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Preliminary investigation of the formation age
and chemical characterization of the tropical peat
in the middle Sepik Plain, northern Papua New
Guinea
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Abstract

Seven gouge cores in the middle Sepik Plain (northern Papua New Guinea) were bored to clarify the depositional
age and the chemical characteristics of the tropical peat. The weakly-acidic peat layer (3–4 m thick) is distributed
around the south bank of the Blackwater Lakes. The peat layer consists mainly of sago palm and grass remains within a
mineral matrix of very fine sand and clay. Radiocarbon dating indicates that the peat’s formation had commenced by
3,710–3,560 cal BP. Nitrogen and exchangeable potassium reach their highest values in the upper 60 cm of the peat
column. Conversely, exchangeable sodium, calcium and magnesium, as well as carbon, increase their values with depth
in the peat. These differences in the exchangeable cations’ contribution suggest changes in the plant species, which
were decomposed during the peat’s formation.
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Background
Carbon dioxide storage in tropical peatlands has recently
attracted significant international attention. Carbon di-
oxide emission from deforested tropical peatlands is a
very important and controversial issue, in the context of
global warming [1,2]. Tropical peatlands are widely
distributed in south-east Asia and Oceania, but only a
limited area has been studied, with regard to carbon
dioxide storage and emission problems. The detailed
distribution, formation process and chemical properties
of tropical peats have been clarified in Indonesia and
Malaysia (e.g. [3-6]). However, there have been rela-
tively few studies of tropical peatlands in Oceania.
Oceania’s largest peatland area, estimated at 290,000–
500,000 ha [7,8], is situated in Papua New Guinea.
Previous research on Papua New Guinea included

studies of highland peat in the mountain areas [9,10]
and a few geomorphologic studies of the main peatlands,
which are distributed in the floodplains of the Fly and
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Sepik Rivers [11,12]. Additional geological data in these
regions is expected to clarify the details of tropical peat
distribution, as well as the floodplains’ geomorphological
development.
In the present study, an array coring survey was con-

ducted around the south bank of the Blackwater Lakes,
in the middle Sepik Plain. The peat layer’s thickness, its
depositional age and chemical characteristics were iden-
tified to determine the formation process and the distri-
bution range of tropical peats in the inland floodplains
of Papua New Guinea.
Study area
The study area comprises the water catchment of the
Sepik River, extending over 77,700 km2 within a tectonic
basin [13], in the northern part of Papua New Guinea
(Figure 1). The river (1,126 km total length) flows
eastwards through the basin and discharges into the
Bismarck Sea [14]. The Sepik basin is filled with alluvial
sediments originating from the Pleistocene rocks, which
form the nearby mountains [15].
The physical environment of the middle Sepik Plain

is divided into three land systems: ‘Sanai’, ‘Pandago’
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Figure 1 Index map displaying the topography around the Sepik lowland.

Figure 2 Satellite image of the eastern part of the Blackwater
Lakes.
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and ‘Kabuk’ [16]. The Sanai component corresponds
to floodplain swamps with minor low levees, scrolls and
oxbow lakes; subject to severe flooding. These areas con-
tain organic soils, alluvial black clays and plastic heavy
clay and young alluvial soils covered with mixed grass.
Phragmites swamps, in particular, also include minor
herbaceous swamp vegetation. Such areas are widespread
along the Sepik River. In contrast, the Kabuk and Pandago
components are distributed on the edge of the flood
plain. The Kabuk component refers to permanent flood-
plain swamps, consisting of organic soils and plastic, heavy
clay, young alluvial soils, which cover the sago palm-
Phragmites swamps. The Pandago component corre-
sponds to seasonally-inundated floodplain swamps. These
are very poorly drained and include swampy, plastic, heavy
clay, young alluvial soils, occasionally with organic
soils that are covered by sago palm forests and sago
palm swamps.
Although the study area is located in a tropical region,

rainfall is generally not heavy, and the monthly averages
range from 203 to 356 mm in the wettest month, i.e. be-
tween October and March, to 51–127 mm in the driest
month, i.e. between March and October. Rainfall causes
water-level fluctuations in the rivers and lakes [17,18].
The field surveys conducted for the purposes of the

present study focused on the south bank of the Blackwater
Lakes, about 150 km upwards from the river mouth and
about 10 m above sea level (Figure 2). The floodplain



Figure 3 Map showing the coring sites in Kraimbit village.
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consists mainly of meander belts, backmarsh, abandoned
channels and lakes. Most of the lakes are separated by the
meander belts of a Sepik tributary. The Blackwater Lakes
are vast lakes in the middle Sepik Plain, which expand to
approximately 60 km2 during the rainy season. A village
named ‘Kraimbit’ is located on the south bank of the lake.
The typical micro-landscape of the middle Sepik Plain is
observed on the southern bank of the Black Water Lakes.
It can be divided into three main areas, based on their
physical environment: permanent floodplain swamps,
seasonally-inundated floodplains covered by grass (resi-
dential quarter and garden) and seasonally-inundated
flood-plains covered by sago palm, corresponding to
Sanai, Kabuk and Pandago.

Methods
A geological transect, from Blackwater Lakes to Sago
Forest, was realised, extracting seven gouge cores
(KB1: 4°32'19.37"S, 143°22'51.04"E; KB2: 4°32'20.94"S,
143°22'53.29"E, KB3: 4°32’21.73”S, 143°22’54.66”E; KB4:
4°32’18.87”S, 143°22’50.43”E; KB5: 4°32’20.94”S, 143°
22’53.29”E; KB7: 4°32’23.32”S, 143°22’55.14”E; KB8:
4°32’25.55”S, 143°22’56.31”E) at 20–60 m intervals along
the transect, to determine the distribution of the peat
layer. In addition, observations on the village outcrops
were recorded. The 250 m transect crosses the floodplain,
from north to south, centred at Kraimbit village. The
cores are 25 mm in diameter and range from 1.0 to 4.5 m
in depth. The sedimentary features of the cores were
logged in the field. The relative elevation of each coring
site was determined using an automatic level, based on
the water level of the Blackwater Lakes at 6:00 P.M. on 21
August 2011.
Samples from two cores were radiocarbon-dated using

the accelerator mass spectrometry (AMS) method. The
ages were calibrated using Calib5.0 [19] and were con-
verted from radiocarbon years (y BP) to calendar years
(cal BP) using INTCAL04 [20].
From core KB1, 38 samples were collected for chemical

analysis, at 0.1-metre depth-intervals. They were air-dried
and then sieved through a 2-mm mesh. Un-decomposed
pieces of wood, whenever present, were removed from the
samples, in this step. Total carbon (TC) and total nitrogen
(TN) content, as well as their ratio (C/N) were measured
through a CN analyser (CN Corder MT-700, Yanaco) in
the air-dried fine samples. The pH was determined by a
glass electrode (pH/COND metre D-54, HORIBA) in sus-
pension (the sample: deionized water = 1: 10 at mass ratio)
after stirring for one hour. To determine the exchangeable
cation contents, in the samples, they were stirred for one
hour with 1 M ammonium acetate solution (pH 7) (sam-
ple: solution = 1: 20), and subsequently filtered through
a 0.45-μm membrane-filter (A045A025A, ADVANTEC,
Tokyo, Japan). The sodium (Na), potassium (K), calcium
(Ca) and magnesium (Mg) concentrations in the filtrates
were then analysed using an ICP-AES (IRIS ICAP, Nippon
Jarrell Ash).

Results
Stratigraphy and radiocarbon ages
The transected deposits are mainly composed of a 3–
4 m thick peat layer (Figures 3 and 4). The peat layers
consist of partially-decomposed organic matter and con-
tain sago palm and grass remains in a mineral matrix of
very fine sand and clay. Inorganic silty clay was located
under the peat layer at coring sites KB1, KB3, KB4 and
KB5. In addition, inorganic fine sand was detected under
the silty clay at coring site KB5. The peat layer’s base is
sharp and clear, wherever it is located. The peat layer
has a greater thickness on the inland side. Three dates,
3,710–3,560 cal BP, 3,620–3,440 cal BP and 2,870–
2,760 cal BP, were obtained from the lower and the mid-
dle part of the peat layer (Table 1).
The peat layer was also detected beyond the studied

transect, in river outcrops and artificial water-courses in
the village. One particular artificial water-course, ap-
proximately 200 m south of the coring site KB1, pre-
sented the three-dimensional sedimentary characteristics
of the peat layer (Figure 5), clearly indicating the pro-
gressive soil formation in the surface layer.

Chemical characterization
The results of the chemical analysis on the samples of
core KB1 are presented in Figure 6. The average pH
value is 5.73 in the silty clay (G.L. − 4.00 to −3.58 m) and
4.40 in the peat layer (G.L. − 3.58 to 0.00 m); the peat is
weakly acidic. The total carbon-to-total nitrogen values
range between 19.7 and 78.2, and are classified broadly



Figure 4 Simplified geological cross-section along a NW-SE transect, including the columnar sections of the cores. Coring sites are indicated
in Figure 3.
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into two groups: relatively high values in the middle part
of the peat layer and relatively low values in the lower
and upper parts.
The data on exchangeable cations exhibit strong vari-

ability through the core KB1, whereas the C content
maintains high values from the depth of 3.5 m upwards.
The exchangeable Na tends to decrease from around
3.5 m depth, whereas the exchangeable K remains con-
stant between depths of 3.0 to 1.0 m and then increases
abruptly above 1.0 m. Furthermore, the exchangeable Ca
fluctuates at high values, from 3.5 m to 1.0 m depth, and
Table 1 Radiocarbon dating data

Site Depth (m) Material δ13C(%) Conventional

KB1 1.8 wood -27.1 2,730 ± 30

3.5 wood -27.4 3,290 ± 40

KB5 3.2 peat -19.3 3,390 ± 40
then decreases. The profile of exchangeable Mg has two
peaks, at the 3.5–3.0 m and the 2.0–1.0 m depth.

Discussion
Fluvial facies and radiocarbon dating indicate that the
sedimentary environment, in the study area, changed
around 3,710–3,560 cal BP. Inorganic silty clay and fine
sand have been carried by rivers, accumulating sago
palm and grass remains in the shallow swamp waters.
This phenomenon can also be described as a reduction
of the Sanai and an expansion of the Pandago and
age (yrs BP) Calibrated age
(cal. BP with 2σ age range)

Lab no (Beta-)

2,870-2,760 305430

3,620-3440 305431

3,710-3,560 305432
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Figure 5 The chemical characteristics of core KB1.
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Kabuk components, possibly affecting the floodplains
of middle Sepik. A mid-Holocene marine transgression
followed by a late-Holocene marine regression occurred
in the lower part of Sepik [12], inducing an expansion of
the peat layer in the middle Sepik.
Important changes in the peat’s chemical characteris-

tics, between its different levels, were observed. The vari-
ation in the exchangeable cations’ content is considered to
correspond to a vegetation change in this area. Since the
Figure 6 Outcrops of artificial watercourses in Kraimbit village.
The photograph shows the upper part (about 30 cm) of the
peat layer.
carbon content has remained at a high value from 3.5 m
depth onwards, the area was probably covered with rich
vegetation. However, the plant species assemblage might
have changed. The K, Ca and Mg content, in plant tissues,
varies between the different species. The nutrient contents
in various plant species from valleys in Ghana; in the 15
species analysed, the highest Ca-content was measured at
27.0 g kg−1 in Mareya micrantha, with a K-content as low
as 4.7 g kg−1, and the highest K-content was measured at
65.9 g kg−1 in Portulaca oleracea, corresponding to a low
Ca-content of 4.6 g kg−1. Since their mobility in the peat
layer varies among the elements, for example K and Na
are more mobile than Ca and Mg, the cation ratios in the
peat do not directly reflect the contribution of the past
vegetation [21]. However, the high values of exchangeable
Ca and Mg in specific layers suggest that other plants
coexisted in the area, along with sago palm.

Conclusions
Tropical peat was investigated in the middle Sepik Plain,
northern Papua New Guinea. The thickness of the peat
layers 3–4 m, and the layers consist of partially-
decomposed organic matter and contain sago palm and
grass remains within a very fine sand and clayey mineral
matrix. Tropical peat formed between 3,710–3,560 cal
BP, as a result of a late-Holocene marine regression.
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The peat’s chemical variability, especially regarding the
exchangeable cations, may be due to a vegetation change
in this area during the peat’s formation.
Despite the limited nature of the presented data, with

regard to the carbon storage issue, the results provided
here constitute a significant contribution to this region’s
geological and geomorphological survey. The measured
changes in the peat’s chemical characteristics certainly
demand additional studies to investigate further the fac-
tors affecting them, making use of existing research re-
sults on sago palm from other areas. Conclusively, the
focus of future studies should be to widen the survey
area and to analyse the peatlands’ carbon storage param-
eters, including non-decomposed plant remains.
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