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Abstract 

Earthworms (Oligochaeta) are globally distributed soil‑dwelling invertebrates that alter soil properties through feed‑
ing, casting, and burrowing behaviors. Soil physicochemical modification, which may directly influence the avail‑
ability and dynamics of organic and inorganic nutrients in the soil, such as carbon and nitrogen, includes soil texture, 
porosity, and pH. Temperate forests produce year‑round plant litter, the primary food source for earthworms, and litter 
processed by earthworms significantly contributes to soil organic material storage. In recent decades, studies on tem‑
perate forest ecosystems have attempted to elucidate and quantify the earthworm impact on soil organic material 
dynamics, mainly targeting carbon and nitrogen, using isotope analysis methods. This paper summarizes studies on 
the following topics: (1) effect of earthworm modification on soil property to understand these alterations’ interac‑
tion with carbon and nitrogen dynamics, and (2) isotope tracing method, used to elucidate the earthworm effect on 
carbon and nitrogen transformation and movements in temperate forests. The particular emphasis on the isotope 
method is based on its capability of time‑adjusted quantification of organic materials in the ecosystem compart‑
ments. Also, isotopic labeling in biomass has a broad range of applications, such as tracing assimilated food sources, 
identifying trophic interactions in soil food webs, and addressing material dynamics in complex linkages between 
earthworms and their environment. In addition, we provide perspectives on other methodologies, such as chronol‑
ogy and population ecology, as feasible options to further assist the isotope tracing of earthworms’ impact on soil 
nutrient dynamics.

Keywords: Earthworm, Temperate forest, Soil organic material (SOM), Carbon and nitrogen, Nutrient cycling, Stable 
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Introduction
Earthworms are universally distributed soil invertebrates 
found in natural and artificial ecosystems, including for-
ests, grasslands, agricultural lands, orchards, and gardens 
[1]. Since earthworms are ectotherms and engage in cuta-
neous respiration in which gas exchange occurs through 
their moist, mucus-rich skin, they are abundant in warm 
and humid areas across temperate, subtropical, and trop-
ical regions [2]. Amongst these habitats, earthworms 

have preferences for soil with pH ranging between 5.96 
and 8.65 and organic carbon contents over 1% [3]. Still, 
earthworm distribution varies because of their species-
specific traits and food preferences [4].

Earthworms feed on mineral soil and associated soil 
organic material (SOM), such as litter from fine roots, 
fallen leaves, and branches [5]. Hence, forests and grass-
lands that yield year-round litter possess abundant earth-
worm communities. In several temperate and tropical 
regions, earthworms account for 40–90% of the soil mac-
rofauna [6–8] and play a vital role in nutrient recycling 
and reuse [9].
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There are diverse research disciplines involving earth-
worms, including biogeochemistry, ecotoxicology, biodi-
versity, taxonomy, and vermicomposting [10]. Especially 
in the ecological field, investigations on earthworm bio-
diversity have been undertaken globally [11]. Accord-
ing to Phillips et  al. [11], who reviewed the earthworm 
biodiversity monitoring conducted in the post-2000s, 
studies targeting the broadleaf deciduous forests and for-
est–grassland areas accounted for over 60% of the total 
study sites, highlighting the significance of temperate for-
ests as earthworm habitats.

Compared to biodiversity investigations, fewer stud-
ies on biogeochemistry were conducted, and in limited 
regions. Previous review studies that addressed earth-
worms’ effects on soil biogeochemistry focused on (1) 
tracking elements’ (carbon, nitrogen, and phosphorus) 
quantitative partitioning in their pools and SOM trans-
formations, (2) pedologic processes of soil layers, and 
(3) interactions between soil fauna according to mate-
rial reallocation. Most investigations were undertaken on 
arable lands and grasslands, while forests accounted for 
a small proportion. Forests, grasslands, and arable lands 
differ in organic material input pattern and litter qual-
ity, so litter decomposition and SOM storage also vary 
with land type [12]. In general, dissolved organic matter 
concentrations of soil follow the order forests > grass-
lands > arable lands, mainly because of vegetation com-
positions [13–15]. Also, among management practices 
in arable lands, mineral fertilization and tillage, decrease 
SOM levels in the long run [16] and earthworm popula-
tions of deep burrowing species, [17] respectively. The 
SOM dynamics of forests are expected to be significantly 
different from those of arable lands, so this paper focuses 
on mechanisms within the scope of forests.

Litters are dead plant biomass comprised of cellulose, 
hemicelluloses, lignin, proteins, hormones, and other 
substances [18]. Plants synthesize and store organic com-
pounds made up of nutrients, such as carbon and nitro-
gen. Dead plant biomass on the ground, a food source for 
soil fauna constituting organic compounds, is mineral-
ized and released into the atmosphere as carbon diox-
ide, but most of it is fragmented and stored as SOM [5]. 
SOM takes a longer time, from months to decades, to be 
mineralized [19]. It is reported that forest soil holds more 
than 40% of the organic carbon among terrestrial carbon 
reservoirs [20, 21]. Small labile organic compounds and 
mineralized inorganic nutrients are reabsorbed into soil 
fauna or plant roots and again stored as biomass [18].

Furthermore, they are delivered to herbivores and pred-
ators of the upper food chain throughout the ecosystem. 
Therefore, litters are significant nutrient sources that sus-
tain soil biota and ecosystems [22]. Earthworms decom-
pose litter three times quicker than other invertebrates, 

such as springtails and enchytraeids, considering their 
biomass, density, and collaboration with gut microbiota 
possessing the ability to break down carbohydrate poly-
mers [18, 23]. Sometimes, earthworms can consume the 
entire leaf-fall in deciduous temperate forests [24, 25].

Temperate forests are characterized by the massive 
seasonal production of litter during autumn [26] and 
are usually categorized into four stand types: broadleaf 
deciduous, needleleaf evergreen, needleleaf deciduous, 
and mixed [27]. Global analysis on annual litterfall ranged 
between 3 and 11 Mg  ha−1, which varied significantly by 
the forest stand types [26]. In a meta-analysis study, root 
and leaf litter were reported to account for 48% and 41% 
of annual litters, respectively [28]. Also, more than 70% 
of the above-ground litter consists of leaf tissue; the rest 
are stems, twigs, and other components [29], but the pro-
portion of wood material rises with increasing stand ages 
[30, 31]. Accordingly, the production and decomposition 
of plant biomass determine temperate forests as a sub-
stantial carbon source and sink [27, 32, 33]. Earthworm 
decomposition has been investigated mostly on leaves 
rather than root litter, despite the potential contribution 
of roots due to (1) massive leaf litter production during 
autumn and (2) difficulties in underground experimental 
observations.

The traditional approaches for soil property modifica-
tion and material cycling by earthworms rely on direct 
observation of their feeding activities, microscopic exam-
inations of gut contents, palatability test, estimation of 
ingestion, consumption, and growth rates [34]. However, 
each method consumes considerable time and provides 
limited information about the feeding strategy and the 
assimilated dietary components. Experimental designs 
include incubating earthworms within chambers placed 
in laboratories (microcosm) or outdoor fields (meso-
cosm). Mesocosm studies reflect natural climatic condi-
tions such as temperature and humidity.

Isotope analysis emerged as a powerful research tool 
for animal ecology [35], and earthworm research could 
also benefit from its application [36]. For SOM tracing, 
ratios of stable isotope pairs, mostly 13C/12C and 15N/14N, 
are measured using isotope ratio mass spectrometry [37]. 
One advantage of the isotopic method is that isotopes 
can be employed as tracers in undisturbed soil of field 
settings. Environmental conditions vary significantly in 
scale and frequency between indoor and outdoor experi-
ments; the application of isotope analysis provides a 
much simpler design, advantage, and accuracy to field 
experiment measurements. These methods also trace 
assimilated food materials, identify trophic interactions 
of earthworms in soil food webs, and address nutrient 
dynamics in complex linkages of earthworms and their 
environments [38]. Furthermore, labeling isotopes enable 



Page 3 of 12Kim et al. Applied Biological Chemistry           (2022) 65:88  

evaluation of their mean residence time and the half-life 
time in compartments. The mean residence time corre-
sponds to the stock-to-exchange rates, which is not an 
intrinsic property of a compartment [39].

In the present paper, we synthesize recent discover-
ies of earthworm-derived biogeochemical changes in 
temperate forest soil and potential carbon and nitrogen 
dynamics, followed by litter and SOM decomposition. 
We also examine the current and latest methodologies 
for material dynamics to suggest future directions that 
may add more precision and efficiency to related stud-
ies, with particular implications regarding isotope tracing 
methods.

Hence, we have adopted the scoping review methodol-
ogy [40] for this paper to generate a comprehensive lit-
erature review about the contribution of earthworms to 
soil biogeochemistry and isotopic measurements. The 
reviewed literature was restricted to peer-reviewed pub-
lications and grey literature from approved international 
bodies. The published online research was collected from 
Google scholar, Scopus, Web of Science, and Science 
Direct databases. The online catalog gathered published 
articles, books, book chapters, and doctoral disserta-
tions from various libraries. Especially for the latest iso-
topic research addressed in the “Isotope techniques for 
studying soil nutrient cycling by earthworms” section, 
we sorted publications between January 1st, 1999 and 
November 1st, 2022. The search was limited to the fol-
lowing keywords to clearly indicate the main focus of our 
paper: temperate forests, carbon and nitrogen isotopes, 
litter decomposition, and SOM. Even in references, we 
excluded results from non-temperate forest sites and 
indoor experiments that used agricultural soils.

Earthworms, soil, and nutrient cycling
Earthworms and soil properties
Earthworms are ecosystem engineers that have consid-
erable physical, chemical, and biological alterations in 
their habitats [41, 42] through their burrowing, feeding, 
and casting activities. Earthworms’ vertical and horizon-
tal burrowing activity affects the soil structure, resulting 
in a distinctive soil layer known as the drilosphere [43]. 
Studies have reported other earthworm-derived modi-
fications on increasing soil porosity [44] and aggregate 
stability [45]. Also, water and air penetrate deeper soil 
through the earthworm burrows and promote the activ-
ity of aerobic microorganisms [46–48].

Earthworms’ feeding activity greatly influences soil 
chemical properties. Earthworm-derived chemical modi-
fications include soil pH [49], cation exchange capacity 
(CEC) [50], carbon and nitrogen stock [51–53], and inor-
ganic nutrient contents, such as potassium and magne-
sium [54]. Along the earthworm intestinal tract, organic 

materials are fragmented, converted into readily available 
carbon compounds or minerals and mixed with mucus; 
some are assimilated into biomass and the rest are 
released into bulk soil [55–57]. Moreover, earthworms 
carry organic materials into deeper soil, causing a vertical 
redistribution of nutrients [58, 59].

Earthworm casts are rich in labile carbon and nitrogen 
compounds, calcium, potassium, and magnesium com-
pared to bulk soil because of their selective feeding and 
digestion of litter [4, 38, 60, 61]. Such chemical modifi-
cation of soil promotes the activity of the surrounding 
microbiome and nutrient uptake of plant roots [62]. The 
estimated production of earthworm casts ranges between 
31 and 293 kg  year−1 per 100 g  m−2 of earthworms [63–
65]. The value varies depending on physical environmen-
tal conditions and earthworm species [66].

Soil’s physical and chemical properties constantly 
interact with each other. For instance, earthworm casts 
with high organic matter content easily bind the sur-
rounding soil particles, which promotes soil aggregate 
formation [67]. Soil aggregate content and porosity are 
positively correlated and lead to soil aeration and sub-
strate infiltration.

Earthworm mucus is another driver for soil aggre-
gate formation and organic material dynamics [68]. It is 
a water-soluble mixture of diverse saccharides, such as 
glucose, galactose, glucosamine [68], aminoacid [69], and 
glycoproteins [70]. Microbes utilize mucus as an energy 
source, so they are abundant and active in earthworms’ 
intestines and mucus [71]. Likewise, there is also a high 
microbial population on the inner wall of the earthworm 
burrows [72, 73]. According to Scheu [74], daily carbon 
loss due to mucus production accounted for 0.2–0.5% of 
the total animal carbon in the case of Octolasion lacteum, 
which is an abundant species in temperate forests [74]. 
Daily mucus excretion of 1 g of earthworms is approxi-
mately 5.6 mg in dry weight [75, 76].

Soil properties and nutrient cycling
As briefly addressed in the previous section, soil prop-
erties directly influence the availability and dynamics of 
soil nutrients. Among them, soil pH is the primary regu-
lating factor of litter decomposition, primarily depend-
ent on the soil fauna activities [77]. It is known that soil 
microbial biomass carbon and nitrogen, and the micro-
bial community (e.g., nitrifiers) in soil positively correlate 
with soil pH [77]; soil acidity is often a limiting factor for 
bacterial activities [68].

In addition, organic carbon mineralization tends to 
represent higher rates in finely textured soils with low 
C:N ratios [78]. Soil containing more than about 15% 
clay can form aggregates, which can longer retain organic 
compounds [79]. Soil aggregates act as a reservoir for 
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labile organic compounds, offering protection from 
microbial degradation [80]. Moreover, clay minerals have 
a large specific surface area and surface charges, stimulat-
ing interactions with SOM and other minerals [81]. One 
study examined SOM storage in silt loam and sandy loam 
soils and reported that the latter had lower total carbon 
and nitrogen contents and minor concentrations of avail-
able nitrogen [80]. Also, low soil porosity often forms 
anaerobic microclimates in soil, with increased activities 
of anaerobic bacteria communities, including nitrogen 
fixers [82].

Isotope techniques for studying soil nutrient cycling 
by earthworms
As we indicated in the previous section, isotope tracing 
is a promising method for material cycling in ecosystems. 
There are two general strategies in isotope analysis: natu-
ral abundance measurement and isotope labeling. The 
former method measures the naturally occurring iso-
tope ratios. Since earthworms feed on mineral soil and 
SOM, it depends on the known isotopic ratio differences 
between food sources instead of the ratio linked to the 
original trophic hierarchy [83].

The isotope labeling method usually uses biomass (e.g., 
plant materials with artificially enriched isotope con-
tent) cultured in an airtight plant growth chamber pro-
vided with 13CO2 for photosynthesis and water-soluble 
15N-inoculated substrates as nutrients. Isotope labeling 
is used to observe maximized changes by increasing the 
quantity of the isotopes, as the proportions of the iso-
topes are naturally very small (13C≒1%, 15N≒0.4%).

This section addresses the latest studies on earthworm 
contribution to SOM dynamics using 13C, 14C, and 15N 
analyses conducted in temperate forests globally. Table 1 
represents studies in this scope with related methodology 
and major findings. These studies measured isotopes in 
soil, leachate, plant and mycorrhizal tissue, earthworm 
tissue, mucus, and casts to examine the earthworm-
induced partitioning of nutrients in ecosystem compart-
ments. The earthworm’s species-specific preference for 
food sources and contribution to soil respiration were 
also investigated with isotopes. Earthworms’ interaction 
with other organisms was studied by quantifying earth-
worm-derived carbon movement within the soil food 
web. Lastly, several cases have examined the soil struc-
tural alteration related to nutrient storage.

The feeding ecology of earthworms
The feeding ecology of earthworms has been effectively 
investigated in several studies using the natural abun-
dance of isotope ratio. In Northeast Asia, Uchida et  al. 
[84] measured the natural masses of 13C and 15N in earth-
worm tissue, gut contents, and soil layers to examine the 

feeding behaviors of several earthworm species. This 
study identified the vertical spatial niches and available 
food sources that vary according to earthworms’ func-
tional groups (epigeic, endogeic, or anecic group). Values 
of δ15N and δ13C typically increased from litter to deeper 
soil, and δ15N from earthworm tissue indicated that epi-
geic earthworms exploited resources in the early stages 
of decomposition of fresh litter, whereas endogeic earth-
worms consumed more degraded substances [84].

On the other hand, Bohlen et  al. [51] reported earth-
worms’ food preference and selection of leaf litter rather 
over stem and twig litters, based on different δ13C values 
among the forest floor materials. In shallower mineral 
soil, δ13C directly reflected that of remaining litter types 
that have neglected by earthworms [85].

Schmidt et  al. [86] examined the carbon turnover 
within an earthworm using δ13C. They reported that 
when the earthworm food source switched from clover 
 (C3 plant) to maize  (C4 plant), the dietary δ13C signature 
was altered more rapidly in the mucus (4‰) than in the 
tissue (1‰) [86]. They also revealed that starvation does 
not cause 13C and 15N isotope ratio shifts in earthworms, 
but causes decreased mucus and tissue C:N ratio [86].

In addition, the soil food web was more enriched by the 
13C from fine roots than from above-ground litter, with 
rapid fine root decay (k = 0.9   year−1) [87]. This implies 
the potential significance of fine roots as a source of SOM 
processed by earthworms, as well as leaf litter.

Species‑specific traits of earthworms
Earthworms have interspecific variations in food pref-
erences and ecological functions. Fahey et  al. [57] 
investigated earthworm-induced sugar maple lit-
ter decomposition with different functional groups of 
earthworms [Lumbricus terrestris (anecic) and Lumbri-
cus rubellus (epi-endogeic)]. Of 13C labeled litter, 37% 
was decomposed because of the elimination of forest 
floor, and loss of SOM and decrease in C:N ratio were 
observed; recovery of 15N was higher than 13C, with 
lower values for L. terrestris than L. rubellus, because 
higher overwinter activity of L. terrestris consumed more 
soil nitrogen [57].

Chang et al. [88] categorized earthworm species by ori-
gin, from exotics of Europe and Asia to natives of North 
America, to assess the species-specific and interspecific 
effect on litter decomposition and soil respiration (efflux 
of 13CO2). The interaction between the European spe-
cies—Octolasion lacteum and Lumbricus rubellus—had 
a significant adverse impact on soil respiration, presum-
ably by increasing anaerobic soil microsites. Moreover, 
litter-derived soil respiration was reduced by the Asian 
Amynthas hilgendorfi and L. rubellus, and by the North 
American Eisenoides lonnbergi, but not by O. lacteum 
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[88]. The decrease in soil respiration may be due to earth-
worm-induced aggregate formation and ensuing reduc-
tion in microbial decomposition of labile carbon [88].

Nutrient recycling between organisms, including earthworms
Isotopes labeling in earthworm biomass can assist in 
investigating below- and above-ground interactions 
through the food web [89]. Grabmaier et  al. [89] used 
15N-labeled earthworms by culturing them with legu-
minous herbs and aphids. They observed earthworm-
derived 15N incorporation into plant leaves (50‰), root 
and mycorrhizal fungi (62‰), and aphids (37‰) [89]. 
The results quantitatively revealed the course of plants’ 
utilization of nitrogen-containing nutrients to start from 
earthworm casts into plant compartments followed by 
delivery to associated organisms, such as symbiotic fungi 
and sap-sucking herbivore aphids.

Similarly, two studies were conducted in the Euro-
pean temperate forests by Yang et al. [90] and Marhan & 
Scheu [97]. Concerning litter quality, Yang et al. [90] used 
15N-labeled ash (Fraxinus excelsior) and beech (Fagus syl-
vatica) leaf-litter and measured the 15N reuptake of each 
tree species from earthworm casts [90]. Earthworms and 
mycorrhizal fungi participated in 2–7% nitrogen recy-
cling from leaf litter and uniformly increased plant acqui-
sition of leaf-derived nitrogen.

Earthworms’ effects on soil materials and structures 
ultimately result in soil microbiome abundance and 
activities. Groffman et al. (2015) witnessed that the 13C- 
and 15N-labeled litter input in earthworm-invaded plots 
resulted in greater 13C and 15N microbial biomass than 
in the mineral nitrogen pool. The depletion of soil car-
bon and soil nitrogen maintenance was observed, pre-
sumably caused by earthworm stimulation of microbial 
biomass and activity [91]. This may be a mechanism for 
nitrogen retention in carbon-rich soil in response to 
the earthworm invasion [91]. This result is opposite to 
several pieces of research, conducted in agricultural or 
mixed soils, reporting a reduction in microbial biomass 
and increase in nitrogen turnover by earthworms [92, 
93]. This could have reflected the difference in soil qual-
ity (e.g., SOM contents) and earthworm mixing of soil 
horizon [94]. Due to the tight coupling of soil carbon 
and nitrogen dynamics, earthworm impact on nitrogen 
cycling in forest soils is inseparable from litter quantity 
and qualities [51].

Earthworm‑induced soil nutrient storage
Temperate deciduous forests in North America are char-
acterized by exotic earthworm invasions from Europe 
and Asia, majorly due to human settlement and agricul-
ture [95]. Earthworm invasion has caught the interest 
of scientists since the early twentieth century, when an 

earthworm-induced modification to soil was observed. 
For instance, Ewing et  al. [96] examined the physical 
reconstruction of soil layers by earthworms in terms of 
hydrology. It was found that 15NO3

− added to the soil was 
more rapidly utilized in the earthworm-invaded plots 
than in uninvaded plots due to less nitrogen retention 
in litter and upper soil layers, but not due to the accel-
eration of the water infiltration stimulated by earthworm 
burrows [96].

Likewise, earthworms’ effect on soil physical struc-
ture can be attributed to carbon retention. Marhan & 
Scheu [97] combined 14C-labeled lignocellulose decom-
position with earthworm mixing of mineral soil lay-
ers. Earthworms’ mineralization of lignocellulose was 
greater in treatments without (+ 14.1%) than in those 
with (+ 8.6%) mineral soil of Bw-horizon [97]. This may 
be because earthworm mixing of carbon-devoid mineral 
soil with earthworm casts containing 14C organic materi-
als decreased microbial activities.

Soil texture is another factor that controls earthworms’ 
effects on soil nutrient storage. Crumsey et al. [98] found 
that nitrogen retention was higher in sandy loam than in 
sandy soil [98]. Besides, Fahey et al. [87] exploited carbon 
storage inside soil aggregates amongst silt and clay [87]. 
Carbon inoculated in silt and clay remained roughly con-
stant through time; 13C recovery declined only by 0.8% 
after 5 years.

Future directions and suggested methodologies
Most studies conducted in temperate forests or laborato-
ries using soil from the temperate forests targeted Lum-
bricus spp. from limited functional groups. However, 
various earthworm species coexist as communities in 
forests, occupying distinct niches utilizing soil environ-
mental heterogeneity [99]. Thus, monitoring an isolated 
species may not reflect intraspecies interactions and 
their full impact on SOM. In addition, when assessing 
the earthworm communities in quantitative studies, it is 
crucial to specify earthworm species composition and 
temporal fluctuations of earthworm density (n  m−2) and 
biomass (g  m−2) for the same reason. Such information 
may support the meta-analysis to synthesize and general-
ize earthworm effects in various ecosystems. Disciplinary 
integration of population ecology and ecosystem ecology 
to elucidate the impact of forest earthworm populations 
on nutrient cycling is one method for considering earth-
worms’ life cycle and their changing density and biomass.

Extending our knowledge of forest-dwelling earth-
worms’ lifecycles and seasonal population dynamics may 
support investigation of their apparent species-specific 
capabilities. However, monitoring in a timescale ranging 
from months to years can be an alternative to assessing 
earthworm influence without precise prior knowledge, 
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since very few cases have revealed earthworms’ lifecy-
cles. Developing such a method is especially in demand 
since hand sorting and mustard powder methods, mainly 
used in fields to sample earthworm individuals and assess 
their distributions, remain controversial in terms of their 
accuracy.

Forests invaded by exotic earthworms provide the best 
conditions for observing the changes induced by earth-
worm activity. North American temperate forests are 
attracting attention as new research destinations because 
of earthworm invasion in recent decades due to farm-
ing and climate change [51, 100]. Some studies utilize 
chrono-sequential analysis based on regional invasion 
time and following soil modification. The chrono-sequen-
tial analysis has the advantage of field measurement on 
a broader area compared to that of the mesocosm study, 
which cultures earthworms in a chamber installed in 
fields. Also, earthworm invasion is expected to become 
more frequent in higher latitude regions because of cli-
mate change and other anthropological factors. As such, 
chronosequence methodologies may be powerful tools 
that provide insight into earthworm-induced SOM 
dynamics. In addition, phylogenetic studies can further 
strengthen earthworms’ impact on material cycling by 
analyzing their genetic correspondence of morphologi-
cal, physiological, and ecological characteristics.

Leaf litter is a widely used material in experimental 
studies related to earthworm feeding. However, other 
parts of plants, such as fine roots and twig residues, are 
also essential sources of SOM for earthworms. Still, lit-
tle is known about the earthworm’s attribution to their 
decomposition [38, 101, 102]. Rhizotron is a practical 
tool for related research as it can visualize below-ground 
soil profiles and monitor root development in real time. 
Vidal et  al. [103] investigated the decomposition stages 
of the 13C-enriched shoot and root litters in earthworm 
casts [103]. The different chemical compositions between 
shoot and root tissues appeared as a driving factor for 
their distinct decomposition processes. NanoSIMS 
(nanometre‐scale secondary ion mass spectrometry) was 
used in that study to obtain microscale spatial images and 
monitor the changes in the structure and distribution of 
target organic materials, such as tissue walls.

We must verify correlations between environmental 
conditions of study sites and earthworm activities dur-
ing material cycle studies to calibrate measurements. For 
instance, air temperature increases soil respiration and 
reduces soil carbon stocks, and soil texture is one factor 
that affects organic material stabilization by effectively 
binding SOM. Investigations in a broader region of dif-
ferent temperatures, humidity, and soil characteristics 
with a unified method are recommended to assess inter-
actions between abiotic factors and earthworms.

Conclusions
This paper addressed the earthworm influences on soil 
physicochemical properties and on carbon and nitro-
gen dynamics in temperate forest ecosystems. Since 
soil properties directly regulate the decomposition of 
litter, a major food resource for earthworms and SOM 
sources in forests, elucidating relevant mechanisms 
of nutrient cycling in forest ecosystems is essential. 
Among other methods to investigate SOM dynam-
ics and partitioning in forest soil, carbon and nitrogen 
isotope analysis has been adopted by soil ecologists 
based on its efficiency and accuracy. Several studies 
have quantified trophic interactions of earthworms in 
soil food webs, palatability, assimilation of SOM into 
earthworm biomass, carbon and nitrogen turnover, and 
earthworm impact on soil carbon and nitrogen con-
tents using this method in temperate forests. Other 
methodologies, including chrono-sequential measuring 
and population assessments, are recommended for fur-
ther elaboration and verification of soil nutrient circu-
lation, especially for carbon and nitrogen.
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