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Considering the impact of observation error correlation in ensemble 
square-root Kalman filter

Data assimilation has been developed into an effective technology that can utilize a large number of multi-
source unconventional data. It cannot only provide the initial field for the ocean numerical prediction model, 
but also construct the ocean reanalysis datasets and provide the design basis for the ocean observation plan. 
In data assimilation, the estimation of the observation error is of paramount importance, because the quality 
of the analysis depends on it. In general, the observation error covariance matrix is diagonal or assumed to be 
diagonal, which means that the observation errors are independent from one another. However, there are indeed 
correlations in the observation errors. A diagnostic method has been developed, which can estimate a correlated 
and more accurate observation error covariance matrix. The proposed method combines an ensemble square-
root Kalman filter with the diagnostic method, providing an estimation of the observation error covariance 
matrix. In order to test the performance of the method, the numerical experiments are performed with the 
Lorenz 96 model and a Shallow water model. The more accurate observation error covariance matrix can 
be obtained to use in ensemble square-root Kalman filter by using the new method. We could find using the 
estimated correlated observation error in the data assimilation improves the analysis.
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INTRODUCTION
Data assimilation is the process of combining obser-

vations with a prior forecast state of the model, known as 
background, to produce an accurate estimate of the cur-
rent state, known as analysis. It is important to effectively 
incorporate the observations into the numerical model 
to improve the accuracy of ocean prediction, when data 
assimilation is widely used in the field of ocean science. 
In recent years, more and more researchers concentrate 
on ensemble filters, as well as the ensemble variational 
method. In fact, most ocean numerical prediction models 
are high-dimensional nonlinear systems and then Kalman 
filter cannot do anything about it. But the ensemble fil-
ters are able to help us to deal with non-linear systems 
very well and the formulas of ensemble filters are much 
more computationally efficient than the Kalman filter. The 

ensemble Kalman filter (EnKF) was originally introduced 
by Evensen (1994). EnKF is a good method but it comes 
at a cost: the filter divergence and numerical noise could 
be introduced in data assimilation. Then the numerical 
noise could affect the performance of the EnKF (Evensen, 
2004). Whitaker and Hamill (2002) presented a new 
formula of ensemble filter called ensemble square-root 
Kalman filter in which the perturbations of measurements 
can be avoided. Based on this ensemble filter, a simpler 
and more straightforward variant of the square-root analy-
sis scheme is presented by Evensen (2004). The number of 
calculations and storage has been greatly reduced in data 
assimilation due to the introduction of the idea of square-
root. The ensemble square-root Kalman filter will be used 
for study in this paper and introduced in the subsequent 
section.

In order to provide an optimal estimate of the true state, 
the error covariances associated with the observations and 
background must be well understood and correctly speci-
fied (Houtekamer and Mitchell, 2005). But the correct 
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error covariances of the observations and background are 
sometimes difficult to obtain in the real ocean system. 
Incorrect estimates of the observation errors would lead to 
a non-optimal analysis. Then these results can cause inac-
curate estimate of analysis in data assimilation. Therefore, 
it is of vital importance to use the correct estimate of the 
error covariance matrix in data assimilation.

In general, much attention has been paid to the es-
timation of the background error covariance matrix. 
Significant progress has been made in this area and the 
background error covariance matrix often could be re-
garded as a flow-dependent matrix by taking covariance 
statistics of the differences between each ensemble mem-
ber and the mean (Bannister, 2008). For atmospheric CO2 
data assimilation, however, the background errors cannot 
be obtained by ensemble-based techniques or other meth-
ods, then Chatterjee et al. (2013) proposed an approach 
in which the differences between two modeled CO2 con-
centration fields, based on different but plausible CO2 
flux distributions and atmospheric transport models, are 
used as a proxy for the statistics of the background errors. 
The study of the Montmerle and Berre (2010) focused 
on diagnosing variations of background-error covari-
ances between precipitating and non-precipitating areas. 
Hence, the development of the background error covari-
ance matrix is a little better in recent years. In contrast, the 
development of the observation error covariance matrix 
is relatively slow. With the desire and need to make bet-
ter use of the observations, especially for high-resolution 
forecasting, the understanding and accurate representation 
of observation error need to be addressed. The weight of 
the observation in data assimilation is determined by the 
observation error covariance matrix. Correlations in ob-
servation errors have a very different origin from those in 
the background (Fowler et al., 2018). In general, observa-
tion errors could be attributed to four different aspects: ob-
servation operator or forward model error, representativity 
error, pre-processing and instrument error. However, the 
instrumental error is often believed as uncorrelated error, 
because it can be eliminated by calibrating the instrument. 
The other sources of observation errors can lead to corre-
lations (Hodyss and Satterfield, 2017; Janjić et al., 2017). 
Therefore, in order to improve the quantity and impact of 
observations used in data assimilation, it is necessary to 
consider the full and potentially correlated observation er-
ror statistics (Waller et al., 2016).

The observation error covariance matrix is not easy 
to directly provide and calculate in the real ocean system. 

In general, it can be derived from the statistical average. 
When there is a lot of observation data, the storage and 
calculations (i.e. inverse matrix) of the matrix will become 
more complicated. Therefore, the observation error cova-
riance matrix is assumed to be diagonal and invariant over 
time to save the computational time and simplify calcula-
tions, which means that the observation errors are inde-
pendent from one another and without correlations. But in 
some real ocean numerical models and recent researches, 
this simple treatment is unreasonable and unrealistic in da-
ta assimilation. For example, observational data collected 
by the satellite radiation and radar have been proved to ex-
ist correlated and dependent observation errors (Bormann 
and Bauer, 2010a; Bormann et al., 2010b; Campbell et al., 
2017; Ruggiero et al., 2016). When the correlated obser-
vation error covariance matrix is introduced, the analysis 
is better than the effect of assimilation with uncorrelated 
observation error covariance matrix (Stewart et al., 2013). 
Therefore it is not appropriate to treat the observation er-
ror covariance matrix as a diagonal matrix.

Despite the challenges existing in estimating corre-
lated error, in order to solve the shortcoming of diagonal 
observation error covariance matrix and obtain the cor-
rect observation error covariance matrix, the study of the 
correlated observation error has been developed in recent 
years and various methods of constructing correlated ob-
servation error matrix have been presented to improve the 
performance of data assimilation. Desroziers et al. (2005) 
presented a popular and practical diagnostic method of 
estimating the error covariance matrix in the variational 
method filed (here and after denoted as the DBCP diag-
nostic method). The concrete application of the DBCP 
diagnostic method has been described and explained by 
Waller et al. (2016).

Based on combination of observation-minus-back-
ground (abbreviated as O-B) and observation-minus-anal-
ysis (abbreviated as O-A), the DBCP diagnostic method 
can be used to obtain a good estimation of the observation 
error covariance matrix (Desroziers et al., 2005). Then the 
observation error covariance matrix can be updated in the 
specified assimilated time, a more accurate analysis state 
can be obtained to provide the initial field for the ocean 
numerical prediction model. In recent years, the DBCP 
diagnostic method has been utilized in various variational 
method and ensemble filters scheme to provide estimates 
of the observation error covariance matrix and get a more 
accurate analysis in data assimilation. Some researchers 
introduced the DBCP diagnostic method into the local 
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ensemble transform Kalman filter (Li et al., 2009) and en-
semble transform Kalman filter (Waller et al., 2014), while 
Cordoba et al. (2017) used the DBCP diagnostic method in 
atmospheric motion vector to provide an accurate analysis 
in the operational Met Office high-resolution data assimi-
lation system. Their experimental results show that the 
better effects can be produced when using the DBCP diag-
nostic method in data assimilation. Due to the advantage 
of ensemble square-root Kalman filter in data assimilation, 
in the present paper the DBCP diagnostic method is in-
troduced into the ensemble square-root Kalman filter to 
verify the performance of ensemble square-root Kalman 
filter that using correlated observation errors.

This paper is organized as follows. In section 2, the 
ensemble square-root Kalman filter (here and after de-
noted as the EnSRKF) is introduced in detail, as well as 
the DBCP diagnostic method. Then the experimental de-
sign is described in section 3 and some numerical results 
are demonstrated in section 4 to reveal the great effect of 
the combination of EnSRKF with the DBCP diagnostic 
method. Finally, conclusion and perspectives are given in 
section 5.

METHODS
The ensemble square-root kalman filter

A review article by Evensen (2003) covers many of 
the EnKF subsequent developments. With the ensemble 
filter applied to the data assimilation, the sample mean and 
the error covariance matrix calculated from the ensemble 
statistics result in a reduction in computational complex-
ity, which greatly enhances the use of assimilation meth-
ods. Now numerous different approaches of data assimi-
lation based on ensemble ideas have been developed to 
solve the real ocean system.

In this paper, the EnSRKF described in Evensen (2004) 
will be used for research and experiment. Now a brief 
overview of the EnSRKF and the notations used through-
out this study are introduced. Suppose that observations 
are available at time nt , and let them be assembled in the 
p-element vector (t )ny  (for p observations). The forecast 
state is represented by a m-element state vector (t )f

k nx , 
where the superscript “f” stands for forecast. Suppose that 
an ensemble of N such model states exists ( )1 k N≤ ≤  and 
let these state vectors comprise the columns of the forecast 
ensemble matrix (t )f

nA  (a m N×  matrix) as follows:

                                                                                   (1)

For simplification and convenience of symbols, nat-
urally, the time labels nt  can be omitted. The mean of 
ensemble members contained in fA  is defined as

                                                                                   (2)

Then subtracting the mean of ensemble members from 
the ensemble members can get the forecast perturbation 
matrix fA ′  denoted as

                                                                                    (3)

This symbol allows us to write the forecast error co-
variance matrix as

                                                                                     (4)

In the same way, the analysis error covariance matrix 
can be written as

                                                                                     (5)

where the superscript “a” stands for analysis and aA ′

denotes the analysis perturbation matrix. In the Kalman 
filter, the analysis state is expressed as

                                                                                     (6)

where H  represents p m´  linear observation opera-
tor matrix (it provides a mapping from model space to 
observation space) and R  is the p p×  observation er-
ror covariance matrix (the uncertainty of the observational 
data). Here m  denotes the dimensions of the model state 
vectors. For the method of ensemble data assimilation, the 
single analysis value can be substituted by the analysis 
state ensemble matrix to provide the analysis ensemble 
matrix by using the Eq. (6),

                                                                                    (7)

where Y is the p N×  matrix of identical columns 
comprising the observation vector y . Therefore, by using 
Eq. (4) and Eq. (7), the mean of analysis ensemble mem-
bers can be expressed as

                                                                                    (8)

( ) ( ( ), ( ), ..., ( )) .A t x t x t x tf
n

f
n

f
n N

f
n1 2=

.x N x1f
k
f

k

N

1

=
=

/

, ..., .A x x x x’f f f
N
f f

1= - -R W

.P N A A1
1 ’ ’f f f T= -

,P N A A1
1 ’ ’a a a T= -

( ) ( ),x x P H HP H H R y Hxa f f T f f T f1= + + --

( ) ( ),A A P H HP H R Y HAa f f T f T f1= + + --

( ),x x A S C y Hx’a f f T f1= + --



BRAZILIAN JOURNAL OF OCEANOGRAPHY. 2019;v67:e19261

Zang & Wang: Considering correlations in observation errors

4

where fS HA ′=  and ( )1TC SS N R= + − . In or-
der to produce the square root aA ′  of the analysis error 
covariance matrix in Eq. (5) (the key step of the EnSRKF), 
that is, the analysis perturbation matrix, let the analysis 
error covariance matrix in Eq. (5) and the analysis error 
covariance matrix of the ordinary Kalman filter be equal. 
We can obtain the equation as follows,

                                                                                     (9)

where K is the Kalman gain. Then we substitute Eq. 
(4) into Eq. (9) with the C and S that we defined before,

                                                                                     (10)

Note that the matrix C is considered to be in-
vertible and positively defined. The analysis ensem-
ble perturbation matrix can be produced by taking 
the square root of 1TI S C S−−  in Eq. (10), which is 

1/21a f TA A I S C S′ ′ − = −  . Now the focus is to 
quickly find the square root of 1TI S C S−− . The eigen-
decomposition may be a great choice to tackle this prob-
lem. For more details of this method, please see Evensen 
(2004).

By introducing the eigen-decomposition into EnSRKF, 
the forecast ensemble perturbation matrix can be used for 
representing the analysis ensemble perturbation matrix. 
Meanwhile, the square-root filter is a deterministic filter 
that not requires the addition of perturbations to the obser-
vation ensemble and thus it does not introduce numerical 
noise in the observation. For the ensemble Kalman filter, 
however, it is necessary to add perturbations to the obser-
vation ensemble. This treatment will introduce numerical 
errors and affect the performance of the ensemble Kalman 
filter, especially when the number of observations for a 
single analysis is limited. Therefore, the EnSRKF is a 
good scheme of data assimilation.

It is generally considered that the observation er-
ror covariance matrix is a diagonal matrix, but here we 
don’t recommend doing this and it has been explained by 
Bormann et al. (2010b). Here we present a method that 
combines EnSRKF and the DBCP diagnostic method. The 
following part would describe this diagnostic method.

The DBCP diagnostic method
The DBCP diagnostic method by using the combina-

tion of O-B and O-A in variational methods to provide 
an estimate of the observation error covariance matrix 

and update the observation error covariance matrix at the 
current time, where O-B is ( )b fd y H x= −  and O-A is 

( )a ad y H x= − . Assume that the errors of observation 
and forecast are always uncorrelated and independent in 
data assimilation, the observation error covariance matrix 
can be represented by the expectation of the product of 
O-B and O-A,

                                                                                     (11)

Moreover, the DBCP diagnostic method can potential-
ly provide information on imperfectly known observation 
and background error statistics (Desroziers et al., 2005). 
Another advantage is that it is nearly cost-free and can be 
applied to any analysis scheme in data assimilation.

Although the DBCP diagnostic method does not fully 
and explicitly account for the errors, it has been success-
fully used in a complex model to get an approximate ob-
servation error covariance matrix. The DBCP diagnostic 
method is first applied to 4D-Var data assimilation and has 
been great developed in variational methods. Then with 
the development of ensemble data assimilation methods, 
the DBCP diagnostic method has been applied to ensem-
ble Kalman filter gradually. Waller et al. (2014) have ap-
plied this method to the ensemble transform Kalman filter 
and achieved great assimilation effect compared with the 
ordinary diagonal ensemble transform Kalman filter. Here, 
we will combine the DBCP diagnostic method with the 
EnSRKF to verify whether the DBCP diagnostic method 
still has a good effect on the EnSRKF.

The EnSRKF with the DBCP diagnostic 
method

Now the algorithmic formulas of combining the 
EnSRKF with DBCP diagnostic method are presented 
in the subsequent part. In this article, the EnSRKFR is 
deemed to the combination of EnSRKF and the DBCP di-
agnostic method. The EnSRKFR is used to estimate a cor-
related observation error covariance matrix and to update 
the currently known observation error covariance matrix. 
In this way, a more accurate error covariance matrix with 
correlated errors for the current observations can be pro-
duced in each assimilation step.

The EnSRKFR is mainly divided into two phases: 
start-up stage and the observation error covariance ma-
trix update stage. Start-up stage: At this stage, before it 
reaches a preset number of assimilation steps sN , we 
still use the pre-specified observation error covariance 

( ) ,N A A I KH P1
1 ’ ’a a T f

- = -

.A A A I S C S A’ ’ ’ ’a a T f T f T1= - -! $

.E d d Ra bT
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matrix 0R  (often it is a diagonal matrix) with each ele-
ment unchanged and observation errors are not correlated. 
Next, observation error covariance matrix update stage: 
once the assimilation steps sN  have been executed, 
sufficient observation information has been obtained, so 
the update stage begins. Here the correlated observation 
error covariance matrix can be constructed at each as-
similation step by using the statistical mean of O-B and 
O-A produced in the previous assimilation process. The 
EnSRKFR method in detail is given below. The observa-
tion operator H  is chosen to be linear, but the method 
could be extended to a non-linear observation operator 
(Evensen, 2003). Begin with the initial ensemble members 

( ){ } ( )0  1a
kx k N≤ ≤ . Then we assume that the initial 

analysis error covariance matrix is 0
aP  and the initial ob-

servation error covariance matrix is 0R , it is possible that 
this error could just consist of the instrument error. The 
specific implementation is demonstrated below.

The forecast stage: the updated ensemble obtained in 
the analysis (at time 1nt − ) is propagated by the model (un-
der the perfect model assumption) for the next time step 

nt  to produce the forecast ensemble members,

                                                                                     (12)

where M  may represent a non-linear model. Again, 
for the sake of simplifying the notation, the time symbol 

nt  is omitted here. The forecast is the mean of the forecast 
ensemble members,

                                                                                     (13)

The forecast perturbation matrix is

                                                                                    (14)

Once the observation y of current time nt  is cap-
tured, the O-B in current time is obtained from the equa-
tion ( )b fd y H x= − .

The analysis stage: some symbols of the previous 
sections are considered again. First we use the equa-
tion ( )1a f f T fx x A S C y Hx′ −= + −  to produce the estimate 
of analysis, where ( )1TC SS N R= + −  and fS HA ′= . 
Then the twice eigen-decompositions are used to provide 
the analysis ensemble perturbation matrix. The specific 
method is as follows: first the matrix C  is carried out 
eigen-decomposition [ ] ( ),Z eig CΛ = , where Z  and 

Λ  respectively represent the corresponding matrix of ei-
genvectors and eigenvalues. Then we perform the second 
eigen-decomposition and it can be given by the follow-
ing formula ( ), T TV eig X X Σ Σ =  , where the matrix 

TX X is constructed by 1/2 TX Z S−= Λ . Therefore, the 
analysis perturbation matrix can be obtained by using Eq. 
(10) as follows,

                                                                                    (15)

Once the analysis ensemble perturbation matrix is 
found, it can be added to the 

aX  to give the full analy-
sis ensemble. That is

a a aA X A ′= + , where the 
aX  

is the m N×  matrix of identical analysis states 
ax  in 

each column. Finally, the analysis is used for calculating 
the O-A in current time, i.e. ( )a ad y H x= − .

Covariance diagnostic stage: if the current assimila-
tion step n  is more than the pre-specified number of steps 

sN  (i.e. sn N> ), the observation error covariance matrix 
R  is updated by using the following equation,

                                                                                     (16)

Note that since the observation error covariance ma-
trix R  generated by the DBCP diagnostic method may be 
not symmetric matrix, therefore the matrix also needs to 
be symmetrized by the following formula,

                                                                                     (17)

It can be seen from the above steps, the computational 
procedures of EnSRKFR are basically the same as those 
of EnSRKF. Only the background innovation (O-B) and 
the analysis innovation (O-A) are needed to obtain the 
estimate of the observation error covariance matrix. At 
every assimilation step, we can see from the Eq. (16) of 
the correlated observation error covariance matrix that up-
dating the observation error matrix only utilizes the latest 
information and discards the previous information. At the 
same time, when calculating and analyzing the ensemble 
perturbation matrix, the eigenvalue decomposition is used, 
which reduces the amount of calculation and improves the 
computational efficiency.

This method produces a slowly time-varying estimate 
of the observation error covariance matrix, and we should 
take into account the most recent information relating to 
the observations (Waller et al., 2014). How to find an opti-
mal pre-specified number of assimilation steps sN  is not 

( ) ( ( )) , ..., ,x t M x t for i N1i
f

n i
a
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i
f

i

N

1
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easy to carry out. In general, in order to obtain sufficient 
information from the preceding data, the pre-specified 
number would be larger than the number of entries to be 
estimated. However, if we use a larger pre-specified num-
ber, the estimate of the observation error covariance matrix 
will be an average over a large period of time. Therefore, 
the sN  must be a compromise between the large number 
of samples required to get a good approximation to the 
matrix and the limited number of samples that allows the 
time-varying nature of the observation error covariance 
matrix to be captured (Waller et al., 2014).

Due to the limited number of samples obtained in 
practice, the variation of the variables cannot be fully rep-
resented, the observation error covariance matrix may ap-
pear to be under-ranked. Hence a regularization method 
can be adopted to eliminate this phenomenon. Significant 
progress and development have been made in dealing with 
this problem. Weston et al. (2014) have successfully used 
a method called reconditioning techniques to obtain full 
rank approximation of this matrix. Regularization method 
is a complementary to the DBCP diagnostic method and 
promotes the development of the DBCP diagnostic meth-
od. The regularization method for Waller et al. (2014) is 
adopted in the present paper.

Configuration of numerical experiments
The models

The numerical experiments are performed with the 
Lorenz 96 model (Lorenz and Emanuel, 1998) and a 
shallow water model (Krysta et al., 2011). These models 
are simple, but they exhibit strong nonlinear behavior. 
Because the dynamics of the two models are different, the 
comparison of the results from both models provides in-
sight to which extent the combination of EnSRKF with the 
DBCP diagnostic method.

a. The Lorenz 96 model

The Lorenz 96 model has been widely used to exam 
performance of different ensemble filters. It has m vari-
ables { } ,  1, ,ix i m=  . The dynamic system is represent-
ed by the following ordinary differential equations:

                                                                                      (18)

Note that the domain on which is defined the 40 vari-
ables is circle-like, so that 1 39 0 40 1 41, ,x x x x x x− = = =

The constant forcing term F is configured as eight and 
it can cause chaotic behavior. In this paper, this model 
is solved by the fourth-order Runge-kutta scheme with 
a time step t∆  of 0.01 units (the time unit equal to five 
days).

b. The Shallow water model

A 2D model using the shallow water equations is 
used to assess the DBCP diagnostic method in the case 
of a multivariate model. For simplicity, frictional effects 
and the Coriolis force are ignored and so are the nonlinear 
terms. The equations consist of the horizontal and verti-
cal velocities ( ),u v  and the water height h . Under these 
assumptions, the momentum equations can be formulated 
as:

                                                                                    (19)

where g  denotes the gravity acceleration. The model 
domain is chosen as the square domain [ ] [ ]0, 0,L L*  with 
length 2200L km=  and the 22km resolution in both direc-
tions. The equations are solved by the Lax-Wendroff finite 
difference method with a time step t∆  of 0.01 units (the 
time unit equal to 1000 minutes).

Experimental design
In these experiments, some indispensable initial 

conditions are determined by using the similar meth-
ods. First the true state is produced by evolving the 
perfect (without model errors) model equations for-
ward from known initial state value. Then the obser-
vation is obtained by adding the observation error to 
the true state. As for ensemble members, they are also 
evolved by using the perfect model but beginning from 
perturbed initial state. Note that the observation error 
covariance matrix is considered to be isotropic and ho-
mogeneous. Hence, the observation error covariance 
matrix obtained from EnSRKFR method needs have a 
cyclic structure. To regularize the estimated observa-
tion error covariance matrix, the method used in Waller 
et al. (2014) is adopted after each the DBCP diagnos-
tic method. Now, the experiments will be specifically 
described.

a. The observations

( ) , ..., .dt
dx x x x x F i m1i

i i i i1 2 1= - - + =+ - -

*

*

( ) ( )

d u g d h

d v g d h

d h d hu d hv

t x

t

t x

=-

=-

= -

c

c



BRAZILIAN JOURNAL OF OCEANOGRAPHY. 2019;v67:e19261

Zang & Wang: Considering correlations in observation errors

7

In general, the observations are generated by adding 
Gaussian distributed random numbers to the true states. 
The tR  is used to denote the true observation error co-
variance matrix. There are different methods to structure 
an observation error covariance matrix as exact observa-
tion error covariance matrix. Such as the SOAR function 
which has been used to calculate the correlation matrix 
can be seen in Bormann et al. (2003) and Waller et al. 
(2016). In the present method, a simple choice of the non-
diagonal tR  is,

                                                                                     (20)

where the observation error variance is fixed at 
1.0v = , ( ),d i j  denotes the grid distance between the 

ith and jth grid points with considering the cyclic bound-
ary. L is the correlation strength parameter, so that a larger 
value of L corresponds to stronger observation error cor-
relations in observations. If L = 0, tR is diagonal. The tR  
varies with the different L values is shown in Figure 1. The 
vertical axis represents the covariance between first vari-
able and other variables, the horizontal axis represents the 
variable. Then for conducting comparative experiments, 
the diagonal matrix ( )tdiag R  is chosen to be the initial 
observation error covariance matrix 0R in the EnSRKFR. 
Hence observations containing correlated observation er-
rors could be obtained by adding correlated observation 
errors to the true states. The specific formula is as follows,

                                                                                    (21)

where TR CC=  is the Cholesky decomposition of 
tR  and ( )0,1N  is a standard normal distribution.

b. Experiments with the Lorenz 96 model

In order to perform the EnSRKFR method in Lorenz 96 
model, we assume that the initial condition is from a vector 
that all elements are eight but the 0.2 is added to the 20th ele-
ment. Similarly, H is the p m×  observation operator ma-
trix, then the 20 equally spaced direct observations can be 
obtained by adding the observation errors to the true states at 
every assimilation step (using the method mentioned in sec-
tion 3.2.1). The assimilation time step t∆  of 0.01 units, or 
1.2 hours , and the final time is 30T = , or 150 
days. Then the observations can be obtained every 10 and 20 
time steps, that is, every 0.1 and 0.2 time units, respectively. 
Next in order to generate the initial ensemble, 40N = pseu-
do-random samples from the normal distribution ( )20, bN Iσ , 
where the 2

bσ  (we set the 2 2bσ = ) is the background error 
variance, are added to the true initial states. A large number of 
ensemble members is used to minimize the risk of ensemble 
collapse and to help obtain an accurate forecast error covari-
ance matrix. For the purpose of this initial study, we wish to 
avoid using techniques of covariance inflation and localiza-
tion so as not to contaminate the estimate of R. Note that, the 
pre-specified number of steps sN  is considered to be 85 in 
this experiment (We have tested that when sN  is greater than 
the number of variables, the assimilation effect is also good).

c. Experiments with the Shallow water model

The shallow water model is a multivariate model, so 
an additional degree of complexity is introduced. At each 
grid point, the water height (h), the horizontal (u) and 
the vertical velocities (v) are defined. But only the water 
height (h) is observed in the experiments, and the 200 ob-
servational data are generated by adding the observation 
errors to the true states at every assimilation step. The ex-
periment is initialized by integrating the initial state u=v=0 
and the initial water height (h) is defined as follows:

                                                                                    (22)

Here the assimilation time step t∆  of 0.01 units, or 
ten minutes , and the final time is 15T = , or 

( , )
( , )

,R i j

L
d i j

1 2

t o=
+

( , ),y Hx C N 0 1t $= +

Figure 1. The first row of the R matrix with different L. The vertical 
axis represents the covariance between first variable and other 
variables, the horizontal axis represents the variable.

( )/

( , )

sin

max

h x

h h h

h h 0

2 2c= +

=

=
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15000 minutes. Next in order to generate the initial en-
semble, 200N =  pseudo-random samples from the nor-
mal distribution ( )20, bN Iσ , where the 2

bσ  (we set the 
2 1bσ = ) is the background error variance, are added to the 

true initial states. Here, the larger ensemble is also used to 
avoid using techniques of covariance inflation and localiza-
tion so as not to contaminate the estimate of R. Note that, 
the pre-specified number of steps 

sN  is considered to be 
55 in the experiments. We next present experimental results 
of applying EnSRKFR to these models.

RESULTS
In order to verify the performance of the EnSRKFR 

method compared with the EnSRKF method, we combine 
the mentioned models with the EnSRKFR method (us-
ing the ( )0

tR diag R= ). As a comparison, the standard 
EnSRKF method (using the ( )tR diag R= ) is also ap-
plied to the models. The two methods are similar in the 
operation before the start-up stage of the DBCP diagnostic 
method. So only the analysis produced after the beginning 
of the start-up stage need to be compared in the EnSRKFR 
and the standard EnSRKF.

In the Lorenz 96 model, with the chosen frequencies be-
ing observations available every 10 and 20 time steps, then the 
twenty-fourth and twenty-fifth variables of the Lorenz 96 mod-
el are used as examples for analysis. In different observation 

frequencies, the Figure 2 and Figure 3 show the analysis states 
of using EnSRKF method (using the ( )tR diag R=  as an ob-
servation error matrix), the analysis states of using EnSRKFR 
method (using the ( )0

tR diag R= ) and the true states, they 
are all generated after the start-up stage of the DBCP diagnostic 
method. It is clear that when the DBCP diagnostic method is 
added to EnSRKF, the analysis states can better fit the trajec-
tory of true states compared with the analysis states without the 
DBCP diagnostic method, which is due to the introduction of 
correlated observation errors in the EnSRKFR. By using the 
two diagonal observation error matrix as the initial error matrix 
in these experiments, the results show that even if the initial 
diagonal observation error matrix is inaccurate, a better as-
similation performance is shown in EnSRKFR compared with 
EnSRKF. When the chosen frequency of observations varies 20 
time steps from 10 time steps, the analysis of EnSRKF deviates 
from the true state, but the analysis of EnSRKFR still shows 
excellent assimilation effect. All similar features can also be 
verified in other variables.

Then, we can quantify the difference between the anal-
yses provided by the two different methods (EnSRKFR and 
EnSRKF) and the true state for different variables. The root-
mean-square error (RMSE) is used to measure the deviation 
between the analysis state and the true state. Firstly, let us 
take the twenty-first to twenty-fifth variables as examples 
to show the changes of the RMSE for a single variable in 
EnSRKF and EnSRKFR, where observations are available 

Figure 2. The analysis values in EnSRKF and EnSRKFR compared with the true states, where observations are available every 10 time steps and 
the twenty-fourth variable is used.
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Figure 3. The analysis values in EnSRKF and EnSRKFR compared with the true states, where observations are available every 20 time steps and 
the twenty-fourth variable is used.

from 10 and 20 time steps in experiments, respectively. The 
formula is given by equation (23)

                                                                                       (23)

where the T represents the all assimilation time steps 
and id  is the deviation of the analysis value from the true 
value at each time step for a single variable. Then, in order 
to get the RMSE of all variables at a certain assimilation 
time, the RMSE of the ensemble mean (E1) is defined as

                                                                                      (24)

where N is the number of ensemble members, m is the 
number of state variables, j

iX  is the jth ensemble member 
for the ith variable and true

iX  is the ‘‘true’’ state. Here we 
only calculate the E1 at the final assimilation time. All the 
numerical results are shown in Table 1.

From Table 1, when the chosen frequencies of obser-
vations are identical, the RMSE of EnSRKFR has signifi-
cantly decreased in each variable compared with that of 
EnSRKF. This result shows that the EnSRKFR works bet-
ter than the EnSRKF in the test and the introduction of the 
correlated observation error covariance matrix has a posi-
tive influence on the assimilated effect. Meanwhile, the E1 

of EnSRKFR shown in Table 1 are also decreasing, when 
compared with that of EnSRKF. Therefore, the use of cor-
related observation errors can better estimate the states of 
the simple ocean and atmospheric system.

Then, in order to compare the difference between the ob-
servation error covariance matrix obtained from EnSRKFR 
and true observation error covariance matrix, R  provided 
by the EnSRKFR in different assimilation time steps are 
shown in Figure 4. Obviously, as assimilation proceeds, 
R  becomes closer and closer to the true observation er-
ror covariance matrix tR . This result shows that DBCP 
diagnostic method is effective in estimating the observation 
error covariance matrix.

From the above experimental results, the EnSRKFR 
used in Lorenz 96 model demonstrates a better assimilation 
effect compared with the EnSRKF and the application of 
DBCP diagnostic method in EnSRKF is successful. Next, 
the EnSRKFR is used in a complex multivariate shallow 
water model.

In shallow water model, with the chosen frequencies 
being observations available every five and ten time steps, 
the water height (h) analyses of final assimilation are shown 
in Figure 5 and Figure 6. From the figures, in different ob-
servation frequencies, the difference between analysis of 
EnSRKFR and true state is smaller than the analysis of 
EnSRKF. However, when we are concerned about the com-
parisons between the horizontal velocities (u) of EnSRKFR 
and true states, it can be seen that the assimilation effect is 
not ideal compared with EnSRKF. The horizontal velocities 
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Variables Obs Freq.
(time steps)

RMSE 
(EnSRKF)

RMSE
(EnSRKFR)

Obs Freq.
(time steps)

E1
(EnSRKFR)

E1
(EnSRKF)

x21 10 1.02 0.63

x22 10 0.95 0.81

x23 10 1.17 0.95 10 2.61 1.74

x24 10 1.71 1.38

x25 10 2.01 1.54

x21 20 1.12 0.98

x22 20 1.28 0.92

x23 20 1.54 1.16 20 3.0 2.1

x24 20 1.91 1.60

x25 20 2.49 1.63

Table 1. The RMSE and E1 of EnSRKF compared with the RMSE of EnSRKFR in Lorenz 96 model.

Figure 4. Rows of the true and estimated covariance matrices, where 
the chosen frequency of observations is 20 time steps.

(u) from EnSRKF are closer to the true states in some vari-
ables, this may be due to the lack of horizontal and vertical 
velocity observations for the multiple shallow water mod-
el. The specific comparisons can be observed in Figure 7.

Then, for evaluating the assimilation performance in 
shallow water model, the RMSE is also used in different 
observation frequencies. Table 2 shows the RMSE of some 
variables in different observation frequencies. Compared 
with the EnSRKF, the RMSE in EnSRKFR are reduced 
for most variables. But when the observation frequency 
is five time steps, the RMSE of some variables increase a 
little bit. Therefore, the experimental results show that the 
application of the EnSRKFR method to the multivariate 
model may not be as effective as the application to the 
unary model. But in general, the effect of the EnSRKFR 
method is good.

CONCLUSIONS
For a data assimilation process, in order to obtain an 

optimal estimation of the true state for ocean numerical 
models, the observation error covariance and the back-
ground error covariance must have more accurate estima-
tion. The observation error covariance matrix is treated 
as a diagonal matrix in previous, but in the recent study, 
the observation error has been shown to be correlated. 
Miyoshi et al. (2013) introduced and demonstrated the 
beneficial effect of correlated observation error covari-
ance matrix used in data assimilation, which means the 
observation error correlation is worthy of further study. 
Therefore, the method of obtaining correlated observation 
error covariance matrix has been greatly developed in re-
cent years.

In this paper, we introduce a diagnostic method for 
constructing the observation error covariance matrix. This 
diagnostic method is combined with EnSRKF and a corre-
lated observation error covariance matrix can be obtained 
by the combination of O-A and O-B at each assimilation 
step. The DBCP diagnostic method has been proved to 
give an approximate estimate of the true observation error 
covariance matrix. We can update the observation error 
covariance matrix at each assimilation step and then use 
it in the next assimilation. Hence a new observation er-
ror covariance matrix can be obtained at each assimilation 
step, which changes with the assimilation time and ap-
proximates the exact observation error covariance matrix.  

In a simple data assimilation framework which is 
based on the EnSRKF, we use the Lorenz 96 model and 
neglect model error. Meanwhile, an isotropic and homo-
geneous observation error covariance matrix is considered 
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Figure 5. The analysis values in EnSRKF and EnSRKFR compared with the true states, where observations are available every 10 time steps.

Figure 6. The analysis values in EnSRKF and EnSRKFR compared with the true states, where observations are available every 5 time steps.

to be used in the experiments. Here in order to verify the 
effect of the proposed method, so the model of assimila-
tion is simplified for convenience. The results from these 
experiments demonstrate that the analysis after joining 
the DBCP diagnostic method is better than that without 

the DBCP diagnostic method. Meanwhile, the RMSE of 
each variable is further significantly reduced. These all 
mean that EnSRKFR outperforms EnSRKF in these ex-
periments. Therefore, under our basic assumption, the ap-
plication of the DBCP diagnostic method to EnSRKF is 
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Variables Obs Freq.
(time steps)

RMSE
(EnSRKF)

RMSE
(EnSRKFR)

Obs Freq.
(time steps)

RMSE
(EnSRKF)

RMSE
(EnSRKFR)

h23 5 0.14 0.12 10 0.20 0.16

h254 5 0.11 0.09 10 0.18 0.12

h484 5 1.18 0.14 10 0.18 0.13

u88 5 0.24 0.20 10 0.90 0.33

u113 5 0.40 0.43 10 0.85 0.73

u364 5 0.58 0.58 10 0.80 0.60

v20 5 0.21 0.24 10 0.62 0.14

v213 5 0.44 0.38  10   0.65 0.43

v482 5 0.29 0.15 10 0.60 0.37

Table 2. Comparisons of RMSE between EnSRKFR and EnSRKF in shallow water model.

Figure 7. The analysis values in EnSRKF and EnSRKFR compared with the true states, where observations are available every ten time steps.

feasible and shows good results, that is, the inclusion of an 
approximate correlation structure in the observation error 
covariance matrix is generally better than the assumption 
of uncorrelated error. When the EnSRKF with correlated 
observation errors is applied to the ocean numerical mod-
el, the numerical model will show better numerical simu-
lation results, because more accurate analyses are obtained 
in the process of data assimilation.

At the same time, in the one-dimensional Lorenz 
96 model, for the EnSRKF method the ( )tR diag R=  
is chosen to be the observation error covariance matrix 
and for the EnSRKFR method an error covariance ma-
trix ( )tdiag R  is treated as the initial error matrix. From 
the results of the experiments, however, the EnSRKFR 

method still shows good properties, which shows that even 
if the initial observation error matrix used in EnSRKFR 
is not very accurate, it still will show better results than 
EnSRKF. Owing to the previous experimental results, 
we can clearly understand that the assimilation effect of 
EnSRKFR is indeed better than EnSRKF. The results 
demonstrate the importance of introducing a correlated 
observation error covariance matrix in data assimilation.

When the EnSRKFR method is used in the multi-
variate shallow water model the analyses of water height 
are closer to true states and the RMSE is smaller than 
RMSE of EnSRKF method. However, from comparisons 
of horizontal velocities between EnSRKF method and 
EnSRKFR method, the EnSRKFR method is not as good 
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as the EnSRKF method in the multivariate model. These 
phenomena may be due to the correlation between the 
various variables in the multivariate model. Although the 
EnSRKFR method does not work well for some variables 
in the multivariate model, the error is generally accept-
able. Due to the complexity of the multivariate model, the 
further work is required to improve the EnSRKFR method 
to better apply to the multivariate model.
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