Cache Memory Behavior of Advanced PDE Solvers

Dan Wallin, Henrik Johansson and Sverker Holmgren
Uppsaa University, Department of Information Technology
PO. Box 337, SE-751 05 Uppsaa, Sweden
{dan.wallin, henrik.johansson, sverker.holmgren}@it.uu.se

Abstract

Three different partial differential equation (PDE) solver
kernels are analyzed in respect to cache memory perfor-
mance on a simulated shared memory computer. The ker-
nels implement state-of-the-art solution algorithms for com-
plex application problems, and the simulations are per-
formed for data sets of realistic size.

The performance of the studied applications benefits
from much longer cache lines than normally found in com-
mercially available computer systems. The reason for this
is that numerical algorithms are carefully coded and have
regular memory access patterns. These programs take ad-
vantage of spatial locality and the amount of false shar-
ing is limited. A simple sequential hardware prefetch strat-
egy, providing cache behavior similar to a large cache line,
could potentially yield large performance gains for these
applications. Unfortunately, such prefetchers often lead to
additional address snoops in multiprocessor caches. How-
ever, applying a bundle technique, which lumps several read
address transactions together, this large increase in address
snoops can be avoided. For all studied algorithms, both the
address snoops and cache misses are largely reduced in the
bundled prefetch protocol.

1 Introduction

The solution of partial differential equations (PDES) is
a central part of many important and demanding computa-
tions in science and technology. Despite increases in com-
putational power and advances in solution algorithms, the
computations are still often very time and memory consum-
ing, and large shared memory servers have to be employed.
This is especially true for PDEs arising from accurate mod-
els of complex, realistic problems. Hence, it is important
that such problems can be solved efficiently on current and
future parallel computers.

Designing a parallel computer system is an optimization
problem where several parameters have to be taken into ac-

count, e.g. the cache miss rate, the number of address trans-
actions sent on the network and the amount of data traffic
generated. Improving one property often leads to worse
behavior for another property. A longer cache line size
normally efficiently reduces the number of cache misses in
uniprocessors. In multiprocessors a longer cache line may
lead to increased traffic as well as more cache misses if a
large amount of false sharing occurs [25]. The preferred
cache line size is therefore usually smaller in multiproces-
sors than in uniprocessors. The preferred cache line size is
also very application dependent. Several papers have inves-
tigated the effects of cache line size on miss rate and traffic
in multiprocessors [8, 11, 13, 29].

Most available multiprocessors are optimized for run-
ning commercial software, e.g. databases and server-
applications, since the largest market share is within this
field. In these applications, the data access pattern is
very unstructured and a large amount of false sharing oc-
curs [16, 28]. Popular benchmarks used when design-
ing multiprocessors are the TPC-benchmarks [2] and the
SPEC/OSG-benchmarks [1]. The computer vendors usually
build multiprocessors with cache line sizes ranging between
32 and 128 B. This cache line size range gives rather good
performance trade-offs between cache misses and traffic for
commercial applications, but might not be ideal for scien-
tific applications.

In this paper, we evaluate the behavior of three PDE
solvers. The kernels are based on modern, efficient algo-
rithms, and the settings and working sets are chosen to rep-
resent realistic application problems. The codes are written
in Fortran 90, and parallelized using OpenMP directives.
The study is based on full-system simulations of a shared
memory multiprocessor. These problems are much more
demanding than commonly used scientific benchmarks, e.g.
found in SPLASH-2 [29], which usually implement simpli-
fied solution algorithms. The baseline computer model is
set up to correspond to a commercially available system, the
SunFire 6800 server. However, using a simulator, the cache
coherence protocol can easily be modified to resemble al-
ternative design choices for possible future designs. The



simulations can also be useful for providing knowledge of
possible performance bottlenecks to the programmer.

Based on the simulations, we conclude that the spatial
locality is much better in these PDE kernels than in com-
mercial benchmarks. Therefore, the optimal cache line size
for these algorithms is larger than in most available multi-
processors. Spatial locality could be better explored also in
a small cache line size multiprocessor using prefetching. A
very simple sequential prefetch protocol, prefetching sev-
eral consecutive addresses on each cache miss, give a cache
miss rate similar to a large cache line protocol. However,
the coherence and data traffic on the interconnect increase
heavily compared to a non-prefetching protocol. We show
that by using the bundling technique, previously published
in [28], the coherence traffic can be kept under control.

2 ThePDE solvers

The kernels studied below represent three important
types of PDE solvers, used for compressible flow computa-
tions in computational fluid dynamics (CFD), radar cross-
section computations in computational electromagnetics
(CEM) and chemical reaction rate computations in quantum
dynamics (QD). The properties of the kernels differ a lot
with respect to the amount of computations performed per
memory access, memory access patterns, amount of com-
munication, and communication patterns.

2.1 TheCFD kernel

The CFD kernel implements the advanced algorithm de-
scribed by Jameson and Caughey for solving the compress-
ible Euler equations on a structured grid [15]. The imple-
mentation is described in detail by Nordén et al [21].

The Euler equations are non-linear and the solution is
vector valued. The computations are carried out on a
structured, three-dimensional curvilinear grid where a fi-
nite volume discretization is used in combination with a
flux-splitting scheme. The resulting system of equations
is solved using a red-black ordered Gauss-Seidel-Newton
(GSN) technique where a multigrid method is used to ac-
celerate the convergence of the iterations.

The data used in the computations are highly structured.
Each smoothing operation in the multigrid scheme consists
of a GS iteration, which sweeps through an array represent-
ing the three-dimensional grid. Here, the values of the so-
lution vector at six neighbor cells are used to update the
values in each cell. To parallelize the GS iteration, a red-
black ordering of the cells is introduced. Also, the updates
are made in a symmetric way sweeping through the grid
in a red-black-black-red order in each GS iteration. After
smoothing, the solution is restricted to a coarser grid, where
the smoother is applied again and the process is repeated

recursively. At the coarsest grid, several smoothing opera-
tions are performed, and the solution is then gradually pro-
longated back to the finest grid. After each prolongation
step, an additional smoothing sweep is performed.

The total work of the algorithm is heavily dominated by
the computations performed within each cell for determin-
ing the updates in the smoothing operations. These local
computations are quite involved, but the parallelization of
the smoothing step is trivial. Each of the threads computes
the updates for a slice of each grid in the multi-grid scheme.
Communication is only performed in the smoothing opera-
tion and in the prolongation. The amount of communication
is small, and the threads only communicate pair-wise.

2.2 TheCEM Kernel

This kernel is part of an industrial Computational Elec-
tromagnetics (CEM) solver for determining the radar cross
section of an object [9]. The solver utilizes an unstruc-
tured grid in three dimensions in combination with a fi-
nite element discretization. The resulting large system of
equations is solved with a version of the conjugate gradi-
ent method [5]. The coefficient matrix is very sparse and
unstructured. In each conjugate gradient iteration, a matrix-
vector multiplication is performed with this matrix. This
operation dominates the total computational work. The dif-
ferent stages in the iteration are parallelized in different
ways. Local vector updates are trivially parallelized, and
no communication is required. The inner product requires
a global reduction, involving synchronization of all threads.
Finally, the parallelization of the matrix-vector multiplica-
tion is performed such that each thread computes a block of
entries in the result vector. The positions of the non-zero
entries in the matrix determine which elements in the data
vector that are used for computing a given entry in the result
vector. Since the matrix is unstructured, the effect is that the
data vector is accessed in a seemingly random way. How-
ever, the memory access pattern does not change between
the iterations.

2.3 TheQD Kernd

This PDE kernel is derived from an application where the
dynamics of chemical reactions is studied using a quantum
mechanical model with three degrees of freedom [22]. The
solver utilizes a pseudo-spectral discretization in the two
first dimensions, and a standard finite difference scheme
in the third direction. In time, an explicit ODE-solver is
used. The computational grid is structured and uniform.
For computing the derivatives in the pseudo-spectral dis-
cretization, a standard convolution technique involving two-
dimensional fast Fourier transforms (FFTs), local multipli-
cations, and inverse FFTs is applied. The parallelization is



performed such that the FFTs in the first dimension are per-
formed in parallel and locally [27]. For the FFTs in the sec-
ond dimension, a parallel transpose operation is applied to
the solution data, and the local FFTs are applied in parallel
again. The finite difference computations are fully parallel
and local.

The communication within the kernel is concentrated to
the transpose operation. This operation involves heavy all-
to-all communication between the threads. However, the
communication pattern is constant between the iterations in
the time loop.

3 Simulation Environment

All experiments are carried out using execution-driven
simulation in the full-system simulator Simics [18]. The
modeled system uses the SPARC v9 ISA and implements a
snoop-based invalidation MOSI (Modified, Owner, Shared,
Invalid) cache coherence protocol. We set up the baseline
cache hierarchy to resemble a SunFire 6800 server with 16
processors. The server uses UltraSPARC Il processors,
each equipped with two levels of caches. The processors
have two separate first level caches, a 4-way associative
32 KB instruction cache and a 4-way associative 64 KB data
cache. The second level cache is a 2-way associative cache
of 8 MB, which is shared between data and instruction ac-
Cesses.

We focus on the behavior of the second level caches and
the interconnect in the experiments. All cache miss figures
are for the second level cache and the traffic generated on
the interconnect between the processors. The only hard-
ware parameter that is varied is the cache line size, which
is normally 64 B in the SunFire 6800 second level caches.
The second level caches of this computer system are sub-
blocked. To isolate the effects of a varying cache line size
and to avoid corner cases in the prefetch experiments, the
figures presented are for simulated non-subblocked second
level caches. A comparative study was performed also with
subblocked second level caches with a small increase in
cache misses as a consequence.

The article only presents results for the measured cache
misses and the traffic produced rather than to simulate the
contention that may arise on the interconnect. This will not
allow us to estimate the wall clock time for the execution
of the benchmarks. Execution time is difficult to estimate
based on simulation. If the memory access time is large, the
execution time is highly dependent on the amount of cache
misses. For communication intense applications, the execu-
tion is also very dependent on the contention on the inter-
connect. However, a study of the snoop-based Sun E6000
server showed that memory access time only is influenced
by contention if the interconnect is overloaded [23]. The
estimated execution time would therefore be highly imple-

mentation dependent on the bandwidth assumptions for the
memory hierarchy and the bandwidth of coherence broad-
cast and data switches.

The characterization of cache misses in this article is in-
fluenced by Eggers and Jeremiassen [10]: The first refer-
ence to a given cache line by a processor is a cold miss. Sub-
sequent misses to the same cache line by the same proces-
sor are either caused by invalidations and/or replacements.
All misses caused by replacements are classified as capac-
ity misses. The invalidation misses are either classified as
false or true sharing misses. False sharing misses occur if
another word in the cache line has been modified by another
processor during the lifetime in the cache. All other inval-
idation misses are true sharing misses. Conflict misses are
included in the capacity miss category.

4 Simulation Working Sets

The CFD problem size has a grid size of 32 x 32 x 32
elements using four multigrid levels. The CEM problem
represents a modeled generic aircraft with a problem coef-
ficient matrix of about 175,000 x 175,000 elements; a little
more than 300,000 of these are non-zero. The QD problem
size is 256 x 256 x 20, i.e. a 256 x 256 2D FFT in the x-y
directions followed by a 20 element FDM in the z-direction,
a realistic size for problems of this type.

We only perform a number of iterative steps for each
PDE kernel to limit the simulation time. Also a lim-
ited number of iterations gives appropriate results for the
cache behavior since the access pattern is most often regular
within each iteration for the PDE kernels. We performed a
number of experiments with a larger number of iterations to
verify that the results obtained were valid also for a shorter
simulation. Before starting the measurements each solver
completes a full iteration to warm-up the caches. The CFD
solver runs for two iterations, the CEM solver runs until
convergence (about 20 iterations) and the QD solver runs
for three iterations.

The PDE solvers are compiled using the Sun Forte de-
veloper 7 compiler with the -fast optimization flag set.

5 Impact of Varying Cache Line Size on the
PDE Solvers

The cache miss characteristics, the required number of
snoop lookups and the data traffic have been measured for
different cache line sizes for the three PDE solvers in Fig-
ure 1. The cache misses are categorized into five different
cache miss types according to the scheme described in Sec-
tion 3. The data traffic is a measurement of the number of
bytes transferred on the interconnect while the term snoop
lookups represents the number of snoop lockups required



0.8 2.5
\D Cold 7 Capacity W False NTrue B Upgrade\ \D Snoop lookups WM Data traffic
0.7 1
2 4
0.6
0.5 1 1.5 1
0.4 -
0.3 Ly
0.2 |
0.5
0.1 NN AN
o 01—
1024 ‘ 2048 32 ‘ 1024 ‘ 2048
CFD CFD
(a) Cache missratio (b) Snoop lookups and data traffic
18 25 -
\D Cold 7 Capacity B False N True B Upgrade \D Snoop lookups M Data trafflc\
16
14 2
12 4 W
1.5
10 4
8 4
1 4
6 4
4 0.5
21 >\\\‘ NNNNAN|
[N
0 7/ = | o
256 512 1024 ‘ 2048 1024 ‘ 2048
CEM CEM
(c) Cache missratio (d) Snoop lookups and data traffic
9 25
\D Cold 7 Capacity B False NTrue B Upgrade \D Snoop lookups M Data trafflc\
8 4
74 2
6 | —‘
1.5
5 4
4
1 4
3 4
27 0.5
1 ) vy
0 ) 7z = | 4

‘ 1024 ‘ 2048

QD
(e) Cache missratio

1024 ‘ 2048

QD
(f) Snoop lookups and data traffic

Figure 1. Influence of cache line size on cache misses, snoop lookups and data traffic in the three PDE kernels. The miss ratio
in percent is indicated in the cache miss figures. The snoop lookups and the data traffic are normalized to 1.0 relative to the 64 B

configuration.



by the caches on the interconnect. The snoop lookups is
normally related to the number of cache misses that occurs
in the system, while the data traffic normally increases with
larger cache line size since larger amounts of data are trans-
ferred in each packet.

51 TheCFD kernel

Most of the computations are carried out within each cell
in the grid, leading to a low overall miss ratio in the CFD
kernel. The decrease in miss ratio is substantial when the
line size is increased, although somewhat smaller in com-
parison with the other solvers. The data causing the true
sharing misses and the upgrades exhibit good spatial local-
ity and the amount of these misses is halved with each dou-
bling of the line size.

The decrease in cache miss ratio is influenced by a re-
markable property in this kernel: the false sharing misses
are reduced when the line size is increased. The behavior of
false sharing is normally the opposite; false sharing misses
increase with larger line size. When a processor is about
to finish a smoothing operation it requests data that have
previously been modified by another processor, i.e. all data
have been invalidated. The invalidated data are placed con-
secutively in the remote cache. Larger pieces of this data
are brought into the local cache when a longer cache line is
used. If a shorter cache line is used, less invalidated data
will be brought to the local cache in each access and there-
fore a larger number of accesses is required to bring all the
requested data to the cache. All these accesses will be cat-
egorized as false sharing misses, thus generating more false
sharing misses for shorter cache line sizes.

The miss ratio decreases slower at larger line sizes be-
cause the true and false sharing misses cannot be reduced
below a certain threshold. This makes the amount of data
traffic scale less well for long cache line sizes. The decrease
in snoop lookups is approximately proportional to the de-
crease in miss ratio. Due to the large increase in data traffic,
the ideal cache line size is shorter in this kernel than in the
other kernels. However, the total miss ratio is also much
lower.

5.2 TheCEM kernd

The CEM kernel has a large problem size, which is
clearly shown in the high miss ratio for small cache line
sizes. Capacity misses are most common and can be
avoided using a large cache line size. The true sharing
misses and the upgrades are also reduced with a larger cache
line size, but at a slower rate since the data vector is being
randomly accessed. False sharing is not a problem in this
application, not even for very large cache line sizes.

The data traffic exhibits nice properties for large cache
lines because of the rapid decrease in the miss ratio. The ad-
dress snoops are almost halved with each increase in cache
line size. Therefore, the optimal cache line size for the CEM
kernel is very long.

5.3 TheQD kernel

This application is heavily dominated by two miss types,
capacity misses and upgrades, which both decrease when
the line size is increased. The large number of upgrades is
caused by the all-to-all communication pattern during the
transpose operation where every element is modified after
being read. This should result in an equal number of true
sharing misses and upgrades, but the kernel problem size
is very large and replacements take place before the true
sharing misses occur. Therefore, a roughly equal amount of
capacity misses and upgrades are recorded in the model.

The bus traffic increases rather slowly for large cache
lines. It is only at cache line sizes larger than about 256 B
that the data traffic begins to increase at a faster rate. The
snoop lookups has the opposite behavior and decreases
rapidly until the 256 B cache line size, where it levels out.

6 Sequential Hardware Prefetching

The results presented in Section 5 showed that a very
long cache line would be preferable in a computer opti-
mized for solving PDEs. A preferable cache line size would
probably be between 256 and 512 B for these applications
to make better use of spatial locality. Even larger cache
lines lead to less efficiently used caches with a large in-
crease in data traffic as a consequence. Unfortunately, no
computer is built with such large line size. Instead, a simi-
lar behavior to having a large cache line can be obtained by
using various prefetch techniques. These techniques try to
reduce the miss penalty by prefetching data to the cache
before the data are being used. The proposed schemes
are either software-based [19, 20, 26] or hardware-based
[3,6,7,12, 14, 17, 24].

A very simple hardware method to achieve cache charac-
teristics similar to having a large cache line, while keeping a
short cache line size, is to implement sequential prefetching.
In such systems, a number of prefetches is issued for data
having consecutive addresses each time a cache miss oc-
curs. The amount of prefetching is governed by the prefetch
degree, which decides how many prefetches to perform on
each cache miss. Dahlgren et al. has studied the behavior of
sequential prefetching on the SPLASH benchmarks [6]. Se-
quential prefetching normally efficiently reduces the num-
ber of cache misses since more data is brought into the
cache on each cache miss. Sequential prefetching requires
only small changes to the cache controller and can easily



be implemented without a large increase in coherence com-
plexity. The main disadvantage with sequential prefetching
schemes is that the data traffic and the address snoops usu-
ally increase heavily.

The snoop lookups can be largely reduced in sequential
prefetching using the bundling technique presented in a pre-
vious publication [28]. Bundling lumps the original read
request together with the prefetch requests to the consecu-
tive addresses. The original read request is extended with a
bit mask, which shows the address offset to the prefetch ad-
dresses. Bundling efficiently limits the number of address
transactions on the interconnect. However, not only the ad-
dress traffic can be reduced but also the number of snoop
lookups performed. This is done by requiring bundled read
prefetch requests to only supply data if the requested cache
line is in the owner state in the remote cache. Data that
are in other states will not be supplied to the requesting
cache. Write and upgrade prefetches are not bundled and
will not reduce the amount of generated address traffic or
the required snoop lookups. Read bundling gives a large
performance advantage since the available snoop bandwidth
usually is the main contention bottleneck in snoop-based
multiprocessors. The available data bandwidth is a smaller
problem since the data packets do not have to be ordered
and can be returned on a separate network such a point-to-
point network or a crossbar switch. For example, the Sun-
fire 6800 server has a data interconnect capable of trans-
ferring 14.4 GB/s while its snooping address network can
support 9.6 GB/s worth of address snoops [4].

7 Impact of Sequential and Bundled Sequen-
tial Prefetching on the PDE solvers

We have studied the characteristics of sequential hard-
ware prefetching on the PDE solvers. The results can be
seen in Figure 2. A table describing the tested configura-
tions is given in Table 1. In the figure, we present results of
non-prefetching configurations having different cache line
sizes: 64, 128, 256 and 512 B. Several sequential prefetch-
ing configurations, 64s1, 64s3 and 64s7, are also studied
which prefetch 1, 3 and 7 consecutive cache lines based on
address on each cache miss. Finally the corresponding bun-
dled configurations prefetching 1, 3 and 7 consecutive ad-
dresses, 64b1, 64b3and 64b7, are evaluated.

As can be seen in Figure 2, sequential prefetching works
very well with the studied PDE solvers. If we compare
the sequentially prefetching configurations, 64s1, 64s3 and
64s7, with the non-prefetching configuration, 64, we see
that for all kernels the cache misses are largely reduced.
Compared with the non-prefetching configuration with a
comparable cache line size, e.g the 512 B configuration
compared to the 64s7 configuration, the cache misses are
lower or equal for the prefetching configuration. The

config | pref. degree | bundled
64 0 -
64s1 1 no
64b1 1 yes
128 0 -
64s3 3 no
64b3 3 yes
256 0 -
64s7 7 no
64b7 7 yes
512 0 -

Table 1. Configurations

main reason for the discrepancy is that with the sequential
prefetching protocol, the consecutive addresses will always
be fetched. If a protocol with a large cache line is used, a
cache line aligned area around the prefetched address will
be fetched, that is, both data before and after the desired ad-
dress can be fetched. Especially the CEM kernel takes large
advantage of this, where the cache misses are reduced about
30 percent in the sequential protocol compared to the large
cache line non-prefetching protocol.

The data traffic increases with enlarged cache line size
as was previously shown. Sequential prefetching gener-
ally leads to more data traffic than the baseline 64 B non-
prefetching configuration and less data traffic than the corre-
sponding larger non-prefetching configuration. The snoop
lookups on the other hand increase rather heavily for the
CFD and QD kernels compared with both a small and a
large cache line size non-prefetching configuration.

Bundling can be used to efficiently reduce the overhead
in address snoops. For all kernels, bundling yields an almost
equal amount of cache misses as the corresponding sequen-
tial prefetch protocol. However, both the snoop lookups
and the data traffic are reduced in the bundled protocols
for all kernels. The reason for the decrease in data traffic
is that the bundled protocol is more restrictive at provid-
ing data than the sequential protocol. Data are only sent
if the owner of the original cache line is also the owner
of the prefetch cache lines. Bundling makes it possible
to use a large amount of prefetching with a much smaller
cost, especially in address snoops, than normal sequential
prefetching would have. There is still more snoop lookups
generated in the bundled prefetch protocol than in a non-
prefetching large cache line size protocol, which is almost
entirely caused by upgrades generating prefetch messages.
This effect cannot be eliminated since only reads are bun-
dled.

The overall performance for the bundled sequential pro-
tocols compared with the baseline 64 B non-prefetching
protocol is excellent especially for the CEM and QD-
kernels. For example the 64b7 configuration has about 88



0.6 2.6
\D Cold % Capacity W False NTrue B Upgrade\ 24 \D Snoop lookups WM Data traffic
2.2
2 4
1.8 1
1.6
1.4
1.2
1 4
0.8 1
0.6
0.4
0.2
0 0
64 ‘ 64s1 ‘ 64b1 ‘ 128 ‘ 64s3 ‘ 64b3 ‘ 256 ‘ 64s7 ‘ 64b7 ‘ 512 64s3 | 64b3 | 256 | 64s7 | 64b7 | 512
CFD CFD
(a) Cache missratio (b) Snoop lookups and data traffic
10 1.4 -
\D Cold # Capacity B False NTrue B Upgrade\ \D Snoop lookups M Data trafflc\
9 4
1.2
8 4
74 Ly
BN
6 § 0.8
% 0.6
3 4
% § 0.4
2 4
0 222 0+—
64 512 64s3 | 64b3 64s7 | 64b7 | 512
CEM CEM
(c) Cache missratio (d) Snoop lookups and data traffic
45 1.6 -
\D Cold 7 Capacity B False NTrue B Upgrade \D Snoop lookups M Data trafflc\
41 1.4 1
3.5 121
3 i
1 4
2.5
0.8
2 4
0.6
154
1] 0.4
0.5 - 02 1
0 0 41
64 | 64s1 | 64b1 ‘ 128 ‘ 64s3 | 64b3 64 | 64s1 | 64b1 | 128 | 64s3 | 64b3 | 256 | 64s7 | 64b7 | 512

QD
(e) Cache missratio

QD
(f) Snoop lookups and data traffic

Figure 2. Influence of sequential and bundled sequential prefetching on cache misses, snoop lookups and data traffic. The miss
ratio in percent is indicated in the cache miss figures. The snoop lookups and the data traffic are normalized to 1.0 relative to the 64 B
configuration.



percent less cache misses, 70 percent less snoop lookups
and 30 percent less data traffic than the 64 B non-
prefetching protocol for the CEM kernel. The performance
of the bundled protocols in the CFD kernel is somewhat
worse since the data traffic increases rather heavily com-
pared with the non-prefetching protocol. However, since
the total ratio of cache misses is small in this kernel, con-
tention on the interconnect will most likely not be a perfor-
mance bottleneck. Also, the snoop bandwidth is often more
limited than data bandwidth in snoop-based systems.

Compared with previous studies [28], the PDE kernels
gain more from read bundling than the SPLASH-2 bench-
marks and commercial JAVA-servers. This is an effect of
more carefully coded applications, which make better use
of spatial locality.

Sequential prefetching can simply be implemented in a
multiprocessor without a large increase in hardware com-
plexity. Some extra hardware is needed in the cache con-
troller to fetch more data on each cache miss. The cost
of implementing a bundled protocol is rather small even
though some extra corner cases can be introduced in the
cache coherence protocol [28].

8 Conclusion

From full-system simulation of realistically sized state-
of-the-art PDE solvers we have learned that these applica-
tions do not experience problems with false sharing as is the
case in many benchmark programs and commercial applica-
tions. Also, the spatial locality is good in the PDE solvers
and therefore it would be beneficial to use computers with
large cache line sizes for solving these problems.

Since most commercial computers are built with rather
short cache lines, a simple hardware sequential prefetching
scheme, can be used to yield a similar behavior to having a
large cache line size. The performance of the studied PDE
solvers takes advantage of sequential prefetching.

To further improve the performance of the PDE solvers,
sequential prefetching can be used together with the
bundling technique to largely reduce the amount of address
snoops required by the caches in shared-memory multipro-
cessors. Using this technique, both the number of cache
misses and the required snoop lookups become lower than
in a non-prefetching configuration.

Acknowledgement

We would like to thank Jim Nilsson for providing us
with the original version of the cache coherence protocol
model for Simics. We also would like to express gratitude
to Markus Nordén for the CFD kernel and to Henrik Lof for
the CEM kernel modeled in this paper.

This work is supported in part by Sun Microsystems, Inc.
and the Parallel and Scientific Computing Institute (PSCI),
Sweden.

References

[1] http://www.spec.org/.

[2] http://www.tpc.org/.

[3] J.-L. Baer and T.-F. Chen. An Effective On-Chip Preloading
Scheme to Reduce Data Access Penalty. In Proceedings of
the 1991 Conference on Supercomputing, pages 176-186,
1991.

[4] A. Charlesworth. The Sun Fireplane System Interconnect.
In Proceedings of the 2001 Conference on Supercomputing,
2001.

[5] A. Chronopoulos and C. Gear. S-Step Iterative Methods for
Symmetric Linear Systems. Journal of Computational and
Applied Mathematics, 25:153-168, 1989.

[6] F. Dahlgren, M. Dubois, and P. Stenstrom. Sequential Hard-
ware Prefetching in Shared-Memory Multiprocessors. |EEE
Transactions on Parallel and Distributed Systems, 6(7):733—
746, 1995.

[7] F. Dahlgren and P. Stenstrom. Evaluation of Hardware-
Based Stride and Sequential Prefetching in Shared-Memory
Multiprocessors. |EEE Transactions on Parallel and Dis-
tributed Systems, 7(4):385-398, 1996.

[8] M. Dubois, J. Skeppstedt, L. Ricciulli, K. Ramamurthy, and
P. Stenstrom. The Detection and Elimination of Useless
Misses in Multiprocessors. In Proceedings of the 20th An-
nual International Symposium on Computer Architecture,
pages 88-97, 1993.

[9] F. Edelvik. Hybrid Solvers for the Maxwell Equations in
Time-Domain. PhD thesis, Department of Information Tech-
nology, Uppsala University, 2002.

[10] S.J. Eggers and T. E. Jeremiassen. Eliminating False Shar-
ing. In Proceedings of the 1991 International Conference on
Parallel Processing, pages 377-381, 1991.

[11] S.J. Eggers and R. H. Katz. The Effect of Sharing on the
Cache and Bus Performance of Parallel Programs. In Pro-
ceedings of the Third International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, pages 257-270, 1989.

[12] E. H. Gornish. Adaptive and Integrated Data Cache
Prefetching for Shared-Memory Multiprocessors. PhD the-
sis, University of Illinois at Urbana-Champaign, 1995.

[13] A. Gupta and W.-D. Weber. Cache Invalidation Patterns
in Shared-Memory Multiprocessors. |EEE Transactions on
Computers, 41(7):794-810, 1992.

[14] E. Hagersten. Toward Scalable Cache-Only Memory Archi-
tectures. PhD thesis, Royal Institute of Technology, Stock-
holm, 1992.

[15] A.Jameson and D. Caughey. How Many Steps are Required
to Solve the Euler Equations of Steady, Compressible Flow:
in Search of a Fast Solution Algorithm. In Proceedings of
the 15th Computational Fluid Dynamics Conference, 2001.

[16] M. Karlsson, K. Moore, E. Hagersten, and D. A. Wood.
Memory System Behavior of Java-Based Middleware. In
Proceedings of the Ninth International Symposium on High
Performance Computer Architecture, 2003.



[17] D. M. Koppelman. Neighborhood Prefetching on Multipro-
cessors Using Instruction History. In Proceedings of Inter-
national Conference on Parallel Architectures and Compi-
lation Techniques, pages 123-132, 2000.

[18] P. S. Magnusson, M. Christensson, J. Eskilson, D. Fors-
gren, G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and
B. Werner. Simics: A Full System Simulation Platform.
|EEE Computer, 35(2):50-58, 2002.

[19] T. Mowry and A. Gupta. Tolerating Latency Through
Software-Controlled Prefetching in Shared-Memory Multi-
processors. Journal of Parallel and Distributed Computing,
12(2):87-106, 1991.

[20] T.C. Mowry. Tolerating Latency in Multiprocessors through
Compiler-Inserted Prefetching. ACM Transactions on Com-
puter Systems (TOCS), 16(1):55-92, 1998.

[21] M. Nord’en, M. Silva, S. Holmgren, M. Thung, and R. Wait.
Implementation issues for high performance cfd. In Pro-
ceedings of International Information Technology Confer-
ence, Colombo, Si Lanka, 2002.

[22] A. Petersson, H. Karlsson, and S. Holmgren. Predissociation
of the Ar-12 van der Waals Molecule, a 3d Study Performed
Using Parallel Computers. Submitted to Journal of Physical
Chemistry, 2002.

[23] A. Singhal, D. Broniarchyk, F. Cerauskis, J. Price, L. Yuan,
C. Cheng, D. Doblar, S. Fosth, N. Agarwal, K. Harvey, and
E. Hagersten. Gigaplane: A High Performance Bus for
Large SMPs. In Proceedings of IEEE Hot Interconnects,
pages 41-52, 1996.

[24] M. K. Tcheun, H. Yoon, and S. R. Maeng. An Effective On-
Chip Preloading Scheme to Reduce Data Access Penalty.
In Proceedings of the International Conference on Parallel
Processing, pages 306-313, 1997.

[25] J. Torrellas, M. S. Lam, and J. L. Hennessy. False Sharing
and Spatial Locality in Multiprocessor Caches. IEEE Trans-
actions on Computers, 43(6):651-663, 1994.

[26] D. M. Tullsen and S. J. Eggers. Effective Cache Prefetch-
ing on Bus-Based Multiprocessors. ACM Transactions on
Computer Systems (TOCS), 13(1):57-88, 1995.

[27] D. Wallin. Performance of a High-Accuracy PDE Solver
on a Self-Optimizing NUMA Architecture. Master’s thesis,
Department of Information Technology, Uppsala University,
2001.

[28] D. Wallin and E. Hagersten. Miss Penalty Reduction Using
Bundled Capacity Prefetching in Multiprocessors. In Pro-
ceedings of the International Parallel and Distributed Pro-
cessing Symposium, 2003.

[29] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and Method-
ological Considerations. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture, pages
24-36, 1995.



