we did not start

from a given lattice, but constructed L as the Minkowski

embedding of the underlying arithmetic structure of the

point set. In this sense, this is a natural embedding, but

we are still free to modify the choice of lattice by changing

the relative scale between the direct and the internal space.

Concretely, one could also use

Lα :=
{

(x, αx⋆) | x ∈ L
}

for any positive α, so that our previous choice satisfies L =

L1. In principle, even negative α can be used, but since

this only results in a reflection in the x-axis, we restrict our

attention to α > 0. The spanning vectors of Lα can now be

chosen as b1 = (1, α) and b2 = (
√
2,−α

√
2). For special

choices of α, the lattice Lα will actually be a (scaled)

square lattice. For instance, this happens for α = λ (where

Lλ is then spanned by b
1
= (1, λ) and b′

2
= b

1
+ b

2
=

(λ,−1)), but also for α = 1/λ = λ − 2 (where L
1/λ is

spanned by b
1
= (1, λ−2) and b′

2
= b

2
− b

1
= (λ−2,−1)).

Although any of these choices seems ‘nice’ in the sense

that the square lattice has a higher symmetry than the

original Minkowski embedding, it should be emphasised

that this symmetry is perhaps appealing, but of no rel-

evance to the problem at hand. This is so because the

relative scale between direct and internal space is just a

number, without any physical meaning.

A completely analogous situation emerges for the well-

known Fibonacci inflation rule

b a

a a b

with intervals of length τ and 1 as prototiles. Here, the

dense point set spanned by the positions of the left end-

points is L = Z[τ ], the ring of integers in the quadratic

1

ξ

ξ2

ξ3

1

ξ⋆

ξ⋆2

ξ⋆3

Figure 2: The regular 8-star in direct space (left panel)

with ξ = ξ8 = e2πi/8 and its ⋆-image in internal space

(right panel). Here, ξ⋆ = ξ3 and 1⋆ = 1, as well as (ξn)⋆ =

(ξ⋆)n.

field Q(
√
5), and the non-trivial field automorphism is de-

fined by
√
5 7→ −

√
5, which means τ 7→ τ⋆ = −1

τ = 1 − τ

and hence

m+ nτ 7−→ (m+ nτ)⋆ = m+ n− nτ.

Here, the Minkowski embedding is spanned by (1, 1)

and (τ, 1 − τ), which is not even a rectangular lattice;

see [1, Fig. 3.3] for an illustration. As before, by scaling

internal space relative to direct space, one can turn the

embedding lattice into a square lattice, as discussed in [1,

Rem. 3.4]. Still, the same comment from above applies,

meaning that such a rescaling of internal space bears no

physical relevance.

3 Eightfold symmetric tilings

The basic object for eightfold symmetry is the regular 8-

star, as shown in the left panel of Figure 2, where it is

natural to use vectors of length 1. Identifying R2 with

C as usual, the 8-star is nothing but the star of all 8th

roots of unity, that is the eight solutions of the equation

z8−1 = 0. Let ξ8 be a primitive solution (meaning ξn8 = 1

only holds for integers that are divisible by 8), for instance

ξ8 = e2πi/8 to be explicit (the other primitive solutions

being ξ3
8
, ξ5

8
and ξ7

8
).

The analogue of the dense point set L from the previous

section is L
8
= Z[ξ

8
], the ring of integers in the cyclotomic

field Q[ξ8]; see [1, Sec. 2.5.2] for an introduction in our con-

text. Any element of L
8
is an integer linear combination

of 1, ξ8, ξ
2
8 , . . . , ξ

7
8 , but it turns out that the first four of

them suffice, so

L
8
= {m

0
1 +m

1
ξ
8
+m

2
ξ2
8
+m

3
ξ3
8
| all mi ∈ Z}.

Alternatively, one also has that

L
8
=

{

α
0
1 + α

1
ξ
8
| all αi ∈ Z[

√
2 ]
}

,
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Figure 3: An 8-fold symmetric patch of the Ammann–

Beenker tiling (left panel) and the lift of its vertex point

set to internal space via the ⋆-map for the Z-module L
8

(right panel); see text for details.

which means that L
8
is a Z-module of rank 4 and, at the

same time, a Z[
√
2 ]-module of rank 2. The latter property

lines up with L
8
being a dense subset of C ≃ R2, while

the former tells us that a lift to a lattice will need R4. Let

us thus turn to the construction of the lattice.

The crucial point is the selection of the ⋆-map. In our

context, it has to be one of the field automorphisms of

Q(ξ
8
); see [1, Secs. 2.5.2 and 3.4.2] for details. Clearly,

it can neither be complex conjugation nor the trivial one,

which leaves us with the choices ξ8 7→ ξ38 or ξ8 7→ ξ58 , to-

gether with the unique extension to a field automorphism.

Either choice is fine. Let us use the first one for conve-

nience, so that (ξn
8
)⋆ = (ξ⋆

8
)n = ξ3n

8
for n ∈ Z. The effect

on the regular 8-star is shown in the right panel of Fig-

ure 2. Now, the Minkowski embedding gives the lattice

L
8
=

{

(x, x⋆) | x ∈ L
8

}

⊂ R4.

One can show that L8 is a scaled (by a factor of
√
2 ) and

rotated version of the integer lattice Z4; see [1, Ex. 3.6].

As an example, let us consider the central patch of the

8-fold symmetric Ammann–Beenker tiling shown in the

left panel of Figure 3. We assume this patch to be gener-

ated by the inflation rule of [1, Sec. 6.1], applied to pro-

totiles of unit edge length. If we give the central vertex

the coordinate 0 ∈ L
8
, any other vertex of the patch is an

element of L8 as well, because every edge has unit length

and corresponds to one of the directions of the regular 8-

star. Therefore, each vertex can be indexed by a 4-tuple

of integers, (m
0
,m

1
,m

2
,m

3
), which represents the point

x = m
0
1 +m

1
ξ
8
+m

2
ξ2
8
+m

3
ξ3
8

Figure 4: A typical patch of an octagonal random tiling

with statistical 8-fold symmetry. The marked vertex point

has been used as the origin.

in direct space. Concretely, one finds these 4-tuples by

starting from the origin and going along the tile edges to

the other vertex points, where each edge with its direction

corresponds positively or negatively to one of the first four

vectors of the regular 8-star; compare the left panel of Fig-

ure 2. Since the sum of all vectors of the 8-star vanishes,

the result does not depend on the path that was chosen.

Given any point (m
0
,m

1
,m

2
,m

3
) in L

8
, its ⋆-image is

the point

x⋆ = m
0
1 +m

1
ξ3
8
−m

2
ξ2
8
+m

3
ξ
8

in internal space. In terms of the original basis, the ⋆-map

amounts to the mapping

(m
0
,m

1
,m

2
,m

3
) 7→ (m

0
,m

3
,−m

2
,m

1
)

which really is quite simple! Its action on the vertex points

of our Ammann–Beenker patch is shown in the right panel

of Figure 3. The point cloud is the lift of the patch and

lies within a regular octagon of unit edge length, in line

with the known fact that the vertex set of the Ammann–

Beenker tiling is a cut and project set (or model set) for the

lattice L
8
with the octagon as its window (or acceptance

domain); see [1, Sec. 7.3] for a detailed exposition. An im-

portant feature of a regular model set such as this one is

the fact that the lifted points, in a natural order according

to their distance from the centre in direct space, are uni-

formly distributed in the window in internal space. This

4



-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Figure 5: Lift of the vertex points of the octagonal random

tiling patch of Figure 4 to internal space via the ⋆-map.

The octagonal window of the perfect Ammann–Beenker

tiling is shown in the correct relative size.

is a strong homogeneity property of the system, which fa-

cilitates the calculation of statistical properties as well as

a closed formula for the kinematic diffraction of the point

set.

Let us contrast this perfectly ordered structure with its

random tiling counterpart of Figure 4, which was obtained

via repeated simpleton flips from a perfect patch as de-

scribed in [1, Sec. 11.6.2] and references therein. Still,

choosing any vertex point as the origin, all vertex points

of the patch are elements of L
8
, and hence can be lifted

via the same ⋆-map and the method described above. The

result is shown in Figure 5, with the chosen origin marked

(a different choice would just result in a shift of the lifted

point set). It is clearly visible that the set of lifted posi-

tions extends beyond the window of the perfect tiling, in

agreement with the expectation for the statistics of ran-

dom tilings [6].

The very same method, with minor modifications, works

for any rhombus tiling with edges along the directions of

a regular n-star. In fact, it also works if we have a set

of prototiles with edges of the same length along such a

set of directions. In general, the dimension of the inter-

nal space becomes larger; see [1, Sec. 7.3] for details. Here,

we restrict our attention to the practically most important

cases where internal space has the same dimension as di-

rect space. In view of dodecagonal quasicrystals [7, 3] and

various recent developments, the possibly most relevant

example is that of 12-fold symmetry, with square-triangle

tilings featuring prominently; see [14, 8, 9, 4] and refer-

ences therein.

4 Square-triangle tilings

The analogue of Figure 2 for 12-fold symmetry is given by

the regular 12-star of Figure 6 (left panel) and its ⋆-image

(right panel). The integer span of the regular 12-star is

L12 = {m01 +m1ξ12 +m2ξ
2

12 +m3ξ
3

12 | all mi ∈ Z} ,

which is once again a Z-module of rank 4. In particular,

one has ξ4
12

= ξ2
12

− 1 and ξ5
12

= ξ3
12

− ξ
12
, while the

remaining powers of ξ12 are obtained via multiplication

by −1 from the powers so far.

1

ξ

ξ2
ξ3

1

ξ⋆

ξ⋆2

ξ⋆3

Figure 6: The regular 12-star in direct space (left panel)

with ξ = ξ12 = e2πi/12 and its ⋆-image in internal space

(right panel), where ξ⋆ = ξ5. Note that ξ3 = (ξ⋆)3 = i.

The module L12 is also a Z[
√
3 ]-module of rank 2, mean-

ing that

L12 =
{

α01 + α1ξ12 | all αi ∈ Z[
√
3 ]
}

,

see [1, Sec. 2.5.2] for details. As in our previous example,

the ⋆-map is one of the suitable field automorphisms of the

cyclotomic field Q(ξ
12
). Here, one has the choice between

ξ
12

7→ ξ5
12

and ξ
12

7→ ξ7
12
, where we have selected the

former. The action on the 12-star is shown in Figure 6.

In this case, the ⋆-image of a point (m
0
,m

1
,m

2
,m

3
) in

L12 is given by

x⋆ = (m
0
+m

2
)1−m

1
ξ
12

−m
2
ξ2
12

+ (m
1
+m

3
)ξ3

12

in internal space. Hence, the ⋆-map acts on the 4-tuples

of integer coordinates as

(m0,m1,m2,m3) 7→ (m0 +m2,−m1,−m2,m1 +m3) .

We are now prepared to lift arbitrary subsets of L
12

to internal space. Let us note that there is a canon-

ical Minkowski embedding again, leading to the lattice

L
12

=
{

(x, x⋆) | x ∈ L
12

}

⊂ R4. Of course, one could also

5



Figure 7: Schlottmann’s pseudo inflation rule for a square-

triangle tiling formulated via five decorated prototiles (up

to similarity).

Figure 8: A patch of the square-triangle tiling obtained

via the pseudo inflation rule of Figure 7. Note that the

decorations are required to construct the patch, but have

been omitted in this figure.

Figure 9: Lift of the vertex points of the next inflation

step of the square-triangle patch of Figure 8 to internal

space via the ⋆-map. The black circle indicates the size

of a circular window for a cut and project set of the same

density. Note that the exact sixfold symmetry is a conse-

quence of the corresponding symmetry of the underlying

patch, while the 12-fold symmetry of the fractally bounded

window will only emerge in the infinite size limit. The grey

circle indicates the circumcircle of the (fractally bounded)

window.

use
{

(x, αx⋆) | x ∈ L
12

}

with α > 0, which gives us the

freedom to select a ‘nice’ lattice in 4-space; see [1, Ex. 3.6

and Rem. 3.5] for details. However, as explained in Sec-

tion 2 above, the parameter α has no physical relevance

whatsoever and is not needed to describe the lift or the

structure in direct space. Therefore, we prefer to dispense

with it altogether for our discussion.

This setting can now be applied to 12-fold rhombus

tilings, but also to examples such as Gähler’s shield tiling,

see [5] or [1, Sec. 6.3.2], or to the large family of square-

triangle tilings. Let us consider the latter case, and apply

the setting to the 12-fold symmetric square-triangle tiling

of the plane that is obtained by Schlottmann’s pseudo in-

flation rule of Figure 7; see [1, Sec. 6.3.1] and references

therein for background. A patch of the (undecorated)

tiling is shown in Figure 8. It is known that the vertex

points of this tiling form a cut and project set (or model

set), where the window is a 12-fold symmetric region in

the plane with fractal boundary; see [1, Fig. 7.10 and

Rem. 7.9]. From the inflation rule, one can calculate that

6



Figure 10: STM image of a metal-organic coordination

network [13].

the vertex point set has density (3+2
√
3)/6 ≈ 1.077. Since

the lattice L
12

has density 1

3
in 4-space, the area of the

window must be (3+2
√
3)/2. This implies that a model set

with a circular window of radius
√

(3 + 2
√
3)/2π ≈ 1.014

would be a point set of the same density (which differs in

many positions though).

The result of the lift to internal space via the ⋆-map is

shown in Figure 9. Here, we have started from the patch

that emerges from Figure 8 by one additional inflation

step, which has 8623 vertices. For comparison, the cir-

cular window mentioned above is indicated in the figure.

While some lifted points fall outside this circle, they re-

main within the window of the square-triangle tiling which

is the compact set of [1, Fig. 7.10].

5 Sample application

Let us finally apply the method to Figure 10, which shows

an experimental STM image [13]. It was obtained by

STM analysis of a metallo-supramolecular network, which

is based on Europium-ligand coordination motifs. The

molecules appear as rod-like protrusions in the STM data,

whereas Eu atoms reside at the intersection points. We

identify distinct coordination nodes which are intercon-

nected by certain molecular linkers and span an intricate,

fully reticulated metallo-supramolecular network. The in-

dividual Eu centres are surrounded by four, five or six

molecules. Moreover, the Eu vertices and linker backbones

Figure 11: Square-triangle tiling (with defects) obtained

by explicit, slightly idealised coordinatisation from the ex-

perimental STM image of Figure 10. Note that the choice

of origin is arbitrary.

Figure 12: Lift of the vertex points of the experimental

tiling of Figure 11 to internal space via the ⋆-map. The

figure is centred in the barycentre of the point cloud. The

two circles then exactly correspond to those of Figure 9;

see text for further details.

7



are distributed in such a fashion that the design can be

interpreted as a surface tessellation based on a square-

triangle tiling with defects; see Figure 11 for the result

with explicit 4D integer coordinates.

Figure 12 shows the corresponding lift to internal space

by our previously described method. The orientations

correspond to the right panel of Figure 6. The two cir-

cles in Figure 12 exactly correspond to those of Figure 9.

Here, the distribution of lifted points clusters around the

barycentre, but is both less regular and more spread out

than the points from a perfect cut and project set. In

particular, one sees a preferred direction. For further in-

terpretations, we refer to [13].
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